Letter to the Editor

Eloísa Díaz-Francés · José A. Montoya

On a paper by Nadarajah and Kotz (Statistical Methods and Applications 15: 151–158, 2006)

by Eloísa Díaz-Francés and José A. Montoya, Department of Probability and Statistics, Centro de Investigacion en Matematicas, Guanajuato, Mexico

The formula presented by Prudnikov et al. (1986, 2.8.9.1., p. 110) for solving real integrals of the form \(\int_0^\infty \exp(-px) \text{erfc}(cx + b)dx \) cannot be applied as stated when \(c < 0 \). When \(c \) is negative, some limits of integration must be modified in a change of variable required in the calculation of this integral. Nadarajah and Kotz (2006) use this formula in a case where \(c \) is negative (the first integral in their formula 6) to derive their Theorem 1 which is consequently in error.

The correct results are the following:

\[
\text{Lemma 1} \quad \text{For a real positive } p, \text{ and } c, b \in \mathbb{R},
\]

\[
\int_0^\infty \exp(-px) \text{erfc}(cx + b)dx = \frac{1}{p} \text{erfc}(b) + \begin{cases} -\frac{1}{p} \exp\left(\frac{bp}{c} + \frac{p}{4c^2}\right) \text{erfc}\left(b + \frac{p}{2c}\right), & \text{if } c > 0, \\ -\frac{1}{p} \exp\left(\frac{bp}{c} + \frac{p}{4c^2}\right) \text{erfc}\left(-b - \frac{p}{2c}\right), & \text{if } c < 0. \end{cases}
\]

E. Díaz-Francés · J. A. Montoya
Department of Probability and Statistics, Centro de Investigacion en Matematicas, Guanajuato, Mexico
e-mail: diazfran@cimat.mx
Proof The integral can be calculated by integration by parts:

\[
\int_0^\infty \exp(-px) \text{erfc}(cx + b)\,dx = \lim_{x \to \infty} \left[-\frac{1}{p} \exp(-px) \text{erfc}(cx + b) \right] + \frac{1}{p} \text{erfc} (b) - \frac{2c}{p\sqrt{\pi}} \int_0^\infty \exp\left[-(cx + b)^2 - px \right] \,dx.
\]

Since \(p > 0 \), the limit in the first-term in the right side is zero. The integral in the third term can be expressed as

\[
\int_0^\infty \exp\left[-(cx + b)^2 - px \right] \,dx = \exp \left(\frac{bp}{c} + \frac{p^2}{4c^2} \right) \int_0^\infty \exp \left(-\left(cx + \frac{p}{2c} \right)^2 \right) \,dx.
\]

A change of variable, \(w = cx + b + p/(2c) \), yields different limits of integration depending on the sign of \(c \):

\[
w \in \begin{cases}
(b + \frac{p}{2c}, \infty), & \text{if } c > 0, \\
(b + \frac{p}{2c}, -\infty), & \text{if } c < 0.
\end{cases}
\]

Therefore

\[
\int_0^\infty \exp(-px) \text{erfc}(cx + b)\,dx = \frac{1}{p} \text{erfc} (b) + \begin{cases}
-\frac{1}{p} \exp \left(\frac{bp}{c} + \frac{p^2}{4c^2} \right) \frac{2}{\sqrt{\pi}} \int_{b+p/(2c)}^\infty \exp\left(-w^2 \right) \,dw, & \text{if } c > 0, \\
\frac{1}{p} \exp \left(\frac{bp}{c} + \frac{p^2}{4c^2} \right) \frac{2}{\sqrt{\pi}} \int_{-\infty}^{-b+p/(2c)} \exp\left(-w^2 \right) \,dw, & \text{if } c < 0,
\end{cases}
\]

\[
= \frac{1}{p} \text{erfc} (b) + \begin{cases}
-\frac{1}{p} \exp \left(\frac{bp}{c} + \frac{p^2}{4c^2} \right) \text{erfc} \left(b + \frac{p}{2c} \right), & \text{if } c > 0, \\
\frac{1}{p} \exp \left(\frac{bp}{c} + \frac{p^2}{4c^2} \right) \text{erfc} \left(-b - \frac{p}{2c} \right), & \text{if } c < 0,
\end{cases}
\]

noting that

\[
\frac{2}{\sqrt{\pi}} \int_{-\infty}^{b+p/(2c)} \exp(-w^2) \,dw = 2 - \text{erfc} \left(b + \frac{p}{2c} \right) = \text{erfc} \left(-b - \frac{p}{2c} \right).
\]
Theorem 1 The cdf of \(Z = |X/Y| \) can be expressed as follows,

\[
F(z) = \begin{cases}
\frac{1}{2} \left[\exp \left(-\frac{\mu \lambda}{z} + \frac{\lambda^2 \sigma^2}{2z^2} \right) \text{erfc} \left(-\frac{\mu}{\sqrt{2}\sigma} + \frac{\lambda \sigma}{\sqrt{2}z} \right)
+ \exp \left(\frac{\mu \lambda}{z} + \frac{\lambda^2 \sigma^2}{2z^2} \right) \text{erfc} \left(\frac{\mu}{\sqrt{2}\sigma} + \frac{\lambda \sigma}{\sqrt{2}z} \right) \right], & \text{if } z > 0, \\
0, & \text{otherwise.}
\end{cases}
\]

Proof The proof is a direct application of (1) to formula 6 of Nadarajah and Kotz (2006). \(\square \)

Theorem 2 The pdf of \(Z = |X/Y| \) can be expressed as follows,

\[
f(z) = \begin{cases}
\sqrt{\frac{2\lambda \sigma}{\pi z^2}} \exp \left(-\frac{\mu^2}{2\sigma^2} \right)
+ \frac{1}{2} \left(\frac{\mu \lambda}{z^2} - \frac{\lambda^2 \sigma^2}{z^3} \right) \exp \left(-\frac{\mu \lambda}{z} + \frac{\lambda^2 \sigma^2}{2z^2} \right) \text{erfc} \left(-\frac{\mu}{\sqrt{2}\sigma} + \frac{\lambda \sigma}{\sqrt{2}z} \right)
- \frac{1}{2} \left(\frac{\mu \lambda}{z^2} + \frac{\lambda^2 \sigma^2}{z^3} \right) \exp \left(\frac{\mu \lambda}{z} + \frac{\lambda^2 \sigma^2}{2z^2} \right) \text{erfc} \left(\frac{\mu}{\sqrt{2}\sigma} + \frac{\lambda \sigma}{\sqrt{2}z} \right), & \text{if } z > 0, \\
0, & \text{otherwise.}
\end{cases}
\]

Proof The pdf is obtained by differentiating with respect to \(z \) the expression given in (2), taking into account that

\[
\frac{d}{dz} \text{erfc} \left(\frac{a}{z} + b \right) = \frac{2a}{\sqrt{\pi} z^2} \exp \left[-\left(\frac{a}{z} + b \right)^2 \right].
\]

\(\square \)

Reply

by Saralees Nadarajah, School of Mathematics, University of Manchester, UK

The letter to the editor by Diaz-Frances and Montoya concerns Theorem 1 of Nadarajah and Kotz (2006). The proof of this theorem uses the result:

\[
\int_0^\infty \exp(-px) \text{erfc}(cx + b) \, dx = \frac{1}{p} \text{erfc}(b) - \frac{1}{p} \exp \left(\frac{p^2 + 4pbc}{4c^2} \right) \text{erfc} \left(b + \frac{p}{2c} \right),
\]

(3)
which is a particular case of Eq. (2.8.9.1) in Prudnikov et al. (1986). However, (3) is valid only if $\text{Re } \rho > 0$ and $|\text{arg } c| < \pi/4$. The calculations in Nadarajah and Kotz (2006) have ignored the second of these two conditions. The condition $|\text{arg } c| < \pi/4$ is not satisfied by some of the calculations leading to Theorem 1 in Nadarajah and Kotz (2006). As a result Theorem 1 is not correct in the stated form. We thank Diaz-Frances and Montoya for pointing out this mistake and for deriving the correct version of Theorem 1 in Nadarajah and Kotz (2006).

We would like to mention, however, that the proof of Lemma 1 in Diaz-Frances and Montoya can be simplified greatly if one notes $\text{erfc}(x) + \text{erfc}(-x) = 2$. Note that if $c < 0$ then one can write

$$
\int_0^\infty \exp(-px) \text{erfc}(cx + b) \, dx = \int_0^\infty \exp(-px) \{2 - \text{erfc}(-cx - b)\} \, dx
$$

$$
= \frac{2}{p} - \int_0^\infty \exp(-px) \text{erfc}(-cx - b) \, dx \quad (4)
$$

and apply (3) for the integral in (4).

References
