
Journal of the Korean Statistical Society 37 (2008) 385–392
www.elsevier.com/locate/jkss

Singular extended skew-elliptical distributions
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36240 Guanajuato, Guanajuato, Mexico

Received 19 January 2008; accepted 15 April 2008
Available online 21 May 2008

Abstract

Singular vector and matrix extended skew-elliptical distributions are studied in this work. Based on the vectorial case, two
alternatives for singular matrix variate extended skew-elliptical distribution are also proposed. In addition, the distributions of a
general linear transformation for extended skew-elliptical vectors and matrices are derived along with the corresponding density
functions. These results are applied in the distribution of the residuals for a general linear model with extended skew-elliptical
errors.
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1. Introduction

In the last two decades, several research areas of univariate and multivariate statistics have replaced the hypothesis
with classical normal assumptions by elliptical distribution conditions. Two summaries of those advances are given in
the books by Fang and Zhang (1990) and Gupta and Varga (1993).

Some authors have studied a new family of distributions by introducing skewness in univariate and multivariate
elliptical distributions, see Aigner, Lovell, and Schmidt (1977), Azzalini and Capitanio (1999), Azzalini and Dalla
Valle (1996), Azzalini and Capitanio (2003) Sahu, Dey, and Branco (2003) and Genton (2004). This set of distributions
contains several standard families, including multivariate skew normal and skew t distributions. In the normal
case, different approaches have generated many of the multivariate skew-normal family of distributions, see for
example, Branco and Dey (2001) and González-Farı́as, Domı́nguez, and Gupta (2004).

Simultaneously, many authors have studied the singular problem for normal distribution, and the vector and matrix
elliptical families. Also, some related singular distributions have been proposed: the Wishart distribution, the matrix
variate T, the matrix variate beta type I and II, among many others, see Dı́az-Garcı́a and González-Farı́as (2005a,b),
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Dı́az-Garcı́a and Gutiérrez-Jáimez (1997), Dı́az-Garcı́a and Gutiérrez-Jáimez (2006), Dı́az-Garcı́a, Gutiérrez-Jáimez,
and Mardia (1997), Ip, Wong, and Liu (2007) and Uhlig (1994).

In the present work, we extend the results of González-Farı́as et al. (2004) by deriving the density function of
a singular vector extended skew-elliptical distribution. Then, in Section 4, the vectorial case is also generalised, by
proposing two expressions for a singular matrix variate extended skew-elliptical distribution. Finally, in Section 5, we
consider the distribution of a general linear transformation for extended skew-elliptical vectors and matrices. These
results are applied in the distribution of residuals for a general multivariate linear model when errors have a singular
matrix variate extended skew-elliptical distribution.

2. Notations and preliminaries

Let h : R → [0,∞) be a function such that
∫
∞

0 uNm/2−1h(u)du < ∞. We say that a random matrix
Y ∈ RN×m has an elliptical distribution with location parameter matrix µ ∈ RN×m and scale parameter matrix
2⊗4 ∈ RNm×Nm , if its density function is given by

fY(Y) = |4|−N/2
|2|−m/2h(N×m)

[
tr
(
4−1(Y− µ)T2−1(Y− µ)

)]
, (1)

where4 > 0 and2 > 0 for4 ∈ Rm×m and2 ∈ RN×N , and⊗ is the usual Kronecker product. The function h(N×m)

is called the density generator and the elliptical distribution of Y is denoted by Y ∼ EN×m(µ,2⊗4, h(N×m)). If the
rank r of 4 is less than m and/or the rank k of Θ is less than N , this is, if 4 ≥ 0 and/or 2 ≥ 0, then, the distribution
rank of Y is kr , i.e. Y has a singular distribution, see Cramér (1999, p. 297). In this case, we say that Y has a singular
matrix-variate elliptical distribution, which is denoted by

Y ∼ Ek,r
N×m

(
µ,2⊗4, h(N×m)

k,r

)
.

The superscript (in Ek,r
N×m) or the subscript (in h(N×m)

k,r ) will be omitted when r = m and k = N . Subscript and
superscript in h indicate explicitly that this function depends on them.

So, we have:

Lemma 2.1 (Singular Matrix Variate Elliptical Distribution). Suppose that Y ∼ Ek,r
N×m

(
µ,2⊗4, h(N×m)

k,r

)
and let

4− and 2− be some symmetric generalised inverses of 4 and 2, respectively. Then the density function of Y with
respect to the Hausdorff measure (dY) is

dFY(Y) =
1(

k∏
j=1

δ
r/2
j

)(
r∏

i=1
λ

k/2
i

)h(N×m)
k,r

(
tr4−(Y− µ)T2−(Y− µ)

)
(dY), (2)

where λi and δ j are nonzero eigenvalues of 4 and 2, respectively, see also Dı́az-Garcı́a et al. (1997), Dı́az-Garcı́a
and González-Farı́as (2005b), Cramér (1999, p. 297) and Billingsley (1986, p. 247).

If q = min(r, k), explicit expressions for (dY) can be given as functions of the QR, Polar, Singular value and QR
modified decompositions, see Dı́az-Garcı́a and González-Farı́as (2005a).

Now, Khatri (1968) shows that the density function (2) is not unique, see also Dı́az-Garcı́a and González-Farı́as
(2005b); however, it is important to note that once a distribution expression (2) is found, the results do not depend on
the selected density, see Rao (1973).

As it was highlighted, interest in skew elliptical distributions comes from both theoretical and applied directions.
On the theoretical side it enjoys of a number of formal properties which resemble those of the elliptical distributions
given, for example, in Gupta and Varga (1993). From the applied viewpoint, these densities are unimodal empirical
distributions with the presence of skewness and possible heavy tails. In the non-singular case, as we shall see, the
term skew-elliptical comes from the parametric class of multivariate probability distributions determined by the vector
Y = [Z|W > 0], where Z ∼ Eq(τ1,Υ1, h(q)) and W ∼ Ep(τ2,Υ2, h(p)). This definition for p = 1, under the elliptical
model, is given in Branco and Dey (2001), and the general normal case, for arbitrary p, is studied by González-Farı́as
et al. (2004).
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3. Singular vector-variate skew-elliptical distribution

In this section we propose an expression for vector singular extended skew-elliptical density, extending the normal
case derived by González-Farı́as et al. (2004).

Assume that

E =
(

E1
E2

)
∼ Er+k

p+q

((
0
0

)
,

(
6 0
0 1

)
, h(p+q)

r+k

)
,

where E1 : p × 1, 6 ≥ 0 has rank r ≤ p, E2 : q × 1, 1 ≥ 0 has rank k ≤ q and Cov(E1,E2) = 0 : p × q. Note that
E1 and E2 are dependent; which is the opposite situation in the normal case.

Let

U =
(

Ip 0
D Iq

)(
E1
E2

)
+

(
µ

−ν

)
=

(
µ+ E1

−ν + DE1 + E2

)
=

(
W
−Z

)
, (3)

where D : q × p is an arbitrary matrix of constants, and, µ : p × 1 and ν : q × 1, are vectors of constants. Then

U =
(

W
Z

)
∼ Er+k1

p+q

((
µ

−ν

)
,

(
6 6DT

D6 1+ D6DT

)
, h(p+q)

r+k1

)
,

where k1 is the rank of 1+ D6DT. If G(·) is the distribution function of g(·), then

dGW|{Z≥0}(w|Z ≥ 0) =
dGW(w)
P(Z ≥ 0)

P(Z ≥ 0|W = w), (4)

with

W ∼ Er
p

(
µ,6, h(p)r

)
and Z ∼ Ek1

q

(
−ν,1+ D6DT, h(q)k1

)
.

For the random s-dimensional vector we will denote this fact by g(s)V

(
v; r,µ,6, h(s)r

)
or dG(s)

V

(
v; r,µ,6, h(s)r

)
;

where r is the rank of the distribution; i.e. the rank of the matrix 6, see Cramér (1999, p. 297). Then, given that
6 = 66−6, there is

Z|W = w ∼ Ek
q

(
−ν + D66−(w− µ),1, h(q)δ(w),k1

)
,

with δ(w) = (w− µ)T6−(w− µ) (see Theorem 2.6.4, pp. 62–65 of Gupta and Varga (1993)), where

h(q)δ(w),k1
(τ ) =

Γ (k1/2)

πk1/2

h(δ(w)+ τ, p + q)∫
R+ v

k1/2−1h(α + v, p + q)dv
, α > 0,

and h(·, ·) is a decreasing function, h : R+→ R+, such that∫
R+

h(a, b)ab/2−1da <∞.

Then,

P(Z ≥ 0) = F (q)Z

(
0; k1, ν,1+ D6DT, h(q)k1

)
,

and

P(Z ≥ 0|W = w) = F (q)
{Z≥0}|W=w

(
D66−(w− µ); k, ν,1, h(q)δ(w),k

)
.

Thus, the density (4) can be expressed as

dGW|{Z≥0}(w|Z ≥ 0) =
F (q)Z≥0|W=w

(
D66−(y− µ); k, ν,1, h(q)δ(w),k

)
F (q)Z

(
0; k1, ν,1+ D6DT, h(q)k1

) dG(p)
W

(
w; r,µ,6, h(p)r

)
.

In conclusion:
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Definition 3.1 (Singular Vector-Variate Extended Skew-Elliptical Distribution). A random vector Y has a p-
dimensional singular extended skew-elliptical distribution, with rank r and parameters q , k1, µ, 6, k, D, ν, 1
previously given in Lemma 2.1, if its density function is given by

dG(p)
Y

(
y; r, q, k1,µ,6, k,D, ν,1, h(p)r

)
=

F (q)Y

(
D66−(y− µ); k, ν,1, h(q)δ(w),k

)
F (q)Y

(
0; k1, ν,1+ D6DT, h(q)k1

) dG(p)
Y

(
y; r,µ,6, h(p)r

)
, (5)

and it is denoted by

Y ∼ SESE (p)r

(
q, k1,µ,6, k,D, ν,1, h(p)r

)
.

Some important particular cases of this family are the following: (a)If1 > 0, then k = q = k1, and the parameters
k and k1 are excluded in the density (5), (b) if 6 > 0, then r = p and the parameter r is excluded in Definition 3.1, (c)
if 1 > 0 and 6 > 0 then non-singular extended skew-elliptical distribution is obtained; in that case the parameters r ,
k and k1 in Definition 3.1 are excluded, see González-Farı́as et al. (2004). Finally, note that the distribution SESE is
not unique, since the singular elliptical distribution exhibits this characteristic.

4. Singular matrix variate extended skew-elliptical distribution

In this section we study singular extended skew-elliptical distribution for the matrix case. We shall see that the
matrix distribution can be obtained as an extension of the vector distribution described in Section 3. Note that the
matrix extension of the vectorial case is not unique, in fact, we can follow essentially four techniques very similar to
the classical extension of the vectorial elliptical distribution, see Fang and Zhang (1990, Lemma 3.3.2). Even more,
an alternative generalisation for the matrix version can be proposed, and this is given at the end of the section.

First, observe that Y ∼ EN×m(µ,2⊗4, h) is equivalent to

vec Y ∼ ENm(vecµ,2⊗4, h),

see Muirhead (1982, p. 79) and Gupta and Varga (1993, pp. 26–27). Then, by assuming(
vec E1
vec E2

)
∼ Er6r2r1r4

pmqn

((
0
0

)
,

(
2⊗6 0

0 4⊗1

)
, h(pmqn)

r6r2r1r4

)
, (6)

where E1 : p × m and E2 : q × n are matrices; 6 : p × p has rank r6 ≤ p, 6 ≥ 0; 2 : m × m has rank r2 ≤ m,
2 ≥ 0; 1 : q × q has rank r1 ≤ q , 1 ≥ 0 and 4 : n × n has rank r4 ≤ n, 4 ≥ 0. Then the matrix version of the
model (3) is given by

vec U =
(

I 0
(DT

2 ⊗ D1) I

)(
vec E1
vec E2

)
+

(
vecµ
−vec ν

)
, (7)

where D1 : q × p; D2 : m × n; µ : p × m and ν : q × n are arbitrary matrices of constants. Explicitly,

vec U =
(

vec W
vec Z

)
=

(
vecµ+ vec E1

−vec ν + (DT
2 ⊗ D1)vec E1 + vec E2

)
.

Proceeding as in Section 3 (after the model (3)), we have the following:

Definition 4.1 (Singular Matrix-Variate Extended Skew-Elliptical Distribution I). It is said that a random matrix Y
has a singular matrix variate extended skew-elliptical p × m-dimensional distribution, of rank r6r2 and parameters
q, n, k1, µ, 6, 2, k = r1r4, D1, D2, ν, 1, 4, previously defined, if its density function is given by

dG(pm)
vec Y

(
vec Y; r6r2, q, n, k1, vecµ,2⊗6, k,DT

2 ⊗ D1, vec ν,4⊗1, h(pm)
r6r2

)
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=

F (qn)
vec Y

(
DT

222
−
⊗ D166

−vec (Y− µ); k, vec ν,4⊗1, h(qn)
δ(W),k

)
F (qn)

vec Y

(
0; k1, vec ν,4⊗1+ DT

22D2 ⊗ D16DT
1 , h(qn)

k1

)
× dG(pm)

vec Y

(
vec Y; r6r2, vecµ,2⊗6, h(pm)

r6r2

)
,

where δ(W) = vec T(W− µ)(2⊗6)−vec (W− µ). Under matrix notation,

dG(p×m)
Y

(
Y; r6r2, q, n, k1,µ,2⊗6, k,DT

2 ⊗ D1, ν,4⊗1, h(pm)
r6r2

)
=

F (q×n)
Y

(
D166

−(Y− µ)2−2D2; k, ν,4⊗1, h(q×n)
δ(W),k

)
F (q×n)

Y

(
0; k1, ν,4⊗1+ DT

22D2 ⊗ D16DT
1 , h(q×n)

k1

) dG(p×m)
Y

(
Y ; r6r2,µ,2⊗6, h(p×m)

r6r2

)
,

where δ(W) = tr6−(W− µ)T2−(W− µ); k1 is the rank of (4⊗1+DT
22D2 ⊗D16DT

1 ). We denote this fact by

Y ∼ SESE (p×m)
r6r2

(
q, n, k1,µ,2⊗6, k,DT

2 ⊗ D1, ν,4⊗1, h(p×m)
r6r2

)
.

Now observe that Cov(vec E1) = 2⊗6; this structure of the covariance matrix through the Kronecker product is
a consequence of linear transformation acting on a matrix. For example, in the same context of Definition 4.1, if

V ∼ Er6×r2

(
0, Ir2 ⊗ Ir6 , h(r6×r2)

)
,

where 0 is a matrix of zeros of order r6 × r2, then E1 =MVN, and

E1 ∼ Er6r2
p×m

(
0,2⊗6, h(N×m)

r6r2

)
,

with 6 =MMT and 2 = NTN.
The disadvantages of this approach – which uses the transformation of a matrix – are the restrictions on elements

of the covariance matrix, 2⊗6, see Press (1982, p. 253).
An alternative approach considers vectorization of the matrix to perform the linear procedure. It avoids functions

of Kronecker products in the linear transformation. For the example, we know that:

vec V ∼ Er6×r2

(
vec 0, Ir2 ⊗ Ir6 , h(r6×r2)

)
≡ Er6×r2

(
vec 0, Ir2r6 , h(r6×r2)

)
.

Then we define vec E1 = Avec V, with A : pm × r6r2 such that 3 = AAT. So

vec E1 ∼ Er6r2
pm

(
vec 0,3, h(N×m)

r6r2

)
.

Using this observation instead of (6) we have(
vec E1
vec E2

)
∼ Er3r�

pmqn

((
0
0

)(
3 0
0 �

)
, h(pmqn)

r3r�

)
,

where 3 : pm × pm of rank r3 ≤ pm, 3 ≥ 0 and � : qn × qn of rank r� ≤ qn, � ≥ 0. Now, an alternative
definition of model (7) is

vec U =

(
I 0
D I

)(
vec E1
vec E2

)
+

(
vecµ
−vec ν

)
,

where D : nq × mp; µ : p × m and ν : q × n are arbitrary matrices of constants. Explicitly,

vec U =
(

vec W
vec Z

)
=

(
vecµ+ vec E1

−vec ν +D vec E1 + vec E2

)
.

Then, we propose the following generalisation of Definitions 3.1 and 4.1, which holds for the vector and matrix case.
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Definition 4.2 (Singular Matrix Variate Extended Skew-Elliptical Distribution II). A random matrix Y has a pm-
dimensional singular matrix variate extended skew-elliptical distribution, with rank r3 and parameters q, n, k1, µ, 3,
k, D, ν, �, previously defined, if its density function is given by

dG(pm)
vec Y

(
vec Y; r3, q, k1,µ,3, k,D, ν,�, h(pm)

r3

)
=

F (qn)
vec Y

(
D33−vec (Y− µ); k, vec ν,�, h(qn)

δ(vec W),k

)
F (qn)

vec Y

(
0; k1, vec ν,�+D3DT, h(qn)

k1

) dG(pm)
vec Y

(
vec Y; r3, vecµ,3, h(pm)

r3

)
,

where k1 is the rank of �+D3DT and δ(vec W) = vec T(W− µ)3−vec (W− µ). We denote this by

Y ∼ SESE2(pm)
r3

(
q, k1, vecµ,3, k,D, vec ν,1, h(pm)

r3

)
.

5. General linear transformation

The first result of this section finds the distribution of the general linear transformation AY + b, when Y ∼

SESE (p)r

(
q, k1,µ,6, k,D, ν,1, h(p)r

)
, b is a vector of constants and A is any matrix of constants. This problem has

been studied by González-Farı́as et al. (2004) in the skew-normal distribution case and under different conditions on
the rank of the matrix A. Specifically, they considered A, as a non-singular matrix; Y, with a non-singular distribution;
and A, of rank m ≤ n.

At the end of the section we apply these results finding the distribution of residuals for a multivariate linear model.

Theorem 5.1. Assume that Y ∼ SESE (p)r

(
q, k1,µ,6, k,D, ν,1, h(p)r

)
. Let A be an s × p matrix of constants of

rank s1 ≤ min(s, p) and let b be a constant s × 1 vector. And also consider a j ∈ Im(A6AT) for all j = 1, . . . , q,
where a j are the columns of the matrix A6DT and Im(N ) denotes the image of the matrix N. Then,

AY+ b ∼ SESE (s)s2

(
q, k1,Aµ+ b,6A, k2, DA, ν,1A, h(s)s2

)
,

where

6A = A6AT,

DA = D6AT6−A,

1A = 1+ D(6 −6AT6−AA6)DT,

s2 is the rank of (A6AT),

k1 is the rank of (1A + DA6ADT
A)(= to rank of (1+ D6DT)),

k2 is the rank of 1A.

Proof. Define V = AU+ b1, with

B =

(
A 0
0 I

)
, U =

(
W
Z

)
, and b1 =

(
b
0

)
,

where

E(V) = E

(
AW+ b

Z

)
=

(
Aµ+ b
−ν

)
,

and

Cov(V) = BCov(V)BT
=

(
A6AT A6DT

D6AT 1+ D6DT

)
.
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Then

V ∼ E s2+k1
s+q

((
Aµ+ b
−ν

)
,

(
A6AT A6DT

D6AT 1+ D6DT

)
, h(s+q)

s2+k1

)
,

where s2 is the rank of (A6AT) and, as before, k1 is the rank of (1+ D6DT). But observe that(
A6AT A6DT

D6AT 1+ D6DT

)
=

(
6A 6ADT

A
DA6A 1A + DA6ADT

A

)
,

where 6A = A6AT and DA = D6AT6−A , for which

6ADT
A = 6A6

−

AA6DT
= A6DT.

The last equation is valid when a j ∈ Im(A6AT) for all j = 1, . . . , q, where the a j are the columns of the
matrix matrix A6DT, noting that 6A6

−

A is the projector of the image of 6A. Now, observing that, if 1A =

11+ D(6 −6AT6−AA6)DT, then

DA6ADT
A = D6AT6−A6A6

−

AA6DT
= D6AT6−AA6DT,

we have 1A + DA6ADT
A = 1 + D6DT. Finally, if Y d

=W|{Z ≥ 0}, then AY + b d
= AW + b|{Z ≥ 0}, where

d
=

denotes equality distributed.The expected result is reached by applying a similar procedure in the proof of (4). �

Observe that if 6 > 0, 1 > 0 and s1 = s ≤ p, then s2 = s, k1 = q and k2 = q, and, in the notation of González-
Farı́as et al. (2004),

AY+ b ∼ ESE s,q (Aµ+ b,6A, DA, ν,1A, h) .

Similar results to Theorem 5.1 can be derived in the matrix case by using Definitions 4.1 and 4.2.

Corollary 5.1. Consider the general multivariate linear model Y = Xβ + ξ where Y : N × m, X : N × l, of rank
τ ≤ l ≤ N, β : l × m and

ξ ∼ SESE (N×m)
r6N

(
q, n, k1, 0, IN ⊗6, k,DT

2 ⊗ D1, ν,4⊗1, h(N×m)
r6N

)
.

If R : N × m denotes the residual matrix, then

R ∼ SESE (N×m)
s2 N

(
q, n, k1, 0, (IN ⊗6)A, k, (DT

2 ⊗ D1)A, ν, (4⊗1)A, h(N×m)
s2 N

)
,

where A = (I⊗ P), P = (I− XX+) with C+ is the Moore-Penrose inverse of the matrix C, and

(IN ⊗6)A = (IN ⊗ P6P),

s2 is the rank of (IN ⊗6)A,

(DT
2 ⊗ D1)A = (DT

2 ⊗ D16P(P6P)−) and

(4⊗1)A = 4⊗1+ (DT
2 ⊗ D1)(IN ⊗6 − IN ⊗6P(P6P)−P6)(D2 ⊗ DT

1 ).

Proof. Recall that R = Y− Ŷ = Y−Xβ̂ = Y−XX+Y = (I−XX+)Y = PY, where P = (I−XX+) and β̂ is any
solution of the system of normal matrix equations (XTX)β̂ = XTY, see Rao (1973) or Muirhead (1982).

Now observe that, the linear model Y = Xβ + ξ is a linear transformation of the matrix ξ , and vec Y =
(I⊗ X)vecβ + vec ξ , thus by Theorem 5.1 we obtain

Y ∼ SESE (N×m)
r6N

(
q, n, k1,Xβ, IN ⊗6, k,DT

2 ⊗ D1, ν,4⊗1, h(N×m)
r6N

)
.

Now, applying Theorem 5.1 and observing that vec R = (I⊗ P)vec Y, then the proof is complete. �
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6. Conclusions

It is easy to check that all univariate and multivariate nonsingular extended skew elliptically contoured distributions
can be obtained as particular cases of the results given in this work. In the same way, distributions of any kind of
general linear transformation Y = AX+b of a nonsingular extended skew elliptical distribution with all their variants
(dimension of A and/or ranks of A and X), also can be derived as corollaries of Section 5. Many interesting applications
are generated by this result. Unfortunately, at present, some expressions can only be seen as theoretical results, because
even in the univariate case there are important problems for classical estimation of parameters, see Azzalini (2005).
In fact, some theoretical results for singular distributions of different kind of residuals (normalized, standardized,
internally or externally studentized residual) cannot be established because the jacobians with respect to the Hausdorff
measure are unknown; for example, no expressions for the simplest jacobian related with a linear transformation
is given in literature, see Dı́az-Garcı́a (2007). In addition, from a Bayesian point of view we propose the a-priori
parameter distributions of the corresponding matrix variate extended skew elliptically distribution and by using
Definition 4.2 we avoid the parameter restrictions of Definition 4.1, see Press (1982, p. 253).
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Dı́az-Garcı́a, J. A., & González-Farı́as, G. (2005b). Singular random matrix decompositions: Distributions. Journal of Multivariate Analysis, 94,

109–122.
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