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lebp@cimat.mx

Received 31 August 2006
Revised 29 May 2007

Let X be a general smooth projective algebraic curve of genus g ≥ 2 over C. We prove
that the moduli space G(α : n, d, k) of α-stable coherent systems of type (n, d, k) over
X is empty if k > n and the Brill–Noether number β := β(n, d, n + 1) = β(1, d, n + 1) =
g − (n + 1)(n − d + g) < 0. Moreover, if 0 ≤ β < g or β = g, n � |g and for some α > 0,
G(α : n, d, k) �= ∅ then G(α : n, d, k) �= ∅ for all α > 0 and G(α : n, d, k) = G(α′ : n, d, k)
for all α, α′ > 0 and the generic element is generated. In particular, G(α : n, d, n+1) �= ∅
if 0 ≤ β ≤ g and α > 0. Moreover, if β > 0 G(α : n, d, n+1) is smooth and irreducible of
dimension β(1, d, n+1). We define a dual span of a generically generated coherent system.
We assume d < g + n1 ≤ g + n2 and prove that for all α > 0, G(α : n1, d, n1 + n2) �= ∅
if and only if G(α : n2, d, n1 + n2) �= ∅. For g = 2, we describe G(α : 2, d, k) for k > n.
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1. Introduction

Let X be a smooth projective algebraic curve of genus g ≥ 2 over C. A coherent
system over X of type (n, d, k) is a pair (E, V ) where E is a vector bundle over X
of rank n, degree d and V a linear subspace of H0(X,E) of dimension k.

A notion of stability for coherent systems was introduced in [12, 15, 11]. The
definition of stability depends on a real parameter α, which corresponds to the
choice of linearization of a group action. The coherent systems are also “augmented
bundles” (see [2]) and are related with the existence of solutions of orthogonal
vortex equations, where the parameter α appears in a natural way.

For any α ∈ R denote by G(α : n, d, k) (respectively G̃(α : n, d, k)) the moduli
space of α-stable (respectively α-semistable) coherent systems of type (n, d, k). From
the definition of α-stability, one can see that in order to have α-stable coherent
systems with k ≥ 1, we need α > 0. The expected dimension of G(α : n, d, k) is
the Brill–Noether number β(n, d, k) := n2(g − 1) + 1 − k(k − d + n(g − 1)). Note
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that if k > n, β(n, d, k) = β(k−n, d, k). We denote by β the Brill–Noether number
β(n, d, n+ 1) = β(1, d, n+ 1) = g − (n+ 1)(n− d+ g).

Basic properties of G(α : n, d, k) have been proved in [12, 11, 15] and particular
cases in [8, 3, 5]. More general results can be found in [4, 10, 2]. Most of the detailed
results known are for k ≤ n. It is our purpose here to study the case k > n.

In [4, Proposition 4.6], it was proved that, for k ≥ n, there exists αL such
that G(α : n, d, k) = G(α′ : n, d, k) if α, α′ > αL. Denote this moduli space by
GL(n, d, k).

For any (n, d, k), define U(n, d, k) and Us(n, d, k) as

U(n, d, k) := {(E, V ) : (E, V ) ∈ GL(n, d, k) and E is stable}

and

Us(n, d, k) := {(E, V ) : (E, V ) is of type (n, d, k) and is α-stable for all α > 0}.

We prove the following (see Theorem 3.9).

Theorem 1. Let X be general, β < g or β = g, n � |g and k > n. Then

(1) if β < 0, G(α : n, d, k) = ∅ for all α > 0;
(2) if for some α > 0, G(α : n, d, k) �= ∅, then G(α : n, d, k) �= ∅ for all α > 0;
(3) G(α : n, d, k) = G(α′ : n, d, k) for all α, α′ > 0 i.e. αL = 0;
(4) (E, V ) ∈ G(α : n, d, k) if and only if (E, V ) is generically generated and

H0(I∗E) = 0, where IE is the image of the evaluation map V ⊗O → E;
(5) if for some α > 0, G(α : n, d, k) �= ∅, then U(n, d, k) = G(α : n, d, k).

Note that the results of Theorem 1 deal with the moduli spaces of coherent
systems of type (n, d, k) whereas β refers to (n, d, n+1). Moreover, if β(n, d, n+1) ≤
g, β(n, d, k) < 0 for k > n+ 1.

If αL = 0, denote GL(n, d, k) by G(n, d, k). In particular, Gk−1
d := G(1, d, k).

For k = n+ 1, we have (see Theorem 4.3).

Theorem 2. Let X be general and β := β(n, d, n+ 1) ≤ g. Then

(1) G(α : n, d, n+ 1) �= ∅ if and only if β ≥ 0;
(2) if β ≥ 0, then G(n, d, n + 1) := G(α : n, d, n + 1) = G(α′ : n, d, n + 1) for all

α, α′ > 0 and αL = 0;
(3) if β > 0, then G(n, d, n + 1) is smooth and irreducible of dimension β and the

generic element is generated;
(4) Us(n, d, n+ 1) = G(n, d, n+ 1) and is birationally equivalent to Gnd ;
(5) if β = 0, G(n, d, n+ 1) ∼= Gnd and the number of points of G(n, d, n+ 1) is

g!
n∏
i=0

i!
(g − d+ n+ i)!

.
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Moreover, (see Theorem 4.7)

Theorem 3. If X is general and g ≥ n2 − 1, then for any degree d ≥ g + n− g
n+1

(1) G(α : n, d, n+ 1) �= ∅ for all α > 0;
(2) U(n, d, n+ 1) �= ∅ and is smooth and irreducible.

As was pointed out in [3, 4], coherent systems are related with Brill–Noether
theory. Let B(n, d, k) (respectively B̃(n, d, k)) be the Brill–Noether locus defined
by stable (respectively semistable) vector bundles of rank n, degree d and
dimH0(X,E) ≥ k. It is well known that for “small” α, (E, V ) α-stable implies
E semistable and E stable implies (E, V ) α-stable. The approach to study the
Brill–Noether loci in [4] is to describe G(α : n, d, k), usually for “large” α, and
through “flips” obtain information of G(α : n, d, k) for smaller α.

In our case, i.e. β < g or β = g, n � |g and k > n, it is enough to know the
non-emptiness for one α to obtain non-emptiness for all α. Moreover, there are no
“flips”.

In [16], it was proved that if X is general and g ≥ β(n, d, n+1) ≥ 0, B(n, d, n+1)
is non-empty and has a component of the correct dimension. From the above results
of coherent systems, we have (see Corollary 4.5)

Corollary 4. If X is general and g ≥ β ≥ 0, B(n, d, n+ 1) is irreducible if β > 0
and G(n, d, n+ 1) is a desingularization of (the closure of ) the Brill–Noether locus
B(n, d, n + 1). Moreover, the natural map φ : G(α : n, d, n + 1) → B̃(n, d, n + 1)
is an isomorphism on the complement of the singular locus of B(n, d, n + 1) ⊂
B̃(n, d, n+ 1).

Actually, [4, Conditions 11.3] are satisfied in this case and hence the results in
[4, Sec. 11] hold.

Besides the known relation between coherent systems and Brill–Noether theory,
our results on G(n, d, n+1) can be related with other problems. Given a generated
linear system (L, V ), we have the natural map

φV : X → P(V ∗).

In particular, if L has degree d and dim V = n+ 1, we have (see Theorem 4.8).

Theorem 5. Let X be general, 0 ≤ β(n, d, n + 1) and TP the tangent bundle of
P(V ∗). If β < g or β = g and n � |g, then φ∗V (TP) is stable. If either g ≥ n2 − 1
or β = g, n|g and g and n are not both equal to 2, then there exist linear systems
(L, V ) such that φ∗V (TP) is stable.

We define a dual span of a generically generated coherent system (see Definition
5.3) and denote by D(E, V ) = (D(E)�, V ∗) a dual span of (E, V ). If IE is the image
of the evaluation map V ⊗O → E we prove (see Theorems 5.7 and 5.13)

Theorem 6. Let X be a general curve of genus g and d < g + n1 ≤ g + n2, then
for all α > 0, G(α : n1, d, n1 + n2) �= ∅ if and only if G(α : n2, d, n1 + n2) �= ∅.
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Theorem 7. Let (E, V ) ∈ G(α : n1, d, n1 + n2). If either of the Petri maps of
(IE , V ) or (ID(E)�

, V ∗) is injective, then

(1) G(α : n1, d, n1+n2) is smooth of dimension β(n1, d, n1+n2) in a neighbourhood
of (E, V ).

(2) G(α : n2, d, n1+n2) is smooth of dimension β(n2, d, n1+n2) in a neighbourhood
of the dual span D(E, V ).

Denote by G0(n, d, k) the moduli space G(α : n, d, k) for “small” values of α
(see Remark 2.2 (2)). For n = 2, we have (see Theorem 6.1).

Theorem 8. Let X be general, s ≥ 3 and d < s+2g− 4g
s+2 . If G0(2, d, 2+s) is non-

empty then G(α : 2, d, 2+s) is non-empty for all α > 0. Moreover, U(2, d, 2+s) �= ∅.
For n = 2 and g = 2, from the above results and the Riemann–Roch theorem,

we know that

(1) if d < 4 and k ≥ 3, G(α : 2, d, k) = ∅ for all α > 0;
(2) if d = 5 and k > 3, U(2, d, k) = ∅ and G0(2, 5, k) = ∅;
(3) if d ≥ 6 and k = 3, 4, G(α : 2, d, k) �= ∅ for all α > 0. Moreover, U(2, d, k) �= ∅;
(4) if d ≥ 6 and k > d− 2, U(2, d, k) = ∅ and G0(2, d, k) = ∅.

In particular for d = 4, 5, we have (see Theorems 6.11–6.13)

Theorem 9.

(1) U(2, 4, k) = ∅ for k ≥ 3.
(2) G0(2, 4, k) = ∅ for k ≥ 5.
(3) G(α : 2, 4, 3) �= ∅ for all α > 0.
(4) Us(2, 4, 3) ∼= GL(2, 4, 3) ∼= Pic4(X).

Theorem 10.

(1) G̃0(2, 4, 4) = {(K ⊕K,H0(K ⊕K))}.
(2) G0(2, 4, 4) = ∅.
(3) G̃(α : 2, 4, 4) �= ∅ for all α > 0.

Theorem 11.

(1) G0(2, 5, 3) �= ∅.
(2) U(2, 5, 3) �= ∅.
(3) U(2, 5, 3) �= G0(2, 5, 3).

Notation

We will denote by K the canonical bundle overX , by IE the image of the evaluation
map V ⊗ O → E, Hi(X,E) by Hi(E), dimHi(X,E) by hi(E), the rank of E by
nE , the degree of E by dE and det(E) by LE. By a general curve, we mean a Petri
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curve i.e. the Petri map

H0(L) ⊗H0(L∗ ⊗K) → H0(K)

is injective for every line bundle L over X .

2. General Results

Let X be an irreducible smooth projective curve over C of genus g ≥ 2. For any
α ∈ R, define the α-slope of the coherent system (E, V ) of type (n, d, k) as

µα(E, V ) := µ(E) + α
k

n
,

where µ(E) := d/n is the slope of the vector bundle E. A coherent subsystem
(F,W ) ⊆ (E, V ) is a coherent system such that F ⊆ E and W ⊆ V ∩H0(F ). For
any α ∈ R, a coherent system (E, V ) is α-stable (respectively α-semistable) if for
all proper coherent subsystems (F,W ),

µα(F,W ) < µα(E, V ) (respectively ≤).

Denote the moduli space of α-stable (respectively α-semistable) coherent sys-
tems of type (n, d, k) by G(α : n, d, k) (respectively G̃(α : n, d, k)) and by β(n, d, k)
the Brill–Noether number β(n, d, k) := n2(g − 1) + 1 − k(k − d + n(g − 1)). From
the infinitesimal study of the coherent systems (see [4, 10]), we have that

Proposition 2.1. If (E, V ) ∈ G(α : n, d, k), then G(α : n, d, k) is smooth of
dimension β(n, d, k) in a neighbourhood of (E, V ) if and only if the Petri map
V ⊗H0(E∗ ⊗K) → H0(E ⊗E∗ ⊗K) is injective. Moreover, T(E,V )G(α : n, d, k) =
Ext1((E, V ), (E, V )).

If B(n, d, k) (respectively B̃(n, d, k)) is the Brill–Noether locus of stable (respec-
tively semistable) vector bundles, then for “small” α, there is a natural map

φ : G(α : n, d, k) → B̃(n, d, k)

defined by (E, V ) → E that is injective over B(n, d, k) −B(n, d, k + 1).
Given a triple (n, d, k) denote by C(n, d, k) the set

C(n, d, k) :=
{
α ∈ R|0 ≤ α =

nd′ − n′d
n′k − nk′

with 0 ≤ k′ ≤ k, 0 < n′ ≤ n,

and nk′ �= n′k
}
.

An element α in C(n, d, k) is called a virtual critical point. The set C(n, d, k) defines
a partition of the interval [0,∞). With the natural order on R, label the virtual
critical points as αi.

It is known (see [2, 4]) that

Remark 2.2. (1) If (n, d, k) = 1, then G(α : n, d, k) = G̃(α : n, d, k), for α �∈
C(n, d, k).

(2) If α′, α′′ ∈ (αi, αi+1), then G(α′ : n, d, k) = G(α′′ : n, d, k). Denote by
Gi(n, d, k) the moduli space G(α : n, d, k) for any α ∈ (αi, αi+1).
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(3) For k ≥ n, there exists αL such that for any α, α′ > αL, G(α : n, d, k) = G(α′ :
n, d, k). Denote by GL(n, d, k) the moduli space G(α : n, d, k) for α > αL.

(4) Every irreducible component of Gi(n, d, k) has dimension at least β(n, d, k).

Remark 2.3. Let (E, V ) be a coherent system of type (n, d, k). From the definition
of α-stability and stability of a vector bundle, we have that

(1) if (E, V ) ∈ G(α : n, d, k) and E is stable, then (E, V ) is α′-stable for all
0 < α′ < α;

(2) if E is stable and for all coherent subsystems (F,W ) ⊂ (E, V ), dimW
nF

≤ k
n , then

(E, V ) is α-stable for all α > 0;
(3) if E is semistable and for all coherent subsystems (F,W ) ⊂ (E, V ), dimW

nF
< k

n ,
then (E, V ) is α-stable for all α > 0;

(4) if E is semistable and for all coherent subsystems (F,W ) ⊂ (E, V ), dimW
nF

≤ k
n ,

then (E, V ) is α-semistable for all α > 0.

Let (E, V ) be a coherent system of type (n, d, k) with k > n. We shall say
that (E, V ) (or E) is generically generated if the image IE of the evaluation map
V ⊗O → E has rank n. That is, we have the exact sequence

0 → IE → E → τ → 0 (2.1)

where τ is a torsion sheaf. We say that (E, V ) (or E) is generated if τ = 0; and
strictly generically generated if τ �= 0.

Remark 2.4. Note that if (E, V ) is generated with H0(E∗) = 0, any quotient
bundle Q is generated and H0(Q∗) = 0.

We give a proposition that we will use in the following sections.

Proposition 2.5. Let (E, V ) be a generated coherent system of type (n, d, k) with
E semistable and k = n+ s, s ≥ 1. If (F,W ) is a coherent subsystem of (E, V ),

(1) dimW ≤ nF + s− 1;
(2) if (s−1)n

s < nF , µα(F,W ) < µα(E, V ) for all α > 0;
(3) if dimW ≤ nF , µα(F,W ) < µα(E, V ) for all α > 0;
(4) if (E, V ) is of type (n, d, n+ 1), then it is α-stable for all α > 0.

Proof. Note that d > 0, so E∗ is semistable of negative degree, hence H0(E∗) = 0.
Let (F,W ) be a coherent subsystem of (E, V ) and (Q,Z) the quotient coherent
system. Since Q is generated and H0(Q∗) = 0,

dim(V ) − dim(H0(F ) ∩ V ) ≥ nQ + 1,

that is, nF + s− 1 ≥ dim(H0(F ) ∩ V ) ≥ dimW .
If (s−1)n

s < nF , dim(W )
nF

< dim(V )
n and from Remark 2.3,

µα(F,W ) < µα(E, V )

for all α > 0. Similarly, for dimW ≤ nF , µα(F,W ) < µα(E, V ) for all α > 0.
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If s = 1, for all coherent subsystems (F,W ), nF ≥ dimW , therefore, from
Remark 2.3, (E, V ) is α-stable for all α > 0.

For any (n, d, k), define Us(n, d, k) and U(n, d, k) as

Us(n, d, k) := {(E, V ) : (E, V ) is of type (n, d, k) and is α-stable for all α > 0};
(2.2)

and

U(n, d, k) := {(E, V ) : (E, V ) ∈ GL(n, d, k) and E is stable}.
From Remark 2.3(1), we have that U(n, d, k) ⊂ Us(n, d, k). Note that Us(n, d, k)

is embedded in GL(n, d, k). From the openness of α-stability, it follows that
Us(n, d, k) is an open subset of GL(n, d, k). Moreover, if (E, V ) ∈ Us(n, d, k), E
is semistable.

Proposition 2.6. If d ≥ n(2g − 1), G(α : n, d, n+ 1) �= ∅ for all α > 0. Moreover,
U(n, d, n+ 1) �= ∅.

Proof. If d ≥ n(2g − 1), every stable bundle E of rank n and degree d is gen-
erated and h0(E) ≥ n + 1. A generic subspace V of H0(E) of dimension n + 1
generates E. By Proposition 2.5(4), (E, V ) is α-stable for all α > 0. Hence U(n, d,
n+ 1) �= ∅.

Our aim is to prove that such coherent systems exist for smaller d.

3. Vector Bundles with Sections

In this section, we assume that X is a general curve and k ≥ n+ 1. We give three
lemmas that we will use.

Lemma 3.1. If F is generated and H0(F ∗) = 0, then µ(F ) ≥ 1 + g
nF +1 .

Proof. Recall from [14, Proposition 3.2] that if F is generated and H0(F ∗) = 0,
then it is generated by a linear subspace W ⊆ H0(F ) of dimension nF + 1, and
h0(det(F )) ≥ nF + 1. Moreover, the Brill–Noether theory for line bundles implies
that

β(1, dF , nF + 1) = g − (nF + 1)(nF − dF + g) ≥ 0,

that is,

µ(F ) ≥ 1 +
g

nF + 1
. (3.1)

Lemma 3.2. Let E be a vector bundle such that dE ≤ nE+g. If F is a vector bundle
of rank nF < nE that is generically generated and H0(I∗F ) = 0, then µ(F ) ≥ µ(E).
Moreover, µ(F ) = µ(E) is possible only if nF = nE − 1.
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Proof. By hypothesis, µ(E) ≤ g
nE

+ 1. If µ(IF ) ≤ µ(F ) < µ(E), then from
Lemma 3.1, we get a contradiction.

Corollary 3.3. If E is a semistable bundle with dE < nE+g or dE = g+nE, nE � |g,
then E cannot have a proper generically generated subbundle F with H0(I∗F ) = 0.

Proof. Suppose that F ⊂ E is generically generated with H0(I∗F ) = 0. From the
semistability and Lemma 3.2, nF = nE − 1 and dE = g + nE . But then E/F is a
line bundle and µ(F ) = µ(E) = µ(E/F ), which is a contradiction if dE = g + nE ,
nE � |g.

Lemma 3.4. If F is generated by a subspace W of dimension dimW ≥ nF + 1,
then either H0(F ∗) = 0 or there is a subbundle G with nG < nF that is generated
and H0(G∗) = 0.

Proof. If H0(F ∗) �= 0, then F ∼= Os ⊕G where G is generated, H0(G∗) = 0 and
1 ≤ nG < nF .

For coherent systems of type (n, d, k) with k ≥ n + 1, we have the following
propositions.

Proposition 3.5. Let (E, V ) be a coherent system of type (n, d, k) with d < n+ g

or d = g + n, n � |g. Then E is stable if and only if (E, V ) is generically generated
and H0(I∗E) = 0. Moreover, if d = g + n, n|g and (E, V ) is generically generated
with H0(I∗E) = 0, E is semistable.

Proof. Suppose E is stable. Then IE is generated by V . If H0(I∗E) = 0, from
Corollary 3.3, nIE = nE . If H0(I∗E) �= 0, from Lemma 3.4, and Corollary 3.3, we
get a contradiction.

Now suppose (E, V ) is generically generated with H0(I∗E) = 0. If E is not
stable, let Q be a quotient bundle such that µ(Q) ≤ µ(E). We have the following
diagram

0 → IE → E → τ → 0
↓ ↓ ↓

0 → Q1 → Q → τ ′ → 0
↓ ↓
0 0

(3.2)

where Q1 is a quotient bundle of IE such that µ(Q1) ≤ µ(Q), nQ1 = nQ and since
IE is generated and H0(I∗E) = 0, Q1 is generated and H0(Q∗

1) = 0. Thus,

1 +
g

nQ + 1
≤ µ(Q1) ≤ µ(Q) ≤ µ(E) =

d

n
≤ 1 +

g

n
. (3.3)
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If nQ + 1 < n, we get a contradiction. If nQ + 1 = n, µ(Q) = µ(E) and hence E
is semistable. But, in that case, there exists a line bundle L0 such that Q ∼= E/L0

and µ(E) = µ(Q) = µ(L0). This will be a contradiction if n � |g. Therefore E is
stable.

Proposition 3.6. A generically generated coherent system (E, V ) of type (n, d, k)
with d < g + n or d = g + n, n � |g and H0(I∗E) = 0 is α-stable for all α > 0.

Proof. From Proposition 3.5, E is stable. Let (F,W ) ⊂ (E, V ) be a coherent
subsystem of (E, V ) with nF < nE . If dim(W ) ≥ nF + 1, the evaluation map
defines a subbundle F ′, with nF ′ ≤ nF < nE which is generically generated
with H0(F ′∗) = 0. From Lemmas 3.4 and 3.2, µ(F ′) ≥ µ(E) which contradicts
stability of E. Hence, dimW ≤ nF and from Remark 2.3, (E, V ) is α-stable for
all α > 0.

For k = n+ 1, we have

Proposition 3.7. A generically generated coherent system (E, V ) of type
(n, d, n+ 1) with d ≤ g + n and H0(I∗E) = 0 is α-stable for all α > 0.

Proof. From Proposition 3.5, E is semistable. Let (Q,W ) be a proper quo-
tient coherent system of (E, V ). Then (Q,W ) is generically generated. More-
over, since IQ is a quotient of IE , H0(I∗Q) = 0 and hence dimW ≥ nQ + 1. So
n+1
n < dimW

nQ
and the result follows from Remark 2.3(3).

Conversely,

Proposition 3.8. If (E, V ) is an α-stable coherent system of type (n, d, k) with
d ≤ g + n, then (E, V ) is generically generated and H0(I∗E) = 0. Moreover, E is
semistable and stable if d < n+ g or d = g + n, n � |g.

Proof. Suppose that IE = Os⊕G with 0 ≤ s ≤ nIE −1, G generated, H0(G∗) = 0
and µ(G) ≥ g

nG+1 + 1. From the α-stability of (E, V ) we have

µα(G,H0(G) ∩ V ) < µα(E, V ),

that is,

α

(
k − s

nG
− k

n

)
< µ(E) − µ(G).

If nG < n, then µ(E) − µ(G) ≤ g
n + 1 − ( g

nG+1 + 1) ≤ 0, hence

α

(
k − s

nG
− k

n

)
< 0

which is a contradiction since s ≤ n − nG. Hence nIE = n, (E, V ) is generically
generated and H0(I∗E) = 0. The last part follows from Proposition 3.5.
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From Propositions 3.5, 3.6 and 3.8, we have Theorem 1.

Theorem 3.9. Let X be general, β = β(n, d, n+1) < g or β = g, n � |g and k ≥
n+1. Then

(1) if β < 0, G(α : n, d, k) = ∅ for all α > 0;
(2) if for some α > 0, G(α : n, d, k) �= ∅, then G(α : n, d, k) �= ∅ for all α > 0;
(3) G(α : n, d, k) = G(α′ : n, d, k) for all α, α′ > 0 i.e. αL = 0;
(4) (E, V ) ∈ G(α : n, d, k) if and only if (E, V ) is generically generated and

H0(I∗E) = 0;
(5) if for some α > 0, G(α : n, d, k) �= ∅, then Us(n, d, k) = G(α : n, d, k) and

U(n, d, k) �= ∅.

Proof. Recall from the definition of β that β(n, d, n + 1) = β(1, d, n + 1) = g −
(n+ 1)(n− d+ g). Hence,

0 ≤ β ⇔ g

n+ 1
+ 1 ≤ d

n
.

Moreover,

β ≤ g ⇔ d ≤ g + n.

If (E, V ) ∈ G(α : n, d, k), E is generically generated and H0(I∗E) = 0 (see Propo-
sition 3.8). Hence, by Lemma 3.1, µ(E) ≥ g

n+1 + 1 i.e. β(n, d, n + 1) ≥ 0. Parts
(2)–(5) follow from Propositions 3.6 and 3.8.

Corollary 3.10. If d < g + n and g ≤ n, G(α : n, d, k) = ∅ for all α > 0 and
k ≥ n+ 1.

Proof. This follows from Theorem 3.9 since the Brill–Noether number is negative.

4. Coherent Systems of Type (n, d, n + 1)

From Remark 2.2, we have that G(α : n, d, n + 1) = G̃(α : n, d, n + 1), for α �∈
C(n, d, n+ 1).

For d ≥ n(2g − 1), from Proposition 2.6, U(n, d, n+ 1) �= ∅. For small values of
d we have the following proposition (see also [8, 16]).

Proposition 4.1. If X is general and 0 ≤ β ≤ g, then

(1) there exist generated coherent systems (E, V ) with E semistable and, in
particular, Us(n, d, n+ 1) �= ∅;

(2) except when g = n = 2 and d = 4, there exist generated coherent systems (E, V )
with E stable and, in particular, U(n, d, n+ 1) �= ∅.

Proof. (1) The dimension of the subvariety consisting of line bundles L, for which
L is not generated by a subspace V ⊂ H0(L) of dimension n + 1, has dimension
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g − (n + 1)(n − (d − 1) + g) + 1 < β, since they define a line bundle of degree
d− 1 with n+ 1 sections. Thus, from the Brill–Noether theory for line bundles, the
set of generated line bundles L of degree d with n + 1 ≤ dimV ≤ h0(L) defines a
non-empty open set of the Jacobian Jd(X).

We have the following exact sequence.

0 → E∗ → V ⊗O → L→ 0. (4.1)

The coherent system (E, V ∗) is generated and H0(E∗) = 0. Hence, by Proposi-
tion 3.5, E is semistable and, by Proposition 2.5, (E, V ∗) is α-stable for all α > 0.
So Us(n, d, n+ 1) �= ∅.
(2) If d < g+n or if d = g+n and n � |g, the bundles E constructed in (1) are stable
by Proposition 3.5; hence U(n, d, n+ 1) �= ∅. If d = g + n and n|g, and g = an and
d = (a + 1)n, Butler [8] proves that E is stable unless L has the form L ∼= L′(Z)
where Z is an effective divisor of degree a+1 and L′ a line bundle with h0(L′) = n.

The Brill–Noether number β(1, (a + 1)(n − 1), n) = 0, hence there are finitely
many choices for L′. The dimension of the family formed of the L′(Z) has dimension
a+ 1. Since a+ 1 < an = g, except for g = n = 2, we can find L lying outside this
family. If V ⊂ H0(L) has dimension n+ 1 and generates L, then the kernel of the
evaluation map

0 → E∗ → V ⊗O → L→ 0,

together with the space V ∗, defines the generated coherent system (E, V ∗) with E
stable. By Proposition 2.5, (E, V ∗) is α-stable for all α > 0, so U(n, d, n+ 1) �= ∅.

Lemma 4.2. Suppose that (E, V ) ∈ G(α : n, d, n + 1) is generically generated.
Then G(α : n, d, n+ 1) is smooth of dimension β at (E, V ).

Proof. Let L denote the dual of the kernel of the evaluation map V ⊗ O → E.
The kernel of the Petri map

V ⊗H0(E∗ ⊗K) → H0(E ⊗ E∗ ⊗K) (4.2)

is H0(L∗ ⊗ E∗ ⊗ K). Since E is generically generated from the dual of the exact
sequence (2.1), we have

0 → E∗ ⊗ L∗ ⊗K → I∗E ⊗ L∗ ⊗K → τ → 0. (4.3)

However, since E is generically generated, IE is generated and we have the
following exact sequence

0 → I∗E ⊗ L∗ ⊗K → V ∗ ⊗ L∗ ⊗K → K → 0. (4.4)

The injectivity of the Petri map for line bundles gives H0(I∗E⊗L∗⊗K) = 0 and
from (4.3), H0(E∗ ⊗L∗ ⊗K) = 0. Therefore, G(n, d, n+ 1) is smooth of dimension
β ≥ 0.
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It is well known that for n = 1, the concept of stability is independent of α and
G(1, d, k) := G(α : 1, d, k) = Gk−1

d , where Gk−1
d parameterizes linear series of degree

d and dimension k ([1, Chap. 5]).
Therefore we have Theorem 2

Theorem 4.3. Let X be general and β = β(n, d, n+ 1) ≤ g. Then

(1) G(α : n, d, n+ 1) �= ∅ if and only if β ≥ 0;
(2) if β ≥ 0, then G(n, d, n + 1) := G(α : n, d, n + 1) = G(α′ : n, d, n + 1) for all

α, α′ > 0 and αL = 0;
(3) if β > 0, then G(n, d, n + 1) is smooth and irreducible of dimension β and the

generic element is generated;
(4) Us(n, d, n+ 1) = G(n, d, n+ 1) and is birationally equivalent to Gnd ;
(5) if β = 0 G(n, d, n+ 1) ∼= Gnd and the number of points of G(n, d, n+ 1) is

g!
n∏
i=0

i!
(g − d+ n+ i)!

.

Proof. (1) follows from Theorem 3.9(1) and Proposition 4.1.
(2) follows from Propositions 3.7 and 3.8.
For (3), smoothness follows from Proposition 3.8 and Lemma 4.2. Assume β > 0.

The set of coherent systems (E, V ) ∈ G(α : n, d, n + 1) that are generated is
parameterized by an irreducible variety and has dimension β (it is in correspondence
with an open dense set in B(1, d, n + 1), which is irreducible). As in [4, Theorem
5.11], the irreducibility of G(n, d, n+ 1) follows from the fact that the variety that
parameterizes strictly generically generated coherent systems has dimension < β,
so it cannot define a new component (see Remark 2.2). Hence, G(n, d, n + 1) is
irreducible.

(4) follows from Proposition 3.8 and (3).
For (5), if β = 0, every (E, V ) ∈ G(n, d, n+1) is generated, henceG(n, d, n+1) ∼=

Gnd which has cardinality

g!
n∏
i=0

i!
(g − d+ n+ i)!

(see [1, Chap. V, Theorem 4.4]).

Remark 4.4. In our case, except when g = n = 2 and d = 4, [4, Conditions 11.3]
are satisfied for (n, d, n+1), i.e. β(n, d, n+1) ≤ n2(g−1),G0(n, d, n+1) is irreducible
and B(n, d, n+1) �= ∅ and hence the results in [4] that assume Conditions 11.3 hold.

Corollary 4.5. If X is a general curve and 0 ≤ β(n, d, n+1) ≤ g, the Brill–Noether
locus B(n, d, n + 1) is non-empty and irreducible except possibly when g = n = 2
and d = 4. Moreover, G(α : n, d, n + 1) is a desingularization of (the closure of)
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B(n, d, n + 1). The natural map φ : G(α : n, d, n + 1) → B̃(n, d, n + 1) is an
isomorphism on B(n, d, n+ 1) − B(n, d, n+ 2).

Note that the degree of the bundle E in such coherent systems satisfies the
following inequalities

g + n− g

n+ 1
≤ d ≤ g + n. (4.5)

Proposition 4.6. If X is general and g ≥ n2 − 1, then, for any degree d ≥ g+n−
g

n+1 , U(n, d, n+ 1) �= ∅.

Proof. From Proposition 4.1, there exist generated coherent systems (E, V ) with
E stable for g+n− g

n+1 ≤ d ≤ g+n.Moreover they are α-stable for all α > 0. Given
such a coherent system (E, V ) and an effective line bundle L, choose a section s

of L and define the coherent system (E′, V ′) as E′ := E ⊗ L and V ′ the image of
V in H0(E ⊗ L) under the canonical inclusion H0(E) ↪→ H0(E ⊗ L) induced by
s. It is well known that E is stable if and only if E′ is stable. Moreover, (see [15,
Lemma 1.5]) (E, V ) is α-stable if and only if (E′, V ′) is α-stable.

Therefore, if g ≥ n2 − 1, the length of the interval [ g
n+1 ] is greater than or equal

to n− 1, so after tensoring by an effective line bundle, we can obtain all the values
of d ≥ g + n− g

n+1 .

Moreover, from Theorem 4.3, Proposition 4.6, Lemma 4.2 and [4, Theorem 5.11],
we have

Theorem 4.7. If X is general and g ≥ n2−1, then for any degree d ≥ g+n− g
n+1 ,

(1) G(α : n, d, n+ 1) �= ∅ for all α > 0.
(2) Us(n, d, n+ 1) �= ∅ and is smooth and irreducible.
(3) U(n, d, n+ 1) �= ∅ and is smooth and irreducible.

Besides the known relation between coherent systems and Brill–Noether theory,
our results on G(n, d, n+1) can be related with other problems. Given a generated
linear system (L, V ), we have the natural map

φV : X → P(V ∗).

In particular, if L has degree d and dimV = n+ 1, we have

Theorem 4.8. Let X be general, 0 ≤ β(n, d, n+ 1) and TP the tangent bundle of
P(V ∗). If β < g or β = g and n � |g, then φ∗V (TP) is stable. If either g ≥ n2 − 1
or β = g, n|g and g and n are not both equal to 2, then there exist linear systems
(L, V ) such that φ∗V (TP) is stable.

Proof. Under the hypothesis of the theorem, there exist generated linear systems
(L, V ). Denote by E the dual of the kernel of the evaluation map. Consider the
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dual Euler sequence

0 → Ω1
P(1) → V ⊗OP → OP(1) → 0 (4.6)

where Ω1
P

= TP∗.
From the pull-back of (4.6), we have that E⊗L ∼= φ∗V (TP) (see [9]). Recall that

if E is stable, E ⊗ L is stable.
If β < g or β = g and n � |g, all such E are stable by the proof of Proposition 4.1.

If β = g, n|g and g and n are not both equal to 2, some such E are stable, again
by the proof of Proposition 4.1. Finally, if g ≥ n2 − 1, U(n, d, n+ 1) is non-empty
and irreducible by Theorem 4.7 and its generic element (E, V ∗) is generated by the
proof of [4, Theorem 5.11]. Now define (L, V ) by dualizing the evaluation sequence
of (E, V ∗).

5. Dual Span

For a generated coherent system (E, V ) of type (n, d, k) with H0(E∗) = 0, denote
by D(E) the dual of the kernel of the evaluation map, that is, we have the following
exact sequences

0 → D(E)∗ → V ⊗O → E → 0 (5.1)

and

0 → E∗ → V ∗ ⊗O → D(E) → 0. (5.2)

In [4, 5.4], the coherent system (D(E), V ∗) is called the dual span of (E, V ).
Note that (D(E), V ∗) is a generated coherent system of type (k − n, d, k). We will
define the dual span for generically generated coherent systems.

Let (E, V ) be a generically generated coherent system of type (n, d, k) with
H0(I∗E) = 0. From [4, Proposition 4.4], we have the exact sequence

0 → N → V ⊗O → E → τ → 0 (5.3)

with H0(N) = 0 and τ a torsion sheaf of length �. From (5.3), we have the exact
sequences

0 → N → V ⊗O → IE → 0 (5.4)

and

0 → IE → E → τ → 0. (5.5)

Lemma 5.1. N = D(IE)∗.

Proof. The coherent system (IE , V ) is generated. From (5.4), N = D(IE)∗.

Remark 5.2. If (E, V ) is generically generated and H0(I∗E) = 0, from (5.3) and
Lemma 5.1, we have the sequences

0 → D(IE)∗ → V ⊗O → E → τ → 0 (5.6)
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and

0 → D(IE)∗ → V ⊗O → IE → 0. (5.7)

Moreover, (D(IE), V ∗) is the dual span of (IE , V ).

Let

0 → D(IE) → D(E)� → τ ′ → 0 (5.8)

be an elementary transformation of D(IE) with τ ′ a torsion sheaf of length �. The
subspace V ∗ ⊂ H0(D(IE)) defines a subspace V ′ in H0(D(E)�), which we identify
with V ∗.

Definition 5.3. Let (E, V ) be a generically generated coherent system of type
(n, d, k) with H0(I∗E) = 0. A dual span of (E, V ), denoted by D(E, V ), is an ele-
mentary transformation (D(E)�, V ∗) of (D(IE), V ∗) of length � where � = dE−dIE .

Remark 5.4. (1) If (E, V ) is strictly generically generated, then the family of dual
spans associated to (E, V ) has dimension at most �n− 1.
(2) If (E, V ) is generated, there is a unique dual span given by (D(E), V ∗).
(3) If (E, V ) is a generically generated coherent system of type (n, d, k),

(D(IE), V ∗) is a generated coherent system of type (k − n, d− �, k).
(4) D(E, V ) is a coherent system of type (k − n, d, k).
(5) The image of the evaluation map V ∗ ⊗O → D(E)� is D(IE).

Proposition 5.5. Let (E, V ) be a coherent systems of type (n, d, k). If (E, V ) is
generically generated with H0(I∗E) = 0, then a dual span D(E, V ) = (D(E)�, V ∗) is
generically generated. Moreover, H0(I∗D(E)�

) = 0.

Proof. The proposition follows from the definition of a dual span, since
(D(IE), V ∗) is generated and ID(E)�

= D(IE).

Remark 5.6. Note, from the definition of a dual span, that (E, V ) is a dual span
of D(E, V ) = (D(E)�, V ∗).

Theorem 5.7. Let X be a general curve of genus g and d < g+n1 ≤ g+ n2, then
for all α > 0, G(α : n1, d, n1 + n2) �= ∅ if and only if G(α : n2, d, n1 + n2) �= ∅.

Proof. Let (E, V ) ∈ G(α : ni, d, n1 + n2) for i = 1, 2. From Proposition 3.8,
(E, V ) is generically generated and H0(I∗E) = 0. From Proposition 5.5, a dual span
D(E, V ) = (D(E)�, V ∗) is generically generated with H0(I∗D(E)�

) = 0 and from
Proposition 3.6, it is α-stable for all α > 0.

For any (n, d, k), define Gg as

Gg(n, d, k) := {(E, V ) : (E, V ) is of type (n, d, k)

and it is generated with H0(E∗) = 0}.
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Corollary 5.8. If d < g+n1 ≤ g+n2, then Gg(ni, d, n1+n2) ⊂ U(ni, d, n1+n2) for
i = 1, 2. Moreover, for i = 1, 2, Gg(ni, d, n1 + n2) is open and Gg(n1, d, n1 + n2) ∼=
Gg(n2, d, n1 + n2).

Proof. From Proposition 3.6, (E, V ) ∈ Gg(ni, d, n1 + n2) is α-stable for all α > 0
and from Proposition 3.5, E is stable. The dual span correspondence for generated
coherent systems gives the isomorphism.

To prove Theorem 7, we give four lemmas that we will use.

Lemma 5.9. Let (E, V ) be a generated coherent system. The Petri map of (E, V )
is injective if and only if the Petri map of D(E, V ) is injective.

Proof. Since (E, V ) is generated, D(E, V ) = (D(E), V ∗). We have the following
exact sequences

0 → D(E)∗ → V ⊗O → E → 0, (5.9)

and

0 → E∗ → V ∗ ⊗O → D(E) → 0. (5.10)

The lemma follows from the cohomology sequences

0 → H0(D(E)∗ ⊗ E∗ ⊗K) → V ⊗H0(E∗ ⊗K)
ψ→ H0(E ⊗ E∗ ⊗K) · · · (5.11)

and

0 → H0(E∗ ⊗D(E)∗ ⊗K) → V ⊗H0(D(E)∗ ⊗K)
φ→ H0(D(E) ⊗D(E)∗ ⊗K) · · · (5.12)

since φ is injective if and only if ψ is injective.

Lemma 5.10. Let (E, V ) be strictly generically generated. If the Petri map of
(IE , V ) is injective, the Petri map of (E, V ) is injective.

Proof. The lemma follows from the cohomology sequences

0 → H0(D(IE)∗ ⊗ I∗E ⊗K) → V ⊗H0(I∗E ⊗K)
ψ→ H0(IE ⊗ I∗E ⊗K) · · · (5.13)

and

0 → H0(D(IE)∗ ⊗ E∗ ⊗K) → V ⊗H0(E∗ ⊗K)
ψ→ H0(E ⊗ E∗ ⊗K) · · · (5.14)

and the cohomology of the exact sequence

0 → E∗ ⊗D(IE)∗ ⊗K → I∗E ⊗D(IE)∗ ⊗K → τ → 0. (5.15)

Let (E, V ) be a generically generated coherent system. From Proposition 5.5, a
dual spanD(E, V ) = (D(E)�, V ∗) is generically generated. Hence, from Remark 5.2,
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we have the sequence

0 → I∗E → V ∗ ⊗O → D(E)� → τ → 0. (5.16)

Lemma 5.11. The Petri map of (IE , V ) is injective if and only if the Petri map
of (ID(E)�

, V ∗) is injective.

Proof. The lemma follows at once from Lemma 5.9 since ID(E)�
= D(IE).

Lemma 5.12. If the Petri map of (IE , V ) is injective, the Petri map of a dual
span D(E, V ) = (D(E)�, V ∗) is injective.

Proof. From (5.16), the kernel of the Petri map of (D(E)�, V ∗) is H0(I∗E ⊗
D(E)∗� ⊗K).

From the exact sequence (5.8), we obtain the following exact sequence

0 → D(E)∗� ⊗ I∗E ⊗K → D(IE)∗ ⊗ I∗E ⊗K → τ → 0. (5.17)

The kernel of the Petri map for (IE , V ) is H0(D(IE)∗ ⊗ I∗E ⊗ K). Hence, if
H0(D(IE)∗ ⊗ I∗E ⊗K) = 0, H0(I∗E ⊗D(E)∗� ⊗K) = 0.

We now have Theorem 7.

Theorem 5.13. Let (E, V ) ∈ G(α : n1, d, n1 + n2). If either of the Petri maps of
(IE , V ) or (ID(E)�

, V ∗) is injective, then

(1) G(α : n1, d, n1+n2) is smooth of dimension β(n1, d, n1+n2) in a neighbourhood
of (E, V ).

(2) G(α : n2, d, n1+n2) is smooth of dimension β(n2, d, n1+n2) in a neighbourhood
of the dual span D(E, V ).

Proof. If the Petri map of (IE , V ) is injective, from Lemmas 5.9, 5.10 and 5.12,
the Petri maps of (E, V ) and D(E, V ) are injective. From Proposition, 2.1 G(α :
ni, d, n1 + n2), i = 1, 2 respectively is smooth of dimension β(ni, d, n1 + n2) in a
neighbourhood of (E, V ) and of D(E, V ), respectively.

If the Petri map of (IDE , V ) is injective, again from Lemmas 5.9 and 5.10, the
Petri map of D(E, V ) is injective. From Lemma 5.11, the Petri map of (IE , V ) is
injective and, as above, the Petri map of (E, V ) is injective. Hence, G(α : ni, d, n1 +
n2), i = 1, 2 respectively is smooth of dimension β(ni, d, n1+n2) in a neighbourhood
of D(E, V ) and of (E, V ), respectively.

Remark 5.14. Theorems 5.7 and 5.13 apply for any α > 0. Since d < g + n1 the
bundles in G(α : n1, d, n1 + n2) are stable (see Proposition 3.8). Hence, we have
similar results for the Brill–Noether loci B(n1, d, n1 + n2) and B(n2, d, n1 + n2).
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6. Rank 2 and Genus 2

In this section, we will consider the case n = 2 and then g = 2.
From Proposition 4.6, we have that for a general curve and g ≥ 3,

G(α; 2, d, 3) �= ∅ for all α > 0 and U(2, d, 3) �= ∅ for d ≥ 2g
3 + 2. For k > 4,

we have the following theorem.

Theorem 6.1. Let X be general, s ≥ 3 and d < s+ 2g − 4g
s+2 . If G0(2, d, 2 + s) is

non-empty, then G(α : 2, d, 2 + s) is non-empty for all α > 0. Moreover, Us(2, d,
2 + s) �= ∅.

Proof. Let (E, V ) ∈ G0(2, d, 2 + s). Hence, E is semistable.
Let rs := � 2+s

2 � and (F,W ) a coherent subsystem of (E, V ) with nF = 1. If
dimW ≥ rs, the Brill–Noether number β(1, dF , rs) ≥ 0, that is, dF ≥ rs+g−1− g

rs
.

But then

dF ≥ rs + g − 1 − g

rs
>
d

2
,

which is a contradiction since E is semistable. Therefore, for any coherent subsystem
(F,W ), dimW < 2+s

2 and, from Remark 2.3(3), (E, V ) is α-stable for all α > 0.
Therefore, G(α : 2, d, 2 + s) �= ∅ for all α > 0 and Us(2, d, 2 + s) �= ∅.

Let X be any curve. From Proposition 2.5, we have that any generated coherent
system (E, V ) of type (n, d, n+1) with E stable is α-stable for all α > 0. For n = 2,
we have (see [4, Theorem 9.2] for general curve)

Proposition 6.2. Let X be any curve. If G0(2, d, 4) �= ∅ and there exists a gener-
ated coherent system (E, V ) ∈ G0(2, d, 4), then G(α : 2, d, 4) �= ∅ for all α > 0 and
Us(2, d, 4) �= ∅. Moreover, if E is stable, U(2, d, 4) �= ∅.

Proof. Let (F,W ) be a coherent subsystem of (E, V ) with nF = 1. From Propo-
sition 2.5, dimW ≤ 2. If dimW = 2, since (E, V ) ∈ G0(2, d, 4), dF < µ(E). From
Remark 2.3, (E, V ) is α-stable for all α > 0.

Corollary 6.3. For any curve X and d ≥ 4g − 2, G(α : 2, d, 4) �= ∅ for all α > 0.
Moreover, U(2, d, 4) �= ∅ and for d ≥ 4(g − 1), U(2, d, 2 + s) = ∅ if s > d− 2g.

Proof. Since any stable bundle of degree d ≥ 2(2g − 1) is generated, the first
part follows from Proposition 6.2. The last part follows from the Riemann–Roch
theorem.

Remark 6.4. Recall from the Brill–Noether theory for vector bundles of rank
n ≥ 2 (see [6, 13, 7]) that if 0 < d < 2n, there exists a semistable vector bundle E
of rank n and degree d with k sections if and only if n ≤ d + (n − k)g. Hence, if
0 < d < 2n and k > n+ d−n

g , then Us(n, d, k) = ∅. Moreover, if d > n(2g− 2), then
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by the Riemann–Roch theorem, every semistable bundle E has h0(E) = d+n(1−g);
so, if k > d+ n(1 − g), Us(n, d, k) = ∅.

We shall now consider the case g = 2. Any curve of genus g = 2 is a Petri curve.
From Corollary 3.10, if d < n+ 2, G(α : n, d, k) = ∅ for all α > 0 and k > n.

From Theorem 4.3, we have

Proposition 6.5. For X of genus g = 2 and d = n+ 2, n ≥ 3,

(1) G(α : n, d, n+ 1) �= ∅ for all α > 0.
(2) G(α : n, d, n+ 1) = G(α′ : n, d, n+ 1) for all α, α′ > 0 and αL = 0.
(3) G(n, d, n+ 1) is smooth and irreducible of dimension 2.
(4) U(n, d, n+ 1) = G(n, d, n+ 1).
(5) If k ≥ n+ 2, G(α : n, d, k) = ∅ for all α > 0.

Proof. Parts (1)–(4) follow from Theorem 4.3. Part (5) follows from Remark 6.4
and Proposition 3.7, since for the existence of a semistable bundle with at least k
sections we need k − n ≤ d−n

2 .

From Remark 6.4 and Proposition 2.6, we have

(1) if n+ 2 < d < 2n and k > d+n
2 , Us(n, d, k) = ∅;

(2) if d > 2n and k > d− n, Us(n, d, k) = ∅;
(3) if d ≥ 3n, G(α : n, d, n+ 1) �= ∅ for all α > 0. Moreover, U(n, d, n+ 1) �= ∅.

In particular, for n = 2, from Propositions 2.5 and 6.3, Corollary 3.10 and the
Riemann–Roch theorem, we have

(1) If d < 4 and k ≥ 3, G(α : 2, d, k) = ∅ for all α > 0;
(2) if d = 5 and k > 3, U(2, d, k) = ∅ and G0(2, 5, k) = ∅;
(3) if d ≥ 6 and k = 3, 4, G(α : 2, d, k) �= ∅ for all α > 0. Moreover, U(2, d, k) �= ∅;
(4) if d ≥ 6 and k > d− 2, U(2, d, k) = ∅ and G0(2, d, k) = ∅.

For d = 4, we need the following lemmas.

Lemma 6.6. (1) B(2, 4, k) = ∅ for k ≥ 3.
(2) B̃(2, 4, k) = ∅ for k ≥ 5.
(3) B̃(2, 4, 3) �= ∅.
(4) B̃(2, 4, 4) = {K ⊕K}.

Proof. Let E be a semistable vector bundle of rank 2 and degree d = 4 = 2(2g−2).
From the Riemann–Rock theorem, h0(E) = 2+h1(E). If h1(E) = h0(E∗⊗K) ≥ 1,
then E is an extension

ξ : 0 → L→ E → K → 0 (6.1)

of K by L, where L is a line bundle of degree 2. Thus, E cannot be stable, that is,
B(2, 4, k) = ∅ for k ≥ 3.
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Since h1(L) ≤ 1 and h1(K) = 1, from the cohomology sequence of (6.1),
h1(E) ≤ 2. Hence, B̃(2, 4, k) = ∅ for k ≥ 5.

If L �∼= K, H1(L) = 0, H0(L) ∼= C and h1(K∗ ⊗ L) = 1. Hence, there exist
non-trivial extensions (6.1), and h0(E) = 3, that is, B̃(2, 4, 3) �= ∅.

Let L ∼= K. If ξ is non-trivial, from the cohomology sequence of

0 → O → E∗ ⊗K → O → 0,

H0(E∗ ⊗K) ∼= H0(O). Hence, h0(E) = 3.
Therefore, B̃(2, 4, 4) = {K ⊕K}.

Note that if (L,W ) is a coherent system of type (1, 2, 2), then (L,W ) =
(K,H0(K)).

Lemma 6.7. If (K,H0(K)) is a coherent subsystem of a coherent system (E, V )
of type (2, 4, 3), then (E, V ) is not α-semistable for any α > 0.

Proof. For any α > 0, µα(K,H0(K)) = 2 + 2α > 2 + α3
2 = µα(E, V ).

Corollary 6.8. The coherent systems

(1) (L⊕K,H0(L) ⊕H0(K)) and
(2) (E,H0(E)) with E a non-trivial extension of K by K

are not α-semistable for any α > 0.

Lemma 6.9. Let (E, V ) be a coherent system of type (2, 4, 3). If E is a non-trivial
extension ξ of K by L, with L �∼= K, (E, V ) is generated. Moreover, (E, V ) is α-stable
for all α > 0.

Proof. If nIE = 1, then IE = K, which is a contradiction since ξ �= 0. If nIE = 2
and dIE < 4, from Lemma 3.1, we get a contradiction. Therefore, (E, V ) is gener-
ated. From Proposition 2.5, (E, V ) is α-stable for all α > 0.

Proposition 6.10. If (E, V ) ∈ GL(2, 4, 3), then E is semistable and (E, V ) is
α-stable for all α > 0.

Proof. The proposition follows at once from Propositions 3.7 and 3.8.

Theorem 6.11. (1) U(2, 4, k) = ∅ for k ≥ 3.
(2) G0(2, 4, k) = ∅ for k ≥ 5.
(3) G(α : 2, 4, 3) �= ∅ for all α > 0.
(4) Us(2, 4, 3) ∼= GL(2, 4, 3) ∼= Pic4(X).
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Proof. (1)–(3) follow from Lemma 6.6. Us(2, 4, 3) ∼= GL(2, 4, 3) follows from
Lemma 6.9 and Proposition 6.10.

To prove GL(2, 4, 3) ∼= Pic4(X), suppose (E, V ) ∈ GL(2, 4, 3) ∼= Us(2, 4, 3),
so E is semistable, generically generated and h0(I∗E) = 0. If E is not generated,
then deg IE ≤ 3. Moreover, IE must be stable, for otherwise it has a quotient line
bundle Q of degree ≤ 1, hence with h0(Q) ≤ 1. The corresponding subbundle L has
dim(V ∩H0(L)) ≥ 2, contradicting the α-stability of (E, V ). However U(2, 3, 3) = ∅,
so IE cannot exist. Thus E is generated and it follows that E arises from an
extension

0 → L∗ → V ⊗O → E → 0

or dually

0 → E∗ → V ∗ ⊗O → L→ 0, (6.2)

where L is a line bundle of degree 4.
Conversely, any line bundle L of degree 4 is generated and h0(L) = 3 by the

Riemann–Roch theorem. So there is a unique extension (6.2) for each L. Certainly
then E is generated with h0(E∗) = 0, so (E, V ) ∈ GL(2, 4, 3).

Moreover,

Theorem 6.12. (1) G̃0(2, 4, 4) = {(K ⊕K,H0(K ⊕K))}.
(2) G0(2, 4, 4) = ∅.
(3) G̃(α : 2, 4, 4) �= ∅ for all α > 0.

Proof. Parts (1) and (2) follow from Lemma 6.6. Since (K ⊕K,H0(K ⊕ K)) ∼=
(K,H0(K)) ⊕ (K,H0(K)), it is α-semistable for all α > 0, so G̃(α : 2, 4, 4) �= ∅ for
all α > 0.

For d = 5 and k = 3, we have

Theorem 6.13. (1) G0(2, 5, 3) �= ∅.
(2) U(2, 5, 3) �= ∅.
(3) U(2, 5, 3) �= G0(2, 5, 3).

Proof. Let E be a non-trivial extension

φ : 0 → L→ E →M → 0 (6.3)

of M by L, where L is a line bundle of degree 2 and M a general line bundle of
degree 3 with h0(M) = 2. Note that h1(M∗ ⊗ L) = 2.

It is well known that E is stable and from the cohomology sequence of (6.3),
h0(E) = 3. Hence, (E,H0(E)) ∈ G0(2, 5, 3).
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Let (F,W ) be any coherent subsystem of (E,H0(E)), with F a line sub-bundle.
Since E is stable, dF < µ(E) = 2 + 1

2 , so dimW ≤ h0(F ) ≤ 2. If dimW = 2,
F ∼= K.

Now, if in the extension (6.3), L �∼= K and M is general and generated, H0(K∗⊗
M) = 0 i.e. K cannot be a subbundle of E. Hence, for all coherent subsystems
(F,W ), dimW ≤ 1 and from Remark 2.3, (E,H0(E)) is α-stable for all α > 0.
Therefore, U(2, 5, 3) �= ∅.

However, if L ∼= K, for any coherent subsystem (F,W ) of (E,H0(E)), with F a
line subbundle, µα(F,W ) ≤ µα(K,H0(K)). Thus, since (K,H0(K)) is a coherent
subsystem of (E,H0(E)),

µα(K,H0(K)) < µα(E, V )

if and only if α < 1. For α = 1, µα(K,H0(K)) = µα(E, V ). Therefore, (E,H0(E)) �∈
U(2, 5, 3).
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