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Abstract In this paper we propose an advancing front method for generating
an isotropic triangular mesh on a regular parametric surface. Starting from a
point on the surface, the method computes a set of points in the intersection
curve between the surface and the sphere centered at that point with a
prescribed radius. From this set we select the vertices of a cell composed by
triangles approximately equilateral. The mesh grows repeating the described
computation with boundary vertices of the cell as starting points. Compared
to methods proposed by other authors, the current method may be considered
as an improvement, since it is more efficient and flexible. Furthermore, the
resulting mesh is closer to being isotropic. Additionally, we obtain a sufficient
condition ensuring that a surface triangulation is of Delaunay type.
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1 Introduction

Parametric surfaces are the standard in computer aided design and manu-
facturing (CAD/CAM) systems. Therefore, a lot of work has been done to
obtain good discretizations of parametric surfaces, suitable for visualization
[7, 13], for numerical solution of partial differential equations [1, 5, 9, 10, 12]
using the finite elements method (FEM) or the boundary elements method
(BEM). Triangulation of parametric surfaces is also an essential problem in
computer graphics, computational geometry and rapid prototyping. The most
common discretization of a surface is a triangular mesh, due to its flexibility for
representing complex geometries and also because current graphic hardware
and software are tuned to handle triangular meshes. The simplest way of
constructing a triangular mesh on a parametric surface consists of generating a
(nice) triangulation in parameter space and lifting it to the surface by means of
the parametrization. Unfortunately, this triangular mesh on the surface could
be very distorted, see Fig. 1 (also Section 4.1), where we have introduced levels
of gray tones to visualize shape deformation of triangles (white is an equilateral
triangle).

Methods for generating triangular meshes on a surface can be classified in
several ways depending on different criteria.

• If we focus on the domain, there are two groups of methods: those
computing the mesh in the planar parametric space [3, 5, 7, 12] and those
working directly on the 3D surface [1, 9, 10]. Methods in the first class
obtain the vertices of the surface mesh mapping a 2D triangular mesh by
means of the surface parametrization. These methods have to take into
account that the current parametrization usually introduces deformations
in length and angles and therefore properties of the 2D mesh are no longer
preserved after lifting it on the surface. In other words, well shaped meshes
in 2D parametric space could be very twisted after mapping them on the
surface. Methods in the second class do not have these problems and can
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Fig. 1 Left a triangulation in parametric space with almost all triangles equilateral, right its image
using two different parametric surfaces. Observe the deformation in the triangle’s shape due to
the parametrization
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be very useful when surface parametrization is distorting, but usually are
more expensive due to computations on the surface.

• Concerning the main technique used by the method there are also two
principal classes: methods based on Delaunay triangulations [3, 4, 9, 10]
and advancing front methods [1, 5, 12] which start from a cell whose
boundary grows as the method progresses.

• Additionally, methods can be classified according to the mesh nature.
Some methods generate isotropic meshes [1, 9], in which the size and
the shape of triangles are roughly the same, while others [10] produce
anisotropic meshes with different density and shape of triangles, depending
on the surface curvature. Isotropic meshes are more commonly used in
FEM or BEM applications, where numerical algorithms require the trian-
gle shape and size to be as regular as possible since too thin or distorted
elements increase the analysis error and slow the solution convergence.
Anisotropic meshes are preferred for visualization purposes.

In this paper we propose an advancing front method to generate a triangular
mesh on a parametric surface. The method is inspired in the ideas introduced
in [1] and the resulting surface mesh is isotropic and therefore well adapted
for FEM or BEM applications. Furthermore, the isotropic mesh can be easily
refined in order to get a better approximation of the surface, making the method
also useful for visualization of the surface. The structure of the paper is the
following: in Section 2 we address the previous work, while Section 3 for-
mally presents the problem and the proposed solution. Section 4 describes
different strategies to measure and improve the triangulation quality. Section 5
explains how to extend the proposed method to implicit surfaces. Section 6
shows numerical examples and the last section contains concluding remarks.

2 Previous work

In the following we briefly describe the main ideas contained in the previous
literature about triangulations on a surface.

In [5, 12] and [3] the advancing front technique is used to generate the
triangular mesh, starting with the discretization of the boundary curves and
marching from the boundary towards the interior. These methods work on
the 2D parametric space and impose a compromise between a nodal density
function and the size and quality of the triangles on the surface mesh, based
on the local Riemannian metric associated to the surface parametrization.
The approach in [5] happens to be relatively expensive, since all distances
involved are computed as true curvilinear distances on the surface. On the
other extreme, in [12] the estimation of distances between two points on the
surface is poor, since it is derived from the application of the local expression
for the Riemannian metric on the surface to points which are not necessarily
very close. In [3] it is claimed (without proof) that the triangular surface mesh
obtained by proposed method is of Delaunay type. The Delaunay triangula-
tion of a set of points on a surface is characterized by the empty “surface
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circumcircle” property, see for instance [4]. Given a triangle with vertices
on the surface, a “surface circumcircle” is the intersection curve between the
surface and the sphere centered in a point on the surface and passing through
the vertices. A surface triangulation is of Delaunay type if the “circumcircle”
associated to each triangle of the mesh does not contain any vertex of the mesh
in its interior. Authors of [3] assume that the preimages in parameter space of
“surface circumcircles” may be well approximated by ellipses; a very strong
hypothesis.

In [9] and [10] the mesh is constructed directly on the surface. A hierarchical
subdivision of the surface provides the initial guess for the placement of the
mesh vertices or nodes. This mesh is relaxed, assuming that each node is the
center of a sphere or bubble in [9] and the center of an ellipsoid or ellipsoidal
bubble in [10], under the action of repulsive-attractive forces depending on
the relative position of the nodes. The position of the nodes in the relaxed
mesh is the solution of a large system of second order non linear ordinary
differential equations. The integration process is repeated until it approaches
the equilibrium, hence it becomes an expensive procedure. Furthermore,
theoretical conditions for the existence of such equilibrium are not given. The
problem of how to propose a good initial configuration remains open.

The mesh generated in [9] is isotropic and its edges are constructed
connecting the vertices in the parameter space by means of a constrained
Delaunay triangulation. Consequently, the node connection is actually decided
in parameter space, even when the best node connection in 2D may not be
the optimum when the mesh is mapped on the surface. In [10], the mesh is
anisotropic and its edges are provided by an anisotropic constrained Delaunay
triangulation of the vertices in the 2D parameter space.

Several methods for triangular surface mesh generation are iterative [7–10]
and start with an initial mesh (2D or 3D), which it is repositioned as the
iteration progresses. Unfortunately, most of these methods lack a formal
complexity estimate and convergence analysis. An exception is [7], where a
formal proof of the second order of algorithm convergence is included. The
main idea of the method proposed in [7] is to obtain a reparametrization of the
surface, that behaves approximately like a conformal map in a finite number of
points. These points are the vertices of a planar triangulation in the parameter
space, whose image by the reparametrization is a nice triangular mesh on the
surface. Additionally some of the iterative methods have the disadvantage that
the number of vertices must be fixed in advance, instead of depending on the
surface area and curvature.

The method we propose in this paper is close to methods in [1] and [6]
(originally designed for implicit surfaces) in the sense that all are based on
a local tessellation primitive, consisting of a fan of triangles around a point
on the surface. In [1] and [6] a regular polygon in the tangent plane to the
surface is used to define the fan or umbrella. In [6] vertices of the polygon
are projected on the surface, computing the length on the tangent plane and
therefore introducing significant errors in regions of high curvature. In [1], for
each edge (of size r) of the polygon in the tangent plane at a point P on the
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surface, a curve on the surface starting at P and ending in a point Q such that
‖P − Q‖ = r is calculated.

3 Isotropic meshing

Given a regular parametric surface,

F(u, v) = (x(u, v), y(u, v), z(u, v)) (1)

with (u, v) ∈ � = [0, 1] × [0, 1] ⊂ R
2 we would like to construct a triangular

mesh τ whose vertices are on the surface and such that each triangle is as
close as possible to be equilateral. Our method to construct the mesh τ is an
advancing front technique inspired in the ideas introduced in [1]. The method
starts by selecting a point F(p0), p0 ∈ � on the surface and a value r for the
length of the edges. Then a triangular cell or umbrella centered at F(p0) is
constructed. Its vertices F(p1), ..., F(pn), pi ∈ �, i = 1, ..., n are selected in
such a way that:

• All triangles in the cell are as close as possible to be equilateral.
• ‖F(pi) − F(p0)‖ = r, i = 1, ..., r .

The process is repeated using each neighbor of F(p0) as the center of a new
cell until the boundary curves of the surface F(u, v) are reached.

3.1 Local umbrella

In this section we describe how to construct the umbrella centered at a point
F(p0) on the surface. Since all triangles of the local umbrella centered at F(p0)

must be approximately equilateral, the vertices F(p1), ..., F(pn) are on the
curve CS which is defined as the intersection between the surface F(u, v) and
the sphere S with radius r and center F(p0) = (x0, y0, z0)

S : (x − x0)
2 + (y − y0)

2 + (z − z0)
2 = r2 (2)

We assume that the intersection curve CS is connected, which can be achieved
if the radius r is small enough. Let L be the arc length of the curve CS. The
number of vertices of the cell centered at F(p0) is computed as n = � L

r �, where
� � denotes the floor function. In practice, sometimes it is more convenient to
construct a cell with n = � L

r � + 1 vertices, see Section 3.4. With the previous
value of n we have to find points F(p1), ..., F(pn) on the curve CS such that

‖F(pi) − F(pi+1)‖ ≈ r, i = 1, ..., n − 1

The arc-length of CS is computed approximately as the arc-length of a polygo-
nal curve defined by N points on CS with N >> n. In Section 3.4 we describe
a method that, starting from a large set of N points on a curve, computes a
subset of n points, such that the Euclidean distance between two consecutive
points is approximately the same.
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Substituting the coordinate functions (1) of F in (2) we obtain,

h(u, v) := (x(u, v) − x0)
2 + (y(u, v) − y0)

2 + (z(u, v) − z0)
2 − r2 = 0 (3)

Observe that (3) is the implicit equation of the curve Cp in the parameter
space whose image by F(u, v) is the curve CS. Let’s assume that Cp can be
parametrized as Cp(t) = (u(t), v(t)). To compute the tangent vector dCp

dt =
(ut, vt) to the curve Cp, we derive in (3) and obtain hu ut + hv vt = 0, where
hu, hv are partial derivatives of the function h(u, v). From this expression we
conclude that,

ut = −λ(t)hv (4)

vt = λ(t)hu (5)

with λ(t) a function from R to R. Observe that the curve Cp can always be
parametrized in such a way that λ(t) ≡ 1 in equations (4) and (5).

Computing hu and hv from (3) and substituting in (4) and (5) we obtain then,

− ut = 2(x(u, v) − x0)xv + 2(y(u, v) − y0)yv + 2(z(u, v) − z0)zv (6)

vt = 2(x(u, v) − x0)xu + 2(y(u, v) − y0)yu + 2(z(u, v) − z0)zu (7)

where xu, xv, yu, yv, zu, zv are partial derivatives of the coordinate functions
of F(u, v). The solution of the system of two ordinary differential equations
(6) and (7) gives us a parametrization of the curve Cp. Instead of solving this
system, we compute a set of points on the implicit curve Cp using Chandler’s
method, which gives us a large sample of points on Cp. This method requires
the tangent vector at the initial point of the curve Cp, which can be easily
obtained evaluating the right side of equations (6) and (7).

To generate the local umbrella centered at a point F(p) we must distinguish
between 2 cases, see Fig. 2. If p is the first center we generate all the vertices of
the local umbrella centered at F(p). Otherwise, we already know some vertices
of the umbrella centered at F(p) and we only need to “close” it. We say that
a segment of CS between points F(ps) and F(pe) is the correct segment, if it
does not already contain any vertex of the cell centered at F(p). In that case,
we also say that the corresponding segment of Cp between points ps and pe is
the correct segment of Cp. In Fig. 3 the continuous curve is the correct segment
of the curve Cp.

Fig. 2 Left first local
umbrella, right completing
two local umbrellas
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Fig. 3 Choosing the correct
segment of the curve Cp
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To construct the umbrella of the triangles centered at a point F(p) we
proceed then as follows. First, we compute an ordered sample p1, ..., pN of
N points on the correct segment of the curve Cp using its implicit equation
(3). The value of N has to be large since we assume that the polygonal with
vertices at the sample points F(pi), i = 1, ..., N is a good approximation of the
curve CS. Then we approximate the arc-length L of CS as the length of the
polygonal with vertices F(pi), i = 1, ..., N. From these points we select a subset
of n points F(pi1), ..., F(pin) such that ‖F(pi j) − F(pi j+1)‖ ≈ r, i = 1, ..., n − 1.

3.2 Algorithm

Now we give a description of the algorithm to construct the isotropic trian-
gular mesh.
Input:

• F(u, v) = (x(u, v), y(u, v), z(u, v)), a regular parametric surface defined in
�.

• r > 0 approximate length of the edges.

Output: a triangular mesh τ = (V, E), with V the set of vertices and E the set
of edges, such that the elements of V lie on F(u, v) and the elements of E have
length r approximately.
Initialization steps

– Define an empty stack R and two empty sets V and E.
– Choose a point p0 ∈ � (for instance, choose p0 equal to the center of mass

of �). Compute F(p0) and push p0 in R.

Main loop
while R 	= ∅ do

1. Pop the first point p of the stack R.
2. If p is “very close” to the boundary ∂� of � compute a point F( p̃) close to

F(p) with p̃ ∈ ∂�, set R := R \ {p}, substitute F(p) by F( p̃) in the set V
and p by p̃.

3. Choose the starting point ps and the end point pe of the “correct” segment
of Cp.

4. Compute an ordered sample of N points p1, ..., pN on the “correct”
segment of Cp using its implicit equation (3), see Section 3.3.

5. Compute the points F(p1), ..., F(pN) on the “correct” segment of the
curve CS.
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6. Approximate the length L of the “correct” segment of CS by the length of
the polygonal curve with vertices at the points F(p1), ..., F(pN).

7. From F(p1), ..., F(pN) choose an ordered subset of n points F(pi1), ...,

F(pin) with F(pi1) := F(ps), F(pin) := F(pe), ‖F(pi j) − F(pi j+1)‖ ≈ r,
j = 1, ..., n − 1, see Section 3.4.

8. Update V including the new vertices F(pi1), ..., F(pin). Update E in-
cluding the new edges [F(p), F(pi j)], j = 1, ..., n and [F(pi j), F(pi j+1)],
j = 1, ..., n − 1.

9. Push F(pi j), j = 1, ..., n, in the stack R.
end

Remark

• If p = p0 in step 3 we have to compute all the vertices of the local umbrella
centered at F(p0). Therefore, the correct segment of the curve Cp0 is the
whole curve and we set ps := p1 and pe := p1 where p1 is an arbitrary
point on Cp0 .

3.3 Chandler’s method

Chandler’s method [2] is very efficient to compute a large sample of points
pi, i = 1, ..., N which approximately lie on a given implicit curve h(u, v) = 0.
Additionally, it has the attractive property that points trace out the curve, i.e.
the polygonal with vertices at the points pi, i = 1, ..., N is a good approxima-
tion of the implicit curve. Therefore, its length can be used as an approximation
to the arc-length of the curve. Starting from a point p1 on the curve and the
tangent vector at p1, Chandler’s method evaluates the function h at the 8
neighbors of p1 looking for a change of sign in two function evaluations at
midpoints between consecutive pixels. To obtain a large ordered sample of
points on the curve Cp (step 4) we implemented Chandler’s algorithm taking
into account the following aspects.

First, it is necessary to correct the position of the starting point ps and
ending point pe of the correct segment of curve Cp. In fact, if Cp is not the
first curve, then F(ps) and F(pe) are both vertices of a previously generated
local umbrella. In consequence, they are not exactly on the sphere with radius
r and center F(p) and ps and pe are not exactly on the curve Cp. Using ps as
initial approximation we adjust its position looking for a point which minimizes
the function,

g(a) = α dT1(a, Cp) + (1 − α) ‖a − ps‖, α ∈ [0, 1]
where dT1(a, Cp) = |h(a)|

‖∇h(a)‖ is an approximation of the Euclidean distance [11]
from the point a to the curve Cp : h(u, v) = 0, with ∇h(a) = (hu(a), hv(a)).
Function g(a) establishes a compromise between distance to the curve Cp and
distance to ps. In our experiments, we used α = 0.85. The position of the end
point pe is adjusted similarly.

Let ts, te be the normalized tangent vectors to the curve Cp at ps and
pe. Assuming that F(ps) belongs to the local umbrella centered at F(q), we
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compute an auxiliary point ˜Fps , lying on the tangent line to the intersection
curve between the surface and the sphere SF(p) of radius r centered at F(p).

To select the correct segment of Cp we check if ˜Fps is outside SF(q). In positive
case ps is the initial point of Cp, which means that starting at ps in the direction
given by ts we trace out the correct segment of the curve Cp. Otherwise, pe is
the initial point and te the tangent vector which give us the correct segment
of Cp.

Recall that the adjusted position of points ps and pe are used only to
generate the sequence of points on the implicit curve, by means of Chandler
method. Nevertheless, the original points F(ps) and F(pe) are preserved as
vertices of τ .

3.4 Points with uniform distribution

Once we have computed a large ordered sample of points pi, i = 1, ..., N on
the implicit curve Cp we can immediately obtain a large ordered sample of
points F(pi), i = 1, ..., N on the intersection curve CS between the surface
and the sphere with center F(p) and radius r. In this section we propose an
algorithm to select, from F(p1), ..., F(pN), a subset of points F(pi1), ..., F(pin),
with n < N and such that,

‖F(pi j) − F(pi j+1)‖ ≈ r, j = 1, ..., n − 1

We begin computing n = � L
r � and assigning F(pi1) = F(p1). Then we calcu-

late the distance from F(pi1) to the next points until we find j < N such that
‖(F(p1) − F(pj)‖ ≤ r and ‖(F(p1) − F(pj+1)‖ ≥ r. We select F(pi2) = F(pj)

if the Euclidean distance between F(pi1) and F(pj) is closer to r than the
Euclidean distance between F(pi1) and F(pj+1), otherwise we assign F(pi2) =
F(pj+1). Starting now with F(pi2), we repeat the process until we have n − 1
points. Since the length L of the curve Cp is not necessarily a multiple of r
and the Euclidean distance between two points in the curve is smaller than
the arc- length of the corresponding segment of curve, the distance between
F(pin−1) and F(pN) may be relatively far away from r. To correct this problem
we decide if it would be better to include in the subset another point between
F(pin−1) and F(pN).

Finally, to improve the results, we repeat the previous procedure using
instead of r some values r̃ in the interval [0.9, 1.1] r. For each value of r̃, we
compute the corresponding subset and select as the final subset the one for
which the ratio m/M is maximum, where m and M are the minimum and
maximum Euclidean distance respectively between two consecutive points in
a subset.

3.5 In the proximity of boundary curves

Sometimes, when p is a point close to the boundary of �, a segment of the
curve Cp is in the exterior of the unit square �. We say that p is an interior
point if it belongs to the interior of the region �, otherwise we say that it
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Fig. 4 Left, dark grey interior
points close to the boundary
of �, Wavy points close to the
corners, right a surface mesh,
vertices close to boundary
curves are substituted by
boundary points
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is an exterior point. Any time we pop a point p from the stack R, we check
if it is close to one of the corners of �, see Fig. 4, Left. If the answer is
positive, we compute the projection of F(p) on each of the boundary curves
passing through the corresponding corner of F(u, v) and substitute F(p) with
the closest projection. If p is an exterior vertex not close to any corner of �,
we compute the projection F(q) of F(p) on the closest boundary curve and
substitute F(p) by F(q). If p is an interior vertex not close to any corner of �,
but close to the boundary of � (p is in the grey zone of Fig. 4), we compute the
projection F(q) of F(p) on the closest boundary curve and substitute F(p) by
F(q) if and only if ‖F(q) − F(p)‖ ≤ r/2.

In any of the previous cases, if an original vertex F(p) is substituted by
a point F(q) on the boundary curves, then we check if the Euclidean dis-
tance between F(q) and any of the corners Q0 = F(0, 0), Q1 = F(1, 0), Q2 =
F(1, 1), Q3 = F(0, 1) is smaller that r/5. In the positive case we substitute F(q)

by the corresponding corner. If at the end of the whole process a corner Qi has
not been previously included as vertex of the 3D triangulation, we include it in
the list V and include in E the edges of the triangle with vertices Qi and the
closest vertex to it in each boundary curve passing through Qi.

The basic algorithm described above can only manage open surfaces with
the same topology as �. In order to generate a triangular mesh on surfaces with
different topologies, it is necessary to make a postprocessing for the vertices of
the mesh corresponding to parameter values close to the boundary of �. In [1]
it is described a sewing procedure for managing this case.

4 Triangulation quality

The quality of a 3D triangulation approximating a parametric surface can be
measured in several ways. If the triangulation will be used in FEM or BEM
applications, then triangle shape and size should be as regular as possible since
too thin or distorted elements increase the analysis error and slow the solution
convergence. In this sense the “ideal” is a 3D triangulation where all triangles
are equilateral. On the other hand, if our main purpose is to render the surface
using as approximation the 3D triangulation, then we need a procedure to
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refine the mesh in order to reduce the approximation error. Finally, we also
study the Delaunay character of the isotropic triangulation proposed here.

4.1 Measuring the quality

Given a triangle with sides of length a, b , c, an indicator of its shape quality,
commonly used in the literature [5], is given by,

K = 2
√

3ρ

max (a, b , c)
(8)

where ρ is the radius of the inscribed circle. The value of ρ can be computed in
terms of a, b , c as ρ = √|((s − a)(s − b)(s − c))/s|, with s = (a + b + c)/2. The
constant K measures the proximity of a triangle to be equilateral. In general,
0 ≤ K ≤ √

3 and K is near to 0 if the length of a side is too small in comparison
with the other sides or if the vertices are almost collinear. On the contrary, K
is close to

√
3 if one side is too big in comparison with the others. Finally, if

a = b = c, the triangle is equilateral, then K = 1. In the section of numerical
experiments we use the value of K to define a gray shading of a triangle in
order to visualize its quality.

4.2 Adaptive meshing

Starting from the isotropic mesh that we have introduced in this paper, it is
possible to obtain a new mesh suitable for rendering the surface, using the
method proposed in [1]. The strategy is the following: the user chooses a
value for the length r of the edge representing the smallest feature that one
wishes to detect on the surface. Then, we construct the isotropic mesh using the
algorithm of Section 3.2 and start the refining process (Fig. 5). Given a bound
ε for the distance from an edge to the surface, the refining process computes,
for each edge e, the farthest point from the corresponding curve F(e) on the
surface and a new vertex is introduced at this point if its distance to e is bigger
than ε.

Fig. 5 Left column before
refining, right column after
refining. Top all edges are
split and four new triangles
are introduced, middle only
one edge is split and two
triangles are introduced,
bottom two edges are split
and three new triangles are
introduced
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4.3 Delaunay property

The Delaunay triangulation of a point set, in R
2 or R

3, is very popular due to its
nice geometric properties. It is composed of triangles in R

2 and tetrahedra in
R

3. A triangulation with vertices on a surface corresponds to an intermediate
case, since the vertices are 3D points but the surface is a 2D topological
object. As a consequence, it is necessary to adapt the concept of Delaunay
triangulation for this special case. We use the definition given in [4].

Definition 1 [4] Given three vertices on a curved surface, consider the infinite
set of spheres through the three vertices. The centers of all the spheres lie on
a single line. We choose the sphere whose center is on the surface and define
the circumcircle of the three vertices to be the set of points where this sphere
intersects the surface.

Definition 2 A surface triangulation is of Delaunay type if the circumcircle
associated to each triangle of the mesh does not contain any vertex of the mesh
in its interior.

In this section we obtain a sufficient condition ensuring that a surface
triangulation is of Delaunay type. As a particular case, we prove that any
isotropic triangulation (with vertices on a surface) which provides a good
approximation of a surface is a Delaunay triangulation.

Definition 3 Given a triangle T with vertices on F, the parameter values of its
vertices define a triangle T in parameter space �. The distance d(T, F) from F
to T is defined as maxp {d(F(p), T) / p ∈ T}, where d(F(p), T) = ‖F(p) − q‖,
with q ∈ T and such that F(p) − q is parallel to the normal vector of T.
Further, for any triangulation τ on F we call maxT {d(T, F) / T ∈ τ } the
distance between τ and F.

Theorem 1 Let α, β, r be nonnegative real numbers and let τ = (V, E) be a
triangulation with V the set of vertices and E the set of edges of τ such that,

1. If v ∈ V then it is on a surface F
2. If e ∈ E then (1 − β)r ≤ ‖e‖ ≤ (1 + β)r, r > 0
3. ‖vi − vj‖ > r for all vi, vj ∈ V, i 	= j such that vivj /∈ E
4. The maximum distance ε between F and the triangulation τ is not greater

than α r

If α and β are such that the following inequality holds

2
(

γ + α2 + α
√

γ + α2
)

< (1 − β)2 (9)

where γ = (1+β)2

3 , then τ is a Delaunay triangulation on the surface F.

Proof Let’s consider a triangle T ∈ τ . We must show that the sphere passing
through the vertices of T and whose center is on F does not contain any vertex
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Fig. 6 Circumsphere
associated to a triangle on τ .
Black points are on the
surface

v ∈ V in its interior. From now on we refer to this sphere as the circumsphere
associated to T and denote it by ST . Observe that the center of ST lies on
the line l passing through the center CT of the circumscribed circle, with
the direction of the normal to T. Let’s denote by rCT the circumradius of T.
From the hypothesis (2), the maximum value for rCT is obtained when T is an
equilateral triangle with edges of length (1 + β)r. In that case, rCT would have
the value rCT = (1 + β)r

√
3/3. Therefore in general,

r2
CT

≤ r2γ (10)

On the other hand (see Fig. 6), the radius rST of the circumsphere ST satisfies,

r2
ST

= ε2 + (rCT )2 ≤ ε2 + r2γ (11)

Assume that the circumsphere ST contains a vertex v of τ not belonging to
T. Then, the minimum distance δ from v to a vertex of T is maximal when v

is the intersection point of the line l with ST which is further away from T. In
that case, δ2 = (rST + ε)2 + (rCT )2 and from (10) and (11) we get,

δ2 ≤
(
√

ε2 + γ r2 + ε
)2 + γ r2 (12)

Since by hypothesis (4) ε ≤ αr, from (12) we obtain,

δ2 ≤
(
√

(αr)2 + γ r2 + αr
)2 + γ r2 = r2

[

(
√

α2 + γ + α
)2 + γ

]

(13)

From (9) the following inequality holds,
(

√

α2 + γ + α
)2 + γ < (1 − β)2.

Therefore, in (13) the expression in brackets is smaller than (1 − β)2 and we
get, δ < (1 − β)r < r, in contradiction either to (2) or to (3). Hence, no vertex
of τ different from the vertices of T may be in the circumsphere ST . ��
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Remark

1. Assuming that α < 0.2 it is straightforward, but cumbersome, to
show that the inequality (9) is equivalent to ((1 + β)2 − 12β) >

α
√

24(1 + β)2 − 144β.
2. Observe that as α decreases, i.e. as the triangulation better approximates

the surface, the interval for the edge length grows preserving the Delaunay
property.

Two interesting cases may be obtained from the previous Theorem. They
correspond to β = 0 ( Corollary 1) and α = 0 (Corollary 2).

Corollary 1 Let τ = (V, E) be a triangulation with V the set of vertices and E
the set of edges of τ such that,

1. If v ∈ V then it is on a surface F
2. All triangles Ti ∈ τ are equilateral with edge length r
3. ‖vi − v j‖ ≥ r for all vi, v j ∈ V, i 	= j
4. The maximum distance ε between F and the triangulation τ is smaller

than r/5

then τ is a Delaunay triangulation on the surface F.

Corollary 2 Let τ = (V, E) be a planar triangulation with V the set of vertices
and E the set of edges of τ , such that if e ∈ E then 0.9r ≤ ‖e‖ ≤ 1.1r. Then τ is
a (planar) Delaunay triangulation.

5 The implicit case

With some few adaptations, the method we presented above to generate an
isotropic triangular mesh on a regular parametric surface may be tuned for
regular implicit surfaces.

Given an implicitly defined regular surface F : F(x, y, z) = 0 and a point
P0 = (x0, y0, z0) on F, for a radius value r sufficiently small, the sphere S with
center P0 and radius r intersects F in a closed and connected curve CS.

Substituting the parametric equation in (u, v) ∈ [0, 1) of the sphere S in the
implicit equation of F, we obtain the implicit equation of a curve Cp in the
(u, v)-plane,

Cp : G(u, v) = 0

with G(u, v)= F(rsin(πu)cos(2πv)+x0, rsin(πu)sin(2πv)+y0, rcos(πu)+z0)).
It is not computationally expensive to use Chandler’s method to track the

implicit curve Cp in the (u, v)-plane. Given a dense ordered set of points on
an arc of Cs, the approximate computation of its arc-length, the generation
of a subset of n points on CS such that the Euclidean distance between two
consecutive points is approximately the same and the choice of the correct
segment of the curve Cp, described in Sections 3.1–3.4 for the parametric case,
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Example 1
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Fig. 7 F(u, v) is a tensor product Bezier surface of degree 2 × 3, r = 0.25, the surface triangula-
tion is Delaunay

may be adapted in a straightforward way to the implicit case, just lifting the
points in the (u, v)- plane on the 3D implicit surface F. On the other hand, if
we know the cartesian coordinates (xj, yj, zj) of a point Pj on CS, it is easy to
compute its coordinates (uj, vj).

The algorithm to compute the isotropic triangular mesh on a parametric
surface given in Section 3.2 may be used for regular implicit surfaces taking
into account the following facts. Now the stack R consists of points P on
the 3D surface F, instead of points p in [0, 1] × [0, 1]. Let us assume that
the boundary of the implicit surface F is a closed curve, defined by means
of a chain of implicitly defined plane curve segments (arcs), such that two
consecutive arcs have only a common point (called corner). If a vertex P from
the stack R is close to the boundary of F, we may proceed as in Section 3.5 for
the parametric case. Observe that since each arc is a segment of an implicit
plane curve, by means of Chandler’s algorithm it is possible to compute a
dense sample of 3D points representative of each arc and to use this sample
to get good approximations for the closest point to a given point P in any
arc of the boundary. No hypothesis of Section 4 is based on the assumption
that the surface F is represented by a parametrization. Therefore, it is possible
to measure the triangulation quality of the proposed algorithm for implicitly

Example 2
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Fig. 8 F(u, v) is a tensor product Bezier surface of degree 4 × 4, r = 0.8, the surface triangulation
is Delaunay
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Example 3
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Fig. 9 F(u, v) is a tensor product Bezier surface of degree 3 × 3, r = 0.25, the surface triangula-
tion is not Delaunay

defined surfaces and we may also refine the isotropic triangulation obtained in
this way to obtain a new mesh suitable to render a regular implicit surface.

6 Numerical examples

The proposed algorithm to construct an isotropic triangular mesh on a reg-
ular parametric surface has been implemented in Matlab. We illustrate its
performance using different tensor product Bezier surfaces (Figs. 7, 8, 9,
and 10). Figures in examples 1–4 show,

• On the left the curves Cp and the triangulation in � obtained after selecting
points with uniform distribution on the surface curves F(Cp).

• In the middle the final triangulation in the parameter space � obtained
after processing boundary curves.

• On the right the final triangulation on the surface. We have used levels of
gray to visualize shape deformations given by (8) (white is an equilateral
triangle, K = 1)

Example 4
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Fig. 10 F(u, v) is a tensor product Bezier surface of degree 4 × 3, r = 0.5, the surface triangula-
tion is Delaunay
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Table 1 Performance of the algorithm in the examples

Example nt nv r κ σ 2
K μ σ 2‖e‖ Error

1 D 286 170 0.25 0.959560 0.002314 0.257517 0.001240 0.030284
2 D 95 62 0.8 0.930312 0.007162 0.825440 0.019588 0.333319
3 298 178 0.25 0.970716 0.001519 0.254809 0.001399 0.019717
4 D 195 120 0.5 0.959705 0.003219 0.499852 0.005314 0.165782

To certify the Delaunay property we check all the triangles, including the
ones which have a vertex on the boundary curves (usually the more distorted).
Excluding these triangles from the analysis all the triangulations in the exam-
ples are of Delaunay type.

In Table 1 we summarize the quality of the triangulations obtained in
the examples. A letter “D” besides the example number means that it is a
Delaunay triangulation. For each triangulation we include the number nt of
triangles, the number nv of vertices, the radius r and the following measures of
the quality:

• The closeness to isotropy, κ = 1
nt

∑nt
i=1 Ki

• The standard deviation of K, σ 2
K = 1

nt−1

∑nt
i=1(Ki − κ)2

• The mean of the edge lengths, μ = 1
m

∑m
i=1 ‖ei‖, where m is the number of

edges
• The standard deviation of ‖e‖, σ 2

‖e‖ = 1
m−1

∑m
i=1(‖ei‖ − μ)2

• The maximum approximation error on the edges, error = maxe∈E d(e, F),
where d(e, F) is the distance between the edge e and the corresponding
curve F(e) on F

Figure in example 5 shows the refining process described in 4.2. We start
constructing the isotropic triangulation for a tensor product Bezier surface of
degree 4 × 4 using r = 0.8. The isotropic mesh is refined twice with ε = 0.01
(Fig. 11). All triangles are shaded in grey tones to visualize the approximation
error, computed as the normalized mean of the error associated to the edges.
We use as normalization factor the maximum error of the triangulations, which
is obviously attained for the initial one.

Example 5
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Fig. 11 Refining two times the initial isotropic triangulation
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7 Concluding remarks

In this paper we have proposed a method to construct an isotropic triangu-
lation on a regular parametric surface. Additionally, we obtain a sufficient
condition ensuring that a surface triangulation is of Delaunay type.

In comparison with other methods reported on the literature our method
has the following advantages:

• Isotropy: The resulting triangulation is very close to be isotropic as it
is shown in the previous numerical examples, where we have used the
shape quality indicator (8) to measure the proximity of a triangle to be
equilateral. Other authors do not report the behavior of this indicator for
their approaches, therefore we cannot make a comparison in this sense.

• Flexibility: The resulting isotropic mesh can be refined to obtain an adap-
tive triangulation suitable for surface visualization. With few modifications
the proposed method can be easily used to generate an isotropic trian-
gulation on implicitly defined surfaces. We are currently working on an
extension of the method to generate a surface triangulation depending on a
nodal density function in order to obtain anisotropic meshes with variable
density and size of triangles.

• Efficiency: The computational cost of our method is lower than the cost
of method [1]. A precise comparison is difficult since authors of [1] do not
give details about the implementation of their method. Nevertheless, we
can take under consideration the following aspects.
Let us refer to the method [1] as MA and to our method as MH. Now we
show that once we know the number of vertices of the umbrella centered at
a point P on the surface, the computational cost of MA and MH is similar.
First, we recall that for each vertex Qi of the umbrella centered at P, MA
computes a curve Si on the surface starting at P and ending in Qi, while
MH computes the section Ci of the front curve CS joining Qi and Qi+1.
For a generic surface, we may assume that if r is small, then curves Si and
Ci have approximately the same geometric behavior (arc-length, bending
energy, etc.). To generate a sample of points on the curve Si, MA uses the
adaptive step-size Runge–Kutta method to solve a system of 2 ordinary
differential equations (ode). On the other hand, MA computes a sample of
points on the curve Ci using Chandler’s method. The number of points
computed by Runge–Kutta method on Si, could be in general smaller
than the number of points obtained by Chandler’s on Ci. Nevertheless,
the computation of each point on Si using Runge–Kutta method, requires
6 evaluations for each function in the right hand side of the ode, in
total 12 evaluations. In comparison, the computation of each point on
Ci using Chandler’s method requires, in the worse case, 6 evaluations of
the function h given by (3). In consequence, the computational cost of
both methods, once we know the number of vertices of the umbrella is
similar.
But, in order to obtain the number of vertices of an umbrella, it is necessary
to estimate the arc-length of the front curve CS. Since MH is based on
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Chandler method to compute a set of points on CS, these points can be
used not only to estimate the arc-length of CS, but also to select vertices
of the umbrella. On the other hand, to obtain an approximation of the arc-
length of CS in MA it is necessary to perform additional computations.
In fact, the arc-length of CS in MA is approximated by the length of a
polygonal, whose vertices are the end points of curves (on the surface)
starting at P. In order to get a reasonable approximation, the number of
curves starting at P has to be relatively big and the computation of each of
these curves requires the solution of a system of two ode. Therefore, many
extra ode systems have to be solved in MA. Summarizing, the difference in
computational cost of MA and MH is dominated by the cost of the solution
of many extra ode systems in MA to estimate the arc-length of the front
curve of each umbrella.
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