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Abstract. We study coherent systems of type (n, d, n+1) on a Petri curve X of genus g ≥ 2.
We describe the geometry of the moduli space of such coherent systems for large values of
the parameter α. We determine the top critical value of α and show that the corresponding
“flip” has positive codimension. We investigate also the non-emptiness of the moduli space
for smaller values of α, proving in many cases that the condition for non-emptiness is the
same as for large α. We give some detailed results for g ≤ 5 and applications to higher rank
Brill–Noether theory and the stability of kernels of evaluation maps, thus proving Butler’s
conjecture in some cases in which it was not previously known.

1. Introduction

Let X be a smooth irreducible projective curve. A coherent system of type (n, d, k)
on X is a pair (E, V )where E is a vector bundle on X of rank n and degree d and V is
a linear subspace of H0(E)with dim V = k. A notion of stability for coherent sys-
tems, dependent on a real variable α, can be defined and leads to the construction of
moduli spaces G(α; n, d, k) for α-stable coherent systems (see [16,19,26]). There
is a natural compactification ˜G(α; n, d, k) obtained by considering equivalence
classes of α-semistable coherent systems. For k = 0, G(α; n, d, 0) is independent
of α and coincides with the moduli space M(n, d) of stable bundles of rank n and
degree d on X , while ˜G(α; n, d, 0) coincides with the corresponding moduli space
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˜M(n, d) of S-equivalence classes of semistable bundles. If k ≥ 1, a necessary
condition for non-emptiness of G(α; n, d, k) (respectively, ˜G(α; n, d, k)) is α > 0
(respectively, α ≥ 0). For n = 1, all coherent systems are α-stable for all α > 0
and G(α; 1, d, k) coincides with the classical variety of linear systems Gk−1

d .
A systematic study of coherent systems on curves of genus g ≥ 2 defined over

the complex numbers was begun in [5] (see also [4]) and continued in [6,7]. In
particular, precise conditions for non-emptiness of G(α; n, d, k) are known when
k ≤ n [6, Theorem 3.3]. For k > n, much less is known. There are general
results due to E. Ballico [2] and M. Teixidor i Bigas [30]; Teixidor’s results are
much the stronger, but are certainly not best possible. Some more detailed results
have been obtained in [8,9]. It is known that the α-stability condition stabilises for
α > d(n − 1); we denote the corresponding “large α” moduli space G(α; n, d, k)
by GL(n, d, k) (see Sect. 2 for more details).

Our object in this paper is to study the case k = n + 1 when the curve X is a
Petri curve, in other words, for every line bundle L on X , the multiplication map

H0(L)⊗ H0(L∗ ⊗ K ) → H0(K )

is injective. In this case GL := GL(α; n, d, n + 1) is non-empty if and only if the
Brill–Noether number

β := β(n, d, n + 1) = g − (n + 1)(n − d + g)

is non-negative [5, Theorem 5.11]. When in addition d ≤ g+n, G(α) := G(α; n, d,
n+1) is independent ofα > 0 and its structure has been determined [8, Theorem 2].
Our first main theorem (Theorem 3.1) generalises these results and gives a signifi-
cant improvement of the estimate α > d(n −1) for G(α) to coincide with GL . The
detailed statement, which includes additional information on the structure of GL , is
as follows (here E ′ denotes the subsheaf image of the evaluation map V ⊗O → E ;
for the definitions of generated and generically generated, see Sect. 2).

Theorem 3.1. Suppose that X is a Petri curve of genus g ≥ 2 and α > max{0, αl},
where

αl := d(n − 1)− n
(

n − 1 + g −
[g

n

])

.

Then

(1) G(α) �= ∅ if and only if β ≥ 0;
(2) G(α) = GL ;
(3) (E, V )∈ G(α) if and only if (E, V ) is generically generated and H0(E ′∗)= 0;
(4) if β > 0, G(α) is smooth and irreducible of dimension β; moreover the generic

element of G(α) is generated;
(5) if β = 0, G(α) is a finite set of cardinality

g!
n

∏

i=0

i !
(g − d + n + i)! ;

moreover every element of G(α) is generated.
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It follows in particular that, if (E, V ) ∈ GL , then the cokernel E/E ′ of the
evaluation map V ⊗O → E is a torsion sheaf. In Sect. 4, we define a stratification
of GL in terms of the length of E/E ′. More precisely, for every integer t ≥ 0, we
write

�t = {(E, V ) ∈ GL |E/E ′ has length t} and St =
⋃

i≥t

�i .

Then

Theorem 4.2. Suppose β ≥ 0 and that the subsets St of GL are defined as above.
Then

(1) St is closed in GL and is non-empty if and only if 0 ≤ t ≤ t1 :=
[

β
n+1

]

;

(2) for 1 ≤ t ≤ t1, St ⊂ St−1\St ;
(3) for 1 ≤ t ≤ t1, dim St = β − t ;
(4) St is irreducible for t < β

n+1 ;

(5) if β
n+1 is an integer, then all irreducible components of St1 have the same

dimension.

In Sect. 5, we show that there exists (E, V ) ∈ GL such that (E, V ) is not
αl -stable, in other words αl is an (actual) critical value in the sense of [5, Defini-
tion 2.4]. In view of Theorem 3.1, αl is in fact the top critical value of α.

Sections 6–8 are concerned with the moduli space G(α) for arbitrary α. It was
proved in [8] that, if G(α) �= ∅, then β ≥ 0. Several results on the non-emptiness of
G(α)when β ≥ 0 were also proved in [8]. In Sect. 6, we extend these results using
the techniques of elementary transformations and extensions of coherent systems.
In particular for n = 2, 3, 4, we show in Sect. 7 that G(α) �= ∅ if and only if
β ≥ 0 (see Theorems 7.1–7.3 for details). We then consider in Sect. 8 the case
g ≤ 5 (including g = 0 and g = 1, which have been excluded from our general
discussion). For g ≤ 2, the results are complete, while for g = 3, 4, 5, there are a
few cases still to be solved.

In Sect. 9, we give some applications to higher rank Brill–Noether theory (see
Sect. 2 for definitions). We first obtain some irreducibility and smoothness results
for Brill–Noether loci using the programme envisaged in [5, Sect. 11]. For the
second application, suppose that L is a generated line bundle of degree d > 0 and
let V be a linear subspace of H0(L) of dimension n + 1 which generates L (in
other words, (L, V ) is a generated coherent system of type (1, d, n + 1)). We have
an evaluation sequence

0 −→ MV,L −→ V ⊗ O −→ L −→ 0.

The bundles MV,L arise in several contexts and have been used in the study of Picard
bundles [13], normal generation of vector bundles [11,25], syzygies and projective
embeddings [14], higher rank Brill–Noether loci [20], theta-divisors [3,23] and
coherent systems [5,8,12].
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A particular point of interest is to determine whether or not MV,L is stable. In
fact, in [12], Butler conjectured that MV,L is stable for general choices of X , L
and V . His conjecture [12, Conjecture 2] is concerned more generally with gene-
rated coherent systems of any type (n, d, k). We shall be concerned only with the
case n = 1; Butler’s conjecture can then be stated as follows.

Conjecture 9.5. Let X be a Petri curve of genus g ≥ 3. Suppose that β :=
β(1, d, n+1) ≥ 0 and that L is a general element of B(1, d, n+1) (when β = 0, L
can be any element of the finite set B(1, d, n + 1)) and let V be a general subspace
of H0(L) of dimension n + 1. Then MV,L is stable.

In most of the above references, V is taken to be H0(L), which implies by
Riemann–Roch that d ≤ g + n and the stability problem has been solved in this
case [8,12]. However the case where V is a proper subspace of H0(L) seems
equally interesting; this is mentioned but not used in [12], used in a minor way in
[5] and studied for low values of the codimension in [23]. However, the restriction
placed on d in [23] implies that d ≤ 2n, so this case (although not the remaining
results of [23]) is also covered in [20,22]. In the present paper, we do not use the
stability of MV,L except through citations from earlier papers. We are therefore
able to use our methods to prove the stability of MV,L in some cases where it is not
(to our knowledge) already known. These new examples for which MV,L is stable
depend essentially on the use of extensions of coherent systems (more specifically
on Propositions 6.9, 6.10, 6.12, 7.5 and 7.6).

We assume throughout that X is a Petri curve of genus g, where, except in
Sect. 8, g ≥ 2. We assume also that X is defined over the complex numbers. We
denote the canonical line bundle on X by K .

2. Preliminaries

In this section, we recall some facts about coherent systems, most of which can be
found in [5,15].

Forα ∈ R, we define theα-slope of the coherent system (E, V ) of type (n, d, k)
by

µα(E, V ) := d

n
+ α

k

n
.

A coherent subsystem of (E, V ) is a pair (F,W ), where F is a subbundle of E and
W ⊂ V ∩ H0(F).

Definition 2.1. For any α ∈ R, a coherent system (E, V ) on X is α-stable (respec-
tively, α-semistable) if, for every proper coherent subsystem (F,W ),

µα(F,W ) < µα(E, V ) (respectively ≤).
We denote by G(α; n, d, k) the moduli space of α-stable coherent systems of

type (n, d, k) ([16,19,26]) and by ˜G(α; n, d, k) the moduli space of S-equivalence
classes of α-semistable coherent systems (see [5, Sect. 2]). It follows from the
definition of α-stability that, if k ≥ 1 and G(α; n, d, k) �= ∅, then α > 0 and d > 0
[5, Sect. 2 and Lemmas 4.1 and 4.3].
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Remark 2.2. Given a coherent system (E, V ) and an effective line bundle L, let
˜E = E ⊗ L. Choose a non-zero section s of L and let ˜V be the image of V in
H0(˜E) under the induced inclusion H0(E) ↪→ H0(˜E) : v �→ v ⊗ s. Then

(1) E is (semi)stable if and only if ˜E is (semi)stable.
(2) (E, V ) is α-(semi)stable if and only if (˜E, ˜V ) is α-(semi)stable [26, Lemma

1.5].

Remark 2.3. It follows from Remark 2.2 that, if G(α; n, d, k) �= ∅ for all integers
d ∈ [a, b] with a, b ∈ Z and b − a ≥ n − 1, then G(α; n, d, k) �= ∅ for all d ≥ a.

For any triple (n, d, k), we define the Brill–Noether number β(n, d, k) by

β(n, d, k) = n2(g − 1)+ 1 − k(k − d + n(g − 1)).

For a coherent system (E, V ), the Petri map at (E, V ) is the map

V ⊗ H0(E∗ ⊗ K ) → H0(E ⊗ E∗ ⊗ K ) (2.1)

given by multiplication of sections. We have the following fundamental result (see
[15, Corollaire 3.14], [5, Corollary 3.6 and Proposition 3.10]).

Proposition 2.4. Every irreducible component of G(α; n, d, k) has dimension ≥
β(n, d, k). Moreover, if (E, V ) ∈ G(α; n, d, k), then G(α; n, d, k) is smooth of
dimension β(n, d, k) at (E, V ) if and only if (2.1) is injective.

For a line bundle L with V = H0(L), the Petri map (2.1) takes the form

H0(L)⊗ H0(L∗ ⊗ K ) → H0(K ) (2.2)

Definition 2.5. The curve X is a Petri curve if (2.2) is injective for every line bundle
L on X .

It is a classical fact (see [1]) that the general curve of any given genus g is a
Petri curve. It should however be emphasised that, except for certain low values of
the genus, there exist α-stable coherent systems (E, V ) on the general curve for
which (2.1) is not injective (see, for example, [29, Sect. 5]).

The α-range is divided into a finite set of intervals by a set of critical values
{αi }, where, for k ≥ n,

0 = α0 < α1 < · · · < αL < ∞
[5, Proposition 4.6]. Forα, α′ ∈ (αi , αi+1), we have G(α; n, d, k) = G(α′; n, d, k)
and we denote this moduli space by Gi := Gi (n, d, k). In particular, for α > αL ,
we have the “large α” moduli space GL := GL(n, d, k).

The relation between two consecutive moduli spaces Gi−1 and Gi is given by
the so called “flips” (see [5] for a more complete description). For any critical value
αi , we denote by α−

i , α+
i values of α in the intervals, respectively, immediately

before and after αi and let

G+
i := {(E, V ) ∈ Gi | (E, V ) is not α−

i −stable}
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and

G−
i = {(E, V ) ∈ Gi−1 | (E, V ) is not α+

i −stable}.
These are called flip loci and

Gi − G+
i = Gi−1 − G−

i . (2.3)

For any critical value αi , the flip locus G+
i consists of the coherent systems

(E, V ) ∈ Gi for which there exists an exact sequence

0 → (E1, V1) → (E, V ) → (E2, V2) → 0, (2.4)

with (E j , Vj ) of type (n j , d j , k j ), αi -semistable and α+
i -stable for j = 1, 2 and

µαi (E1, V1) = µαi (E2, V2), k1/n1 < k/n (2.5)

(see [5, Lemma 6.5] for more details). Similarly, the flip locus G−
i consists of the

coherent systems (E, V ) ∈ Gi−1 for which there exists an exact sequence

0 → (E2, V2) → (E, V ) → (E1, V1) → 0,

with (E j , Vj ) αi -semistable and α−
i -stable for j = 1, 2 and satisfying (2.5).

In [5], numerical criteria were obtained to help determine whether the flip loci
have positive codimension. More generally, these criteria can be used to estimate the
number of parameters on which the coherent systems (E, V ) given by extensions
(2.4) depend. Define, for { j, l} = {1, 2},

C jl = n j nl(g − 1)− n j dl + nld j + k j dl − k j nl(g − 1)− k j kl

= (k j − n j )(dl − nl(g − 1))+ nld j − k j kl (2.6)

and

H
0
jl = Hom((E j , Vj ), (El , Vl)), H

2
jl = H0(E∗

l ⊗ N j ⊗ K )∗, (2.7)

N j being the kernel of the evaluation map Vj ⊗ O → E j . We have, by [5, Eqs. (8)
and (11)],

dim Ext1((E j , Vj ), (El , Vl)) = C jl + dim H
0
jl + dim H

2
jl . (2.8)

The following lemma can be regarded as a simplified version of [5, Lemma
6.8].

Lemma 2.6. Suppose that, for j = 1, 2, (E j , Vj ) has type (n j , d j , k j ) and varies
in a family depending on at most β(n j , d j , k j ) parameters. Suppose further that,
for some h0, h2,

dim H
0
21 ≤ h0, dim H

2
21 ≤ h2

for all (E j , Vj ) occurring in these families and that

C12 − h0 − h2 > 0.

Then the coherent systems (E, V ) arising as non-trivial extensions of the form (2.4)
depend on at most β(n, d, k)− 1 parameters.
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Proof. By (2.8), for fixed (E1, V1), (E2, V2), the coherent systems (E, V ) depend
on at most

C21 + h0 + h2 − 1

parameters. The result follows from [5, Corollary 3.7]. ��
Remark 2.7. Note that, if we assume in addition that (E, V ) is α-stable for some α,
then we can take h0 = 0, since a non-zero homomorphism (E2, V2) → (E1, V1)

would contradict [5, Proposition 2.2(ii)].

The “small α” moduli spaces G0(n, d, k) and ˜G0(n, d, k) are closely related to
the Brill–Noether locus B(n, d, k) of stable bundles, which is defined by

B(n, d, k) := {E ∈ M(n, d)|h0(E) ≥ k}.
Similarly one defines the Brill–Noether locus ˜B(n, d, k) for semistable bundles by

˜B(n, d, k) := {[E] ∈ ˜M(n, d)|h0(gr(E)) ≥ k},
where ˜M(n, d) is the moduli space of S-equivalence classes of semistable bundles,
[E] is the S-equivalence class of E and gr(E) is the graded object associated to a
semistable bundle E . The formula (E, V ) �→ [E] defines a morphism

ψ : G0(n, d, k) → ˜B(n, d, k),

whose image contains B(n, d, k). We shall use this morphism ψ in Sect. 9.
We finish this section with a useful definition and some notation.

Definition 2.8. A coherent system (E, V ) is
generated if the evaluation map V ⊗ O → E is surjective;
generically generated if the cokernel of the evaluation map is a torsion sheaf.

Notation. We shall write β, G(α), ˜G(α), GL for β(n, d, n +1), G(α; n, d, n +1),
˜G(α; n, d, n + 1), GL(n, d, n + 1), respectively. For any coherent system (E, V ),
we shall consistently denote by E ′ the subsheaf image of the evaluation map. We
shall also denote by (ni , di , ki ) the type of a coherent system (Ei , Vi ).

3. The moduli space for large α

In this section we assume that X is a Petri curve and obtain a strengthening of
[5, Theorem 5.11]. In particular we obtain a much better lower bound on the para-
meter α which ensures that G(α) = GL . In later sections we shall prove that this
bound is best possible and describe a natural stratification of GL . For d ≤ g + n,
Theorem 3.1 has been proved in [8, Theorem 2]. We recall that, for any coherent
system (E, V ), E ′ denotes the subsheaf image of V ⊗ O in E .

Theorem 3.1. Suppose that X is a Petri curve and α > max{0, αl}, where

αl := d(n − 1)− n
(

n − 1 + g −
[g

n

])

. (3.1)
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Then

(1) G(α) �= ∅ if and only if β ≥ 0;
(2) G(α) = GL ;
(3) (E, V )∈ G(α) if and only if (E, V ) is generically generated and H0(E ′∗)= 0;
(4) if β > 0, G(α) is smooth and irreducible of dimension β; moreover the generic

element of G(α) is generated;
(5) if β = 0, G(α) is a finite set of cardinality

g!
n

∏

i=0

i !
(g − d + n + i)! ;

moreover every element of G(α) is generated.

We shall prove Theorem 3.1 by means of a sequence of propositions. We begin
with two lemmas, the first of which is a variant of [8, Lemma 3.1]. Since the
hypotheses are not exactly the same as those of [8, Lemma 3.1], we include a
proof.

Lemma 3.2. Let X be a Petri curve and (E, V ) a coherent system of type (n, d, k).
If (E, V ) is generically generated and H0(E ′∗) = 0, then k ≥ n + 1 and d ≥
g + n −

[

g
n+1

]

. Moreover, if (E2, V2) is a quotient coherent system of (E, V ), then

(E2, V2) is generically generated and H0(E ′∗
2 ) = 0.

Proof. Certainly k ≥ n. If k = n, then E ′ ∼= On , contradicting the hypothesis
H0(E ′∗) = 0. So k ≥ n + 1.

Replacing V , if necessary, by a subspace of dimension n + 1 which generates
E ′, we have an exact sequence

0 → L∗ → V ⊗ O → E ′ → 0, (3.2)

where L = det E ′. From the dual of (3.2) and the hypothesis H0(E ′∗) = 0, we see
that h0(L) ≥ n + 1. By classical Brill–Noether theory, this implies that

deg E ′ = deg L ≥ ng

n + 1
+ n = g + n − g

n + 1
.

Hence d ≥ deg E ′ ≥ g + n −
[

g
n+1

]

as required.

For the last part, note that the image of E ′ in E2 is precisely E ′
2. Hence E ′

2 is a
quotient of E ′ and the result follows. ��
Remark 3.3. Note that

αl = (n − 1)(d − g − n)−
(

g − n
[g

n

])

= (n − 1)(d − n)− n
(

g −
[g

n

])

(3.3)

and that

d ≥ g + n −
[

g

n + 1

]

⇔ d ≥ ng

n + 1
+ n ⇔ β ≥ 0.
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Note in particular that, by (3.3),

αl ≥ 0 ⇒ d ≥ g + n ⇒ β ≥ 0.

Lemma 3.4. Let f : Z>0 → Q be defined by

f (r) := 1

r

(

g −
[

g

r + 1

])

.

Then f is a decreasing function of r .

Proof. If g ≥ r + 1, we have

f (r) ≥ 1

r

(

g − g

r + 1

)

= g

r + 1

and

f (r + 1) ≤ 1

r + 1

(

g − g − r − 1

r + 2

)

= g + 1

r + 2
≤ g

r + 1
.

On the other hand, if g < r + 1, then

f (r) = g

r
>

g

r + 1
= f (r + 1).

��
Proposition 3.5. Suppose that (E, V ) is a generically generated coherent system
of type (n, d, n+1) and H0(E ′∗) = 0. Then (E, V ) is α-stable for α > max{0, αl}.
Proof. Let (E2, V2) be a proper quotient coherent system of (E, V ) of type

(n2, d2, k2). It follows from Lemma 3.2 that k2 ≥ n2 +1 and d2 ≥ g+n2 −
[

g
n2+1

]

.

Hence

µα(E2, V2) ≥ 1 + 1

n2

(

g −
[

g

n2 + 1

])

+ α

(

n2 + 1

n2

)

. (3.4)

If α > max{0, αl} then, since 0 < n2 < n,

α

(

1

n2
− 1

n

)

= α

(

n − n2

nn2

)

≥ α

n(n − 1)
>

d

n
− 1 − 1

n − 1

(

g −
[g

n

])

. (3.5)

Hence, from (3.4) and Lemma 3.4,

µα(E2, V2)− µα(E, V ) >
1

n2

(

g −
[

g

n2 + 1

])

− 1

n − 1

(

g −
[g

n

])

≥ 0.

Since this holds for all (E2, V2), it follows that (E, V ) is α-stable. ��
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Remark 3.6. Suppose (E2, V2) is a coherent system of type (n2, d2, k2) with

0 < n2 < n, k2 ≥ n2 + 1, d2 ≥ g + n2 −
[

g

n2 + 1

]

.

If α ≥ αl > 0, then (3.4) still holds as does the first inequality in (3.5), while the
second inequality in (3.5) becomes ≥. So

µα(E2, V2) ≥ µα(E, V )

with equality if and only if α = αl and

n2 = n − 1, k2 = n, d2 = g + n − 1 −
[g

n

]

.

Proposition 3.7. For given n and d, the following three conditions are equivalent:

(a) there exists a generated coherent system (E, V ) of type (n, d, n + 1) with
H0(E∗) = 0;

(b) there exists a generically generated coherent system (E, V ) of type (n, d, n+1)
with H0(E ′∗) = 0;

(c) β ≥ 0.

Proof. Clearly (a) implies (b) and, by Lemma 3.2 and Remark 3.3, (b) implies (c).
Now suppose (c) holds. By classical Brill–Noether theory, G(1, d, n + 1) �= ∅

and its general element (L,W ) is generated (in the case β = 0, G(1, d, n + 1) is
finite and all elements are generated). If we define E by the exact sequence

0 → E∗ → W ⊗ O → L → 0,

then (E,W ∗) satisfies (a). ��
Proposition 3.8. Suppose that α > max{0, αl} and (E, V ) is an α-semistable
coherent system of type (n, d, n + 1). Then (E, V ) is generically generated and
H0(E ′∗) = 0.

Proof. Since (E ′, V ) is a generated coherent system, we can write (E ′, V ) ∼=
(Os, H0(Os)) ⊕ (G,W ) where H0(G∗) = 0, W = H0(G) ∩ V and (G,W ) is
generated. Let r denote the rank of G. Note that, since h0(E ′) ≥ n + 1, we must
have r ≥ 1. We require to show that r = n.

Suppose to the contrary that r ≤ n − 1. Since the coherent system (G,W ) is

generated, we have, by Lemma 3.2, deg G ≥ g + r −
[

g
r+1

]

. Hence

1

r

(

g −
[

g

r + 1

])

+ 1 + α
n + 1 − s

r
≤ µα(G,W ).

Since (E, V ) is α-semistable, it follows that

1

r

(

g −
[

g

r + 1

])

+ 1 + α
n + 1 − s

r
≤ d

n
+ α

n + 1

n
.
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Now s ≤ n − r ; so, for any fixed r , the minimum value for the left-hand side of
this inequality is given by s = n − r . By Lemma 3.4, this minimum value is then
a decreasing function of r . Hence

1

n − 1

(

g −
[g

n

])

+ 1 + α
n

n − 1
≤ d

n
+ α

n + 1

n
,

i.e.

α

n(n − 1)
≤ d − n

n
− 1

n − 1

(

g −
[g

n

])

,

contradicting the hypothesis that α > αl . ��
Remark 3.9. Under the hypotheses of Proposition 3.8, we have an exact sequence

0 → E ′ → E → τ → 0, (3.6)

where τ is a torsion sheaf. If t is the length of τ , then deg E ′ = d − t . Since (E ′, V )

is generated and H0(E ′∗) = 0, Lemma 3.2 gives d − t ≥ g + n −
[

g
n+1

]

, or

equivalently

t ≤ t1 := d − g − n +
[

g

n + 1

]

=
[

β

n + 1

]

. (3.7)

We shall see later (Theorem 4.2) that this bound is best possible. In particular, if
we write

d0 = g + n −
[

g

n + 1

]

,

then, for d > d0, we have t1 ≥ 1, so there exists a non-generated coherent system
(E, V ) in GL .

Proof of Theorem 3.1. Parts (2) and (3) follow from Propositions 3.5 and 3.8, and
(1) then follows from Proposition 3.7.

(4) If β > 0, it follows from [8, Lemma 4.2] and [5, Theorem 5.11] that G(α)
is smooth and irreducible of dimension β. The fact that the generic element is
generated then follows from Proposition 3.7.

(5) If β = 0, it follows from [8, Lemma 4.2] that G(α) is finite and that, as a
scheme, it is reduced. By (3.6) and (3.7), every element is generated. The formula
for the cardinality of G(α) now follows from [1, chap. V, formula (1.2)]. ��

4. A stratification of GL

Let

�0 = {(E, V ) ∈ GL |(E, V ) is generated}. (4.1)
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Clearly �0 is open in GL . If β ≥ 0, we know from Theorem 3.1 that �0 �= ∅.
Moreover, by Remark 3.9, the complement of�0 in GL is a disjoint union of locally
closed subsets �t , defined for 1 ≤ t ≤ t1 by

�t = {(E, V ) ∈ GL | ∃ an exact sequence (3.6) with τ of length t}. (4.2)

We now define

St =
⋃

i≥t

�i ,

where the�i are the locally closed subsets of GL defined in (4.1) and (4.2). Clearly
GL = S0 ⊃ S1 ⊃ · · · ⊃ St ⊃ · · · . We would like to show that the subsets St define
a well-behaved stratification of GL .

We begin with a lemma, which will be needed again later

Lemma 4.1. Suppose that we have an exact sequence

0 −→ F −→ E −→ τ −→ 0,

where τ is a torsion sheaf of length t, and that V is a subspace of H0(F) of
dimension n + 1. Then

(E, V ) ∈ GL(n, d, n + 1) ⇔ (F, V ) ∈ GL(n, d − t, n + 1).

Proof. It is clear that (E, V ) is generically generated if and only if (F, V ) is generi-
cally generated and that E ′ = F ′. The result follows at once from Theorem 3.1(3).

��
Theorem 4.2. Suppose β ≥ 0 and that the subsets St of GL are defined as above.
Then

(1) St is closed in GL and is non-empty if and only if 0 ≤ t ≤ t1 :=
[

β
n+1

]

;

(2) for 1 ≤ t ≤ t1, St ⊂ St−1\St ;
(3) for 1 ≤ t ≤ t1, dim St = β − t ;
(4) St is irreducible for t < β

n+1 ;

(5) if β
n+1 is an integer, then all irreducible components of St1 have the same

dimension.

Proof. The fact that St is empty if t > t1 =
[

β
n+1

]

has already been proved in

Remark 3.9. We prove the rest of the theorem by induction on t1, the result being
an immediate consequence of Theorem 3.1 if t1 = 0.

Suppose therefore that t1 ≥ 1. We consider the moduli space

GL ,d−1 := GL(n, d − 1, n + 1)

and denote by St,d−1 the subset of GL ,d−1 given by

St,d−1 := {(F, V ) ∈ GL ,d−1| ∃ an exact sequence (3.6) with τ of length ≥ t}.
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The maximum value of t on GL ,d−1 is
[

β(1, d − 1, n + 1)

n + 1

]

= t1 − 1,

so we can assume inductively that the theorem holds for GL ,d−1.
Note next that, if (F, V ) ∈ GL ,d−1 and E is defined by an elementary trans-

formation

0 → F → E → τ → 0, (4.3)

with τ a torsion sheaf of length 1, then (E, V ) ∈ GL by Lemma 4.1. In fact it is
easy to see that the (E, V ) obtained in this way are precisely the elements of S1
and, more generally, for 1 ≤ t ≤ t1,

(E, V ) ∈ St ⇔ (F, V ) ∈ St−1,d−1. (4.4)

The next step is to carry out this construction for families of coherent systems.
Since (n, d − 1, n + 1) are coprime there is a universal family (U ,V) parametrised
by GL ,d−1 [6, Proposition A.8]. Denote by p : PU → X × GL ,d−1 the natural
projection. As in the Hecke correspondence of [24], PU parametrises the triples

(F, V, 0 → F → E → τ → 0)

for which (F, V ) ∈ GL ,d−1 and τ has length 1. The universal property of GL now
gives us a diagram

PU �−→ GL

p ↓
X × GL ,d−1.

By (4.4), we have

St = �(p−1(X × St−1,d−1)),

�−1(St−1\St ) = p−1(X × (St−2,d−1\St−1,d−1)). (4.5)

The fact that St �= ∅ for t ≤ t1 follows at once. Moreover GL ,d−1 is a projective
variety and, by inductive hypothesis, St−1,d−1 is closed and, provided t − 1 <
β

n+1 − 1, also irreducible; hence St is closed in GL , completing the proof of (1).
Properties (2) and (4) follow immediately from (4.5).

For (3), note that, by the inductive hypothesis,

dim(p−1(X × St−1,d−1))=β(n, d − 1, n + 1)− (t − 1)+ 1 + (n − 1)=β − t.

(4.6)

Moreover, if (E, V ) ∈ �t and the torsion sheaf τ of (4.2) has support consisting
of t distinct points, then �−1(E, V ) consists of precisely t points. Hence � is
generically finite on (p−1(X × St−1,d−1)), so (3) follows from (4.6).

Finally, for (5), suppose β
n+1 is an integer and let S′ be any irreducible com-

ponent of St1−1,d−1; by inductive hypothesis, dim S′ = β(n, d−1, n+1)−(t1−1).
As in (4.6), we have

dim(�(p−1(X × S′)) = β − t1.

The result follows. ��



422 U. N. Bhosle et al.

5. The top critical value

In the previous sections we gave a description of GL(n, d, n + 1). We shall show
now that the bound of Theorem 3.1 is best possible if αl > 0 and analyse what
happens at this value of the parameter. Note that the condition αl > 0 implies that
n ≥ 2.

Theorem 5.1. Suppose αl > 0. Then there exists a coherent system (E, V ) which
is α+

l -stable and αl -semistable, but not αl -stable.

Proof. We shall construct (E, V ) as an extension

0 → (E1, V1) → (E, V ) → (E2, V2) → 0, (5.1)

where

(E2, V2) ∈ GL(n−1, d2, n)with d2 = g+n−1−[ g
n

]

; (5.1a)
(E1, V1) is of type (1, d −d2, 1). (5.1b)

Note that d > d2 by (3.3), so (E1, V1) exists. Moreover β(n − 1, d2, n) ≥ 0; so,
by Theorem 3.1, (E2, V2) also exists and indeed is α-stable for all α > 0 and in
particular for α = αl . It is easy to check from the definition (3.1) that

µαl (E1, V1) = µαl (E2, V2), (5.2)

so (E, V ) is αl -semistable but not αl -stable. Moreover, since (E1, V1) and (E2, V2)

are both αl -stable but not isomorphic, it follows from (5.2) that

Hom((E1, V1), (E2, V2)) = 0 = Hom((E2, V2), (E1, V1)). (5.3)

Now any subsystem of (E, V )which contradicts α+
l -stability must also contra-

dict αl -stability. If the extension (5.1) is non-trivial, the only subsystem which
contradicts αl -stability is (E1, V1) and clearly this does not contradict α+

l -stability.
It remains only to prove that there exists a non-trivial extension (5.1), or equivalently
to prove that

Ext 1((E2, V2), (E1, V1)) �= 0.

Now, by (2.8) and (2.6),

dim Ext 1((E2, V2), (E1, V1))≥C21 =(k2 − n2)(d1 − n1(g − 1))+ n1d2 − k1k2.

Here we have (n1, d1, k1) = (1, d − d2, 1), (n2, d2, k2) = (n − 1, d2, n), so

C21 = (d − d2 − g + 1)+ d2 − n = d − g − n + 1.

Since αl > 0, it follows from (3.3) that d − g − n > 0 and so C21 > 0 as required.
��

Corollary 5.2. If αl > 0, then it is equal to the top critical value αL . Moreover
the flip locus G+

L is given precisely by the non-trivial extensions (5.1) which satisfy
(5.1a) and (5.1b) and has dimension ≤ β − 1.
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Proof. The fact that αL = αl follows at once from Theorems 3.1 and 5.1. If
(E, V ) ∈ G+

L , we have a sequence (2.4) for which (E2, V2) is α+
l -stable and

(2.5) holds with αi = αl . By Lemma 3.2, we must have k2 ≥ n2 + 1 and d2 ≥
g + n2 −

[

g
n2+1

]

. By Remark 3.6, it follows that

n2 = n − 1, k2 = n, d2 = g + n − 1 −
[g

n

]

.

Hence all the conditions of (5.1) hold.
According to Lemma 2.6 and Remark 2.7, it remains to prove that

C12 − h0(E∗
1 ⊗ N2 ⊗ K ) > 0.

Putting in values from (5.1), we have, since αl > 0,

C12 = (n − 1)
(

d − g − n + 1 +
[g

n

])

− n > g −
[g

n

]

− 1 ≥ 0.

On the other hand, E∗
1 ⊗ N2 ⊗ K is a line bundle of degree 2g−2−d. If d > 2g−2,

we are finished. If d ≤ 2g − 2, then, by Clifford’s Theorem,

h0(E∗
1 ⊗ N2 ⊗ K ) ≤ g − d

2
< g − g + n

2
.

It is therefore sufficient to prove that

g + n

2
≥

[g

n

]

+ 1.

Since n ≥ 2, this is obvious. ��
Remark 5.3. The estimate for the dimension of G+

L in the proof of Corollary 5.2 is
sufficient for our purposes, but is quite crude and can certainly be improved.

We now turn to the determination of the flip locus G−
L .

Proposition 5.4. If αl > 0, then the flip locus G−
L consists of the non-trivial exten-

sions

0 → (E2, V2) → (E, V ) → (E1, V1) → 0, (5.4)

where (E1, V1) and (E2, V2) satisfy the same properties as in (5.1), and has dimen-
sion ≤ β − 1.

Proof. If (E, V ) ∈ G−
L , then there certainly exists a non-trivial extension (5.4)

with (E2, V2) α
−
l -stable and

µαl (E2, V2) = µαl (E, V ), k2 ≥ n2 + 1

(see (2.5)). By Brambila-Paz [8, Theorem 1(1)], we must haveβ(n2, d2, n2+1) ≥ 0

and so, by Remark 3.3, d2 ≥ g + n2 −
[

g
n2+1

]

. By Remark 3.6, it follows that

n2 = n − 1, k2 = n, d2 = g + n − 1 −
[g

n

]

.

Hence all the conditions of (5.1) hold. Now note that N1 = 0 and C21 > 0 as shown
in the proof of Theorem 5.1. The proposition follows from Remark 2.7. ��
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Remark 5.5. Taking α = αl in the proof of Proposition 3.8 gives a slightly different
description of G−

L , namely

G−
L =

{

(E, V ) | (E, V ) generically generated, E ′ ∼= O ⊕ G, H0(G∗) = 0,

G saturated in E
}

.

It is easy to see that these two descriptions are equivalent.

Theorem 5.6. Suppose αl > 0. Then GL−1 is non-empty and irreducible, and is
birational to GL.

Proof. This follows from Corollary 5.2, Proposition 5.4 and (2.3). ��

6. Moduli spaces for any α

As we have seen (see Theorems 3.1 and 5.6), for β(n, d, n +1) ≥ 0 and α > αL−1,
the moduli space G(α; n, d, n + 1) is non-empty and the non-emptiness is related
to the existence of coherent systems (E, V ) such that E is generically generated
and H0(E ′∗) = 0. Our object in this section is to try to generalise these results to
arbitrary α > 0. For d ≤ g +n, the results are largely contained in the unpublished
[12] (see also [11]) and in [8].

We begin by recalling the results of [8] which we require.

Proposition 6.1. [8, Theorem 1(1)] Let X be a Petri curve andβ<0. Then G(α)=∅
for all α > 0.

Before proceeding further, we define

U (n, d, n + 1) := {(E, V ) ∈ GL |E is stable}
and

U s(n, d, n + 1) := {(E, V )|(E, V ) is α-stable for all α > 0}.
Note that U (n, d, n + 1) can be defined alternatively as

U (n, d, n + 1) := {(E, V )|E is stable and (E, V ) is α-stable for all α > 0}
and in particular U (n, d, n + 1) ⊂ U s(n, d, n + 1). In the converse direction, note
that, if (E, V ) ∈ U s(n, d, n + 1), then E is semistable. However it is not generally
true that U (n, d, n + 1) = U s(n, d, n + 1) and we can have U s(n, d, n + 1) �= ∅,
U (n, d, n + 1) = ∅. Our main object in the remainder of the paper is to determine
when these sets are non-empty.

Remark 6.2. By openness of α-stability, U (n, d, n + 1) and U s(n, d, n + 1) are
open subsets of GL , thus inheriting natural structures of smooth variety, and with
these same structures they are also embedded as open subsets of every G(α). If
either U (n, d, n + 1) or U s(n, d, n + 1) is non-empty, then, by Theorem 3.1, it is
irreducible of dimension β (or finite when β = 0) and its generic element (E, V )
is generated with H0(E∗) = 0.
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Proposition 6.3. [8, Proposition 2.5(4)] Let (E, V ) be a generated coherent system
of type (n, d, n + 1) such that E is semistable. Then (E, V ) ∈ U s(n, d, n + 1).

Proposition 6.4. [8, Proposition 4.1(2)] Let X be a Petri curve and suppose that

g + n −
[

g
n+1

]

≤ d ≤ g + n and that g and n are not both equal to 2. Then

U (n, d, n + 1) is non-empty.

Proposition 6.5. [8, Proposition 4.6] Let X be a Petri curve and β ≥ 0. If g ≥
n2 − 1, then U (n, d, n + 1) �= ∅.

In the remainder of this section, we shall introduce two further techniques
for constructing coherent systems. The first is that of elementary transformations,
which we shall use in two distinct ways.

Since any stable bundle of degree ≥ n(2g − 1) is generated by its sections,
Proposition 6.3 implies that U (n, d, n + 1) �= ∅ for d ≥ n(2g − 1) (see also
[8, Proposition 2.6]). The next proposition provides a significant improvement on
this.

Proposition 6.6. Let X be a Petri curve. If

d0 =
{ n(g+3)

2 if g is odd

n(g+2)
2 if g is even,

then U s(n, d0, n + 1) �= ∅.
If d ≥ d1, where

d1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

n(g+3)
2 + 1 if g is odd

n(g+2)
2 + 1 if g is even and n ≤ g!

(
g
2 )!( g

2 +1)!
n(g+4)

2 + 1 if g is even and n > g!
(

g
2 )!( g

2 +1)! ,

then U (n, d, n + 1) �= ∅.

Proof. It is easy to check that, with the above definition of d0, β(1, d0
n , 2) ≥ 0 (in

fact, d0
n is the smallest integer for which this is true). Hence, by classical Brill–

Noether theory, there exists a line bundle L of degree d0
n such that h0(L) ≥ 2 and L

is generated by its sections. Now let L1, . . . ,Ln be any such line bundles and let V
be a subspace of H0(L1⊕· · ·⊕Ln) of dimension n+1 such that (L1⊕· · ·⊕Ln, V )
is generated. Hence (L1 ⊕ · · · ⊕ Ln, V ) ∈ U s(n, d0, n + 1) by Proposition 6.3.

Again by classical Brill–Noether theory, one can find pairwise non-isomorphic
line bundles L1, . . . ,Ln of degree d1−1

n such that, for all i , h0(Li ) ≥ 2 and Li is

generated by its sections (in the case g even and d1 = n(g+2)
2 + 1, the number of

distinct line bundles of degree d1−1
n with h0 ≥ 2 is g!

(
g
2 )!( g

2 +1)! [1, chap. V, formula

(1.2)]). Now consider extensions

0 → L1 ⊕ · · · ⊕ Ln → E → τ → 0,
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where τ is a torsion sheaf of length t ≥ 1. These extensions are classified by n-tuples
(e1, . . . , en) with ei ∈ Ext1(τ,Li ). It can be shown (see [21, Théorème A.5]) that,
for any t , there exists an extension of this type for which E is stable. As above, let V
be a subspace of H0(L1⊕· · ·⊕Ln) of dimension n+1 such that (L1⊕· · ·⊕Ln, V )
is generated. We consider the coherent system (E, V ). If (E1, V1) is a proper
subsystem of (E, V ) with E1 �= E , then V1 ⊂ V ∩ H0(E1 ∩ L1 ⊕ · · · ⊕ Ln). It
follows from the α-stability of (L1 ⊕ · · · ⊕ Ln, V ) for large α that k1

n1
≤ k

n . Since

E is stable, we have also d1
n1
< d

n . It follows that (E, V ) ∈ U (n, d, n + 1). ��
Remark 6.7. For a general curve X , the second part of Proposition 6.6 is valid with

d1 =
{

n(g+1)
2 + 1 if g is odd

n(g+2)
2 + 1 if g is even

by [30]. However, this does not imply the result for an arbitrary Petri curve.

Our second use of elementary transformations is to prove

Proposition 6.8. Suppose that U (n, na, n + 1) �= ∅ for some integer a. Then
U (n, d, n + 1) �= ∅ for all d with d > na and d ≡ ±1 mod n.

Proof. In view of Remark 2.2, it is sufficient to prove this for d = na + 1 and for
d = na + n − 1.

Suppose first that d = na + 1. Let (F, V ) ∈ U (n, na, n + 1) and define E
as an elementary transformation (4.3). Then (E, V ) ∈ GL(n, na + 1, n + 1) by
Lemma 4.1. The stability of E follows easily from the stability of F , so (E, V ) ∈
U (n, d, n + 1).

Now suppose d = na + n − 1. Again let (F, V ) ∈ GL(n, na, n + 1) and let
x ∈ X . Let τ be the torsion sheaf of length 1 supported at x and define E as an
elementary transformation

0 → E → F(x) → τ → 0.

Then F can be regarded as a subsheaf of E and V as a subspace of H0(E). By
Lemma 4.1, the coherent system (E, V ) ∈ GL(n, na + n − 1, n + 1). The stability
of E follows from the stability of F(x). ��

The second technique is the use of extensions of coherent systems. The idea
is to take a generic element (E, V ) of GL and try to prove that E is stable. If this
is not the case, there exists a quotient E2 of E with µ(E2) ≤ µ(E) and we can
choose E2 to be stable. We have therefore an extension

0 → E1 → E → E2 → 0,

and, taking V1 = V ∩ H0(E1) and V2 = V/V1, we obtain an extension of coherent
systems

0 → (E1, V1) → (E, V ) → (E2, V2) → 0. (6.1)

We are assuming that (E, V ) is a generic element of GL , so (E, V ) is generated
and H0(E∗) = 0. Using Lemma 3.2, we see that (6.1) is subject to the following
conditions:
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• µ(E2) ≤ µ(E);
• E2 is stable, (E2, V2) is generated and k2 ≥ n2 + 1;

• µ(E2) ≥ 1 + 1
n2

(

g −
[

g
n2+1

])

.

Proposition 6.9. Suppose that X is a Petri curve, n ≥ 3, d < g + n + g
n−1 and

n2 ≤ n − 2. Then no extension (6.1) exists satisfying the stated conditions.

Proof. Suppose we have such an extension. Then

1 + 1

n2

(

g −
[

g

n2 + 1

])

≤ µ(E2) ≤ d

n
.

By Lemma 3.4, the left hand side of this inequality is a decreasing function of n2;
so we have

1 + 1

n − 2

(

g −
[

g

n − 1

])

≤ d

n
,

i.e.

d ≥ g + n + 2g

n − 2
− n

n − 2

[

g

n − 1

]

≥ g + n + 2g

n − 2
− ng

(n − 2)(n − 1)

= g + n + g

n − 1
.

This gives the required contradiction. ��
It remains to consider the extensions (6.1) for which n2 = n − 1. We have two

cases:

0 → (E1, V1) → (E, V ) → (E2, V2) → 0, n1 = k1 = 1 (6.2)

and

0 → (E1, 0) → (E, V ) → (E2, V2) → 0, n1 = 1. (6.3)

Proposition 6.10. Suppose that X is a Petri curve, n ≥ 2 and d > g + n. Then the
extensions (6.2) which satisfy the conditions stated above depend on at most β − 1
parameters.

Proof. Since E2 is stable and (E2, V2) is generated, (E2, V2) ∈ GL(n2, d2, n2 +1)
by Proposition 6.3. Hence (E2, V2) depends on β(n2, d2, n2 +1) parameters, while
(E1, V1) depends on d1 = β(1, d1, 1) parameters. By Remark 2.7,

H
0
21 = Hom((E2, V2), (E1, V1)) = 0.

By Lemma 2.6, it remains to prove that

C12 > dim H
2
21. (6.4)
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Now, by (2.6),

C12 = (n − 1)d1 − n,

while

dim H
2
21 = h0(E∗

1 ⊗ N2 ⊗ K ),

where N2 is the kernel of the evaluation map V2 ⊗ O → E2. Now E∗
1 ⊗ N2 ⊗ K

is a line bundle of degree 2g − 2 − d. If d ≤ 2g − 2, then, by Clifford’s Theorem,

h0(E∗
1 ⊗ N2 ⊗ K ) ≤ g − 1 − d

2
+ 1 = g − d

2
.

So (6.4) holds if

(n − 1)d1 − n > g − d

2
.

Since d1 ≥ d
n , this will be true if

(n − 1)d

n
− n > g − d

2
,

i.e. if

3n − 2

2n
d > g + n.

This is certainly true since d > g + n.
If d > 2g − 2, then h0(E∗

1 ⊗ N2 ⊗ K ) = 0 and we require to prove only that
C12 > 0. In fact

C12 = (n − 1)d1 − n ≥ n − 1

n
d − n >

n − 1

n
(g + n)− n = n − 1

n
g − 1 ≥ 0.

��
Remark 6.11. Propositions 6.9 and 6.10 are directed towards proving that U (n, d,
n+1) �= ∅. If we wish only to prove that U s(n, d, n+1) �= ∅, we are not concerned
with the stability of E and we need to consider extensions (6.2) under the usual
conditions of [5, Sect. 6.2] for the flip loci G+

i . We can still assume that (E, V )
is generated with H0(E∗) = 0, so (E2, V2) is also generated with H0(E∗

2 ) = 0,

hence d2 ≥ g +n2 −
[

d
n2+1

]

, and now µ(E2) < µ(E). So the result of Proposition

6.9 holds under the assumption d ≤ g + n + g
n−1 . In Proposition 6.10, note that

(E2, V2) ∈ GL(n2, d2, n2+1) by Theorem 3.1(3); so (E2, V2) depends on precisely
β(n2, d2, n2 + 1) parameters and the rest of the proof goes through.

We turn now to the consideration of the extensions (6.3).
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Proposition 6.12. Let X be a Petri curve and n ≥ 3. Suppose that d < g+n+ g
n−1 .

Then there exist no extensions (6.3) satisfying the conditions of (6.1) with

d

n
<

2g

2n − 1
+ 2. (6.5)

Proof. Since (E2, V2) is generated, we can write as usual

0 → N2 → V2 ⊗ O → E2 → 0.

Note that H0(N2) = 0 and that (N∗
2 , V ∗

2 ) is generated. Moreover N∗
2 has rank 2

and, since h0(E∗
2 ) = 0, h0(N∗

2 ) ≥ n + 1. Suppose we prove that, for any line
subbundle L1 of N∗

2 ,

h0(L1) ≤ 1. (6.6)

Then, by Paranjape and Ramanan [25, Lemma 3.9],

h0(det N∗
2 ) ≥ 2n − 1.

Hence, by classical Brill–Noether theory and the assumption µ(E2) ≤ µ(E),

(n − 1)d

n
≥ d2 = deg N∗

2 ≥ (2n − 2)g

2n − 1
+ 2n − 2,

which contradicts (6.5).
It remains to prove (6.6). Consider an exact sequence

0 → L1 → N∗
2 → L2 → 0.

Since N∗
2 is generated, so is L2. But L2 is certainly not trivial since h0(N2) = 0,

so h0(L2) = s ≥ 2 and

deg L2 ≥ (s − 1)g

s
+ s − 1.

If s < n, then h0(L1) ≥ n + 1 − s ≥ 2 and

deg L1 ≥ (n − s)g

n − s + 1
+ n − s.

So

d2 = deg N∗
2 ≥ (s − 1)g

s
+ s − 1 + (n − s)g

n − s + 1
+ n − s

= 2g − (n + 1)g

s(n − s + 1)
+ n − 1.

Since 2 ≤ s ≤ n − 1, this gives

d2 ≥ 2g − (n + 1)g

2(n − 1)
+ n − 1 ≥ g + n − 1; (6.7)
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since (n−1)d
n ≥ d2, this contradicts the assumption that d < g +n + g

n−1 . It follows
that s ≥ n, so

deg L2 ≥ (n − 1)g

n
+ n − 1

and

deg L1 = d2 − deg L2 < g + n − 1 − (n − 1)g

n
− n + 1 = g

n
. (6.8)

The inequality (6.6) now follows from classical Brill–Noether theory. This com-
pletes the proof. ��
Remark 6.13. The non-strict inequality

d ≤ g + n + g

n − 1
(6.9)

is sufficient except when n = 3, when (6.7) fails to give a contradiction. The other
place where the inequality d < g + n + g

n−1 is used is (6.8). In this case (6.9) gives
deg L1 ≤ g

n , which is sufficient for (6.6). In particular, if n ≥ 4, (6.9) and (6.5) are
sufficient for the validity of Proposition 6.12.

7. The cases n = 2, n = 3 and n = 4

In this section we shall assume that g ≥ 3.

Theorem 7.1. Let X be a Petri curve of genus g ≥ 3. Then U (2, d, 3) �= ∅ if and
only if β(2, d, 3) ≥ 0.

Proof. This follows at once from Propositions 6.1 and 6.5. ��
Theorem 7.2. Let X be a Petri curve of genus g ≥ 3. Then U (3, d, 4) �= ∅ if and
only if β(3, d, 4) ≥ 0.

Proof. According to Proposition 6.5, the result holds for g ≥ 8. For lower values
of g, the result holds by Proposition 6.4 in the following cases

• g = 3, d = 6;
• g = 4, d = 6, 7;
• g = 5, d = 7, 8;
• g = 6, d = 8, 9;
• g = 7, d = 9, 10.

For g �= 5, Proposition 6.8 and Remark 2.3 give the result for all d ≥ g + 3 − [ g
4

]

,
i.e. for all β ≥ 0.

When g = 5, Remark 2.2 gives the result for d = 10, 11 and Proposition 6.6
for d ≥ 13, leaving only d = 9, 12 open. For g = 5, d = 9, the inequalities
d < g + n + g

n−1 , d > g + n and d
n <

2g
2n−1 + 2 are all satisfied and the result

follows from Propositions 6.9, 6.10 and 6.12. Finally, the case d = 12 now follows
using Remark 2.2. ��
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Theorem 7.3. Let X be a Petri curve of genus g ≥ 3. Then U (4, d, 5) �= ∅ if and
only if β(4, d, 5) ≥ 0.

Proof. Proposition 6.5 gives U (4, d, 5) �= ∅ for g ≥ 15. Now Proposition 6.4
covers the following cases

• g = 3, d = 7;
• g = 4, d = 8;
• g = 5, d = 8, 9;
• g = 6, d = 9, 10;
• g = 7, d = 10, 11;
• g = 8, d = 11, 12;
• g = 9, d = 12, 13;
• g = 10, d = 12, 13, 14;
• g = 11, d = 13, 14, 15;
• g = 12, d = 14, 15, 16;
• g = 13, d = 15, 16, 17;
• g = 14, d = 16, 17, 18.

Proposition 6.8 now gives the following additional cases

• g = 4, d = 9, 11;
• g = 5, d = 11;
• g = 8, d = 13;
• g = 9, d = 15;
• g = 10, d = 15;
• g = 12, d = 17;
• g = 14, d = 19.

Remark 2.3 now completes the argument for g = 10, 12, 14.
For other g, we try using extensions of coherent systems. Propositions 6.9, 6.10

and 6.12, together with Proposition 6.8, give the following additional cases

• g = 5, d = 10;
• g = 6, d = 11;
• g = 7, d = 12, 13;
• g = 8, d = 14;
• g = 9, d = 14;
• g = 11, d = 16;
• g = 13, d = 18.

Again using Remark 2.3, this completes the argument for g = 5, 7, 8, 9, 11, 13.
Moreover, in view of Proposition 6.6, the only outstanding cases are g = 3, d =
8, 9, 10, 12, g = 4, d = 10, 14 and g = 6, d = 12, 16.

Proposition 7.4. Suppose that X is a Petri curve of genus 3 and d = 8, 9 or 12.
Then U (4, d, 5) �= ∅.

Proof. Suppose first that d = 8. Since d = 2n, the result then follows from
[7, Theorem 5.4]. For d = 9, we now use Proposition 6.8 and, for d = 12, we
apply Remark 2.2. ��
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Proposition 7.5. Suppose that X is a Petri curve of genus 6 and d = 12 or 16.
Then U (4, d, 5) �= ∅.

Proof. In view of Remark 2.2, it is sufficient to prove that U (4, 12, 5) �= ∅. Note
that in this case we have

12 = d = g + n + g

n − 1
and

d

n
= 3 <

2g

2n − 1
+ 2 = 12

7
+ 2.

Let (E, V ) be a generic element of GL(4, 12, 5) and suppose that E is not stable.
By Remark 6.13 and Proposition 6.10, the only possible form for a destabilising
sequence is

0 → (E1, V1) → (E, V ) → (E2, V2) → 0, E2 stable , n2 ≤ 2. (7.1)

Moreover, all the inequalities in the proof of Proposition 6.9 must be equalities,
which is the case if and only if

n1 = n2 = 2 and d1 = d2 = 6.

Since (7.1) is the only possible form for a destabilising sequence with E2 stable,
it follows that E is semistable. If k2 > 3, then [25, Lemma 3.9] applies to give
h0(det E2) ≥ 5, which would require d2 ≥ 9 by classical Brill–Noether theory, a
contradiction. So k2 = 3 and k1 = 2.

Since (E2, V2) is generated and h0(E∗
2 ) = 0, we have (E2, V2) ∈ U (2, 6, 3),

which has dimension β(2, 6, 3) = 0. Since E is semistable andµ(E1) = µ(E), E1
is also semistable. Moreover, (E1, V1) must be generically generated, otherwise it
would have a subsystem (L, V1) with L a line bundle, contradicting the α-stability
of (E, V ). It follows that any subsystem (L1,W1) of (E1, V1) with L1 of rank 1
has deg L1 ≤ 3 and dim W1 ≤ 1, so (E1, V1) is α-semistable for all α > 0. Now,
by [5, Theorem 5.6],

dim GL(2, 6, 2) = β(2, 6, 2) = 9.

On the other hand, if (E1, V1) �∈ GL(2, 6, 2), we have

0 → (L1,W1) → (E1, V1) → (L2,W2) → 0 (7.2)

with

deg L1 = deg L2 = 3 and dim W1 = dim W2 = 1.

Moreover, for the extensions (7.2), we have, by (2.6),

• C21 = 3 − 1 = 2;
• dim H

0
21 = dim Hom((L2,W2), (L1,W1)) ≤ 1;

• dim H
2
21 = 0 by (2.7),



On coherent systems 433

so

dim Ext1((L2,W2), (L1,W1)) ≤ C21 + 1 = 3.

Since (L1,W1) and (L2,W2) each depend on three parameters, the extensions (7.2)
depend on at most

3 + 3 + 3 − 1 = 8 < β(2, 6, 2)

parameters.
We now consider the extensions (7.1) with (E1, V1), (E2, V2) as above. We

have, by (2.6) and (2.7),

• C12 = 12 − 6 = 6;
• dim H

2
21 = h0(E∗

1 ⊗ N2 ⊗ K ) ≤ 3 by [10, Theorem 2.1] since E∗
1 ⊗ N2 ⊗ K is

semistable of rank 2 and slope

−d1

2
+ deg N2 + deg K = −3 − 6 + 10 = 1;

• H
0
21 = 0 by Remark 2.7.

So, by Lemma 2.6, the general (E, V ) ∈ GL(4, 12, 5) does not admit an extension
(7.1) and we are done. ��
Proposition 7.6. Suppose that X is a Petri curve of genus 3 or 4 and d = 10 or 14.
Then U (4, d, 5) �= ∅.

Proof. In view of Remark 2.2, it is sufficient to prove that U (4, 10, 5) �= ∅. Let
(E, V ) be a generic element of GL(4, 10, 5) and suppose that E is not stable. Then
we have a destabilising sequence

0 → (E1, V1) → (E, V ) → (E2, V2) → 0 (7.3)

satisfying the conditions of (6.1). We have the following possibilities.

• n2 = 1: 3 ≤ µ(E2) ≤ 5
2 , which is a contradiction.

• n2 = 2: 1
2 (g + 1) ≤ µ(E2) ≤ 5

2 , so d2 = 4 or 5 if g = 3, d2 = 5 if g = 4;
moreover k2 ≥ 3 and, by [27], h0(E2) ≤ 7

2 , so k2 = 3.
• n2 = 3: 2 ≤ µ(E2) ≤ 5

2 , so d2 = 6 or 7; moreover k2 ≥ 4 and, by [27],

h0(E2) ≤ d2+3
2 , giving the possibilities (d2, k2) = (6, 4), (7, 4), (7, 5).

We consider first the case n2 = 3. If k2 = 4, we are in the situation of (6.2)
and Proposition 6.10 applies. In the remaining case d2 = 7, k2 = 5, we have
h0(det E2) = 8 − g ≤ 5. So, by [25, Lemma 3.9], E2 possesses either a line
subbundle L with h0(L) ≥ 2 or a subbundle F of rank 2 with h0(F) ≥ 3. In the
first case, since E2 is stable, we have deg L ≤ 2, a contradiction. In the second case
dF := deg F ≤ 4 and any line subbundle of F has deg L ≤ 2, hence h0(L) ≤ 1. It
follows that, for any subspace W of H0(F) of dimension 3, (F,W ) ∈ GL(2, dF , 3).
Hence, by Theorem 3.1(1), β(2, dF , 3) ≥ 0. Since dF ≤ 4, this holds only when
g = 3, dF = 4. It follows that F is semistable and, by [27], h0(F) ≤ 3 and hence
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h0(F) = 3. Note further that F is not strictly semistable, for otherwise we would
have a sequence 0 → L1 → F → L2 → 0 with deg L1 = deg L2 = 2, so that
h0(F) ≤ 2. Hence F is stable and (F,W ) ∈ U (2, 4, 3). Now let W1 := H0(F)∩V2
and consider the exact sequence

0 → (F,W1) → (E2, V2) → (L,W2) → 0, (7.4)

where dim W1 ≤ 3. If dim W1 < 3, then dim W2 ≥ 3, contradicting the fact that
deg L = 3. So dim W2 = 2, dim W1 = 3 and

(F,W1) ∈ U (2, 4, 3), (L,W2) ∈ U (1, 3, 2).

For the extensions (7.4), we have, by (2.6) and (2.7),

• C21 = 4 − 4 + 6 − 6 = 0;
• H

0
21 = 0 by Remark 2.7;

• dim H
2
21 = h0(F∗ ⊗ L∗ ⊗ K )∗ = 0 since F∗ ⊗ L∗ ⊗ K is stable of degree −2.

So, by (2.8), the extension (7.4) splits, which contradicts the stability of E2. We
have therefore proved that the only possible destabilising sequences for a general
(E, V ) of type (7.3) with E2 stable are those with n2 = 2.

Suppose then that n2 = 2. We have k2 = h0(E2) = 3 and we know that
(E2, V2) is generated and h0(E∗

2 ) = 0, so (E2, V2) ∈ U (2, d2, 3). Suppose now
that E is semistable, so that d2 = 5. Then also E1 is semistable and in fact stable
since gcd(n1, d1) = 1. It follows that any line subbundle L of E1 has deg L ≤ 2
and hence h0(L) ≤ 1. So (E1, V1) ∈ U (2, 5, 2). For the extensions (7.3), we have,
by (2.6) and (2.7),

• C12 = 10 − 6 = 4;
• dim H

2
21 = h0(E∗

1 ⊗ N2 ⊗ K ) = 0 since E∗
1 ⊗ N2 ⊗ K is stable with slope< 0;

• H
0
21 = 0 by Remark 2.7.

So, by Lemma 2.6, the general (E, V ) does not admit an extension of this type.
It remains to consider the possibility that E is not semistable. From the above,

this can happen only when g = 3 and we have an extension (7.3) with

n1 = n2 = 2, d1 = 6, d2 = 4, k1 = 2, k2 = 3.

We certainly have (E2, V2) ∈ U (2, 4, 3), but we can no longer guarantee that E1
is semistable. However the maximal degree of a line subbundle of E1 is 4, for
otherwise E would have a quotient bundle of rank 3 and degree ≤ 5; this cannot be
stable since E has no stable quotient bundles of rank 3 contradicting the stability
of E . It follows that E would have either a quotient line bundle of degree ≤ 1 or
a stable quotient bundle of rank 2 of degree ≤ 3; both of these are impossible (see
the itemised list following (7.3)). Moreover, we can still argue as in the proof of
Proposition 7.5 to show that (E1, V1) depends on at most β(2, 6, 2) parameters.
Now for the extensions (7.3), we have, by (2.6) and (2.7),

• C12 = 12 − 6 = 6;
• dim H

2
21 = h0(E∗

1 ⊗ N2 ⊗ K ) = 0 since deg N2 ⊗ K = 0 and the maximal
degree of a line subbundle of E∗

1 is −2;
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• H
0
21 = 0 by Remark 2.7.

The result now follows from another application of Lemma 2.6. ��
This completes the proof of Theorem 7.3. ��

Remark 7.7. In the course of proving Proposition 7.6, we have shown that there is
no coherent system (E2, V2) of type (3, 7, 5) on a Petri curve of genus 3 or 4 with E2
stable. A slight modification of the proof shows that G(α; 3, 7, 5) = ∅ for all α > 0
and all g ≥ 3 (we have to prove that E2 is stable for all (E2, V2) ∈ G(α; 3, 7, 5)).
Since β(3, 7, 5) = 17 − 6g < 0 for g ≥ 3, this is to be expected, but, so far as
we are aware, it has previously been proved only for g ≥ 6 (see [8, Theorem 3.9],
where it is shown that, for k > n, G(α; n, d, k) = ∅ if β(n, d, n + 1) < 0; in this
case β(3, 7, 4) = 16 − 3g < 0 if and only if g ≥ 6).

8. Low genus

The cases g = 0 and g = 1 have been excluded from the earlier part of this paper
since they present special features and have been handled elsewhere [17,18].

For g = 0, there are no stable bundles of rank ≥ 2, so U (n, d, n + 1) is always
empty if n ≥ 2. Moreover, if d is not divisible by n, there exist no semistable
bundles; hence U s(n, d, n + 1) = ∅. For the remaining case, when d is divisible
by n, U s(n, d, n + 1) �= ∅ (see [17, Proposition 6.4]). One may note that in this
case β ≥ 0 is equivalent to d ≥ n.

For g = 1, the moduli spaces G(α) are well understood (see [18]). The results
for U (n, d, n + 1) and U s(n, d, n + 1) are summarised in the following theorem.

Theorem 8.1. Let X be a curve of genus 1 and n ≥ 2. Then

• U s(n, d, n + 1) �= ∅ if and only if d ≥ n + 1;
• U (n, d, n + 1) �= ∅ if and only if d ≥ n + 1 and gcd(n, d) = 1.

Proof. The first part follows from the main theorem of [18] and [18, Remark 6.3].
For the second part, recall that, on an elliptic curve, stable bundles exist if and only
if (n, d) = 1, and, in this case, all semistable bundles are stable. ��

The condition d ≥ n + 1 here is precisely equivalent to β ≥ 0.
For g = 2, note first that the case g = n = 2, d = 4 is a genuine exception in

Proposition 6.4 (see [8, Lemma 6.6(1)]). More generally, if E is any bundle of rank
n ≥ 2 and degree 2n with h0(E) ≥ n + 1 on a curve of genus 2, then E cannot be
stable. In fact, by Riemann–Roch, we have h1(E) ≥ 1, so there exists a non-zero
homomorphism E → K , which immediately contradicts stability. There do exist
semistable bundles with h0(E) ≥ n + 1, which can be constructed as in the proof
of Proposition 6.6 or by using sequences

0 → E∗ → V ⊗ O → L → 0

with deg L = 2n and V a subspace of H0(L) of dimension n + 1 which generates
L; the coherent system (E, V ∗) is then α-stable for all α > 0. We deduce
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Theorem 8.2. Let X be a curve of genus 2 and n ≥ 2. Then

• U s(n, d, n + 1) �= ∅ if and only if d ≥ n + 2 (or equivalently β ≥ 0);
• U (n, d, n + 1) �= ∅ if and only if d ≥ n + 2, d �= 2n.

Proof. We have U (n, d, n + 1) �= ∅ in the following cases:

• d ≥ 3n by [8, Proposition 2.6];
• d = n + 2, . . . , 2n − 1 by [7, Theorem 5.5];
• d = 2n + 2, . . . , 3n − 1 by Remark 2.2.

Moreover U s(n, 2n, n + 1) �= ∅ by Proposition 6.6. It remains to prove

(i) U (n, 2n, n + 1) = ∅;
(ii) U (n, 2n + 1, n + 1) �= ∅.

For (i), we have already remarked that a vector bundle E of rank n and degree
2n with h0(E) ≥ n + 1 cannot be stable (see also [22, Théorème 2]).

For (ii), every stable bundle E of rank n and degree 2n + 1 has h0(E) ≥ n + 1.
If we can prove that there exists such a bundle which is generated, we can choose
a subspace V of H0(E) of dimension n + 1 such that (E, V ) is generated. Then
(E, V ) ∈ U (n, d, n + 1) by Proposition 6.3.

To show that E is generated, we need to prove that h1(E(−x)) = 0 for all
x ∈ X . Now E(−x) is stable of degree n + 1 and E(−x)∗ ⊗ K is stable of degree
n − 1. We consider the Brill–Noether locus B(n, n − 1, 1). By [28] or [10], this
locus has dimension β(n, n − 1, 1) and hence codimension

1 − (n − 1)+ n(g − 1) = 2

in M(n, n − 1). It follows that the generic E ∈ M(n, 2n + 1) has

h1(E(−x)) = h0(E(−x)∗ ⊗ K ) = 0

for all x ∈ X as required.
This completes the proof of the theorem. ��

Theorem 8.3. Let X be a Petri curve of genus 3 and n ≥ 2. Then U (n, d, n+1) �= ∅
if β ≥ 0, except possibly when n ≥ 5, d = 2n + 2.

Proof. For n = 2, 3, 4, this has already been proved. For n ≥ 5, we have U (n, d,
n + 1) �= ∅ in the following cases:

• d ≥ 3n + 1 by Proposition 6.6;
• d = n + 3, . . . , 2n by [7, Theorem 5.4];
• d = 2n + 1 by Proposition 6.8;
• d = 2n + 3, . . . 3n by Remark 2.2. ��
Remark 8.4. For general X (but not necessarily for all Petri X ), the exception can
be removed using Teixidor’s degeneration methods [30].

Remark 8.5. For g = 4, 5 and n ≥ 5, a similar argument works with the following
possible exceptions

• g = 4, d = 2n + 2, 2n + 3, 3n + 2, 3n + 3;
• g = 5, n = 5, d = 12, 13, 17, 18;
• g = 5, n ≥ 6, d = 2n + 2, 2n + 3, 2n + 4, 3n + 2, 3n + 3, 3n + 4.

For general X , one can use Teixidor’s result to rule out some of the exceptions.
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9. Applications to Brill–Noether theory and dual spans

We recall from Sect. 2 that the Brill–Noether loci B(n, d, k) and ˜B(n, d, k) are
defined by

B(n, d, k) = {E ∈ M(n, d)|h0(E) ≥ k}
and

˜B(n, d, k) = {[E] ∈ ˜M(n, d)|h0(gr(E)) ≥ k},
It follows that the formula (E, V ) �→ [E] defines a morphism

ψ : G0(n, d, k) → ˜B(n, d, k),

whose image contains B(n, d, k).
The following theorem, which is essentially a restatement of [5, Theorem 11.4

and Corollary 11.5] for the case k = n+1, is true for any smooth curve; we state it in
a very general and formal way to make it applicable in a wide variety of situations.

Theorem 9.1. Suppose that B(n, d, n + 1) �= ∅. Then

(1) ψ is one-to-one over B(n, d, n + 1)− B(n, d, n + 2);
(2) if G0(n, d, n + 1) is irreducible, then B(n, d, n + 1) is irreducible;
(3) if β(n, d, n + 1) ≤ n2(g − 1) and G0(n, d, n + 1) is smooth and irreducible,

then

SingB(n, d, n + 1) = B(n, d, n + 2)

and G0(n, d, n + 1) is a desingularisation of the closure B(n, d, n + 1) of
B(n, d, n + 1) in ˜M(n, d).

Proof. (1) is obvious.
(2) follows from (1) and the fact that B(n, d, n + 1) is a Zariski-open subset of

ψ(G0(n, d, n + 1)). [Note that the hypothesis β(n, d, n + 1) ≤ n2(g − 1) of
[5, Conditions 11.3] is not needed here.]

(3) follows from [5, Corollary 11.5]. ��
Of course, if U (n, d, n +1) �= ∅, then B(n, d, n +1) �= ∅. Thus we have many

instances in this paper for which B(n, d, n + 1) �= ∅. We shall not list all of them
as we shall be stating a more specific result later. For the time being, we note the
following two corollaries. The first is a slightly extended version of [8, Corollary
4.5], the second is new.

Corollary 9.2. Suppose that X is a Petri curve, g + n −
[

g
n+1

]

≤ d ≤ g + n and

(g, n) �= (2, 2). Then

(1) B(n, d, n + 1) is irreducible of dimension β(n, d, n + 1) and smooth outside
B(n, d, n + 2);

(2) GL(n, d, n + 1) is a desingularisation of B(n, d, n + 1);
(3) if either d < g + n or d = g + n and n � | g, B(n, d, n + 1) is projective and

GL(n, d, n + 1) is a desingularisation of B(n, d, n + 1).
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Proof. The condition on d implies that αl ≤ 0. Hence, by Theorem 3.1, G0(n, d,
n+1) = GL(n, d, n+1) and is smooth and irreducible of dimensionβ(n, d, n+1).
Moreover U (n, d, n + 1) �= ∅ by Proposition 6.4. (1) and (2) now follow from
Theorem 9.1. For (3), we note that, under the stated conditions on d, E is stable for
every (E, V ) ∈ GL(n, d, n + 1) [8, Proposition 3.5]; hence ψ(GL(n, d, n + 1)) =
B(n, d, n + 1). ��
Remark 9.3. When g = n = 2 and d = 4, B(2, 4, 3) = ∅ by [8, Lemma 6.6], but
GL(2, 4, 3) �= ∅. In this case, the image of ψ is contained in ˜M (2, 4)\M(2, 4).

Corollary 9.4. Suppose that X is a Petri curve and that all the flip loci for coherent
systems of type (n, d, n+1) have dimension ≤ β(n, d, n+1)−1. If B(n, d, n+1) �=
∅, then

• B(n, d, n + 1) is irreducible;
• B(n, d, n + 1) is smooth of dimension β(n, d, n + 1) at E whenever E is gene-

rically generated and h0(E) = n + 1.

Proof. The hypotheses imply that G0(n, d, n + 1) is birational to GL(n, d, n + 1)
and is therefore irreducible. Irreducibility of B(n, d, n + 1) follows from Theo-
rem 9.1(2). If E is stable, h0(E) = n + 1 and E is generically generated, then
(E, H0(E)) ∈ U (n, d, n + 1), which is smooth of dimension β(n, d, n + 1) by
Theorem 3.1(4). The result follows from [5, Theorem 11.4(iv)]. ��

We know that this corollary has genuine content since the flip loci at αl = αL

have dimension ≤ β(n, d, n + 1)− 1 (Corollary 5.2 and Proposition 5.4).
We now turn to our second application. Suppose that L is a generated line

bundle of degree d > 0 and let V be a linear subspace of H0(L) of dimension n +1
which generates L (in other words, (L, V ) is a generated coherent system of type
(1, d, n + 1)). We have an evaluation sequence

0 −→ MV,L −→ V ⊗ O −→ L −→ 0. (9.1)

This is also known as the dual span construction (see [12]) and has been used in
the context of coherent systems in [5,8] and also in the proof of Proposition 3.7.
The following is a special case of [12, Conjecture 2].

Conjecture 9.5. Let X be a Petri curve of genus g ≥ 3. Suppose that β :=
β(1, d, n+1) ≥ 0 and that L is a general element of B(1, d, n+1) (when β = 0, L
can be any element of the finite set B(1, d, n + 1)) and let V be a general subspace
of H0(L) of dimension n + 1. Then MV,L is stable.

This conjecture is related to our results by the following simple proposition
(compare [5, Theorem 5.11]).

Proposition 9.6. Suppose that X is a Petri curve. The following are equivalent:

(1) there exists a generated coherent system (L, V ) of type (1, d, n+1)with MV,L
stable;

(2) U (n, d, n + 1) �= ∅.
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Proof. For (1)⇒(2), we note that (M∗
V,L, V ∗) is a generated coherent system of type

(n, d, n+1)with M∗
V,L stable, so (M∗

V,L, V ∗) ∈ U (n, d, n+1) by Proposition 6.3.
Conversely, suppose U (n, d, n+1) �= ∅. If β(n, d, n+1) > 0, the generic element
of U (n, d, n + 1) is a generated coherent system (E,W ) with h0(E∗) = 0 and E
stable. If β(n, d, n +1) = 0, then all elements of U (n, d, n +1) have this property.
The dual of the evaluation sequence of (E,W ) can be written as

0 −→ E∗ −→ W ∗ ⊗ O −→ L −→ 0,

where L is a line bundle of degree d. It follows that MW ∗,L ∼= E∗ and is therefore
stable, proving (1). ��
Remark 9.7. By Theorem 8.2 and Proposition 9.6, the conjecture fails for g = 2,
d = 2n, but is otherwise true for g = 2. In fact, although Butler [12, Sect. 1]
discusses the question of whether MV,L is stable, [12, Conjecture 2] actually has the
weaker conclusion that (M∗

V,L, V ∗) ∈ G0(n, d, n + 1). In this form the conjecture
is true for g = 2 (see Theorem 8.2).

Using Proposition 9.6, we can now begin to form a list of cases for which
Conjecture 9.5 holds. In the list we have noted where each case was proved.

• g + n −
[

g
n+1

]

≤ d ≤ g + n ([12], [8, Proposition 4.1]);

• g ≥ n2 − 1 ([12], [8, Proposition 4.6]);
• d ≥ d1 (Proposition 6.6, [30]);
• d ≤ 2n ([7,20,22]);
• n = 3, 4 (Theorems 7.2, 7.3)

The first and fourth items in this list can be expanded further by the use of Remark 2.3
and Proposition 6.8. According to the analysis in Sect. 7, the following cases for
n = 3 and n = 4 depend on the use of extensions of coherent systems (possibly in
conjunction with other methods):

• n = 3, g = 5, d = 9, 12;
• n = 4, g = 3, d = 10;
• n = 4, g = 4, d = 10, 14;
• n = 4, g = 5, d = 10, 14;
• n = 4, g = 6, d = 11, 12, 15, 16;
• n = 4, g = 7, d = 12, 13, 16, 17, 20;
• n = 4, g = 8, d = 14, 18;
• n = 4, g = 9, d = 14, 18, 22;
• n = 4, g = 11, d = 16, 20, 24, 28;
• n = 4, g = 13, d = 18, 22, 26, 30.

All of these cases, and those depending on Propositions 6.6 and 6.8, are (so far as
we are aware) new.

Of the methods we have used, the only ones capable of further development
appear to be elementary transformations (using direct sums of higher rank vector
bundles) and extensions of coherent systems (using more refined calculations). The
methods of [30] could also yield improved results for general X .
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