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Abstract

The purpose of this dissertation is to establish a theoretical framework for the study of
bounded multilinear operators via ideals of Σ-operators and Σ-tensor norms. Throughout
this work we motivate the definitions of these two concepts, explore their basic properties and
exhibit the relations between them. In addition, several examples are developed.

The author of [54] shows that every multilinear operator T is associated with a Σ-operator
fT . This associated function and its domain allow to study T within a geometrical environ-
ment. As well as the theory of bounded linear operators, the theory of Σ-operators is closely
related with tensor product of Banach spaces and norms on it, namely, Σ-tensor norms.

The most important results we have obtained are the representation theorem for maxi-
mal ideals of Σ-operators and the duality theorem for Σ-tensor norms. We strengthen this
theory by exploring a wide range of ideal properties. To be specific, we study the classes
of compact, weakly-compact, approximable, nuclear, (p, q)-dominated and (p, q)-factorable
Σ-operators. In each case we show the implications for the associated multilinear opera-
tor, and the Σ-tensor norms involved, these varying from the projective and injective to the
Lapresté Σ-tensor norms. It is worth pointing out that unlike the linear theory of tensor
norms, the Σ-tensor norms are presented in two different types, these are, Σ-tensor norms on
duals and Σ-tensor norms on spaces.

To describe our results recall that the representation theorem for maximal ideals asserts
that

(E ⊗α′ F )∗ = A (E,F ∗)

where the maximal ideal A is related with the finitely generated tensor norm α, see [41, Sec.
17.5]. The representation theorem in this setting acquires the form(

X1 ⊗ . . .⊗Xn ⊗ Y, αβ
)∗

= A
(

Σβ
X1...Xn

; Y ∗
)

where the maximal ideal of Σ-operators A is related with the finitely generated Σ-tensor norm
on spaces α, Theorem 3.13.
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The duality theorem for tensor norms ensures that

E∗ ⊗←−α F ∗ → (E ⊗α′ F )∗

is an isometry where ←−α is the cofinite hull of α and α′ is its dual tensor norm, see [41, Sec.
15.5]. In our case, the duality theorem relates the two types of Σ-tensor norms by showing
that (

Lβ (X1, . . . , Xn)⊗ Y,←−ν β
)
→
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, αβ

)∗
is also an isometry. Here, ←−ν is the cofinite hull of the Σ-tensor norm on duals ν and the
Σ-tensor norm on spaces α is in duality with ν, see Theorem 3.9.

In the case of a compact Σ-operator we prove that the associated multilinear bounded
operator is compact in the classical sense. This property is closely related with compact Lip-
schitz functions, see Proposition 4.10. The weakly-compact case produces similar results.

We succesfully relate the projective Σ-tensor norm on duals with nuclear Σ-operators via
an accurate approximation property, see Proposition 4.21.

We use the developed theory in this dissertation to establish the definition of the class
of (p, q)-dominated Σ-operators. To be precise, this class is defined as the maximal ideal of
Σ-operators associated to the Σ-tensor norm on duals defined by the Lapresté Σ-tensor norm
on spaces, see Definitions 4.46, 4.44, Theorem 2.23 and Definitions 2.17, 2.20. In this case, the
principal result is the factorization of multilinear operators through subsets of spaces Lp(µ)
see Theorem 4.49.

We finish the dissertation with the case of (p, q)-factorable Σ-operators. This class is
defined as the maximal ideal of Σ-operators associated to the Lapresté Σ-tensor norm on du-
als, see Definitions 4.52, 4.50 and 2.20. As we see in Theorem 4.57, every (p, q)-factorable
Σ-operator fT induces a factorization of the associated multilinear operator T through subsets
of spaces Lq(µ) and Lp(µ).
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Introduction

The theory of tensor products goes back to Schatten on his work about cross-spaces [97].
Despite this, it is well known that Grothendieck was the first mathematician who showed the
usefulness of tensor products in functional analysis in the well known Résumé de la théorie
métric des produits tensoriels topologiques [57]. In particular, he exhibited that many prop-
erties of Banach spaces have a local behavior and operators between Banach spaces can be
studied in tensor terms. Due to the complexity of the ”Résumé”, as it is refered to these
days, and the reach of the journal where it was published, the work of Grothendieck was to-
tally understood many years later after its release. Nowadays, tensorial techniques are easier
to handle and apply thanks to the effort of many other mathematicians who translated the
work of Grothendieck and showed its usefulness. The first example of this translation and the
utility of tensor products is the work of Lindentrauss and Pe lczyński [66] about absolutely
p-summing operators.

Technically speaking, among the results of the ideas of Grothendieck, the concept of tensor
norms arose on the side of tensor products and that of operator ideals on the side of linear
operators. The concepts of ideals of operators and tensor norms were developed separately
though operator ideals was more popular since tensorial techniques seemed to be quite difficult
to handle. The theory of operator ideals was explored by A. Piestch et al. in the monorgaph
Operator ideals [85] making no reference of tensor products whatsoever. On the other hand,
it took several years to have a general reference of the study of tensor norms until the book
Tensor norms and operator ideals by A. Defant and K. Floret [41] where the authors have
made a very exhaustive study of tensor norms and operator ideals in tandem. Nowadays there
are more references, for example, The metric theory of tensor products, Grothendieck Résumé
revisited by J. Diestel, J. H Fourie and J. Swart [45] and Introduction to tensor products of
Banach spaces by R. Ryan [93].

A natural generalization of the theory of linear operators is the multilinear setting. As is
well known, the theory of operator ideals for the multilinear setting was started by A. Pietsch
in [86] where he gave a possible way to follow for the multilinear case by establishing ideas for
the development of ideals of multilinear forms. In the reference [56], K. Floret and S. Hungfeld
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x Introduction

gave a generalization for the vector valued case currently known as multi-ideals. Also, tensor
norms for the n-fold tensor product of Banach spaces were generalized and a representation
theorem for maximal multi-ideals of operators by finitely generated tensor norms is given as
well. Another proposal is given by G. Botelho and E.R. Torres in [22] where the authors
develop the theory of hyper-ideals. This is a slightly different approach which considers more
general compositions.

In recent years, concrete examples of ideal properties of operators have been studied by
many authors in the context of multilinear operators. Among them we find compactness,
nuclearity, p-summability, dominated operators. etc.. These collections fit in the theory of
multi-ideals and many of them are represented by tensor norms in the sense of [56].

Although the theory of multilinear operators has plenty of examples of multi-ideals and
tensor norms, there is no general reference for their relation in the style of [41]. The authors
of [17] studied the representability of multi-ideals by smooth tensor norms and they show
that representation of ideals by smooth tensor norms is not a common situation. Certain
properties of multi-ideals can be found in [21] and [22].

In [54] M. Fernández-Unzueta shows that multilinear operators can be studied by their as-
sociated Σ-operators. In [7], p-summability for Σ-operators is developed by J. Angúlo and M.
Fernández-Unzueta. Their results can be interpreted as a new approach to p-summability for
multilinear operators. Any other ideal property can be studied in the context of Σ-operators
and, as a consequence, enhance the knowledge of multilinear operators.

This dissertation is focused on the study of Σ-operators in terms of ideals. As well as in
the linear case, Σ-operators admit a translation to the setting of tensor products. Thus, tensor
norms appear naturally but in this context two notions of tensor norms have to be considered,
namely, Σ-tensor norms on spaces and Σ-tensor norms on duals. This dissertation studies the
duality between ideals of Σ-operators and Σ-tensor norms in the sense of [41].

Next, we briefly describe how this approach works. In [54] the author shows that the sub-
set of simple tensors, denoted by ΣX1...Xn , of a tensor product of Banach spaces X1⊗ . . .⊗Xn

admits a unique metric topology induced by reasonable crossnorms β on the tensor product.
This observation lets us associate a Σ-operator fT : Σβ

X1...Xn
→ Y to each bounded multilinear

operator T : X1 × · · · × Xn → Y . The important point to note here is that the topologies
induced on ΣX1...Xn allows us to study T through its associated Σ-operator fT within the

geometrical environment provided by the normed space (X1 ⊗ . . .⊗Xn, β) on Σβ
X1...Xn

.

The first success of this approach is done in [7] where the authors develop the theory of
p-summability for Σ-operators. They prove that a p-summing Σ-operator admits a factoriza-
tion through a subset of Lp(µ). This result is a generalization of the factorization theorem
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of A. Pietsch for p-summing linear operators. As a consequence, the associated multilinear
operator admits a factorization diagram. In particular, the authors provide a new approach
to p-summability for the multilinear case. As we said above, this procedure can be done
for other ideal properties. Even more, those cases fit in a duality theory between ideals of
Σ-operators and Σ-tensor norms.

A component in an ideal A, denoted by A
(

Σβ
X1...Xn

; Y
)

, is defined for each election of

Banach spaces X1, . . . , Xn, Y and a reasonable crossnorm β on X1⊗ . . .⊗Xn. The definition
of an ideal of Σ-operators is based on the consideration of finite rank Σ-operators. The trans-
lation to the tensorial context of this consideration leads us to define Σ-tensor norms on duals,
Definition 2.20. On the other hand, every component in a maximal ideal is represented by
functionals with the help of Σ-tensor norms on spaces, see Definition 2.17 and Theorem 3.13.

Summarizing, for giving a satisfactory duality between Σ-tensor norms and ideals of
Σ-operators for the study of bounded multilinear operators, the following four points are
highlighted:

• The subset ΣX1...Xn ⊂ X1⊗ . . .⊗Xn of simple tensors inherits a topology induced by a
reasonable crossnorm β on X1 ⊗ . . .⊗Xn.

• Every bounded multilinear operator T : X1×· · ·×Xn → Y has an associated Σ-operator
fT : Σβ

X1...Xn
→ Y .

• Every bounded finite rank operator is considered.

• There are two types of Σ-tensor norms, namely, Σ-tensor norms on duals and Σ-tensor
norms on spaces.

In the next paragraphs we describe the contents chapter by chapter.

In Chapter 1 we collect some results about Σ-operators presented in [54]. We begin
the chapter by recalling the definition of Σ-operators and presenting the tensorial repre-
sentation by tensors and functionals on a tensor product. Next, we give a precise defini-
tion of bounded Σ-operators and the topological considerations for the domain of a typical
bounded Σ-operator. In this chapter we present the algebraic behavior of the ideal property
for Σ-operators and the uniform properties for Σ-tensor norms. We finish by establishing the
relation of the projective tensor norm (in the sense of [56]) and the 2-fold injective tensor
norm with Σ-operators.

In Chapter 2 we define the principal objects of our interest, namely, ideals of Σ-operators
and Σ-tensor norms in the versions on duals and on spaces. In the first section of this chap-
ter we study the classes of bounded and p-summing Σ-operators (these last studied in [7]).
Inspired by the behavior of these collections we present the notion of ideals of Σ-operators.
In the tensorial context, we define the projective and injective Σ-tensor norms as well as the
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generalization of the Chevet-Saphar norm dp defined by J. Angúlo in his doctoral dissertation
[6]. Next, we present the definition of Σ-tensor norms in the two versions. The last section
of this chapter establishes the relation between these three concepts in the class of finite di-
mensional normed spaces.

In Chapter 3 we prove our most important results, these are the representation theorem
for maximal ideals of Σ-operators and the duality theorem for Σ-tensor norms, in short RT
and DT respectively. The RT describes, in tensor terms, any component of a maximal ideal of
Σ-operators, Theorem 3.13. On the other hand, the DT describes, in the Banach space case,
the relation between Σ-tensor norms on duals and Σ-tensor norms on spaces. To prove the
RT and the DT we need to extend the definitions of Σ-tensor norms and ideals of Σ-operators
from the class FIN to the class BAN . This is developed at the beginning of the chapter.

Chapter 4 is devoted to exhibiting concrete examples of ideals of Σ-operators and Σ-tensor
norms. We begin with the generalizations of injective and surjective ideals. On the tenso-
rial side, we introduce the notion of an injective Σ-tensor norm on duals and a projective
Σ-tensor norm on spaces. As an application of the RT, we relate these tensorial properties
with injective and surjective ideals of Σ-operators, see Proposition 4.8. Next, we study the
classes of compact, weakly-compact, and nuclear Σ-operators. We relate the collection of
nuclear Σ-operators with a certain approximation property. We continue with generaliza-
tions of the collections of operators that admit a factorization through a Hilbert space and
2-dominated operators. In both cases we present the respective Σ-tensor norms on spaces
which are in duality. We finish the dissertation with the generalization of the Lapresté tensor
norms to the setting of Σ-tensor norms. These norms enable us to define the maximal ideals of
(p, q)-dominated and (p, q)-factorable Σ-operators. As we will see, every bounded multilinear
operator in these collections has a natural factorization.



Preliminaries and Notation

We will use the standard notation of the theory of Banach spaces. The letter K denotes the
field of complex or real numbers. The capital letters X, Y , Z, W , E, F denote vector, normed
or Banach spaces over the field K. The unit ball of the normed space X will be denoted by
BX . The canonical inclusion of X into X∗∗ is denoted by KX even in the algebraic case. The
set of finite dimensional subspaces of the vector space X is denoted by F(X), while the set
of finite codimensional subspaces of X is denoted by CF(X).

For vector spaces X and Y we denote by L(X,Y ) the set of linear operators from X to
Y . In the case of Banach spaces, the set of bounded operators from X to Y endowed with
the uniform norm is denoted by L(X,Y ). In the case Y = K we simply write X# for vector
spaces and X∗ for normed spaces.

Recall that the function T : X1 × · · · × Xn → Y between vector spaces is said to be
multilinear (or n-linear) if

T (x1, . . . , (a+ λb), . . . , xn) = T (x1, . . . , a, . . . , xn) + λ T (x1, . . . , b, . . . , xn)

holds for all a, b ∈ Xi, λ ∈ K and 1 ≤ i ≤ n. The vector space of all multilinear operators
from X1 × · · · ×Xn to Y is denoted by L(X1, . . . , Xn;Y ). If X1, . . . , Xn and Y are normed
spaces then T is said to be bounded if

‖T‖ := sup
{
‖T (x1, . . . , xn)‖ | xi ∈ BXi

}
<∞.

The symbol L (X1, . . . , Xn;Y ) denotes the Banach space of all bounded multilinear opera-
tors from X1 × · · · × Xn into Y . In the case Y = K we simply write L (X1, . . . , Xn) and
L (X1, . . . , Xn) while their members are called n-forms and bounded n-forms, respectively.

xiii



xiv Preliminaries and Notation

The reader is supposed to know the construction and elementary properties of the tensor
product of vector spaces, see [93, Ch. 1]. The universal property of the tensor product of
vector spaces establishes that: For every multilinear operator T : X1 × · · · ×Xn → Y there
exists a unique linear operator T̃ : X1 ⊗ . . .⊗Xn → Y such that

X1 × · · · ×Xn

⊗
��

T // Y

X1 ⊗ . . .⊗Xn

T̃

88

commutes. If X1, . . . , Xn and Y are Banach spaces, β is a norm on X1 ⊗ . . . ⊗ Xn and
T̃ : (X1 ⊗ . . .⊗Xn, β)→ Y is bounded, then T is said to be β-bounded.

A tensor norm α on the class of Banach spaces assigns to each pair of Banach spaces X
and Y a norm on the algebraic tensor product X ⊗ Y (the resulting normed space denoted
by X ⊗α Y ) such that:

i) α is crossed: α(x⊗ y) ≤ ‖x‖ ‖y‖ for all x and y.

ii) α is reasonable: For every x∗ ∈ X∗ and y∗ ∈ Y the functional defined by x∗ ⊗ y∗ is
bounded on X ⊗α Y and ‖x∗ ⊗ y∗‖ ≤ ‖x∗‖ ‖y∗‖.

iii) Uniform property: If T : X → Z and S : Y →W are bounded linear operators, then
T ⊗ S : X ⊗α Y → Z ⊗αW is bounded and ‖T ⊗ S‖ ≤ ‖T‖ ‖S‖.

An operator ideal on the class of Banach spaces [A, A] assigns to each pair of Banach
spaces X and Y a linear subspace A (X,Y ) of L (X,Y ) together with a norm A such that:

i) (A (X,Y ) , A) is a Banach space.

ii) Every rank-one operator x∗ · y : X → Y belongs to A (X,Y ) and A(x∗ · y) ≤ ‖x∗‖ ‖y‖
for all x∗ ∈ X∗ and y ∈ Y .

iii) Ideal property: If in the composition

Z
R // X

T // Y
S //W

R and S denote bounded linear operators and T belongs to A (X,Y ), then STR belongs
to A (Z,W ) and A(STR) ≤ ‖R‖A(T ) ‖S‖.
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We will frequently use the following algebraic identification, it only consist in grouping
the first n spaces

X1 ⊗ . . .⊗Xn ⊗ Y = (X1 ⊗ . . .⊗Xn)⊗ Y.

For example, under this identification we have that if x1 ⊗ . . .⊗ xn ⊗ y and z1 ⊗ . . .⊗ zn ⊗ y
are elements in X1 ⊗ . . .⊗Xn ⊗ Y then

x1 ⊗ . . .⊗ xn ⊗ y − z1 ⊗ . . .⊗ zn ⊗ y = (x1 ⊗ . . .⊗ xn − z1 ⊗ . . .⊗ zn)⊗ y.

If f : A → B is a function then we use the notation 〈f, a〉 for the value of f at the point
a ∈ A, i.e. f(a).

Classical references for the theory of Banach spaces and functional analysis in general are
[39, 44, 47, 49, 50, 51, 52, 64, 67, 96, 99, 101, 103].



xvi Preliminaries and Notation



Chapter 1

Σ-Operators

This chapter is dedicated to establish the foundations of the theory of ideals of Σ-operators
and Σ-tensor norms. For this end, we collect some results from [54]. We begin the chapter
by giving a precise definition of a Σ-operator. We also show that Σ-operators can be repre-
sented in a tensorial context. Next, we present the adequate representation of the domain of
a multilinear operator inside a normed tensor product. We continue by treating the case of
bounded multilinear operators and indicating the corresponding bounded Σ-operators. The
fundamental considerations for a consistent behavior of the theory are presented. We finish
the chapter with the tensorial representation of bounded Σ-operators.

1.1 Σ-Operators and their Tensorial Representation

This dissertation is motivated by the study of multilinear operators under the assumption
that the domain of a typical multilinear operator T : X1 × · · · ×Xn → Y is immersed within
an accurate geometric environment, see (1.5). Thus, we may study T via an auxiliary function
fT , see Definition 1.4. This idea gives place to the notion of Σ-operators which, in particular,
are functions whose domain is contained in a tensor product.

In this section, n is a natural number and X1, . . . , Xn, Y denote vector spaces. The set of
simple tensors of the algebraic tensor product X1 ⊗ . . .⊗Xn is denoted by ΣX1...Xn . This is,

ΣX1...Xn :=
{
x1 ⊗ . . .⊗ xn | xi ∈ Xi

}
.

If the context is clear we write Σ. The set Σ is well known as the Segre cone, and its projec-
tivization as the Segre variety, see [70, Sec. 4.3.4]. In this dissertation we are interested in
the Segre cone because it helps us to represent X1 × · · · ×Xn inside X1 ⊗ . . .⊗Xn.

1



2 Σ-Operators

Let T : X1 × · · · ×Xn → Y be a multilinear operator and let T̃ : X1 ⊗ . . . ⊗Xn → Y be
its linearization. We define the function

fT : ΣX1...Xn → Y

x1 ⊗ . . .⊗ xn 7→ T (x1, . . . , xn).

In other words, fT is the restriction of T̃ to the set ΣX1...Xn . We have the following commu-
tative diagram

X1 × · · · ×Xn

��
T

&&
ΣX1...Xn

��

fT
// Y

X1 ⊗ . . .⊗Xn

T̃

88 , (1.1)

where the unlabeled arrows are the natural inclusion in the tensor product and inclusion as
sets respectively. It is worth to notice that the function fT cannot be a linear operator since
ΣX1...Xn is not a vector space; however, the cone property implies that fT is homogeneous.
In the concrete examples of Chapter 4 we will see that this property becomes useful.

A function f : ΣX1...Xn → Y is named Σ-operator if there exists a multilinear operator
T : X1 × · · · × Xn → Y such that f = fT . The operator T , if it exists, is unique. Under
these circumstances f and T are said to be associated. The collection of all Σ-operators from
ΣX1...Xn to Y , denoted by L (ΣX1...Xn ;Y ), is a vector space with the sum and multiplication
by scalars defined pointwise.

In analogy with linear operators, Σ-operators can be represented by functionals defined
on a tensor product. To show this, let f : ΣX1...Xn → Y be a Σ-operator. Define

ϕf : X1 ⊗ . . .⊗Xn ⊗ Y # → K

x1 ⊗ . . .⊗ xn ⊗ y# 7→
〈
y#, f(x1 ⊗ . . .⊗ xn)

〉
.

It is clear that ϕf is well defined since f(x1 ⊗ . . . ⊗ xn) = T (x1, . . . , xn). Here, T is the
associated multilinear operator of f . The functional ϕf is called the functional associated to
the Σ-operator f . It is a simple matter to prove that

L (ΣX1...Xn ;Y ) →
(
X1 ⊗ . . .⊗Xn ⊗ Y #

)#
(1.2)

f 7→ ϕf

is a morphism between vector spaces.
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In the opposite direction, every linear functional ϕ : X1 ⊗ . . .⊗Xn ⊗ Y → K gives rise to
a Σ-operator defined by

fϕ : ΣX1...Xn → Y #

x1 ⊗ . . .⊗ xn 7→ fϕ(x1 ⊗ . . .⊗ xn) : y 7→ ϕ(x1 ⊗ . . .⊗ xn ⊗ y),

where the associated multilinear map of fϕ is

T : X1 × · · · ×Xn → Y #

(x1, . . . , xn) 7→ T (x1, . . . , xn) : y 7→ ϕ(x1 ⊗ . . .⊗ xn ⊗ y).

In this situation, we say that fϕ is the associated Σ-operator to the functional ϕ. An easy
computation shows that

(X1 ⊗ . . .⊗Xn ⊗ Y )# → L
(

ΣX1...Xn ;Y #
)

(1.3)

ϕ 7→ fϕ

is a linear morphism.

In the linear case, the duality between operators and functionals on a tensor product leads
us to consider extension to double duals. Nowadays, these extensions are called canonical
extensions, see [41, 9]. Other extensions to double duals can be find in [8]. To clarify the
representation of Σ-operators by functionals let us denote, for ϕ : X1 ⊗ . . . ⊗Xn ⊗ Y → K,
its canonical extension by ϕ. This functional is given by

ϕ : X1 ⊗ . . .⊗Xn ⊗ Y ## → K

x1 ⊗ . . .⊗ xn ⊗ y## 7→
〈
y##, fϕ(x1 ⊗ . . .⊗ xn)

〉
.

If we consider X1⊗ . . .⊗Xn⊗Y as a linear subspace of X1⊗ . . .⊗Xn⊗Y ##, the functional
ϕ is actually an extension of ϕ since for every xi ∈ Xi and y ∈ Y we have

ϕ(x1 ⊗ . . .⊗ xn ⊗ y) =
〈
fϕ(x1 ⊗ . . .⊗ xn), y

〉
= ϕ(x1 ⊗ . . .⊗ xn ⊗ y).

The next proposition clarifies the representation of Σ-operators by functionals via the
canonical extension.
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Proposition 1.1. Let X1, . . . , Xn and Y be vector spaces. If ϕ : X1 ⊗ . . .⊗Xn ⊗ Y → K is
a linear functional and if f : ΣX1...Xn → Y is a Σ-operator, then

i) ϕfϕ = ϕ.

ii) fϕf = KY f.

iii) The spaces (X1 ⊗ . . .⊗Xn ⊗ Y )# and L
(
ΣX1...Xn ;Y #

)
are linearly isomorphic via (1.3).

Proof. Identity (i) is immediate from the definition of the canonical extension of ϕ. To
prove (ii) it is enough to see that〈

fϕf (p), y#
〉

=
〈
ϕf , p⊗ y#

〉
=

〈
y#, f(p)

〉
=

〈
KY f(p), y#

〉
holds for all p ∈ ΣX1...Xn and y# ∈ Y #.

The morphism inverse of (1.3) is

L
(

ΣX1...Xn ;Y #
)
→ (X1 ⊗ . . .⊗Xn ⊗ Y )#

f 7→ ϕf |X1⊗...⊗Xn⊗Y ,

since (i) implies
ϕfϕ |X1⊗...⊗Xn⊗Y = ϕ|X1⊗...⊗Xn⊗Y = ϕ.

Conversely, 〈
fϕf |X1⊗...⊗Xn⊗Y

(p) , y
〉

= 〈ϕf |X1⊗...⊗Xn⊗Y , p⊗KY (y)〉

= 〈ϕf , p⊗KY (y)〉
= 〈KY (y) , f(p)〉
= 〈f(p) , y〉

for all p ∈ Σ and y ∈ Y .

A simple case of Σ-operators occurs when the range is contained in a finite dimensional
vector space. We say that the Σ-operator f : ΣX1...Xn → Y has finite rank if f(ΣX1...Xn)
is contained in a finite dimensional subspace of Y . This is equivalent to saying that the lin-
earization of the associated multilinear operator T̃ has finite rank as a linear operator between
vector spaces. The collection of all Σ-operators of finite rank from ΣX1...Xn to Y is denoted
by F (ΣX1...Xn ;Y ).
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For the case of finite rank Σ-operators, the space F (ΣX1...Xn ;Y ) has a simpler tensorial
representation. In this case, we have the following linear isomorphism

L(X1, . . . , Xn)⊗ Y ∼= F (ΣX1...Xn ;Y )

described by ϕ⊗ y ∼ ϕ · y. Here,

ϕ · y : ΣX1...Xn → Y

p 7→ ϕ(p) y.

If the tensor v in L(X1, . . . , Xn)⊗ Y and the Σ-operator f are related under the above linear
isomorphism, then they are called associated.

Since X1⊗ . . .⊗Xn⊗Y is linearly isomorphic to (X1 ⊗ . . .⊗Xn)⊗Y it is easy to see that
L(X1, . . . , Xn)⊗Y # is algebraically embedded in (X1 ⊗ . . .⊗Xn ⊗ Y )# under the morphism
generated by

ϕ⊗ y# : X1 ⊗ . . .⊗Xn ⊗ Y → K
x1 ⊗ . . .⊗ xn ⊗ y 7→ ϕ(x1 ⊗ . . .⊗ xn) y#(y).

The translation of this algebraic embedding to the context of Σ-operators is the inclusion of
F
(
ΣX1...Xn ;Y #

)
in L

(
ΣX1...Xn ;Y #

)
. A picture of this situation is presented by the commu-

tative diagram

(X1 ⊗ . . .⊗Xn ⊗ Y )# // L
(
ΣX1...Xn ;Y #

)

L(X1, . . . , Xn)⊗ Y #

OO

// F
(
ΣX1...Xn ;Y #

)
OO

(1.4)

where the horizontal arrows are linear isomorphisms and the vertical ones are linear embed-
dings.

The implications of Diagram (1.4) for multilinear operators are the well known facts that
(X1 ⊗ . . .⊗Xn ⊗ Y )# is isomorphic to L

(
X1, . . . , Xn;Y #

)
, and the vector space of all finite

rank multilinear operators is linearly isomorphic to L(X1, . . . , Xn)⊗ Y #.

Remark 1.2. Notice that the considered tensor products have the form X1 ⊗ . . . ⊗Xn ⊗ Y ,
where the first n factors are those spaces which constitute the domain of a typical Σ-operator
f (and so the domain of the associated multilinear operator of f).

Throughout this dissertation we deal with tensor products of the form X1⊗ . . .⊗Xn⊗ Y
i.e. tensor products of n + 1 factors whose first n spaces are distinguished. This approach
becomes fundamental in the definitions of Σ-tensor norms and ideals of Σ-operators, see def-
initions 2.17, 2.20 and 2.3.
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1.2 Bounded Σ-Operators

In this section we push diagram (1.4) one step beyond by dealing with the case of bounded
multilinear operators between Banach spaces. As a consequence, we will see how the notion
of bounded Σ-operators arises.

Throughout this section n is a natural number, and now X1, . . . , Xn, Y are Banach spaces.
This assumption is not essential since all the results remain valid for normed spaces.

First, let us recall the definition of a reasonable crossnorm in the sense of [56]. A reasonable
crossnorm β on the n-fold tensor product X1 ⊗ . . . ⊗ Xn is, by definition, a norm with the
following properties:

i) β(x1 ⊗ . . .⊗ xn) ≤ ‖x1‖ · · · ‖xn‖ for all x1 ⊗ . . .⊗ xn ∈ ΣX1...Xn .

ii) If x∗i ∈ X∗i , then the linear functional

x∗1 ⊗ . . .⊗ x∗n : (X1 ⊗ . . .⊗Xn, β) → K
x1 ⊗ . . .⊗ xn 7→ x∗1(x1) · · ·x∗n(xn)

is bounded and ‖x∗1 ⊗ . . .⊗ x∗n‖ ≤ ‖x∗1‖ · · · ‖x∗n‖.

These conditions say, by definition, that β is crossed and reasonable respectively. It is easy
to see that if the two conditions are verified simultaneously, then both are indeed equalities.
This type of norms was studied in [56] where the authors use them to represent maximal
ideals of multilinear operators. In this dissertation we are interested only in the behavior of
the topologies induced on Σ by the resulting normed space. The most important examples of
reasonable crossnorms (tensor norms in the style of [56]) are the projective tensor norm

π(u) = inf

{∑
i

‖x1
i ‖ · · · ‖xni ‖

∣∣∣ u =
∑
i

x1
i ⊗ · · · ⊗ xni

}
and the injective tensor norm

ε(u) = sup
{
| 〈x∗1 ⊗ . . .⊗ x∗n , u〉 | | x∗i ∈ BX∗i

}
.

It is easy to see that β is reasonable and crossed if and only if ε(u) ≤ β(u) ≤ π(u) holds for
all u ∈ X1 ⊗ . . . ⊗Xn. As a consequence, all the reasonable crossnorms coincide on Σ. This
is, the value of β(x1 ⊗ . . .⊗ xn) is ‖x1‖ · · · ‖xn‖ no matter the reasonable crossnorm β.

The algebraic tensor product X1 ⊗ . . . ⊗ Xn endowed with a reasonable crossnorm β is
denoted by (X1 ⊗ . . .⊗Xn, β).

Remark 1.3. We do not use the notation X1⊗β . . .⊗βXn; commonly, it implies more prop-
erties on the norm β (uniformity for instance).
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From now on, β denotes a reasonable crossnorm on X1 ⊗ . . .⊗Xn.

The normed space (X1 ⊗ . . .⊗Xn, β) helps us to give Σ a structure of topological space.
For this end, we have two options: the topology given by the norm and the weak topology. For
the case of the norm, it turns out that no matter how we chose the norm β, the topology on
Σ is the same. On the other hand, the weak topology behaves differently for each reasonable
crossnorm.

In the case of the norm, the lack of enough algebraic structure of Σ implies that the
topology induced on it is not given by a norm but by a metric. This metric has the habitual
definition

dβ : Σ× Σ → R+ ∪ {0}
(p, q) 7→ β(p− q).

The values of dβ are determined by the values of β on the set Σ-Σ (or equivalentely Σ+Σ),
this is, the set of tensors of rank less than or equal to two. In this way, we have a metric on
Σ for each reasonable crossnorm. Despite this, we have the same metric topology as we may
read in Theorem 2.1 of [54] . It establishes that

Theorem. Let X1 . . . Xn be Banach spaces, r ∈ N and α and β be reasonable crossnorms on
X1 ⊗ . . .⊗Xn. Then, the following metric spaces are Lipschitz equivalent:(

SrX1,...,Xn , dα
) ∼= (SrX1,...,Xn , dβ

)
.

In fact, for every w, z ∈ SrX1,...,Xn
dα(w, z) ≤ (2r)n−1dβ(w, z) and α(z) ≤ rn−1β(z).

In this theorem the symbol SrX1,...,Xn
denotes the set of tensors of rank less than or equal

to r and dα denotes the induced metric by α. The case r = 2 asserts that

π(p− q) ≤ 2n−1β(p− q)

holds for all reasonable crossnorm β and p, q ∈ Σ. This inequality in addition to β ≤ π leads
us to conclude that all the reasonable crossnorms on X1 ⊗ . . . ⊗Xn induce the same metric
topology on Σ.

The topological structure induced on Σ by the weak topology of (X1 ⊗ . . .⊗Xn, β) be-
comes indispensable since many ideal properties (p-summability for instance) are established
in terms of weak summable sequences. Unlike the case of the norm, two different reasonable
crossnorms may produce two different weak topological structures on Σ. More details of this
affirmation can be found in Remark 3.5 of [54] where the author highlights that the sequence
{ei ⊗ ei}i converges weakly to zero in the prehilbert tensor product (`2 ⊗ `2, H) but it does
not in the projective tensor product (`2 ⊗ `2, π).
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When we deal with subspaces, a good behavior of weak topologies is essential for proper-
ties as maximality (of an ideal) and finite generation (of a tensor norm) since they depend on
the behavior on ΣE1...En where Ei is a finite dimensional subspace of Xi. Although the weak
case does not work very well in general, for subspaces we have a satisfactory behavior.

Let Ei be a closed subspace of Xi. Let us denote by β|E1,...,En the norm induced on
E1 ⊗ . . . ⊗ En by (X1 ⊗ . . .⊗Xn, β). If the context is clear we write β|. It is convenient to
have the next diagram in mind

E1 ⊗ . . .⊗ En // X1 ⊗ . . .⊗Xn

ΣE1...En

OO

// ΣX1...Xn

OO

,

where all the arrows are algebraic inclusions. It is easy to see that β| is a reasonable crossnorm
on E1 ⊗ . . . ⊗ En. Thus, we may consider the metric induced by β| on ΣE1...En but this is
the same as that induced by ΣX1...Xn and (X1 ⊗ . . .⊗Xn, β). The weak topology induced
on ΣE1...En is also the same since the weak topology of (E1 ⊗ . . .⊗ En, β|) is precisely the
one induced on E1 ⊗ . . . ⊗ En by the weak topology of (X1 ⊗ . . .⊗Xn, β). This observation
becomes fundamental in Definitions 3.4, 3.1 and 3.7.

Let us fix some notation. The set ΣX1...Xn endowed with the metric induced by the

normed space (X1 ⊗ . . .⊗Xn, β) is denoted by Σβ
X1...Xn

. This notation, besides denoting a
metric space, recalls the isometry

Σβ
X1...Xn

→ (X1 ⊗ . . .⊗Xn, β) . (1.5)

Thus, if we have to consider a weak topology on ΣX1...Xn we use that induced by the normed
space (X1 ⊗ . . .⊗Xn, β).

Now, consider a multilinear operator T : X1×· · ·×Xn → Y between Banach spaces. Due
to the properties of the projective tensor norm (in the sense of [56]) it is easy to prove that
the following statements are equivalent:

i) T : X1 × · · · ×Xn → Y is bounded.

ii) fT : Σπ
X1...Xn

→ Y is Lipschitz.

iii) T̃ : (X1 ⊗ . . .⊗Xn, π)→ Y is bounded.

In this situation, ‖T‖ = Lipπ(fT ) = ‖T̃‖. This result is contained in [54] as Theorem 3.2. We
may conclude that, just as the linear operator T̃ captures the boundedness of the multilinear
operator T , the Σ-operator fT also does it but in terms of a metric space and a Lipschitz
function. This observation is crucial since it says that we may study the bounded multilin-
ear operator T via its associated Σ-operator fT which is a Lipschitz function whose domain



Bounded Σ-Operators 9

Σπ
X1...Xn

is contained in the normed space (X1 ⊗ . . .⊗Xn, π). Thus, we may use the richness
that the topological environment (X1 ⊗ . . .⊗Xn, π) offers, for example, the norm π and its
weak topology.

The fact that all the metric spaces Σβ
X1...Xn

are Lipschitz equivalent implies that the

Σ-operator fT : Σβ
X1...Xn

→ Y is a Lipschitz function for all reasonable crossnorms β and, due
to the comments of the last paragraph, this occurs exactly when T is bounded. Even more,
the Lipschitz norms are related as follows

Lipπ(fT ) ≤ Lipβ(fT ) ≤ 2n−1Lipπ(fT ).

Proposition 3.4 of [54] asserts that the equivalence of (ii) and (iii) above, only occurs (up to
isomorphisms) for the reasonable crossnorm π. As a consequence, the Lipschitz property of

fT : Σβ
X1...Xn

→ Y implies no more than the boundedness of T .

Throughout this dissertation we are not interested in the boundedness of the linear opera-
tor T̃ : (X1 ⊗ . . .⊗Xn, β)→ Y but in the (ideal) properties we may define for the associated

Σ-operator fT : Σβ
X1...Xn

→ Y . As we can see in Chapter 4, the more interesting cases appear
when we consider weak properties, and as we have already said, it is important the choice of
the norm β.

In the sequel, almost all the definitions are stated for spaces X1, . . . , Xn and Y and a
reasonable crossnorm β. For a good manipulation in the notation and the language, we say
that an arrangement (X1, . . . , Xn, Y, β), where X1, . . . , Xn, Y are Banach spaces and β is a
reasonable crossnorm on X1 ⊗ . . . ⊗ Xn, will be named an election in BAN . Elections in
FIN , for finite dimensional normed spaces, and NORM for normed spaces follow obvious
definitions.

Definition 1.4. The Σ-operator f : Σβ
X1...Xn

→ Y , where (X1, . . . , Xn, Y, β) is an election in
BAN , is said to be bounded if its associated multilinear operator is bounded.

The collection of all bounded Σ-operators form Σβ
X1...Xn

into Y is denoted by L
(

Σβ
X1...Xn

, Y
)

and it becomes a Banach space with the norm Lipβ. This is,

Lipβ(f) = sup
β(p−q)≤1

‖f(p)− f(q)‖

for every Σ-operator f : Σβ
X1...Xn

→ Y .

As the reader knows, the theory of ideals of bounded linear operators is based on the ideal
property. This establishes that ideal properties are preserved by composition with bounded
linear operators. For the multilinear case there is a popular notion of this property as we can
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see in [56]. In this section, we present an accurate notion of the ideal property for bounded
Σ-operators. For this end, we describe the compositions to be considered. Since the approach
we are presenting is developed for the study of multilinear operator we translate this kind of
compositions to multilinear language.

Consider Banach spaces X1, . . . , Xn, Z1, . . . , Zn and let β and θ be reasonable crossnorms
on X1 ⊗ . . . ⊗ Xn and Z1 ⊗ . . . ⊗ Zn, respectively. Assume that the bounded multilinear
operator R : Z1 × · · · × Zn → (X1 ⊗ . . .⊗Xn, β) satisfies:

i) R̃ : (Z1 ⊗ . . .⊗ Zn, θ)→ (X1 ⊗ . . .⊗Xn, β) is bounded.

ii) fR (ΣZ1...Zn) ⊂ ΣX1...Xn .

Then, the bounded Σ-operator fR : Σθ
Z1...Zn

→ (X1 ⊗ . . .⊗Xn, β) associated to R is named

Σ-θ-operator. The first condition lets us manipulate the induced topologies on Σθ
Z1...Zn

and

Σβ
X1...Xn

by the normed spaces (Z1 ⊗ . . .⊗ Zn, θ) and (X1 ⊗ . . .⊗Xn, β), respectively. The
second property lets us compose Σ-θ-operators, Σ-operators and linear operators as is shown
in the diagram

Σθ
Z1...Zn

fR // Σβ
X1...Xn

fT // Y
S //W. (1.6)

This type of composition is considered for the ideal property of an ideal of Σ-operators, see
Definition 2.3. In [74] and [102] the authors exhibit the general form of the operators on
tensor products that preserve Σ.

The next diagram exhibits the complete situation of a typical composition. In it, all the
involved operators are present

Z1 × · · · × Zn

��

R

))

X1 × · · · ×Xn

��
T

&&
Σθ
Z1...Zn fR

//

��

Σβ
X1...Xn fT

//

��

Y
S //W

(Z1 ⊗ . . .⊗ Zn, θ)
R̃

// (X1 ⊗ . . .⊗Xn, β)

T̃

88 .

All the labeled arrows mean boundedness or Lipschitz conditions respectively while the un-
labeled arrows are the natural inclusions and isometries respectively. The dotted line means
that T̃ may not be bounded. The bounded multilinear operator SfTR : Z1 × · · · × Zn → W
has the composition SfT fR as its associated bounded Σ-operator.
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Classical compositions for multilinear operators like

Z1 × · · · × Zn
T1
��

Tn
��

X1 × · · · ×Xn
T
// Y

S
//W

are considered for the case β = π ( · ;X1, . . . , Xn) and θ = π ( · ;Z1, . . . , Zn), or any other
tensor norm in the sense of [56] because they verify the uniform property.

The next proposition exhibits the associated functional of a composition like (1.6).

Proposition 1.5. Consider the composition

Σθ
Z1...Zn

fR // Σβ
X1...Xn

f // Y
S //W

where S is a bounded linear operator, f is a bounded Σ-operator and fR is a Σ-θ-operator
with associated multilinear operator R. Then, the functional associated to the composition
SffR : Σθ

Z1...Zn
→W is:

i) ϕf ◦ (R̃⊗ S∗) : Z1 ⊗ . . .⊗ Zn ⊗W ∗ → K.

ii) vSffR = R̃∗ ⊗ S(vf ) ∈ L (Z1, . . . , Zn)⊗W if f =
∑
i
ϕi · yi ∈ F (ΣX1...Xn ;Y ).

Proof. By definition, we have that〈
ϕSffR , z

1 ⊗ . . .⊗ zn ⊗ w∗
〉

=
〈
w∗ , SffR(z1 ⊗ . . .⊗ zn)

〉
=

〈
S∗w∗ , ffR(z1 ⊗ . . .⊗ zn)

〉
=

〈
ϕf , fR(z1 ⊗ . . .⊗ zn)⊗ S∗w∗

〉
=

〈
ϕf R̃⊗ S∗ , z1 ⊗ . . .⊗ zn ⊗ w∗

〉
for all z1 ⊗ . . .⊗ zn ⊗ w∗ ∈ Z1 ⊗ . . .⊗ Zn ⊗W ∗. This proves (i).

On the other hand, for (ii) we have that

SffR(q) = S

(∑
i

ϕi(fR(q)) yi

)
=

∑
i

ϕi(fR(q))Syi

=

〈∑
i

(ϕi ◦ fR) · Syi , q

〉

=

〈∑
i

(R̃∗ϕi) · Syi , q

〉
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holds for all q ∈ ΣZ1...Zn . Hence

vSffR =
∑
i

(R̃∗ϕi)⊗ Syi

=
∑
i

〈
R̃∗ ⊗ S , ϕi ⊗ yi

〉
= R̃∗ ⊗ S(vf ).

Σ-θ-operators are also useful to define uniformity for Σ-tensor norms on spaces. To explain
this, let fR : Σθ

Z1...Zn
→ Σβ

X1...Xn
be a Σ-θ-operator and let S : W → Y be a bounded linear

operator. The assignment

fR ⊗ S : Z1 ⊗ . . .⊗ Zn ⊗W → X1 ⊗ . . .⊗Xn ⊗ Y
z1 ⊗ . . .⊗ zn ⊗ w 7→ fR(z1 ⊗ . . .⊗ zn)⊗ Sw

is a well defined function since fR = R̃ in ΣZ1...Zn , see Definition 2.17.

For the case of Σ-tensor norms on duals we require an accurate uniform property. This
is established in terms of another type of operator that we describe next. First, we fix some
notation.

Any multilinear form ϕ : X1 × · · · × Xn → K such that ϕ̃ : (X1 ⊗ . . .⊗Xn, β) → K is
bounded is called β-form. We set

Lβ (X1, . . . , Xn) := { ϕ : X1 × · · · ×Xn → K | ϕ is a β-form } .

Clearly, the Banach space (X1 ⊗ . . .⊗Xn, β)∗ induces a Banach structure on Lβ (X1, . . . , Xn)
under the identification ϕ ∼ ϕ̃. If ϕ ∈ Lβ (X1, . . . , Xn) we denote its norm by ‖ϕ‖β. Set δ as
the evaluation map

δ : (X1 ⊗ . . .⊗Xn, β) → Lβ (X1, . . . , Xn)∗

u 7→ δu : ϕ 7→ 〈ϕ, u〉 .

We say that the bounded linear operator A : Lβ (X1, . . . , Xn)→ Lθ (Z1, . . . , Zn) preserves
Σ if for every simple tensor q ∈ ΣZ1...Zn there exists a simple tensor p ∈ ΣX1...Xn such that

A∗(δq) = δp.

In other words, A∗ : Lθ (Z1, . . . , Zn)∗ → Lβ (X1, . . . , Xn)∗ maps evaluations on simple tensors
into evaluations on simple tensors.
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It is well known that many ideal properties are described in terms of weak summable
sequences. In the case of bounded Σ-operators, this also occurs. Let us make the kind of
sequences to be considered precise.

Let p ∈ [1,∞). For each pair of sequences (pi), (qi) in Σβ
X1...Xn

we write

‖(pi − qi)‖wβp := sup

(∑
i

|ϕ(pi)− ϕ(qi)|p
) 1

p

where the supremum is taken over all ϕ ∈ Lβ (X1, . . . , Xn) with ‖ϕ‖β ≤ 1. If the last supre-
mum is finite, we are in the case of a weakly p-summable sequence of the form (pi − qi) in
the normed space (X1 ⊗ . . .⊗Xn, β). We are not interested in all the weakly p-summable
sequences in the normed space (X1 ⊗ . . .⊗Xn, β).

Analogously, for each sequence (ϕi) in Lβ (X1, . . . , Xn) we write

‖(ϕi)‖wdp := sup

(∑
i

|ϕi(p)− ϕi(q)|p
) 1

p

where the supremum is taken over all p, q ∈ Σ such that β(p − q) ≤ 1. In this case, we are
not in the case of a weakly p-summable sequence in the normed space Lβ (X1, . . . , Xn) since
the supremum just takes into account functionals of the form δp − δq. These considerations
can be interpreted as a combination of the Lipschitz and linear theory.

The next proposition becomes useful in the particular examples of Σ-tensor norms and
ideals of Σ-operators that we present in Chapter 4. It describes the behavior of weakly
p-summable sequences under Σ-θ-operators and operators that preserve Σ respectively.

Proposition 1.6. Let (ai), (bi) be sequences in Σθ
Z1...Zn

and (ψi) be a sequence in Lθ (Z1, . . . , Zn).

If fR : Σθ
Z1...Zn

→ Σβ
X1...Xn

is a Σ-θ-operator and A : Lθ (Z1, . . . , Zn)→ Lβ (X1, . . . , Xn) pre-
serves Σ, then:

i) ‖(fRai − fRbi)‖wβp ≤ ‖R̃‖‖(ai − bi)‖wθp .

ii) ‖(A(ψi))‖wdp ≤ ‖A‖‖(ψi)‖wdp .
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Proof. To prove (i) let us estimate

‖(fRai − fRbi)‖wβp = sup
‖ϕ‖β≤1

(∑
i

|ϕ(fRai)− ϕ(fRbi)|p
) 1

p

= sup
‖ϕ‖β≤1

(∑
i

|ϕ(Rai)− ϕ(Rbi)|p
) 1

p

= sup
‖ϕ‖β≤1

(∑
i

|ϕR̃(ai − bi)|p
) 1

p

≤ sup
‖ψ‖θ≤1

(∑
i

|ψ(ai − bi)|p
) 1

p

‖R̃‖.

Analogously, for (ii) we have

‖(A(ψi))‖wdp = sup
β(p−q)≤1

(∑
i

|A(ψi)(p)−A(ψi)(q)|p
) 1

p

= sup
β(p−q)≤1

(∑
i

|A(ψi)(p− q)|p
) 1

p

= sup
β(p−q)≤1

(∑
i

|ψi(A∗δp −A∗δq)|p
) 1

p

≤ sup
θ(a−b)≤1

(∑
i

|ψi(a)− ψi(b)|p
) 1

p

‖A‖

The definition of a bounded Σ-operator implies that every bounded Σ-operator f is a
Lipschitz function. The following operators help us to control the Lipschitz norm of bounded
Σ-operators. Even more, in Chapter 3 we show that they are useful to establish that a
Σ-tensor norm on duals is crossed. For each p, q ∈ ΣX1...Xn and y∗ ∈ Y ∗ define the linear
operator

Lpqy∗ : Y → X1 ⊗ . . .⊗Xn

y 7→ y∗(y)(p− q).
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Let T : X1 × · · · ×Xn → Y be a multilinear operator. The composition

X1 ⊗ . . .⊗Xn

T̃ &&

Lpqy∗ T̃ // X1 ⊗ . . .⊗Xn

Y
Lpqy∗

88

verifies
〈
Lpqy∗ T̃ , u

〉
=
〈
y∗T̃ , u

〉
(p−q) for all u ∈ X1⊗ . . .⊗Xn. The trace of the composition

Lpqy∗ T̃ is well defined since it is a finite rank linear operator. Even more, it is given by

tr(Lpqy∗ T̃ ) = y∗T̃ (p− q) = y∗(fT p− fT q).

We conclude this chapter by giving the representation of bounded Σ-operators via the
projective tensor norm (in the sense of [56]) defined on the tensor product X1⊗ . . .⊗Xn⊗Y .
Even more, we represent bounded Σ-operators of finite rank in terms of the injective norm
of the 2-fold tensor product. As we will see in the next chapter, these norms are particular
cases of the projective Σ-tensor norm on spaces and the injective Σ-tensor norm on duals.

If (X1, . . . , Xn, Y, β) is an election in BAN , we define

F
(

Σβ
X1...Xn

;Y
)

:=
{
fT : Σβ

X1...Xn
→ Y | T̃ is β-bounded and has finite rank

}
.

In this case, notice that the norm β becomes relevant since there exist bounded forms
ϕ : X1 ⊗ . . . ⊗ Xn → K such that ϕ̃ : (X1 ⊗ . . .⊗Xn, β) → K is not bounded. In par-

ticular, F
(

Σβ
X1...Xn

;Y
)

and F
(
Σθ
X1...Xn

;Y
)

may not be isomorphic for different reasonable

crossnorms β and θ.

Proposition 1.7. Let X1, . . . , Xn, Y be Banach spaces. Let π be the projective tensor norm
on the (n+ 1)-fold tensor product X1 ⊗ . . .⊗Xn ⊗ Y . Then the mapping

(X1 ⊗ . . .⊗Xn ⊗ Y, π)∗ → L
(
Σπ
X1...Xn ;Y ∗

)
ϕ 7→ fϕ.

is a linear isometric isomorphism. If ε denotes the 2-fold injective tensor norm, then

(Lπ (X1, . . . , Xn)⊗ Y ∗, ε) → F
(
Σπ
X1...Xn , Y

∗)
ϕ⊗ y∗ 7→ ϕ · y∗.

is a linear isometric isomorphism.
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Proof. From the linear isometry (X1 ⊗ . . .⊗Xn ⊗ Y, π) = ((X1 ⊗ . . .⊗Xn, π)⊗ Y, π) we
deduce that

(X1 ⊗ . . .⊗Xn ⊗ Y, π)∗ = ((X1 ⊗ . . .⊗Xn, π)⊗ Y, π)∗

= L ((X1 ⊗ . . .⊗Xn, π) ;Y ∗)

= L
(
Σπ
X1...Xn ;Y ∗

)
are linear isometric isomorphisms. For the second case recall that the norm induced on
Lπ (X1, . . . , Xn) ⊗ Y ∗ by the space ((X1 ⊗ . . .⊗Xn, π)⊗ Y, π)∗ is the injective tensor norm
for the case of two factors.

In particular, Proposition 1.7 ensures that the diagram

(X1 ⊗ . . .⊗Xn ⊗ Y, π)∗ // L
(
Σπ
X1...Xn

;Y ∗
)

(Lπ(X1, . . . , Xn)⊗ Y ∗, ε)

OO

// F
(
Σπ
X1...Xn

, Y ∗
)

OO

(1.7)

is commutative. The horizontal arrows are linear isometric isomorphisms and the vertical
ones are linear isometries.



Chapter 2

Ideals of Σ-Operators and Σ-Tensor
Norms

In this chapter we present the most important concepts of the dissertation, namely, ideals
of Σ-operators and Σ-tensor norms. We begin by studying the collections of bounded and
p-summing Σ-operators. Next, we establish the definition of an ideal of Σ-operators. We con-
tinue with the projective and injective Σ-tensor norms. These cases allow us to explain the
necessity of two types of Σ-tensor norms. We conclude the chapter by showing the relation
between ideals of Σ-operators, Σ-tensor norms on duals and Σ-tensor norms on spaces in the
class FIN .

2.1 Ideals of Σ-Operators

The notion of ideal of multilinear operators has its origin in [86]. The subsequent research
following this approximation (and related topics) is huge and has plenty of references, see for
instance [1, 15, 16, 17, 18, 20, 21, 29, 32, 43, 55, 56, 75, 77, 88, 90]. On the side of Lipschitz
theory, a recent notion of ideals of Lipschitz mappings (from a metric space into a Banach
space) has appeared. Some references for this approximation are [2, 24, 26, 36, 60].

Before presenting the definition of an ideal of Σ-operators let us make some remarks
of the collections of bounded and p-summing Σ-operators presented in Chapter 1 and [7]
respectively. The properties these collections enjoy will let us introduce the definition of an
ideal of Σ-operators easier.

Let (X1, . . . , Xn, Y, β) be an election in BAN . Plainly, L
(

Σβ
X1...Xn

, Y
)

is a vector space

with the sum and multiplication by scalars defined pointwise. Moreover, it is a Banach space
with the Lipschitz norm Lipβ.

17
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Every fT ∈ F
(

Σβ
X1...Xn

;Y
)

verifies, by definition, that T̃ : (X1 ⊗ . . .⊗Xn, β) → Y

is bounded. In particular T is bounded as a multilinear operator. Thus, L
(

Σβ
X1...Xn

, Y
)

contains F
(

Σβ
X1...Xn

;Y
)

as a linear subspace since the algebraic operations are the same.

For the simple case of a rank-one Σ-operator f = ϕ · y with ϕ in Lβ (X1, . . . , Xn) and y ∈ Y
we have that

‖f(p)− f(q)‖ = |ϕ(p)− ϕ(q)|‖y‖
≤ ‖ϕ‖β‖y‖β(p− q)

holds for all p, q ∈ ΣX1...Xn . This means that Lipβ(ϕ · y) ≤ ‖ϕ‖β‖y‖.

For arbitrary p, q ∈ ΣX1...Xn and y∗ ∈ Y ∗, the dominations∣∣tr(T̃Lpqy∗)∣∣ = |y∗ (fT (p)− fT (q)) |
≤ ‖y∗‖‖fT (p)− fT (q)‖
≤ β(p− q)‖y∗‖Lipβ(fT )

assert that
sup

Lipβ(fT )≤1

∣∣tr(T̃Lpqy∗)∣∣ ≤ β(p− q) ‖y∗‖

holds for all p, q ∈ ΣX1...Xn and y∗ ∈ Y ∗. This domination means that the linear functional

Lpqy
∗

: L
(

Σβ
X1...Xn

, Y
)
→ K

T 7→ tr
(
T̃Lpqy∗

)
is bounded, and ‖Lpqy∗‖ ≤ β(p− q)‖y‖.

The collection of bounded Σ-operators behaves well under compositions with Σ-θ-operators
and linear operators. To see this, consider the composition

Σθ
Z1...Zn

fR // Σβ
X1...Xn

f // Y
S //W

where fR is a Σ-θ-operator, f is an element of L
(

Σβ
X1...Xn

, Y
)

and S : Y →W is a bounded

linear operator. Then, the inequalities

‖SffR(p)− SffR(q)‖ ≤ ‖S‖ ‖ffR(p)− ffR(q)‖
≤ ‖S‖ Lipβ(f) β(fR(p)− fR(q))

= ‖S‖ Lipβ(f) β(R̃(p− q))
≤ ‖S‖ Lipβ(f) ‖R̃‖θ(p− q)
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imply Lipθ(SffR) ≤ ‖R̃‖Lipβ(f)‖S‖.

As we will see in Chapter 4, these properties are enjoyed by other collections of Σ-operators.
A non trivial example of the same phenomenon is the case of p-summability defined and
developed in [7]. Let us recall the definition of a p-summing Σ-operator.

Definition 2.1. Let (X1, . . . , Xn, Y, β) be an election in BAN and p ∈ [1,∞). The Σ-operator

f : Σβ
X1...Xn

→ Y is said to be p-summing if there exists a constant C > 0 such that for all

finite sequences (pi), (qi) in Σβ
X1...Xn

it is verified

(∑
i

‖f(pi)− f(qi)‖p
) 1

p

≤ C ‖(pi − qi)‖wβp .

The p-summing norm of f , denoted by πp(f), is defined by the infimum of the constants C as
above.

Given an election (X1, . . . , Xn, Y, β) in BAN , the collection of all p-summing Σ-operators

from Σβ
X1...Xn

into Y is denoted by Πp

(
Σβ
X1...Xn

;Y
)

. It becomes a Banach space with the
norm πp.

Proposition 2.2. For any election (X1, . . . , Xn, Y, β) in BAN the space Πp

(
Σβ
X1...Xn

;Y
)

verifies:

i) Πp

(
Σβ
X1...Xn

;Y
)

is a Banach space.

ii) F
(

Σβ
X1...Xn

;Y
)

is contained as a linear space in Πp

(
Σβ
X1...Xn

;Y
)

.

iii) πp(ϕ · y) ≤ ‖ϕ‖β‖y‖ for all ϕ ∈ Lβ (X1, . . . , Xn) and y ∈ Y .

iv) sup
πβp (fT )≤1

∣∣tr(T̃Lpqy∗)∣∣ ≤ β(p− q) ‖y∗‖ for all p, q ∈ ΣX1...Xn and y∗ ∈ Y ∗.

v) If in the composition

Σθ
Z1...Zn

fR // Σβ
X1...Xn

f // Y
S //W

fR is a Σ-θ-operator, f is an element of Πp

(
Σβ
X1...Xn

;Y
)

and S : Y →W is a bounded

linear operator, then SffR belongs to Πp

(
Σθ
Z1...Zn

;W
)

and πp(SffR) ≤ ‖R̃‖ πp(f) ‖S‖.
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Proof. The proof of (i) is contained in [7]. We first prove (iii). Given finite sequences
(pi) and (qi) in Σ we have∑

i

|ϕ(pi) y − ϕ(qi) y|p ≤ ‖ϕ‖pβ
∑
i

∣∣∣∣ ϕ

‖ϕ‖β
(pi)−

ϕ

‖ϕ‖β
(qi)

∣∣∣∣p ‖y‖p
≤ ‖ϕ‖pβ ‖y‖

p sup
ψ∈B(X1⊗...⊗Xn,β)∗

∑
i

|ψ(pi)− ψ(qi)|p.

In other words, every rank-one Σ-operator is p-summing and πβp (ϕ · y) ≤ ‖ϕ‖ ‖y‖. Plainly,
(ii) is deduced from (iii).

The item (iv) is easy to check since∣∣tr(T̃Lpqy∗)∣∣ = |y∗(fT (p)− fT (q))|
≤ ‖y∗‖ ‖fT (p)− fT (q)‖
≤ ‖y∗‖πβp (fT ) sup

‖ϕ‖β≤1
|ϕ(p)− ϕ(q)|

= ‖y∗‖πβp (fT )β(p− q).

The property (v) follows from Proposition 1.6. Let (pi) and (qi) be finite sequences in
ΣZ1...Zn , then∑

i

|SffR(pi)− SffR(qi)|p ≤ ‖S‖p
∑
i

|ffR(pi)− ffR(qi)|p

≤ ‖S‖πβp (f)p
(
‖(fR(pi)− fR(qi))‖wβp

)p
≤ ‖S‖p πβp (f)p ‖R̃‖p

(
‖((pi)− (qi))‖wθp

)p
.

This way SffR : Σθ
Z1...Zn

→W is p-summing and πθp(SFfR) ≤ ‖S‖πβp (f) ‖R̃‖.

One of the most important results of [7] is the factorization theorem for p-summing
Σ-operators. It implies that the associated multilinear operator T : X1 × · · · × Xn → Y
of a p-summing Σ-operator fT : Σβ

X1...Xn
→ Y factors as follows:

X1 × · · · ×Xn

��

T // Y

Σβ
X1...Xn

��

jp|
// A

��

uT

OO

C(K)
jp

// Lp(µ)
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where K is the unit ball of (X1 ⊗ . . .⊗Xn, β)∗ considered with the w∗-topology (hence a
compact subset ), µ is a regular Borel probability measure on K, jp is the natural inclusion,

A = jp(Σ
β
X1...Xn

) ⊂ Lp(µ), the unlabeled arrows are the natural inclusions and the evaluation
map respectively and uT : A→ Y is a Lipschitz function such that Lip(uT ) ≤ πp(fT ).

Bearing in mind the behavior of the collections of bounded and p-summing Σ-operators
we define an ideal of Σ-operators as follows.

Definition 2.3. An ideal of Σ-operators [A, A] defined on BAN is a subclass A of the class of
all bounded Σ-operators. For each election (X1, . . . , Xn, Y, β) in BAN a component is defined
by

A
(

Σβ
X1...Xn

; Y
)

:= A ∩ L
(

Σβ
X1...Xn

, Y
)

and contains the space F
(

Σβ
X1...Xn

;Y
)

. The component A
(

Σβ
X1...Xn

; Y
)

is supplied with a

complete norm A which verifies:

I1 A(ϕ · y) ≤ ‖ϕ‖β ‖y‖ for all ϕ ∈ Lβ (X1, . . . , Xn) and y ∈ Y .

I2 sup
Aβ(fT )≤1

∣∣tr(T̃Lpqy∗)∣∣ ≤ β(p− q) ‖y∗‖ for all p, q ∈ ΣX1...Xn and y∗ ∈ Y ∗.

I3 If in the composition

Σθ
Z1...Zn

fR // Σβ
X1...Xn

f // Y
S //W

fR is a Σ-θ-operator, f is an element of A
(

Σβ
X1...Xn

; Y
)

and S : Y →W is a bounded

linear operator, then SffR belongs to A
(
Σθ
Z1...Zn

;W
)

and A(SffR) ≤ ‖R̃‖ A(T ) ‖S‖.

Notice that a component in the ideal [A, A] is defined for every election in BAN , that is,
it is not enough to specify the spaces Xi and Y . The property I1 lets us control the ideal
norm of a rank one Σ-operator. The condition I2 tells us that the linear functional defined
by the operator Lpqy∗ is bounded and we have control of its norm. Clearly, the property I3
says that the ideal property is preserved by compositions as (1.6).

Definition 2.3 in the case n = 1 coincides with the definition of an ideal of bounded lin-
ear operators, see [46, p. 131]. This is clear since A

(
Σβ
X1...Xn

; Y
)

reduces to A (X,Y ) with

β = ‖ · ‖X . The space F
(

Σβ
X1...Xn

;Y
)

becomes the space of linear operators of finite rank

from X into Y . Every Σ-operator of the form ϕ · y is a linear rank-one operator with ϕ ∈ X∗.
The properties I2 and I3 reduce to ‖T‖ ≤ A(T ) and the linear ideal property respectively.
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On the other hand, the principal difference between the classical theory of ideals of mul-
tilinear operators presented in [56] (well known as multi-ideals) and the approach we present
is the consideration of the finite rank operators. In the classical approach, an ideal [A, A] of
multilinear operators requires that for any Banach spaces X1, . . . , Xn and Y , the component
A (X1, . . . , Xn;Y ) contains all the multilinear operators of finite type, that is, all operators
T : X1 × · · · ×Xn → Y which can be expressed as a finite sum of the form

T (x1, . . . , xn) =
∑
i

x∗1i(x
1) . . . x∗ni(x

n) yi

where x∗ji ∈ X∗j and yi ∈ Y . The proposal we present is based on the requirement that

F
(

Σβ
X1...Xn

;Y
)

is contained in A
(

Σβ
X1...Xn

; Y
)

. Notice that any rank-one operator from the

cartesian product X1 × · · · ×Xn to Y of finite type has the form

x∗1 ⊗ . . .⊗ x∗n · y : (x1, . . . , xn) 7→ x∗1(x1) . . . x∗n(xn) y

and since β is a reasonable crossnorm on X1 ⊗ . . .⊗Xn, the linearization of x∗1 ⊗ . . .⊗ x∗n · y
is an element of F

(
Σβ
X1...Xn

;Y
)

. This means that any operator of finite type is an element

of A
(

Σβ
X1...Xn

; Y
)

. Even more, the property I1 in the case ϕ = x∗1 ⊗ . . . ⊗ x∗n asserts that

A(x∗1 ⊗ . . .⊗ x∗n · y) ≤ ‖x∗1‖ . . . ‖x∗n‖‖y‖. Thus, the finite type operators are considered in the
perspective of Σ-operators and we have the same control over the ideal norm.

There is a recent notion of ideals of Lipchitz operators as we may see, for instance, in [3, 26].
In this case we have a richer structure in the domain of the operators we are considering, i.e.,
we have more than a Lipschitz map since the embedding Σβ

X1...Xn
→ (X1 ⊗ . . .⊗Xn, β) let

us take advantage of the weak topology induced by the normed space and, as we said before,
this phenomenon depends on the norm β. Moreover, the ideal property I3 requires linear
properties.

Condition I2 implies |y∗(fT (p) − fT (q))| ≤ β(p − q) ‖y∗‖A(fT ). After taking supremum

over all ‖y∗‖ ≤ 1 and β(p− q) ≤ 1 we obtain Lipβ(fT ) ≤ A(fT ) for all fT ∈ A
(

Σβ
X1...Xn

; Y
)

.

Actually, we began this section by showing that the collection of all bounded Σ-operators
is an ideal of Σ-operators. Proposition 2.2 does the analogue for the collection of p-summing
Σ-operators.
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2.2 Σ-Tensor Norms

The most popular notion of tensor norms for n-fold tensor products is the introduced by
Floret and Hunfeld in [56]. This approximation is a straightforward generalization of tensor
norms for the case of two factors. Following this proposal, many examples of tensor norms
and some theory has been developed, see for example [1, 17, 34, 42, 75, 83, 90]. On the side
of Lipschitz theory, the authors of [24] construct the Lipschitz tensor product of a metric
space and a Banach space. This product allows to define norms analogous to tensor norms.
Examples of these type of norms and examples of duality can be found in [24, 25, 26, 36].

2.2.1 The Projective and Injective Case

In Chapter 1 we saw that every Σ-operator f : ΣX1...Xn → Y # between linear spaces has an
associated functional ϕf : X1⊗ . . .⊗Xn⊗Y → K. In the case of an election (X1, . . . , Xn, Y, β)
in the class BAN we will try to norm the space X1⊗ . . .⊗Xn⊗Y such that the boundedness
of ϕf implies that of f : Σβ

X1...Xn
→ Y ∗.

In this section we present the projective case of Σ-tensor norms in the version of spaces.
We try to define the analogue of the linear projective tensor norm (see for instance [41, 93])
on the space X1 ⊗ . . .⊗Xn ⊗ Y .

Definition 2.4. Given an election (X1, . . . , Xn, Y, β) in the class BAN we define the projec-
tive Σ-tensor norm on spaces on X1 ⊗ . . .⊗Xn ⊗ Y by

πβ(u;XiY ) := inf
∑
i

β(pi − qi)‖yi‖

where the infimum is taken over all representations of the form u =
∑
i

(pi − qi) ⊗ yi with

pi, qi ∈ Σ and yi ∈ Y . If the context is clear we simply write πβ(u).

Notice that for defining the projective Σ-tensor norm on spaces on X1 ⊗ . . . ⊗ Xn ⊗ Y
it is essential to specify the reasonable crossnorm β, that is, we have to fix an election in

the class BAN . The representations of u of the form
m∑
i=1

(pi − qi) ⊗ yi are actually all the

representations in X1 ⊗ . . . ⊗ Xn ⊗ Y . It is worth pointing out that although we are alge-
braically identifying the vector spaces (X1 ⊗ . . .⊗Xn, β)⊗ Y and X1 ⊗ . . .⊗Xn ⊗ Y we are
not taking the projective norm on the tensor product of normed spaces (X1 ⊗ . . .⊗Xn, β)⊗Y .

As a result of the Lipschitz equivalence of the metric spaces Σβ
X1...Xn

and Σθ
X1...Xn

we

obtain that the normed spaces
(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)
and

(
X1 ⊗ . . .⊗Xn ⊗ Y, πθ

)
are lin-

early isomorphic.
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The next proposition contains the essence of a Σ-tensor norm on spaces.

Proposition 2.5. For any election (X1, . . . , Xn, Y, β) in BAN we have that:

i) πβ is a norm on X1 ⊗ . . .⊗Xn ⊗ Y .

ii) πβ((p− q)⊗ y) ≤ β(p− q)‖y‖ for all p, q ∈ Σ and y ∈ Y .

iii) The functional

ϕ⊗ y∗ :
(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)
→ K

x1 ⊗ . . .⊗ xn ⊗ y 7→ ϕ(x1 ⊗ . . .⊗ xn)y∗(y)

is bounded and ‖ϕ⊗ y∗‖ ≤ ‖ϕ‖β ‖y∗‖ for all ϕ ∈ Lβ (X1, . . . , Xn) and y∗ ∈ Y ∗.

iv) For any Σ-θ-operator fR : Σθ
Z1...Zn

→ Σβ
X1...Xn

and bounded linear operator S : W → Y ,
the operator

fR ⊗ S :
(
Z1 ⊗ . . .⊗ Zn ⊗W,πθ

)
→

(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)
z1 ⊗ . . .⊗ zn ⊗ w 7→ fR(z1 ⊗ . . .⊗ zn)⊗ S(w)

is bounded and ‖fR ⊗ S‖ ≤ ‖R‖‖S‖.

Proof. The proof of (i) is routine and (ii) follows from definition. The triangle inequality
implies

| 〈ϕ⊗ y∗ , u〉 | =

∣∣∣∣∣∑
i

ϕ(pi − qi) y∗(yi)

∣∣∣∣∣
≤ Lipβ(ϕ) ‖y∗‖

∑
i

β(pi − qi) ‖yi‖.

After taking infimum over all the representations of u and noticing that Lipβ(ϕ) ≤ ‖ϕ‖β we
obtain (iii).

Finally, (iv) follows from

πβ(fR ⊗ S(u)) = πβ

(∑
i

(fR(pi)− fR(qi)) Syi

)
≤

∑
i

β(fR(pi)− fR(qi)) ‖S(yi)‖

≤ ‖R̃‖ ‖S‖
∑
i

θ(pi − qi) ‖yi‖
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for all representations
m∑
i=1

(pi − qi)⊗ yi of u.

Notice that property (ii) lets us control the norm of not just simple tensors x1⊗ . . .⊗xn⊗y
but those of the form (p − q) ⊗ y. Actually, in (ii) the equality is verified. To see this, it is
enough to take, due to the Hahn-Banach theorem, two bounded linear functionals ϕ and y∗

in the respective unit ball such that ϕ(p− q) = β(p− q) and y∗(y) = ‖y‖, then

β(p− q) ‖y‖ = 〈ϕ⊗ y∗ , (p− q)⊗ y〉 ≤ πβ((p− q)⊗ y).

On the other hand, the norm of a functional ϕ ⊗ y∗ like in (iii) is exactly Lipβ(ϕ) ‖y‖. To

prove this affirmation, let η > 0, then chose p and q in Σβ
X1...Xn

and y in Y such that

(1− η)Lipβ(ϕ) ≤ |ϕ(p− q)|, (1− η) ‖y∗‖ ≤ |y∗(y)| and β(p− q) ≤ 1, ‖y‖ ≤ 1. Hence

(1− η)2 Lipβ(ϕ)‖y∗‖ ≤ | 〈ϕ⊗ y∗, (p− q)⊗ y〉 | ≤ ‖ϕ⊗ y∗‖.

The first evidence of the duality between Σ-tensor norms and Σ-operators is presented in
the following proposition. This is a generalization of the simplest representation of bounded
linear (and multilinear) operators by functionals on a tensor product.

Proposition 2.6. Let (X1, . . . , Xn, Y, β) be an election in BAN . The operator

(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)∗
→ L

(
Σβ
X1...Xn

, Y ∗
)

ϕ 7→ fϕ

is a linear isometric isomorphism.

Proof. By definition of the Lipschitz norm of fϕ we have that

|〈fϕ(p)− fϕ(q) , y〉| = |ϕ((p− q)⊗ y)|
≤ ‖ϕ‖ πβ((p− q)⊗ y)

≤ ‖ϕ‖ β(p− q) ‖y‖

implies Lipβ(fϕ) ≤ ‖ϕ‖. The converse inequality is deduced easily also since

|ϕf (u)| =

∣∣∣∣∣∑
i

〈fϕ(pi)− fϕ(qi) , yi〉

∣∣∣∣∣
≤

∑
i

‖fϕ(pi)− fϕ(qi)‖ ‖yi‖

≤ Lipβ(f)
∑
i

β(pi − qi) ‖yi‖
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holds for all representations
m∑
i=1

(pi − qi)⊗ yi of u.

Proposition 2.6 implies that
(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)
and ((X1 ⊗ . . .⊗Xn, β)⊗ Y, π) are

not, in general, isomorphic. Otherwise, T̃ : (X1 ⊗ . . .⊗Xn, β) → Y must be bounded for
every bounded multilinear operator T : X1 × · · · ×Xn → Y . The unique case of coincidence
is β = π. Despite this, the identity

(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)
→ ((X1 ⊗ . . .⊗Xn, β)⊗ Y, π) is

always bounded since π ≤ πβ, see (i) of Proposition 2.5.

We know that the collection of all bounded Σ-operators is an ideal of Σ-operators. Thus,

any component L
(

Σβ
X1...Xn

, Y ∗
)

contains F
(

Σβ
X1...Xn

;Y ∗
)

. Even more, we know that the

space F
(

Σβ
X1...Xn

;Y ∗
)

is linearly isomorphic to the tensor product Lβ (X1, . . . , Xn)⊗ Y ∗. It

is clear that a norm with the properties of πβ is not compatible with Lβ (X1, . . . , Xn) ⊗ Y ∗.
If we want to represent the space F

(
Σβ
X1...Xn

;Y ∗
)

, endowed with the norm πβ(·;Xi, Y ), in

terms of Lβ (X1, . . . , Xn)⊗ Y ∗ we should consider an accurate notion of tensor norm.

Definition 2.7. Let (X1, . . . , Xn, Y, β) be an election in BAN . We define the injective Σ-
tensor norm on duals on the space Lβ (X1, . . . , Xn)⊗ Y as

εβ(v) := sup
{
| 〈(p− q)⊗ y∗, v〉 |

∣∣∣ β(p− q) ≤ 1, ‖y∗‖ ≤ 1
}

for all v ∈ Lβ (X1, . . . , Xn)⊗ Y

For the definition of εβ we have to fix an election in BAN . That is, it is not enough
to give the spaces Xi and Y . Notice that we are not taking all functionals on the space
Lβ (X1, . . . , Xn) but just all of the form δp − δq with p, q ∈ ΣX1...Xn .

Proposition 2.8. For any election (X1, . . . , Xn, Y, β) in BAN we have

i) εβ is a norm on Lβ (X1, . . . , Xn)⊗ Y .

ii) εβ(ϕ⊗ y) ≤ ‖ϕ‖β‖y‖.

iii) sup
β(p−q)≤1
‖y∗‖≤1

∣∣ 〈(p− q)⊗ y∗ , v〉 ∣∣ ≤ εβ(v) for every v ∈ Lβ (X1, . . . , Xn)⊗ Y.

iv) If A : Lβ (X1, . . . , Xn)→ Lθ (Z1, . . . , Zn) and B : Y →W are linear operators such that
A preserves Σ then

A⊗B :
(
Lβ (X1, . . . , Xn)⊗ Y, εβ

)
→

(
Lθ (Z1, . . . , Zn)⊗W, εθ

)
ϕ⊗ y 7→ A(ϕ)⊗B(y)

is bounded and ‖A⊗B‖ ≤ ‖A‖‖B‖.
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Proof. The item (i) is routine. The proof of (ii) follows immediately from

εβ(ϕ⊗ y) = sup
β(p−q)≤1
‖y‖≤1

| 〈(p− q)⊗ y∗, ϕ⊗ y〉 |

= sup
β(p−q)≤1
‖y‖≤1

|ϕ(p− q)y∗(y)|

= Lipβ(ϕ) ‖y∗‖
= ‖ϕ‖β ‖y∗‖.

The item (iii) follows from∣∣∣ 〈(p− q)⊗ y∗, v〉 ∣∣∣ =
∣∣∣ 〈 (p− q)⊗ y∗

β(p− q) ‖y∗‖
, v

〉 ∣∣∣β(p− q) ‖y∗‖

≤ β(p− q) ‖y∗‖ εβ(v)

with the obvious assumption that p 6= q and y∗ 6= 0.
For (iv) let

∑
i
ϕi ⊗ yi be a representation of v, then

∣∣∣ 〈(a− b)⊗ w∗, A⊗B(v)〉
∣∣∣ =

∣∣∣〈(a− b)⊗ w∗,
∑
i

A(ϕi)⊗Byi

〉∣∣∣
=

∣∣∣∑
i

[A(ϕi)(a)−A(ϕi)(b)] w
∗(Byi)

∣∣∣
=

∣∣∣∑
i

[(A∗δa −A∗δb)ϕi] B∗(w∗)yi
∣∣∣

=
∣∣∣ 〈[A∗(δa)−A∗(δb)]⊗B∗(w∗), v〉 ∣∣∣

≤ β(A∗(δa)−A∗(δb)) ‖B∗(w∗)‖ εβ(v)

≤ ‖A‖ ‖B‖ θ(a− b) ‖w∗‖ εβ(v).

Hence εθ(A⊗B(v)) ≤ ‖A‖ ‖B‖ εβ(v).

The next result exhibits the relation between the injective Σ-tensor norm on duals and
the projective Σ-tensor norm on spaces.

Proposition 2.9. Let (X1, . . . , Xn, Y, β) be an election in BAN . Then(
Lβ (X1, . . . , Xn)⊗ Y, εβ

)
→
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, πβ

)∗
and (

Lβ (X1, . . . , Xn)⊗ Y ∗, εβ
)
→
(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)∗
are linear into isometries.
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Proof. First, let us prove that every v defines a bounded functional. For this end, let u
be in

(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, πβ

)
. We have that

| 〈v, u〉 | =
∣∣∣〈v,∑

i

(pi − qi)⊗ y∗i

〉∣∣∣
≤

∑
i

| 〈v , (pi − qi)⊗ y∗i 〉 |

≤ εβ(v)
∑
i

β(pi − qi) ‖y∗i ‖

holds for all representations of u of the form
∑
i

(pi − qi) ⊗ y∗i . Hence, v defines a bounded

linear functional and ‖v :
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, πβ

)
→ K‖ ≤ εβ(v). On the other hand,

| 〈(p− q)⊗ y∗ , v〉 | = | 〈v , (p− q)⊗ y∗〉 |
≤ ‖v : (X1 ⊗ . . .⊗Xn ⊗ Y ∗, πβ)→ K‖πβ((p− q)⊗ y)

implies that εβ(v) ≤ ‖v :
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, πβ

)
→ K‖.

In addition, for each v =
∑
j
ϕj ⊗ y∗j in

(
Lβ (X1, . . . , Xn)⊗ Y ∗, εβ

)
we have

εβ(v) = sup

 |
〈

(p− q)⊗ y∗∗,
∑
j

ϕj ⊗ y∗j

〉
|
∣∣∣ β(p− q) ≤ 1, ‖y∗∗‖ ≤ 1

 .

= sup

 |∑
j

ϕj(p− q) y∗∗(y∗j )|
∣∣∣ β(p− q) ≤ 1, ‖y∗∗‖ ≤ 1

 .

= sup

 |
〈
y∗∗ ,

∑
j

ϕj(p− q) y∗j

〉
|
∣∣∣ β(p− q) ≤ 1, ‖y∗∗‖ ≤ 1

 .

= sup

 |
〈∑

j

ϕj(p− q) y∗j , y

〉
|
∣∣∣ β(p− q) ≤ 1, ‖y‖ ≤ 1

 .

= sup
{
| 〈(p− q)⊗ y , v〉 |

∣∣∣ β(p− q) ≤ 1, ‖y‖ ≤ 1
}
.

Then,

| 〈v, u〉 | =
∣∣∣〈v,∑

i

(pi − qi)⊗ yi

〉∣∣∣
≤

∑
i

| 〈v , (pi − qi)⊗ yi〉 |

≤ εβ(v)
∑
i

β(pi − qi) ‖yi‖
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asserts that every v in
(
Lβ (X1, . . . , Xn)⊗ Y ∗, εβ

)
defines a bounded linear functional and

‖v :
(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)
→ K‖ ≤ εβ(v). Finally,

| 〈(p− q)⊗ y , v〉 | = | 〈v , (p− q)⊗ y〉 |

≤ ‖v :
(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)
→ K‖πβ((p− q)⊗ y)

implies that εβ(v) ≤ ‖v :
(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)
→ K‖.

Within the proof of Proposition 2.9 we may find that

εβ(v) = sup

 |
〈∑

j

ϕj(p− q) y∗j , y

〉
|
∣∣∣ β(p− q) ≤ 1, ‖y‖ ≤ 1


holds for all v in

(
Lβ (X1, . . . , Xn)⊗ Y ∗, εβ

)
. This identity proves that the finite rank Σ-operator

defined by v verifies Lipβ(v) = εβ(v). In other words,(
Lβ (X1, . . . , Xn)⊗ Y ∗, εβ

)
= F

(
Σβ
X1...Xn

;Y ∗
)

holds linearly and isometrically when F
(

Σβ
X1...Xn

;Y ∗
)

is considered as a normed subspace of(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, πβ

)∗
. The duality of the injective Σ-tensor norm on duals and the pro-

jective Σ-tensor norm on spaces provides a complete picture of the representation of bounded
Σ-operators as is shown in the diagram

(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)∗ // L
(

Σβ
X1...Xn

, Y ∗
)

(
Lβ (X1, . . . , Xn)⊗ Y ∗, εβ

)
OO

// F
(

Σβ
X1...Xn

;Y ∗
)

OO

(2.1)

where the horizontal arrows are linear isometric isomorphisms and the vertical arrows are
linear isometries.

Actually, the second embedding of Proposition 2.9 still holds for Σ-tensor norms under
certain conditions, see Theorem 3.9.

The combination of Propositions 2.6 and 2.9 gives us the isometry(
Lβ (X1, . . . , Xn)⊗ Y, εβ

)
→

(
F
(

Σβ
X1...Xn

;Y
)
, Lipβ(·)

)
(2.2)∑

i

ϕ⊗ yi 7→
∑
i

ϕ · yi
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We denote the completion of
(
Lβ (X1, . . . , Xn)⊗ Y, εβ

)
by
(
Lβ (X1, . . . , Xn) ⊗̂Y, ε̂β

)
. The

operator (2.2) can be extended to the completion to obtain the isometry(
Lβ (X1, . . . , Xn) ⊗̂Y, ε̂β

)
→ F

(
Σβ
X1...Xn

;Y
)
,

where the closure on the operators is calculated in L
(

Σβ
X1...Xn

, Y
)

. All the Σ-operators in

F
(

Σβ
X1...Xn

;Y
)

are called approximable. Therefore, the Σ-operator f : Σβ
X1...Xn

→ Y is

approximable if there exist a sequence of finite rank Σ-operators fn : Σβ
X1...Xn

→ Y , whose

linearization is bounded on (X1 ⊗ . . .⊗Xn, β), such that Lipβ(f − fn)→ 0.

On the space Lβ (X1, . . . , Xn)⊗ Y it is possible to define a projective norm as follows.

Definition 2.10. Let (X1, . . . , Xn, Y, β) be an election in BAN . The projective Σ-tensor
norm on duals on Lβ (X1, . . . , Xn)⊗ Y is defined by

πβ(v) := inf

{∑
i

Lipβ(ϕi)‖yi‖
∣∣∣ v =

∑
i

ϕi ⊗ yi

}
.

The projective Σ-tensor norm on duals enjoys the same properties as the injective Σ-tensor
norm on duals as is shown in the next proposition.

Proposition 2.11. For any election (X1, . . . , Xn, Y, β) in BAN we have

i) πβ is a norm on X1 ⊗ . . .⊗Xn ⊗ Y .

ii) πβ(ϕ⊗ y) ≤ ‖ϕ‖β‖y‖.

iii) sup
β(p−q)≤1
‖y∗‖≤1

∣∣ 〈(p− q)⊗ y∗ , v〉 ∣∣ ≤ πβ(v) for every v ∈ Lβ (X1, . . . , Xn)⊗ Y.

iv) If A : Lβ (X1, . . . , Xn)→ Lθ (Z1, . . . , Zn) and B : Y →W are linear operators such that
A preserves Σ then

A⊗B :
(
Lβ (X1, . . . , Xn)⊗ Y, πβ

)
→

(
Lθ (Z1, . . . , Zn)⊗W,πθ

)
ϕ⊗ y 7→ A(ϕ)⊗B(y)

is bounded and ‖A⊗B‖ ≤ ‖A‖‖B‖.
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Proof. As before, (i) is routine and (ii) is deduced directly from the definition. To prove
(iii) let v =

∑
i
ϕ⊗ yi, then

| 〈(p− q)⊗ y∗ , v〉 | =
∣∣∣∑

i

ϕ(p− q)y∗(yi)
∣∣∣

≤ β(p− q) ‖y∗‖
∑
i

Lipβ(ϕi) ‖yi‖

holds for all p, q ∈ ΣX1...Xn and Y ∗ ∈ y∗. The verification of (iv) is easy to see also. First,
notice that Lipβ(Aϕ) ≤ ‖A‖Lipβ(ϕ) since A preserves Σ. Then∑

i

Lipβ(Aϕi) ‖Byi‖ ≤ ‖A‖ ‖B‖
∑
i

Lipβ(ϕi) ‖yi‖

completes the proof.

Going further, we may define an injective Σ-tensor norm on spaces as follows.

Definition 2.12. Let (X1, . . . , Xn, Y, β) be an election in BAN . We define the injective
Σ-tensor norm on spaces on X1 ⊗ . . .⊗Xn ⊗ Y by

εβ(u) := sup
{
| 〈ϕ⊗ y∗ , u〉 |

∣∣∣ ‖ϕ‖β ≤ 1, ‖y∗‖ ≤ 1
}

for all u in X1 ⊗ . . .⊗Xn ⊗ Y .

It is clear that in this case the spaces(
X1 ⊗ . . .⊗Xn ⊗ Y, εβ

)
= ((X1 ⊗ . . .⊗Xn, β)⊗ Y, ε)

are isometrically linearly isomorphic.

Proposition 2.13. For any election (X1, . . . , Xn, Y, β) in BAN we have that:

i) εβ is a norm on X1 ⊗ . . .⊗Xn ⊗ Y .

ii) εβ((p− q)⊗ y) ≤ β(p− q)‖y‖ for all p, q ∈ Σ and y ∈ Y .

iii) The functional

ϕ⊗ y∗ :
(
X1 ⊗ . . .⊗Xn ⊗ Y, εβ

)
→ K

x1 ⊗ . . .⊗ xn ⊗ y 7→ ϕ(x1 ⊗ . . .⊗ xn)y∗(y)

is bounded and ‖ϕ⊗ y∗‖ ≤ ‖ϕ‖β ‖y∗‖ for all ϕ ∈ Lβ (X1, . . . , Xn) and y∗ ∈ Y ∗.
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iv) For any Σ-θ-operator fR : Σθ
Z1...Zn

→ Σβ
X1...Xn

and bounded linear operator S : W → Y ,
the operator

fR ⊗ S :
(
Z1 ⊗ . . .⊗ Zn ⊗W, εθ

)
→

(
X1 ⊗ . . .⊗Xn ⊗ Y, εβ

)
z1 ⊗ . . .⊗ zn ⊗ w 7→ fR(z1 ⊗ . . .⊗ zn)⊗ S(w)

is bounded and ‖R⊗ S‖ ≤ ‖R‖‖S‖.

Proof. In this situation (ii), (iii) and (iv) are particular cases of the injective tensor
product of normed spaces ((X1 ⊗ . . .⊗Xn, β)⊗ Y, ε).

In geometrical terms, the projective Σ-tensor norms πβ and πβ can be viewed as the
Minkowski gauge functionals of certain closed convex hulls of subsets of X1 ⊗ . . . ⊗Xn ⊗ Y
and Lβ (X1, . . . , Xn)⊗ Y .

Proposition 2.14. Let (X1, . . . , Xn, Y, β) be an election in BAN . Then:

i) The unit ball of
(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)
coincides with the closed convex hull of the set

(Σ− Σ) ∩B(X1⊗...⊗Xn,β) ⊗BY = { (p− q)⊗ y | β(p− q) ≤ 1, ‖y‖ ≤ 1 } .

ii) The unit ball of the normed space
(
Lβ (X1, . . . , Xn)⊗ Y, πβ

)
coincides with the convex

hull of the set {
ϕ⊗ y | Lipβ(ϕ) ≤ 1, ‖y‖ ≤ 1

}
.

Proof. Let u be such that πβ(u) < 1. By definition of the projective Σ-tensor norm,

there exists a representation of u of the form
m∑
i=1

(pi − qi) ⊗ yi with
∑
i
β(pi − qi) ‖yi‖ < 1.

Plainly, we may suppose that pi 6= qi and yi 6= 0. We have that

u =

m∑
i=1

(pi − qi)⊗ yi =
∑
i

β(pi − qi) ‖yi‖
pi − qi

β(pi − qi)
⊗ yi
‖yi‖

.

This new representation of u asserts that u ∈ con
(
(Σ− Σ) ∩B(X1⊗...⊗Xn,β) ⊗BY

)
. As a

consequence, the whole unit ball of (X1 ⊗ . . .⊗Xn, β) is contained as well.
Conversely, suppose u lies in the closed convex hull of (Σ− Σ)∩B(X1⊗...⊗Xn,β)⊗BY . Thus,

u admits a representation
∑
i
λi (pi − qi)⊗ yi with

∑
i
|λi| ≤ 1. Hence

πβ(u) ≤
∑
i

|λi|β(pi − qi) ‖yi‖ ≤ 1

finishes the proof of (i).
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For (ii), let v with πβ(v) < 1. Choose a representation of v of the form
∑
i
ϕi ⊗ yi such

that
∑
i
Lipβ(ϕi) ‖yi‖ < 1. We modify the representation as before to get

v =
∑
i

Lipβ(ϕi) ‖yi‖ =
∑
i

Lipβ(ϕi) ‖yi‖
ϕ

Lipβ(ϕi)

yi
‖yi‖

,

and deduce that v lies in con{ ϕ ⊗ y | Lipβ(ϕ) ≤ 1, ‖y‖ ≤ 1 }. Hence, the whole unit
ball is also contained. For the converse contention take v =

∑
i
λiϕi ⊗ yi with

∑
i
|λi| ≤ 1,

Lipβ(ϕi) ≤ 1 and ‖yi‖ ≤ 1. Finally,

πβ(v) ≤
∑
i

|λi|Lipβ(ϕi) ‖yi‖ ≤ 1

completes the proof.

A non trivial example of a norm on X1⊗ . . .⊗Xn⊗Y that enjoys the properties of the pro-
jective Σ-tensor norm on spaces was provided by Jorge Angúlo in his doctoral dissertation [6].

Definition 2.15. Given an election (X1, . . . , Xn, Y, β) in BAN , and p ∈ [1,∞]we define the

norm dβp on X1 ⊗ . . .⊗Xn ⊗ Y by

dβp (u) = inf

{
‖ (pi − qi)i ‖

wβ
p∗ ‖ (yi)i ‖p

∣∣∣ u =
∑
i

(pi − qi)⊗ yi

}
.

Proposition 2.16. For any election (X1, . . . , Xn, Y, β) in BAN we have:

i) dβp is a norm on X1 ⊗ . . .⊗Xn ⊗ Y .

ii) dβp ((p− q)⊗ y) ≤ β(p− q)‖y‖ for all p, q ∈ Σ and y ∈ Y .

iii) The functional

ϕ⊗ y∗ :
(
X1 ⊗ . . .⊗Xn ⊗ Y, dβp

)
→ K

x1 ⊗ . . .⊗ xn ⊗ y 7→ ϕ(x1 ⊗ . . .⊗ xn)y∗(y)

is bounded and ‖ϕ⊗ y∗‖ ≤ ‖ϕ‖β‖y∗‖ for all ϕ ∈ Lβ (X1, . . . , Xn) and y∗ ∈ Y ∗.

iv) For any Σ-θ-operator fR : Σθ
Z1...Zn

→ Σβ
X1...Xn

and bounded linear operator S : W → Y ,
the operator

fR ⊗ S :
(
Z1 ⊗ . . .⊗ Zn ⊗W,dθp

)
→

(
X1 ⊗ . . .⊗Xn ⊗ Y, dβp

)
z1 ⊗ . . .⊗ zn ⊗ w 7→ fR(z1 ⊗ . . .⊗ zn)⊗ S(w)

is bounded and ‖fR ⊗ S‖ ≤ ‖R̃‖‖S‖.



34 Ideals of Σ-Operators and Σ-Tensor Norms

Proof. Part (i) was proved in the doctoral dissertation of Jorge Angulo [6].

We claim that
εβ(u) ≤ dβp (u) ≤ πβ(u)

holds for all u in X1 ⊗ . . . ⊗ Xn ⊗ Y . To see this affirmation, fix a representation of u of

the form
m∑
i=1

(pi − qi)⊗ yi, and let ϕ ∈ Lβ (X1, . . . , Xn) and y∗ ∈ Y ∗. Then, the inequality of

Hölder implies

| 〈ϕ⊗ y , u〉 | =

∣∣∣∣∣∑
i

ϕ(pi − qi) y∗(yi)

∣∣∣∣∣
≤

(∑
i

|ϕ(pi − qi)|p∗
)1/p∗ (∑

i

|y∗(yi)|p
)1/p

≤ ‖ϕ‖β ‖y∗‖ ‖ (pi − qi)i ‖
w
p∗ ‖ (yi)i ‖p.

Hence, εβ(u) ≤ ‖ (pi − qi)i ‖
wβ
p∗ ‖ (yi)i ‖p. After taking the infimum over all representations of

u we obtain εβ(u) ≤ dβp (u) for all u.
On the other hand,

dβp ((p− q)⊗ y) ≤ β(p− q) ‖y‖
is obvious since we have sequences of just one element. In particular, the triangle inequality
implies that dβp (u) ≤ πβ(u) is true for all u.

The condition εβ(u) ≤ dβp (u) for all u implies that any bounded linear functional on(
X1 ⊗ . . .⊗Xn ⊗ Y, εβ

)
is also bounded on

(
X1 ⊗ . . .⊗Xn ⊗ Y, dβp

)
. In particular (iii) is

proved.

Finally, to prove (iv) we use Proposition 1.6. For any representation
∑
i

(ai − bi) ⊗ wi of

u ∈ Z1 ⊗ . . .⊗ Zn ⊗W we have

dβp (fR ⊗ S(u)) ≤ ‖(fR(ai)− fR(bi))‖wβp ‖(Swi)‖p
≤ ‖R̃‖ ‖S‖ ‖(ai − bi)‖wθp ‖(wi)‖.

After taking the infimum over all the representations of u we obtain

dβp (fR ⊗ S(u)) ≤ ‖R̃‖ ‖S‖ dβp (u)

for all u.

In the doctoral dissertation of Jorge Angulo [6] the following theorem is proved for the
case β = π. Slight modifications can be done for the general case.



Σ-Tensor Norms 35

Theorem. Let (X1, . . . , Xn, Y, β) be an election in the class BAN . Then(
X1 ⊗ . . .⊗Xn ⊗ Y, dβp

)∗
→ Πp

(
Σβ
X1...Xn

;Y ∗
)

ϕ 7→ fϕ

is a linear isometric isomorphism.

2.2.2 Σ-Tensor Norms on Spaces

The previous section provides the linear isometric isomorphisms(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)∗
= L

(
Σβ
X1...Xn

, Y ∗
)

and (
X1 ⊗ . . .⊗Xn ⊗ Y, dβp

)∗
= Πp

(
Σβ
X1...Xn

;Y ∗
)
.

In this section we establish the theoretical framework for these type of norms. Here, the
aim is to obtain a normed space such that the respective dual is linearly and isometrically
isomorphic to a component of an ideal of Σ-operators.

Next, we present the definition of a Σ-tensor norm on spaces. Although it is defined in
the class BAN , the definition makes perfect sense if we restrict our attention to other classes
such as NORM, or the important class FIN .

Definition 2.17. A Σ-tensor norm on spaces α on the class of BAN assigns, to each election
(X1, . . . , Xn, Y, β) in BAN , a norm αβ on the algebraic tensor product X1 ⊗ . . . ⊗ Xn ⊗ Y
such that:

S1 αβ((p− q)⊗ y) ≤ β(p− q) ‖y‖ for every p, q ∈ ΣX1...Xn and y ∈ Y .

S2 For every ϕ ∈ Lβ (X1, . . . , Xn) and y∗ ∈ Y the linear functional

ϕ⊗ y∗ : X1 ⊗ . . .⊗Xn ⊗ Y → K
x1 ⊗ . . .⊗ xn ⊗ y 7→ ϕ(x1 ⊗ . . .⊗ xn)y∗(y)

is bounded and ‖ϕ⊗ y∗‖ ≤ ‖ϕ‖β ‖y∗‖.

S3 If fR : Σθ
Z1...Zn

→ Σβ
X1...Xn

and S : W → Y denote a Σ-θ-operator and a bounded linear
operator respectively, then the tensor product operator

fR ⊗ S :
(
Z1 ⊗ . . .⊗ Zn ⊗W,αθ

)
→

(
X1 ⊗ . . .⊗Xn ⊗ Y, αβ

)
z1 ⊗ . . .⊗ zn ⊗ w 7→ fR(z1 ⊗ . . .⊗ zn)⊗ S(w)

is bounded and ‖fR ⊗ S‖ ≤ ‖R̃‖ ‖S‖.
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First of all, notice that in order to define a normed space using the Σ-tensor norm α, an
election (X1, . . . , Xn, Y, β) is required. Every u in X1 ⊗ . . . ⊗Xn ⊗ Y can be represented as
a finite sum of tensors of the form (p − q) ⊗ y with p, q in ΣX1...Xn and y in Y . Actually,
every representation of u in X1 ⊗ . . . ⊗Xn ⊗ Y can be transformed into a representation of
this form. For this approach, these elements play the role of the simple tensors of the linear
theory. Property S1 says that the norm αβ takes into account the metric structure of Σβ

X1...Xn
by dominating these simple tensors. In recent metric theory has appeared the notion of a
Lipschitz tensor product and a Lipschitz cross-norm on it. The principal reference for this
notion is [24]. In this case, the condition of being a Lipschitz cross-norm [24, Def 3.1] is
analogous to S1 for Σ-tensor norms on spaces. In our proposal we say that a norm αβ on
X1 ⊗ . . .⊗Xn ⊗ Y is crossed if it verifies S1.

On the other hand, S2 is a generalization of being reasonable. In this setting, the resulting
topological dual contains, at least, functionals of the form ϕ ⊗ y with ϕ being β-bounded.
Since we are in the case of resonable crossnorms on X1 ⊗ . . .⊗Xn then every tensor product
of functionals as x∗1 ⊗ . . . ⊗ x∗n is taken into account. In analogy with the metric theory of
[24], S2 plays the role of being dualizable for a Lipschitz cross-norm, see [24, Def 3.1]. In this
dissertation we say that a norm αβ is reasonable if it satisfies S2.

Finally, S3 generalizes the uniform property. It takes into account Σ-θ-operators which,
as we said above, are compatible with the induced topologies on Σβ

X1...Xn
and Σθ

Z1...Zn
.

In other words, α is a Σ-tensor norm on spaces in the class BAN if for all elections
(X1, . . . , Xn, Y, β) in BAN it assigns a reasonable crossnorm αβ which verifies the uniform
property.

Notice that the assignments π : (X1, . . . , Xn, Y, β) 7→ πβ and ε : (X1, . . . , Xn, Y, β) 7→ εβ

are Σ-tensor norms on spaces. Actually, just as in the linear case, these norms codify the fact
of being reasonable and crossed for Σ-tensor norms on spaces as we prove next.

Proposition 2.18. Let (X1, . . . , Xn, Y, β) be an election in the class BAN . A norm αβ on
X1 ⊗ . . .⊗Xn ⊗ Y is reasonable and crossed if and only if

εβ(u) ≤ αβ(u) ≤ πβ(u)

for all u in X1 ⊗ . . .⊗Xn ⊗ Y .

Proof. First, we prove the necessity. The combination of S1 and the triangle inequality
implies that

αβ(u) ≤
∑
i

αβ((pi − qi)⊗ yi) ≤
∑
i

β(p− q) ‖yi‖

holds for all representations of u. Thus, αβ(u) ≤ πβ(u). On the other hand, S2 asserts that

| 〈ϕ⊗ y∗ , u〉 | ≤ ‖ϕ‖β ‖y∗‖αβ(u).
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Hence εβ(u) ≤ αβ(u).

The sufficiency is also direct. Condition S1 is deduced form

αβ((p− q)⊗ y) ≤ πβ((p− q)⊗ y) = β(p− q) ‖y‖

while, for S2, simply notice that εβ(u) ≤ αβ(u) implies

| 〈ϕ⊗ y , u〉 | ≤ ‖ϕ‖β ‖y‖ εβ(u) ≤ ‖ϕ‖β ‖y‖αβ(u).

In other words, Proposition 2.18 asserts that π is the greatest Σ-tensor norm on spaces
and ε is the least Σ-tensor norm on spaces.

Corollary 2.19. Let α be a Σ-tensor norm on spaces. Let (X1, . . . , Xn, Y, β) be an election
in BAN . Then:

i) αβ((p− q)⊗ y) = β(p− q) ‖y‖.

ii) Lipβ(ϕ) ‖y∗‖ ≤ ‖ϕ⊗ y∗ :
(
X1 ⊗ . . .⊗Xn ⊗ Y, αβ

)
→ K‖ ≤ ‖ϕ‖β ‖y∗‖.

Proof. Proposition 2.18 implies

β(p− q) ‖y‖ = εβ((p− q)⊗ y) ≤ αβ((p− q)⊗ y) ≤ πβ((p− q)⊗ y) = β(p− q) ‖y‖

and

Lipβ(ϕ) ‖y∗‖ = ‖ϕ⊗ y∗ :
(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)
→ K‖

≤ ‖ϕ⊗ y∗ :
(
X1 ⊗ . . .⊗Xn ⊗ Y, αβ

)
→ K‖

≤ ‖ϕ⊗ y∗ :
(
X1 ⊗ . . .⊗Xn ⊗ Y, εβ

)
→ K‖

≤ ‖ϕ‖β ‖y∗‖.

In Corollary 2.19 affirmation (ii) is an equality for the case of β = π(·;X1, . . . , Xn).
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2.2.3 Σ-Tensor Norms on Duals

In diagram (2.1) we saw that the space F
(

Σβ
X1...Xn

;Y ∗
)

endowed with the Lipschitz norm

of the space L
(

Σβ
X1...Xn

;Y ∗
)

is linearly and isometrically isomorphic to the normed space(
Lβ (X1, . . . , Xn)⊗ Y ∗, εβ

)
. In this section we present the theoretical framework of the norms

like the injective Σ-tensor norm on duals ε.

Definition 2.20. A Σ-tensor norm on duals ν on the class of Banach spaces assigns, to each
election (X1, . . . , Xn, Y, β) in BAN , a norm νβ on the tensor product Lβ (X1, . . . , Xn) ⊗ Y
with the following properties:

D1 νβ(ϕ⊗ y) ≤ ‖ϕ‖β‖y‖ for every ϕ ∈ Lβ (X1, . . . , Xn) , y ∈ Y.

D2 sup
β(p−q)≤1
‖y∗‖≤1

∣∣ 〈(p− q)⊗ y∗ , v〉 ∣∣ ≤ νβ(v) for every v ∈ Lβ (X1, . . . , Xn)⊗ Y.

D3 If A : Lβ (X1, . . . , Xn) → Lθ (Z1, . . . , Zn) and B : Y → W denote bounded linear
operators where A preserves Σ, then the linear operator

A⊗B :
(
Lβ (X1, . . . , Xn)⊗ Y, νβ

)
→

(
Lθ (Z1, . . . , Zn)⊗W, νθ

)
ϕ⊗ y 7→ A(ϕ)⊗B(y)

is bounded and ‖A⊗B‖ ≤ ‖A‖ ‖B‖.

Σ-tensor norms on duals, similar to the version on spaces, also makes sense for the classes
NORM and FIN .

As well as in the case of Σ-tensor norm on spaces (and ideals of Σ-operators), for defining a
normed space using the Σ-tensor norm on duals ν we should fix an election (X1, . . . , Xn, Y, β).
In this case the simple tensors are those of Lβ (X1, . . . , Xn)⊗ Y . Thus, D1 means that νβ is
crossed in the usual sense. Notice that Σ-tensor norms on duals have no analogue neither in
the case of tensor norms for 2-fold tensor products nor multilinear tensor norms in the sense
of [56] since the case n = 1 reduces to considering only spaces of the form X∗ ⊗ Y . Despite
this fact, Σ-tensor norms on duals have more analogies with the metric theory of [24]. To be
precise, with the Lipschitz cross-norms defined on the associated Lipschitz tensor product of
a Lipschitz tensor product, see [24, Def 2.3, 3.5]. A norm νβ on Lβ (X1, . . . , Xn) ⊗ Y is said
to be crossed if it satisfies D1.

Property D2 tell us that the resulting topological dual contains the linear functionals de-
fined by p, q in ΣX1...Xn and y∗ in Y ∗. Plainly, this is a weaker condition than being reasonable
in the usual sense. We say that a norm νβ on Lβ (X1, . . . , Xn)⊗Y is reasonable if it satisfies D2.
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Property D3 is also a weaker condition of being uniform in the usual sense because we
need Σ to be preserved.

In other words, a Σ-tensor norm on duals assigns to each election (X1, . . . , Xn, Y, β) a
reasonable crossnorm νβ which verifies the uniform property.

Proposition 2.21. A norm νβ is a reasonable crossnorm if and only if

εβ(v) ≤ νβ(v) ≤ π(v; Lβ (X1, . . . , Xn)Y )

holds for all v.

Proof. Plainly, the inequality εβ(v) ≤ νβ(v) is exactly condition D2. Now, if νβ satisfies
D1 then the triangle inequality implies

νβ

(∑
i

ϕi ⊗ yi

)
≤
∑
i

‖ϕi)‖β ‖yi‖.

Hence νβ(v) ≤ π(v; Lβ (X1, . . . , Xn) , Y ). For the converse, νβ(v) ≤ π(v; Lβ (X1, . . . , Xn) , Y )
in the particular case v = ϕ⊗ y asserts that νβ(ϕ⊗ y) ≤ ‖ϕ‖β ‖y‖.

Corollary 2.22. Let ν be a Σ-tensor norm on duals. For any election (X1, . . . , Xn, Y, β) we
have:

i) Lipβ(ϕ) ‖y‖ ≤ νβ(ϕ⊗ y) ≤ ‖ϕ‖β ‖y‖ for all ϕ ∈ Lβ (X1, . . . , Xn) and y ∈ Y .

ii) ‖(p − q) ⊗ y∗ :
(
Lβ (X1, . . . , Xn)⊗ Y, νβ

)
→ K‖ = β(p − q) ‖y∗‖ for all p, q ∈ ΣX1...Xn

and y∗ ∈ Y ∗.

Proof. For (i) it is enough to notice that εβ(ϕ⊗ y) = Lipβ(ϕ) ‖y‖.

Condition D2 implies ‖(p− q)⊗y∗ :
(
Lβ (X1, . . . , Xn)⊗ Y, νβ

)
→ K‖ ≤ β(p− q) ‖y∗‖. For

the converse, let η > 0. Choose y in BY such that ‖y∗‖ < (1− η) |y∗(y)|. On the other hand,
apply the Hahn-Banach theorem to find a functional ϕ in the unit ball of Lβ (X1, . . . , Xn)
such that ϕ(p− q) = β(p− q). Then,

β(p− q) ‖y∗‖ < (1− η)ϕ(p− q) |y∗(y)| = (1− η) | 〈(p− q)⊗ y , ϕ⊗ y〉 |

ensures that β(p− q) ≤ ‖(p− q)⊗ y∗ :
(
Lβ (X1, . . . , Xn)⊗ Y, νβ

)
→ K‖.

In this dissertation the most interesting usage of a Σ-tensor norm on duals occurs when
we deal with spaces like Lβ (X1, . . . , Xn) ⊗ Y ∗. This space is naturally algebraically embed-

ded into the algebraic dual of X1⊗. . .⊗Xn⊗Y , and is linearly isomorphic to F
(

Σβ
X1...Xn

;Y ∗
)

.
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2.3 Association in the Class FIN
The natural algebraic embedding

Lβ (X1, . . . , Xn)⊗ Y ∗ → (X1 ⊗ . . .⊗Xn ⊗ Y )#

given by evaluation becomes a linear isomorphism if the involved spaces are finite dimensional.
That is,

Lβ (E1, . . . , En)⊗ F ∗ ∼= (E1 ⊗ . . .⊗ En ⊗ F )∗

is a linear isomorphism for all finite dimensional normed spaces Ei and F . Under these cir-
cumstances it is easy to see that every Σ-tensor norm on spaces defines a Σ-tensor norm on
duals and vice versa in the class FIN , compare with [41, Sec. 15.2], [93, 7.1] and [65].

Theorem 2.23. Every Σ-tensor norm on spaces α on the class FIN defines a Σ-tensor
norm on duals ν on the class FIN by(

Lβ (E1, . . . , En)⊗ F, νβ
)

:=
(
E1 ⊗ . . .⊗ En ⊗ F ∗, αβ

)∗
.

Every Σ-tensor norm on duals ν on the class FIN defines a Σ-tensor norm on spaces α on
the class FIN by(

E1 ⊗ . . .⊗ En ⊗ F, αβ
)

:=
(
Lβ (E1, . . . , En)⊗ F ∗, νβ

)∗
Proof. We first prove that a Σ-tensor norm on spaces defines a Σ-tensor norm on duals.

Let α be a Σ-tensor norm on spaces and let (E1, . . . , En, F, β) be an election in FIN .

νβ is crossed: D1 is equivalent to S2 since

νβ(ϕ⊗ y) := ‖ϕ⊗ y :
(
E1 ⊗ . . .⊗ En ⊗ F ∗, αβ

)
→ K‖ ≤ ‖ϕ‖β ‖y‖.

νβ is reasonable: By the finite dimension hypothesis we have that the functionals defined
by (p− q)⊗ y∗ are bounded. The definition of νβ implies

sup
νβ(v)≤1

| 〈(p− q)⊗ y∗ , v〉 | = αβ((p− q)⊗ y∗) ≤ β(p− q) ‖y∗‖.

In other words, νβ verifies D2.

νβ verifies the uniform property: Let (M1, . . . ,Mn, N, θ) be an election in FIN . Let
A : Lβ (E1, . . . , En) → Lθ (M1, . . . ,Mn) be a bounded linear operator that preserves Σ. The
finite dimensional assumption lets us consider A∗ : (M1 ⊗ . . .⊗Mn, θ) → (E1 ⊗ . . .⊗ En, β).
The linearity of A∗ lets us define the multilinear operator

T : M1 × · · · ×Mn → (E1 ⊗ . . .⊗ En, β)

(z1, . . . , zn) 7→ A∗(z1 ⊗ . . .⊗ zn).



Association in the Class FIN 41

The universal property of the tensor product implies T̃ = A∗, so T̃ is θ-bounded. Even more,
the set {A∗(p) | p ∈ ΣM1...Mn} is contained in ΣE1...En since A preserves Σ. In other words,
the associated Σ-operator of T , given by

fT : Σθ
M1...Mn

→ (E1 ⊗ . . .⊗ En, β)

p 7→ A∗(p)

is a Σ-θ-operator.

On the other hand, let B : N → F be a linear operator. The uniform property of α implies
that

fT ⊗B∗ :
(
M1 ⊗ . . .⊗Mn ⊗N∗, αθ

)
→

(
E1 ⊗ . . .⊗ En ⊗ F ∗, αβ

)
x1 ⊗ . . .⊗ xn ⊗ y∗ 7→ fT (x1 ⊗ . . .⊗ xn)⊗B∗y∗

is bounded and ‖fT ⊗B∗‖ ≤ ‖T̃‖ ‖B∗‖.
To prove the boundedness of

A⊗B :
(
Lβ (E1, . . . , En)⊗ F, νβ

)
→
(
Lθ (M1, . . . ,Mn)⊗N, νθ

)
let us estimate

| 〈A⊗B(v) , u〉
∣∣ = | 〈v , A∗ ⊗B∗(u)〉 |

=
∣∣∣ 〈v , fT ⊗B∗(u)〉

∣∣
≤ νβ(v)αβ (fT ⊗B∗(u);EiF )

≤ νβ(v) ‖A‖ ‖B‖αθ(u;MiN).

After taking the supremum over all αθ(u;MiN) ≤ 1 we obtain νθ(A⊗B(v)) ≤ νβ(v) ‖A‖ ‖B‖.

Let ν be a Σ-tensor norm on duals and (E1, . . . , En, F, β) be an election in FIN .

αβ is crossed: Property D2 asserts

αβ((p− q)⊗ y) = ‖(p− q)⊗ y :
(
Lβ (E1, . . . , En)⊗ F ∗, νβ

)
→ K‖ ≤ β(p− q) ‖y‖.

αβ is reasonable: Once again, the finite dimensional hypothesis implies

‖ϕ⊗ y∗ :
(
E1 ⊗ . . .⊗ En ⊗ F, αβ

)
→ K‖ = sup

αβ(u)≤1

| 〈ϕ⊗ y∗ , u〉 |

= νβ(ϕ⊗ y∗)
≤ ‖ϕ‖β ‖y∗‖.
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αβ verifies the uniform property: Let (M1, . . . ,Mn, N, θ) be another election in FIN .
Let fR : Σθ

M1...Mn
→ (E1 ⊗ . . .⊗ En, β) be a Σ-θ-operator. The bounded linear operator

R̃∗ : Lβ (E1, . . . , En)→ Lθ (M1, . . . ,Mn)

preserves Σ since its adjoint operator R̃∗∗ coincides with R̃ and R̃(p) = fR(p) ∈ Σβ
E1...En

for

all p ∈ Σθ
M1...Mn

.

Let S : N → F be a bounded linear operator. The uniform property of ν implies that

R̃∗ ⊗ S∗ :
(
Lβ (E1, . . . , En)⊗ F ∗, νβ

)
→
(
Lθ (M1, . . . ,Mn)⊗N∗, νθ

)
is bounded. Notice that the linear operators fR⊗S and R̃⊗S coincide. Therefore we obtain

(fR ⊗ S)∗ =
(
R̃⊗ S

)∗
. Finally,

| 〈fR ⊗ S(u) , v〉 | ≤ | 〈u , (fR ⊗ S)∗ (v)〉 |

≤ |
〈
u ,
(
R̃⊗ S

)∗
(v)
〉
|

≤ |
〈
u , R̃∗ ⊗ S∗(v)

〉
|

≤ αθ(u) νθ(R̃
∗ ⊗ S∗(v))

≤ αθ(u) ‖R̃‖ ‖S‖ νβ(v)

implies that αβ(fR ⊗ S(u)) ≤ αθ(u) ‖R̃‖ ‖S‖. So, α verifies the uniform property.

In other words, in the class FIN , the definition of the Σ-tensor norm on duals ν defined
by the Σ-tensor norm on spaces α as in Theorem 2.23, is the extension to the setting of
Σ-tensor norms of the dual tensor norm (for the case of two factors). This is, for the case
n = 1 we have ν = α′, see [41, Sec. 15.2], [93, Sec. 7.1].

We finish this chapter by relating Σ-tensor norms on duals and ideals of Σ-operators in
the case of finite dimensional spaces, see [41, Sec 17].

Theorem 2.24. Every Σ-tensor norm on duals ν on FIN defines an ideal [A, A] of Σ-operators
on FIN by

A
(

Σβ
E1...En

; F
)

:=
(
Lβ (E1, . . . , En)⊗ F, νβ

)
.

Conversely, every ideal of Σ-operators [A, A] on FIN defines a Σ-tensor norm on duals ν on
FIN , by (

Lβ (E1, . . . , En)⊗ F, νβ
)

:= A
(

Σβ
E1...En

; F
)
.
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Proof. Let ν be a Σ-tensor norm on duals.

[A, A] verifies I1 : Let ϕ · y : Σβ
E1...En

→ F be a rank-one Σ-operator with ϕ in

Lβ (E1, . . . , En) and y in F . Then A(ϕ⊗ y) := νβ(ϕ⊗ y) ≤ ‖ϕ‖β ‖y‖.

[A, A] verifies I2 : Let p, q ∈ ΣE1...En and y∗ ∈ Y ∗. Then, if fT =
∑
i
ϕi · yi is associated

with vf =
∑
i
ϕi ⊗ yi we have

|tr
(
T̃Lpqy∗

)
| = |

∑
i

ϕi(p− q)y∗(y)|

= |

〈
(p− q)⊗ y∗ ,

∑
i

ϕi ⊗ yi

〉
|

≤ β(p− q) ‖y∗‖ νβ(vT )

= β(p− q) ‖y∗‖A(T ).

[A, A] verifies the ideal property: Consider the composition

Σθ
M1...Mn

fR // Σβ
E1...En

f // F
S // N

where fR is a Σ-θ-operator, f =
∑
i
ϕ · yi is an element of A

(
Σβ
E1...En

; F
)

and S : F → N is

a bounded linear operator. Then,s Proposition 1.5 and uniformity of ν imply

A(SffR) = νθ(vSffR)

= νθ

(
R̃∗ ⊗ S(vf )

)
≤ ‖R̃‖ ‖S‖ νβ(vf )

= ‖R̃‖ ‖S‖A(f).

Let [A, A] be an ideal of Σ-operators and (E1, . . . , En, F, β) be an election in FIN .

ν is crossed: Let ϕ⊗ y ∈ Lβ (E1, . . . , En)⊗ F be a simple tensor. Then

νβ(ϕ⊗ y) := A(ϕ⊗ y) ≤ ‖ϕ‖β ‖y‖.
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ν is reasonable: Let p, q ∈ ΣE1...En and y∗ ∈ Y ∗. If v
∑
i
ϕi⊗yi and Tv ∈ A

(
Σβ
E1...En

; F
)

is the associated operator, then

| 〈(p− q)⊗ y∗ , v〉 | = |
∑
i

ϕi(p− q) y∗(yi)|

= |tr
(
T̃vLpqy

)
|

≤ Aβ(Tv)β(p− q) ‖y∗‖
= νβ(v)β(p− q) ‖y∗‖

ensures that ‖(p− q)⊗ y∗ :
(
Lβ (E1, . . . , En)⊗ F, νβ

)
→ K‖ ≤ β(p− q) ‖y∗‖.

ν verifies the uniform property : Let (M1, . . . ,Mn, N, θ) be another election in FIN
and let A : Lβ (E1, . . . , En) → Lθ (M1, . . . ,Mn) be a bounded linear operators such that it
preserves Σ. Let B : F → N be a bounded linear operator. If we look carefully, we are in the
same situation of Theorem 2.23. That is,

fA : Σθ
M1...Mn

→ (E1 ⊗ . . .⊗ En, β)

p 7→ A∗(p)

is a Σ-θ-operator. If v =
∑
i
ϕi ⊗ yi, then A⊗B(v) =

(∑
i
Aϕi ⊗Byi

)
. Hence

〈∑
i

Aϕi ·Byi , q

〉
=

∑
i

Aϕi(q)Byi

=
∑
i

ϕiA
∗(q)Byi

= B

(∑
i

ϕiA
∗(q) yi

)
= B (fvA

∗(q))

= 〈BfvfA , q〉 .

Finally,

νθ (A⊗B(v)) = νβ (BfvfA)

≤ ‖A∗‖A(fv) ‖B‖
= ‖A‖‖B‖ νβ(v)

implies the boundedness of A⊗B :
(
Lβ (E1, . . . , En)⊗ F, νβ

)
→
(
Lθ (M1, . . . ,Mn)⊗N, νθ

)
.
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Theorem 2.23 when combined with Theorem 2.24 tell us that, if we are provided with
a Σ-tensor norm on duals then we may define a Σ-tensor norm on spaces and an ideal of
Σ-operators [A, A] on the class FIN in order to get the linear isometries(

Lβ (E1, . . . , En)⊗ F ∗, νβ
)

=
(
E1 ⊗ . . .⊗ En ⊗ F, αβ

)∗
= Aβ

(
Σβ
E1...En

; F ∗
)
. (2.3)
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Chapter 3

Main Theorems

This Chapter deals with the duality between ideals of Σ-operators and Σ-tensor norms in
the general case of Banach spaces. Specifically, we state equation (2.3) in infinite dimensions
under certain conditions on the ideal of Σ-operators and the Σ-tensor norms involved. We
show how to extend Σ-tensor norms and ideals of Σ-operators from FIN to BAN . These
procedures allow us to prove the Duality Theorem for Σ-tensor norms and the Representation
Theorem for Maximal Ideals of Σ-operators, see 3.9 and 3.13.

3.1 Extension From FIN to BAN
Let α be a Σ-tensor norm on BAN and (X1, . . . , Xn, Y, β) be an election. Consider Ei and
F finite dimensional subspaces of Xi and Y respectively. Fix the projective tensor norm (in
the sense of [41]) on X1 ⊗ . . . ⊗Xn and that of E1 ⊗ . . . ⊗ En. Since π (·;Ei) is the greatest
reasonable crossnorm on E1 ⊗ . . .⊗ En we have that, in the diagram

(E1 ⊗ . . .⊗ En, π) // (X1 ⊗ . . .⊗Xn, π)

Σπ
E1...En

OO

// Σπ
X1...Xn

OO

the vertical arrows are isometries and the horizontal are bounded and Lipschitz contractions
respectively. On the other hand, for π| we have that, in the next diagram

(E1 ⊗ . . .⊗ En, π|) // (X1 ⊗ . . .⊗Xn, π)

Σ
π|
E1...En

//

OO

Σπ
X1...Xn

OO

47
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all arrows are isometries. For each u in E1 ⊗ . . .⊗En ⊗ F two natural options arise, namely,

απ(·;Ei)(u;EiF ) and απ|(u;EiF ) = απ(·;Xi)(u;EiF ).

Since the projective tensor norm (in the sense of [41]) is not well behaved under subspaces,
the topologies on ΣE1...En induced by (E1 ⊗ . . .⊗ En, π) and (X1 ⊗ . . .⊗Xn, π) could be dif-
ferent. Our best option is to consider απ|(u;EiF ) because the resulting topologies induced
on ΣE1...En by (X1 ⊗ . . .⊗Xn, π) and (E1 ⊗ . . .⊗ En, π|) coincide. In the general case we
proceed in the same fashion.

For an arbitrary election (X1, . . . , Xn, Y, β) we have that

fEi : Σ
β|
E1...En

→ Σβ
X1...Xn

x1 ⊗ . . .⊗ xn 7→ x1 ⊗ . . .⊗ xn

is a Σ-β|-operator since its associated multilinear operator is the multilinear mapping given
by (x1, . . . , xn) 7→ x1 ⊗ . . .⊗ xn and ΣE1...En is a subset of ΣX1...Xn . The uniform property of
α applied to

fEi ⊗ IF :
(
E1 ⊗ . . .⊗ En ⊗ F, αβ|

)
→
(
X1 ⊗ . . .⊗Xn ⊗ Y, αβ

)
implies that

αβ(u;XiY ) ≤ αβ|(u;EiF )

holds for all u in X1⊗. . .⊗Xn⊗Y , Ei ∈ F(Xi) and F ∈ F(Y) such that u ∈ E1⊗. . .⊗En⊗F .

If we are in the presence of a Σ-tensor norm on spaces α on the class FIN then we define
the finite hull of α as follows.

Definition 3.1. If α is a Σ-tensor norm on spaces on the class FIN , then its finite hull is
defined as follows. For any election (X1, . . . , Xn, Y, β) in BAN define

~αβ(u) := inf
{
αβ|(u;Ei, F )

∣∣∣ Ei ∈ F(Xi), F ∈ F(Y ), u ∈ E1 ⊗ . . .⊗ En ⊗ F
}
.

A Σ-tensor norm α on the class BAN is said to be finitely generated if it coincides with its
finite hull, i.e. αβ = ~αβ for all elections (X1, . . . , Xn, Y, β) in BAN .

Plainly ~αβ is homogeneous and verifies the triangle inequality. To see that ~αβ(u) = 0
implies u = 0 notice that εβ(u) = 0 since εβ|(u; EiF ) ≤ αβ|(u; EiF ) holds for all Ei ∈ F(Xi)
and F ∈ F(Y ) such that u ∈ E1 ⊗ . . .⊗ En ⊗ F .
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Proposition 3.2. The injective and projective Σ-tensor norms on spaces are finitely gener-
ated.

Proof. Let (X1, . . . , Xn, Y, β) be an election in BAN and u ∈ X1⊗ . . .⊗Xn⊗Y . Choose
finite dimensional subspaces Ei and F of Xi and Y respectively such that u ∈ E1⊗. . .⊗En⊗F .
Let ϕ ∈ Lβ| (E1, . . . , En) such that ‖ϕ‖β| ≤ 1 and y∗ ∈ BF . Apply the Hahn-Banach theorem

to find functionals ψ and z∗ in Lβ (X1, . . . , Xn) and Y ∗ such that ψ = ϕ in E1 ⊗ . . . ⊗ En,
z∗ = y∗ in F , ‖ψ‖ = ‖ϕ‖ and ‖z∗‖ = ‖y∗‖. Then

| 〈ϕ⊗ y∗, u〉 | = | 〈ψ ⊗ z∗, u〉 |
≤ sup { | 〈ψ ⊗ z∗, u〉 | | ‖ψ‖β ≤ 1, ‖z∗‖ ≤ 1 } .
= εβ(u; XiY )

ensures that, εβ(u; XiY ) = εβ|(u; EiF ). In particular ε is a finitely generated Σ-tensor norm
on spaces.

For the projective case, let η > 0 and choose a representation of u of the form
m∑
i=1

(pi−qi)⊗yi

such that
∑
i
β(pi− qi) ‖y‖ < (1 + η)πβ(u; XiY ). Set pi = x1

i ⊗ . . .⊗xni and qi = z1
i ⊗ . . .⊗ zni

and define Ei as the finite dimensional subspace of Xi generated by {xi, zi} and F as the finite

dimensional subspace of Y generated by {yi}. In particular
m∑
i=1

(pi−qi)⊗yi is a representation

of u in the space E1 ⊗ . . .⊗ En ⊗ F . Hence,

πβ|(u; EiF ) ≤
∑
i

β|(pi − qi) ‖y‖

=
∑
i

β(pi − qi) ‖y‖

< (1 + η)πβ(u; XiY )

holds for all η > 0 which implies that π is a finite generated Σ-tensor norm on spaces.

The next proposition shows that taking the finite hull of a Σ-tensor norm on spaces is well
behaved.

Proposition 3.3. The finite hull of a Σ-tensor norm on spaces α defined on the class FIN
is a Σ-tensor norm on spaces on the class BAN . In general, if α is a Σ-tensor norm on
spaces on the class BAN then α ≤ ~α.

Proof. Let (X1, . . . , Xn, Y, β) be an election in BAN . To see that ~αβ is a reasonable
crossnorm, take u and finite dimensional subspaces Ei and F of Xi and Y respectively such
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that u ∈ E1 ⊗ . . .⊗ En ⊗ F . Then

εβ(u; XiY ) ≤ εβ|(u; EiF ) ≤ αβ|(u; EiF ) ≤ πβ|(u; EiF )

asserts that εβ(u) ≤ −→α β(u) ≤ πβ(u) holds in X1⊗ . . .⊗Xn⊗Y since πβ is finitely generated.
Thus, ~αβ is a reasonable crossed norm.

Let (Z1, . . . , Zn,W, θ) be another election in the class BAN . Let fR : Σθ
Z1...Zn

→ Σβ
X1...Xn

and S : W → Y be a Σ-θ-operator and a bounded linear operator respectively. Given
u ∈ Z1 ⊗ . . .⊗ Zn ⊗W and finite dimensional subspaces Mi and N of Zi and W respectively
with u ∈ M1 ⊗ . . . ⊗Mn ⊗ N , there exist finite dimensional subspaces Ei and F of Xi and
Y respectively such that fR(ΣM1...Mn) ⊂ ΣE1...En and S(N) ⊂ F . Consider the Σ-θ|-operator
associated to the multilinear operator R| : M1 × · · · ×Mn → (E1 ⊗ . . .⊗ En, β|)

fR| : Σ
θ|
M1...Mn

→ (E1 ⊗ . . .⊗ En, β|)
p 7→ fR(p).

The uniform property of α in the class FIN implies the boundedness of the operator

fR| ⊗ S :
(
M1 ⊗ . . .⊗Mn ⊗N,αθ|

)
→
(
E1 ⊗ . . .⊗ En ⊗ F, αβ|

)
.

Then,

~αβ(fR ⊗ S(u); XiY ) = αβ|
(
fR| ⊗ S|(u); EiF

)
≤ ‖R̃|‖ ‖S|‖αθ| (u; MiN)

≤ ‖R̃‖ ‖L‖αθ|(u; MiN)

holds for all Mi and N . Thus,

~αβ(fR ⊗ S(u); XiY ) ≤ ‖R̃‖ ‖S‖ ~αθ(u; ZiY )

ensures the boundedness of

fR ⊗ S :
(
Z1 ⊗ . . .⊗ Zn ⊗W, ~αθ

)
→
(
X1 ⊗ . . .⊗Xn ⊗ Y, ~αβ

)
.

If α is actually a Σ-tensor norm on spaces on the class BAN , then, to see α ≤ ~α it is
enough to remember that we have already proved that

αβ(u;XiY ) ≤ αβ|(u;EiF )

holds for all finite dimensional subspaces Ei and F .
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In the case of Σ-tensor norms on duals defined on the class FIN we may also extend it
to the class BAN as follows. Let ν be a Σ-tensor norm on duals and (X1, . . . , Xn, Y, β) be an
election in BAN . Let Ei ∈ F(Xi) and L ∈ CF(Y ). From the isometry

(E1 ⊗ . . .⊗ En, β|)→ (X1 ⊗ . . .⊗Xn, β)

we have that
REi : Lβ (X1, . . . , Xn)→ Lβ| (E1, . . . , En)

is a linear quotient operator, given by restriction, that preserves Σ. Let QL : Y → Y/L be
the natural quotient map. The uniform property of ν applied to

REi ⊗QL :
(
Lβ (X1, . . . , Xn)⊗ Y, νβ

)
→
(
Lβ| (E1, . . . , En)⊗ Y/L, νβ|

)
implies that

νβ|

(
REi ⊗QL(v);Lβ| (E1, . . . , En)Y/L

)
≤ νβ

(
v;Lβ (X1, . . . , Xn) , Y

)
holds for all v ∈ Lβ (X1, . . . , Xn)⊗ Y , Ei ∈ F(Xi) and L ∈ CF(Y ).

Definition 3.4. Given a Σ-tensor norm on duals ν on the class FIN , we define its cofinite
hull as follows. For any election (X1, . . . , Xn, Y, β) in BAN define

←−ν β(v) := sup νβ|

(
REi ⊗QL(v);Lβ| (E1, . . . , En)Y/L

)
where the supremum is taken over all Ei ∈ F(Xi) and L ∈ CF(Y ). A Σ-tensor norm on duals
ν on BAN is named cofinitely generated if ν =←−ν .

Proposition 3.5. The injective Σ-tensor norm on duals is a cofinitely generated Σ-tensor norm
on duals.

Proof. Due to the comments above we have that

εβ|

(
REi ⊗QL(v);Lβ| (E1, . . . , En)Y/L

)
≤ εβ

(
v;Lβ (X1, . . . , Xn)Y

)
holds for all Ei ∈ L(Xi) and L ∈ CF(Y ). This implies that

−→ε β ≤ εβ.

For the converse inequality let η > 0 and choose p, q ∈ Σβ
X1...Xn

and y∗ ∈ Y ∗ such that
β(p− q) ≤ 1, ‖y∗‖ ≤ 1 and

(1− η) εβ(v;Lβ (X1, . . . , Xn)Y ) ≤ | 〈(p− q)⊗ y , v〉 |.
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If p = x1 ⊗ . . .⊗ xn and q = z1 ⊗ . . .⊗ zn define Ei := span{xi, zi} and L := Ker(y∗). Thus,
Ei is a finite dimensional subspace of Xi and L is a finite codimensional subspace of Y . The
adjoint operator of the natural quotient map QL : Y → Y/L is an isometry that maps the
functional

ψ : Y/L → K
y + L 7→ y∗(y)

into y∗, i. e. Q∗L(ψ) = y∗. Then, if v =
∑
i
ϕi ⊗ yi we have

(1− η) εβ(v;Lβ (X1, . . . , Xn)Y ) ≤ | 〈(p− q)⊗ y , v〉 |

= |
∑
i

ϕi(p− q) y∗(yi)|

= |
∑
i

REi(ϕi)(p− q)Q∗L(ψ)(yi)|

= |
∑
i

REi(ϕi)(p− q)ψ(QLyi)|

= | 〈(p− q)⊗ ψ , REi ⊗QL(v)〉 |
≤ εβ|(REi ⊗QL(v);Lβ| (E1, . . . , En)Y/L)

≤ −→ε β(v;Lβ (X1, . . . , Xn)Y ).

Thus εβ(v;Lβ (X1, . . . , Xn)Y ) ≤ −→ε β(v;Lβ (X1, . . . , Xn)Y ) holds for all v.

The next proposition shows that taking the cofinite hull of a Σ-tensor norm on duals is
well behaved, that is, the cofinite hull is again a Σ-tensor norm on duals.

Proposition 3.6. The cofinite hull of a Σ-tensor norm on duals on the class FIN is a Σ-
tensor norm on duals on the class BAN . In general, if ν is a Σ-tensor norm on duals defined
on the class BAN , then ←−ν ≤ ν.

Proof. Let (X1, . . . , Xn, Y, β) be an election in BAN . Let Ei be a finite dimensional
subspace of Xi and L be a finite codimensional subspace of Y . Then

εβ(REi ⊗QL(v);Lβ| (E1, . . . , En)Y/L) ≤ νβ(REi ⊗QL(v);Lβ| (E1, . . . , En)Y/L)

≤ π
(
REi ⊗QL(v);Lβ| (E1, . . . , En)Y/L

)
≤ π(v;Lβ (X1, . . . , Xn)Y ).

After taking supremum over all Ei and L as above we obtain

εβ(v) ≤ −→ν β(v) ≤ π(v;Lβ (X1, . . . , Xn)Y ).
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This is, −→ν β is a reasonable crossnorm on Lβ (X1, . . . , Xn)⊗ Y .

To prove that −→ν is uniform, let (Z1, . . . , Zn,W, θ) be another election in BAN and let
A : Lβ (X1, . . . , Xn) → Lθ (Z1, . . . , Zn) and B : Y → W be bounded linear operators with A
preserving Σ. Let Mi be a finite dimensional subspace of Zi and G be a finite codimensional
subspace of W .

We have that A∗(M1 ⊗ . . .⊗Mn) is a finite dimensional subspace of (X1 ⊗ . . .⊗Xn, β)∗∗

but since A preserves Σ then it is actually a subspace of (X1 ⊗ . . .⊗Xn, β). This way, there
exist finite dimensional subspaces Ei such that A∗(M1 ⊗ . . . ⊗Mn) ⊂ E1 ⊗ . . . ⊗ En. The
linear inclusion (E1 ⊗ . . .⊗ En, β|) → (X1 ⊗ . . .⊗Xn, β) implies that the restriction map
REi : Lβ (X1, . . . , Xn)→ Lβ| (E1, . . . , En) is a quotient map. Then we may define

A : Lβ| (E1, . . . , En) → Lθ| (M1, . . . ,Mn)

ϕ 7→ RMiA(ψ)

where ψ is any element in Lβ (X1, . . . , Xn) such that REiψ = ϕ. A picture of this situation is
the next diagram we have

Lβ (X1, . . . , Xn)

REi
��

RMiA// Lθ| (M1, . . . ,Mn)

Lβ| (E1, . . . , En)

A

55
.

On the other hand, the quotient QG : W → W/G asserts that Q∗G : (W/G)∗ → W ∗ is an
isometry. Hence B∗Q∗G((W/G)∗) is a finite dimensional subspace of Y ∗. Then,

L := {y | f(y) = 0 for allf ∈ B∗Q∗G((W/G)∗)} = Ker(QGB)

is a finite codimensional subspace of Y . Define

B : Y/L → W/G

y + L 7→ QGB(z)

where z is any element in Y such that Q(z) = y + L. Hence,

Y

QL
��

QGB //W/G

Y/L

B

;;
.

is commutative.
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The uniformity of ν implies that

A⊗B :
(
Lβ| (E1, . . . , En)⊗ Y/L, νβ|

)
→
(
Lθ| (M1, . . . ,Mn)⊗W/G, νθ|

)
is bounded and ‖A⊗B‖ ≤ ‖A‖ ‖B‖ ≤ ‖A‖ ‖B‖. Finally, for v =

∑
i
ϕi ⊗ yi we have

νθ|

(
RMi ⊗QG (A⊗B(v)) ;Lθ| (Mi)W/G

)
= νθ|

(∑
i

RMiAϕi ⊗QGByi;Lθ| (Mi)W/G

)

= νθ|

(∑
i

AREiϕi ⊗BQLyi;Lθ| (Mi)W/G

)
≤ ‖A‖ ‖B‖ νβ|

(
REi ⊗QL(v);Lβ| (Ei)Y/L

)
≤ ‖A‖ ‖B‖−→ν β(v;Lβ (X1, . . . , Xn)Y ).

After taking suprema over all Mi and G as above we obtain

−→ν β(A⊗B(v);Lθ (Z1, . . . , Zn)w) ≤ ‖A‖ ‖B‖−→ν β(v;Lβ (X1, . . . , Xn)Y ).

Thus, −→ν is uniform.

For ideals of Σ-operators let [A, A] be an ideal of Σ-operators and (X1, . . . , Xn, Y, β) be
an election in BAN . Let Ei ∈ F(Xi) and L ∈ CF(Y ). The inclusion map

fEi : Σ
β|
E1...En

→ (X1 ⊗ . . .⊗Xn, β)

is a Σ-β|-operator. For every fT ∈ A
(

Σβ
X1...Xn

; Y
)

consider the composition

Σβ
X1...Xn

fT // Y

QL

��
Σ
β|
E1...En

fEi

OO

QLfT fEi

// Y/L

.

The ideal property of [A, A] implies that

A(QLfT fEi) ≤ A(fT )

holds for all Ei and L as above.

If [A, A] is defined only in the class FIN then we may extend it to the class BAN as
follows.
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Definition 3.7. Given an ideal of Σ-operators [A, A] on the class FIN , we define for every

Σ-operator f : Σβ
X1...Xn

→ Y

Amax(f) := sup
{
A(QLffEi : Σ

β|
E1...En

→ Y/L)
∣∣∣ Ei ∈ F(Xi), L ∈ CF(Y )

}
.

The set

Amax
(

Σβ
X1...Xn

, Y
)

:=
{
f : Σβ

X1...Xn
→ Y

∣∣∣ Amax(f) <∞
}

is defined as the maximal hull of [A, A]. If the ideal [A, A] coincides with its maximal hull ,
then it is named maximal.

The next proposition show that the maximal hull of an ideal [A, A] is again an ideal of
Σ-operators.

Proposition 3.8. The maximal hull of an ideal of Σ-operators on the class FIN is an ideal
of Σ-operators on the class BAN .

Proof. Let (X1, . . . , Xn, Y, β) be an election in BAN .

I1: Let ϕ ∈ Lβ (X1, . . . , Xn), y ∈ Y and Ei and L as above. Then

A(QLϕ · yfEi) = A(REi(ϕ) ·QL(y))

≤ ‖REi(ϕ)‖β| ‖QL(y)‖
≤ ‖ϕ‖β ‖y‖

asserts Amax(ϕ · y) <∞. In particular, F
(

Σβ
X1...Xn

;Y
)

is contained in Amax
(

Σβ
X1...Xn

;Y
)

I2: Let p, q ∈ Σβ
X1...Xn

, y∗ ∈ Y ∗ and fT ∈ A
(

Σβ
X1...Xn

; Y
)

. Then

|tr
(
Lpqy∗ T̃

)
| = |y∗ (fT (p)− fT (q)) |

= |y∗1 (QLfT fEi(p)−QLfT fEi(q)) |

≤ ‖y∗1‖β|(p− q)A
(
QLfT fEi : Σ

β|
E1...En

→ Y/L
)

≤ ‖y∗‖β(p− q)Amax(fT )

where L := ker(y∗) ∈ CF(Y ), Ei ∈ F(Xi) and y∗1 are such that p, q ∈ Σ
β|
E1...En

is such that
y∗ = y∗1 QL.

Ideal property: Let (Z1, . . . , Zn,W, θ) be an election in BAN . Consider the composition

Σθ
Z1...Zn

fR // Σβ
X1...Xn

f // Y
S //W
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where S is a bounded linear operator, f is a bounded Σ-operator and fR is a Σ-θ-operator
with associated multilinear operator R. Let Mi be a finite dimensional subspace of Zi and
G be a finite codimensional subspace of W . Since fR(Σθ

Z1...Zn
) is contained in Σβ

X1...Xn
and

M1 ⊗ . . .⊗Mn is a finite dimensional space then there exist finite dimensional subspaces Ei
of Xi such that fRfMi ⊂ Σ

β|
E1...En

. Set L = Ker(QGS) ∈ CF(Y ). Consider the commutative
diagram

Σθ
Z1...Zn

fRfMi %%

fR // Σβ
X1...Xn

f // Y

QL

��

S //W

QG

��
Σ
θ|
M1...Mn

fMi

OO

Σ
β|
E1...En

fEi

OO

Y/L
B
//W/G

.

Then

A (QG(SffR)fMi) ≤ A (B(QLffEi)(fRfMi))

≤ ‖S‖A (QLffEi) ‖R̃‖
≤ ‖S‖Amax(f) ‖R̃‖.

Finally, after taking suprema over all Mi and G as above we have

Amax(SffR) ≤ ‖S‖Amax(f) ‖R̃‖.

Complete norm: Let (fn) be a sequence in A
(

Σβ
X1...Xn

; Y
)

such that
∑
Amax(fn) < ∞.

Define f =
∑
fn : Σβ

X1...Xn
→ Y . Notice that∑
‖fn(p)‖ ≤

∑
Lipβ(fn) ≤

∑
Amax(fn).

Hence,
∑
fn(p) converges in Y for every p ∈ ΣX1...Xn since it is a Banach space. Moreover,∑

Lipβ(fn) ≤
∑
Amax(fn) also implies thatf is a Lipschitz function on Σβ

X1...Xn
. This is, f

is a bounded Σ-operator. Finally,

A(QLffEi) = A(QL

(∑
fn
)
fEi)

= A(
∑

QLf
nfEi)

≤
∑

A(QLf
nfEi)

≤
∑

Amax(fn)

holds for all Ei and L.

The maximal ideal of Σ-operators [A, A] is said to be associated to the Σ-tensor norm on
duals ν if (

Lβ (E1, . . . , En)⊗ F, νβ
)

= A
(

Σβ
E1...En

; F
)

holds isometrically for all elections (E1, . . . , En, F, β) in FIN , compare with [41, Sec. 17.3].
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3.2 Duality Theorem for Σ-Tensor Norms

This section is dedicated to prove the Duality Theorem. It shows the behavior, in the general
case of Banach spaces, of Σ-tensor norms which are related only in the class of finite dimen-
sional normed spaces.

Assume that α and ν are two Σ-tensor norm on spaces and duals respectively related in
the class of finite dimensional normed spaces as follows

(
Lβ (E1, . . . , En)⊗ F, νβ

)
=
(
E1 ⊗ . . .⊗ En ⊗ F ∗, αβ

)∗
.

For general Banach spaces we have the algebraic embedding

Lβ (X1, . . . , Xn)⊗ Y → (X1 ⊗ . . .⊗Xn ⊗ Y ∗)# .

A natural question is the behavior of the norms α and ν under this circumstances. To answer
this question.

Theorem 3.9. Let ν be a cofinitely generated Σ-tensor norm on duals and α be the finitely
generated Σ-tensor norm on spaces such that

(
Lβ (E1, . . . , En)⊗ F, νβ

)
=
(
E1 ⊗ . . .⊗ En ⊗ F ∗, αβ

)∗
holds isometrically for all elections (E1, . . . , En, F, β) in FIN . Then

(
Lβ (X1, . . . , Xn)⊗ Y, νβ

)
→
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, αβ

)∗
is an into isometry for all elections (X1, . . . , Xn, Y, β) in BAN .

Proof. Let (X1, . . . , Xn, Y, β) be an election in BAN .

Let v =
∑
j
ϕj ⊗ yj ∈ Lβ (X1, . . . , Xn)⊗Y . If αβ(u; XiY ) < 1 then there exist Ei ∈ F(Xi)

and F ∈ F(Y ∗) such that αβ|(u;EiF ) < 1. The space L = {y | y∗(y) = 0 for all y∗ ∈ F} is an



58 Main Theorems

element of CF(Y ) such that F is isometric to (Y/L)∗. Then,

| 〈v , u〉 | = |
∑
ij

ϕj(pi − qi)y∗i (yj)|

= |
∑
ij

REi(ϕj)(pi − qi)z∗i (QLyj)|

= |

〈∑
j

REi(ϕj)⊗QLyj ,
∑
i

(pi − qi)⊗ z∗i

〉
|

= |

〈
REi ⊗QL(v) ,

∑
i

(pi − qi)⊗ z∗i

〉
|

≤ νβ|

(
REi ⊗QL(v); Lβ| (E1, . . . , En)Y/L

)
αβ|

(∑
i

(pi − qi)⊗ z∗i ; Ei(Y/L)∗

)
≤ νβ

(
v; Lβ (X1, . . . , Xn)Y

)
.

After taking suprema over all αβ(u) < 1 we obtain

‖v :
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, αβ

)
→ K‖ ≤ νβ

(
v; Lβ (X1, . . . , Xn)Y

)
.

For the converse inequality, let Ei ∈ F(Xi) and L ∈ CF(Y ) and η > 0. There exist
u ∈ E1 ⊗ . . . En ⊗ (Y/L)∗ such that αβ|(u; Ei(Y/L)∗) < 1 and νβ|(REi ⊗ QL(v)) (1 − η) ≤
| 〈REi ⊗QL(v) , u〉 |. The space (Y/L)∗ is isometrically isomorphic to a finite dimensional
subspace of F of Y ∗. Then

| 〈REi ⊗QL(v) , u〉 | = |
∑
ij

REi(ϕj)(pi − qi)z∗i (QLyi)|

= |
∑
ij

ϕj(pi − qi)y∗i (yi)|

= | 〈v , u〉 |

≤ ‖v :
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, αβ

)
→ K‖

after taking suprema over all Ei and L as above we obtain that

νβ(u; Lβ (X1, . . . , Xn)Y )(1− η) ≤ ‖v :
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, αβ

)
→ K‖

holds for all η > 0.



Representation Theorem 59

3.3 Representation Theorem for Maximal Ideals of
Σ-Operators

In this section we prove the most important result of the dissertation, namely the Represen-
tation Theorem for maximal ideals for Σ-operators (RT). For this end, we have to develop
some theory of Σ-tensor norms and ideals of Σ-operators. We begin with the behavior of the
Σ-tensor norms on spaces and the canonical extension of functionals. We then continue with
the regular property of maximal ideals of Σ-operators. The relevance of the RT lies in the fact
that it provides a tensorial representation of any component of a maximal ideal of Σ-operators.

The authors of [56] established a representation theorem for maximal multi-ideals by ten-
sor norms (in their sense). As we said before, this popular approximation has plenty of
examples of multi-ideals and tensor norms; however, just a few of them are related by duality.
In references [1, 30, 32, 42, 75] we can find explicit examples of the duality of tensor norms
and multi-ideals.

Proposition 3.10. Let α be a finitely generated Σ-tensor norm on spaces on BAN and
let (X1, . . . , Xn, Y, β) be an election in BAN . Then

(
X1 ⊗ . . .⊗Xn ⊗ Y, αβ

)
is a normed

subspace of
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗∗, αβ

)
.

Proof. In this proof we have identified the spaces Y and its image under the canonical
embedding KY . By uniformity of α it is clear that αβ(u;XiY

∗∗) ≤ αβ(u;XiY ). For the
converse inequality let u ∈ X1⊗ . . .⊗Xn⊗ Y , ε > 0 and fix a representation of u of the form∑
i
x1
i ⊗ . . . ⊗ xni ⊗ yi. There exist finite dimensional subspaces Ei ⊂ Xi and F ⊂ Y ∗∗ such

that u ∈ E1 ⊗ . . .⊗ En ⊗ F and

αβ|(u;EiF ) ≤ (1 + ε)αβ(u;XiY
∗∗).

Without loss of generality we may assume that yi ∈ F . The principle of local reflexivity
ensures the existence of a finite dimensional subspace G of Y and an isomorphism ψ : F → G
such that ψ(yi) = yi and ‖ψ‖ ≤ (1 + ε). Consider the Σ-β|-operator given by the identity

I : Σ
β|
E1...En

→ Σ
β|
E1...En

. Again, uniformity of α implies that

αβ|(I ⊗ ψ(u);EiG) ≤ (1 + ε)αβ|(u;EiF ).

Finally,

αβ(u;XiY ) ≤ αβ|(u;EiG)

= αβ|(I ⊗ ψ(u);EiG)

≤ (1 + ε)αβ|(u;EiF )

≤ (1 + ε)2 αβ(u;XiY
∗∗)
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holds for all ε > 0.

In Chapter 1 we defined the canonical extension, for linear spaces, of any functional ϕ
defined on X1⊗ . . .⊗Xn⊗Y . If we are in the presence of a Σ-tensor norm on spaces we may
fix the spaces Xi and the norm β and consider the normed space

(
X1 ⊗ . . .⊗Xn ⊗ Y ∗∗, αβ

)
.

It turns out that boundedness of ϕ is equivalent to that of the canonical extension ϕ if α is
finitely generated.

Proposition 3.11. Let α be a finitely generated Σ-tensor norm on spaces on the class BAN
and (X1, . . . , Xn, Y, β) be an election in BAN . Then ϕ ∈

(
X1 ⊗ . . .⊗Xn ⊗ Y, αβ

)∗
if and

only if ϕ ∈
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗∗, αβ

)∗
.

Proof. First, suppose ϕ is bounded. Let u ∈
(
X1 ⊗ . . .⊗Xn ⊗ Y, αβ

)
. Then ϕ(u) =

ϕ(u) and αβ (u;XiY ) = αβ (u;XiY
∗∗). These facts together imply that ϕ is bounded and

‖ϕ‖ ≤ ‖ϕ‖.

Conversely, suppose ϕ is bounded. Fix u in
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗∗, αβ

)
and let η > 0 a

positive number. Since α is finitely generated there exist finite dimensional subspaces Ei and
F of Xi and Y ∗∗ respectively such that E1 ⊗ . . .⊗ En ⊗ F contains u and

αβ| (u;EiF ) ≤ (1 + η)αβ (u;XiY
∗∗) .

Let
∑
i
x1
i ⊗ . . .⊗ xni ⊗ y∗∗i be a fixed representation of u in E1 ⊗ . . .⊗En ⊗ F . Now, we may

apply the Principle of Local Reflexivity to F ⊂ Y ∗∗ and span{fϕ(x1
i ⊗ . . . ⊗ xni )} ⊂ Y ∗ to

find a finite dimensional subspace G ⊂ Y , an isomorphism ψ : F → G with norm less than
1 + η and

〈
fϕ(x1

i ⊗ . . .⊗ xni ) , ψ(y∗∗i )
〉

=
〈
y∗∗i , fϕ(x1

i ⊗ . . .⊗ xni )
〉
. The last equality implies

ϕ(x1
i ⊗ . . .⊗ xni ⊗ φ(y∗∗i )) = ϕ(x1

i ⊗ . . .⊗ xni ⊗ y∗∗i ), and so ϕ ◦ (I ⊗ φ)(u) = ϕ(u). Finally,

|ϕ(u)| = |ϕ ◦ (I ⊗ φ)(u)|
≤ ‖ϕ‖ αβ (I ⊗ φ(u);XiY )

≤ ‖ϕ‖ αβ| (I ⊗ φ(u);EiG)

≤ ‖ϕ‖ (1 + η) αβ| (u;EiF )

≤ ‖ϕ‖ (1 + η)2 αβ (u;XiY
∗∗)

completes the proof.

Let f : Σβ
X1...Xn

→ Y be a Σ-operator. Plainly, any ideal property of f depends on all the
objects involved. If we fix all the spaces Xi and the norm β we may ask if the ideal property
of f is preserved if f(ΣX1...Xn) is immersed in Y ∗∗. This corresponds to consider the compo-

sitions KY f : Σβ
X1...Xn

→ Y ∗∗. If we are in the presence of a maximal ideal of Σ-operators
then it turns out that this phenomenon is always true. Commonly, an ideal [A, A] provided
this property is called regular.
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Proposition 3.12. Let [A, A] be a maximal ideal of Σ-operators. Then f ∈ A
(

Σβ
X1...Xn

; Y
)

if and only if the composition KY f ∈ A
(

Σβ
X1...Xn

; Y ∗∗
)

.

Proof. The ideal property asserts that KY f ∈ A
(

Σβ
X1...Xn

; Y ∗∗
)

and A(KY f) ≤ A(f)

whenever f ∈ A
(

Σβ
X1...Xn

; Y
)

.

Conversely, suppose KY f ∈ A
(

Σβ
X1...Xn

; Y ∗∗
)

. We will prove that

A(QLffEi) ≤ A(KY T )

holds for all Ei ∈ F(Xi) and L ∈ CF(Y ). Let Ei and L as above. Consider the subspace H
of Y ∗∗ defined as the span of the set KY f(ΣE1...En). On the other hand, there exist a finite
dimensional subspace F of Y ∗ isometric to (Y/L)∗ via Q∗L. Let ε > 0, then by the Principle
of Local Reflexivity there exist a finite dimensional subspace G of Y and an isomorphism
ψ : H → G with norm less than 1 + ε such that

〈y∗ , ψ(y∗∗)〉 = 〈y∗∗ , y∗〉

for all y∗ ∈ F and y∗∗ ∈ H. Then, for ϕ ∈ (Y/L)∗ and p ∈ ΣE1...En we obtain

〈ϕ , QLffEi(p)〉 = 〈Q∗Lϕ , f(p)〉
= 〈KY f(p) , Q∗Lϕ〉
= 〈Q∗Lϕ , ψKY f(p)〉
= 〈ϕ , QLψKY f(p)〉

which means that QLffEi = QLψKY f . Finally, the ideal property implies

A(QLffEi) = A(QLψKY f) ≤ (1 + ε) A(KY f)

which ensures A(QLffEi) ≤ A(KY T ). The proof is complete after taking suprema over all
Ei and L as above.

Once we have developed all the needed language of Σ-operators and Σ-tensor norms we
are ready to establish and prove the RT. It acquires the following form.

Theorem 3.13. Let ν be a Σ-tensor norm on duals and [A, A] be the maximal ideal of
Σ-operators associated to ν. Then for every election (X1, . . . , Xn, Y, β) in BAN it is verified(

X1 ⊗ . . .⊗Xn ⊗ Y, αβ
)∗

= A
(

Σβ
X1...Xn

; Y ∗
)

and (
X1 ⊗ . . .⊗Xn ⊗ Y ∗, αβ

)∗⋂
L
(

Σβ
X1...Xn

, Y
)

= A
(

Σβ
X1...Xn

; Y
)

where α is the finitely generated Σ-tensor norm on spaces defined by ν.
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Proof. First, we will prove the second equality. Given finite dimensional subspaces Ei of
Xi and a finite codimensional subspace L of Y we have, by hypothesis, that(

E1 ⊗ . . .⊗ En ⊗ (Y/L),∗ αβ|
)∗

= A
(

Σ
β|
E1...En

;Y/L
)

(3.1)

is a linear isometric isomorphism.

Let f ∈ A
(

Σβ
X1...Xn

; Y
)

and η > 0 fixed. Let ϕf be the associated functional of

f . For u ∈
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, αβ

)
there exist Ei ∈ F(Xi) and F ∈ F(Y ∗) such that

u ∈
(
E1 ⊗ . . .⊗ En ⊗ F, αβ|

)
and αβ|(u) ≤ (1 + η)αβ(u). The space F defines a finite codi-

mensional subspace L of Y such that (Y/L)∗ = F holds linearly and isometrically. Then,
(3.1) ensures

|ϕf (u)| = |ϕf ◦ (fEi ⊗Q∗L)(u)|

≤ ‖ϕf ◦ (fEi ⊗Q∗L) :
(
E1 ⊗ . . .⊗ En ⊗ (Y/L)∗, αβ|

)
→ K‖αβ|(u)

= A(QLffEi) (1 + η)αβ(u)

≤ A(f) (1 + η)αβ(u).

Hence, ϕf is bounded and ‖ϕf‖ ≤ A(f).

For the converse inequality let ϕ ∈
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, αβ

)∗
such that its associated

Σ-operator has range contained in Y . First, notice that

sup { A(QLfϕfEi) | Ei ∈ F(Xi) L ∈ CF(Y ) } <∞.

This is easy to see since

A(QLfϕfEi) = ‖ϕ ◦ (fEi ⊗Q∗L)‖ ≤ ‖ϕ‖ (3.2)

holds for all Ei ∈ F(Xi) and L ∈ CF(Y ). This means that fϕ ∈ A
(

Σβ
X1...Xn

; Y
)

. Actu-

ally, if we take suprema in (3.2) over all Ei and L we obtain, by maximality, that A(fϕ) ≤ ‖ϕ‖.

For the first equality let f ∈ A
(

Σβ
X1...Xn

; Y ∗
)

. We will prove that

ζf : (X1 ⊗ . . .⊗Xn ⊗ Y, αβ) → K
x1 ⊗ . . .⊗ xn ⊗ y 7→

〈
f(x1 ⊗ . . .⊗ xn), y

〉
is bounded. By Proposition 3.11 this occurs exactly when ζf : (X1⊗ . . .⊗Xn⊗Y ∗∗, αβ)→ K
is bonded. We just have proved that the functional ϕf : (X1 ⊗ . . . ⊗ Xn ⊗ Y ∗∗, αβ) → K is
bounded and ‖ϕT ‖ = A(f). But

ϕf (x1 ⊗ . . .⊗ xn ⊗ y∗∗) =
〈
y∗∗ , f(x1 ⊗ . . .⊗ xn)

〉
= ζf (x1 ⊗ . . .⊗ xn ⊗ y∗∗)
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asserts that ϕf = ζf . Hence ζT is bounded and ‖ζf‖ = A(f).

Conversely, let ϕ ∈
(
X1 ⊗ . . .⊗Xn ⊗ Y, αβ

)∗
. Consider the associated Σ-operators of ϕ

and its canonical extension fϕ : Σβ
X1...Xn

→ Y ∗ and fϕ : Σβ
X1...Xn

→ Y ∗∗∗. By definition, we
obtain 〈

fϕ(x1 ⊗ . . .⊗ xn) , y∗∗
〉

= ϕ
(
x1 ⊗ . . .⊗ xn ⊗ y∗∗

)
=

〈
y∗∗ , fϕ(x1 ⊗ . . .⊗ xn)

〉
=

〈
KY ∗fϕ(x1 ⊗ . . .⊗ xn) , y∗∗

〉
.

This means that fϕ has range contained in Y ∗ and fϕ = KY ∗fϕ. Now, Proposition 3.11
implies

ϕ ∈
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗∗, αβ

)∗⋂
L
(

Σβ
X1...Xn

;Y ∗
)

= A
(

Σβ
X1...Xn

; Y ∗
)
.

Finally, KY ∗fϕ ∈ A
(

Σβ
X1...Xn

; Y ∗∗∗
)

asserts that fϕ ∈ A
(

Σβ
X1...Xn

; Y ∗
)

and

A(fϕ) = A(KY ∗fϕ) = ‖ϕ‖ = ‖ϕ‖.

We finish this chapter by proving a criterion that ensures the maximality of ideals of
Σ-operators, see [41, Ex. 17.2] and Sections 4.4, 4.7 and 4.8.

Proposition 3.14. Let [A, A] be an ideal of Σ-operators. Suppose there exist a finitely gener-
ated Σ-tensor norm on spaces α such that for any election of Banach spaces (X1, . . . , Xn, Y, β)
we have that (

X1 ⊗ . . .⊗Xn ⊗ Y, αβ
)∗

= A
(

Σβ
X1...Xn

; Y ∗
)

(3.3)

holds linearly and isometrically. Then, [A, A] is maximal.

Proof. Theorem 2.24 ensures that [A, A] is an ideal on the class FIN . Proposition 3.8
tells us that its maximal hull is an ideal of Σ-operators on the class BAN . The RT combined
with (3.3) asserts that

A
(

Σβ
X1...Xn

; Y ∗
)

= Amax
(

Σβ
X1...Xn

;Y ∗
)

(3.4)

holds linearly and isometrically for all elections (X1, . . . , Xn, Y, β) in BAN . Another applica-
tion of the RT combined with (3.4) leads us to

Amax
(

Σβ
X1...Xn

;Y
)

= A
(

Σβ
X1...Xn

;Y ∗∗
)
∩ L

(
Σβ
X1...Xn

, Y
)
.

Finally, for f in Amax
(

Σβ
X1...Xn

;Y
)

we have

A(f) = A(K−1
Y KY f) ≤ A(KY f) = Amax(f).

The proof is complete since the converse inequality Amax(f) ≤ A(f) is always true.
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Chapter 4

Applications and Examples

In this chapter we present the notion of injective and surjective ideals of Σ-operators. Paral-
lel, we precise the notion of injective Σ-tensor norm on duals and quotient Σ-tensor norm on
spaces. In Proposition 4.8 we establish enough properties on the associated Σ-tensor norm in
order to obtain an ideal either injective or surjective. The majority of the chapter is dedicated
to generalize the most common ideals to the context of ideals of Σ-operators. In particular,
we obtain factorizations of multilinear operators of diverse nature.

4.1 Injective and Surjective Ideals of Σ-Operators

As we will see next, properties in a maximal operator ideal [A, A] can be deduce from some
properties on the associated Σ-tensor norm. To be precise, we define injective Σ-tensor norms
on duals and quotient Σ-tensor norm on spaces.

In order to define a quotient Σ-tensor norm on spaces we need an accurate notion of
quotient Σ-θ-operator. Aside, to precise the notion on injective Σ-tensor norm on dual we
need appropriate assumptions on operators that preserves Σ. Let us recall that a Lipschitz
f : X → Y between metric spaces is said to be 1-co-Lipschitz if for every x ∈ X and r > 0 it
is verified that

Br (f(x)) ⊂ f (Br(x)) .

Recent research about Lipschitz quotient and co-Lipschitz functions can be find in [71, 72, 73].
Let us make some remarks we will use about 1-co-Lipschitz operators. First, notice that
a 1-co-Lipschitz must be surjective. To see this affirmation, let a in Y and x in X. If
0 = d(f(x), a), then f(x) = a. Otherwise, 0 < d(f(x), a) =: r. Then, y is an element of
Br+1(f(x)) ⊂ f (Br+1(x)). This asserts that f is surjective.

65



66 Applications and Examples

We claim that every 1-co-Lipschitz function verifies

inf{d(p, q) | f(q) = a, f(p) = b} ≤ d(a, b). (4.1)

To prove this, let a and b in Y , and η > 0. Chose p in X with f(p) = a. Plainly, b is an
element in B(1+η)d(a,b)(a) ⊂ f

(
B(1+η)d(a,b)(p)

)
. Hence, there exist q such that f(q) = b and

d(p, q) ≤ (1 + η) d(a, b). As a consequence, (4.1) must be true.

Definition 4.1. A Σ-tensor norm on duals ν is named injective if for every linear isometry
B : W → Y and every isometric operator A : Lθ (Z1, . . . , Zn) → Lβ (X1, . . . , Xn) which
preserves Σ and A∗|

ΣβX1...Xn

is 1-co-Lipschitz we have that

A⊗B :
(
Lθ (Z1, . . . , Zn)⊗W, νθ

)
→
(
Lβ (X1, . . . , Xn)⊗ Y, νβ

)
is a linear isometry.

We are not interested in define a injective Σ-tensor norm on spaces since this is enough
for our purposes.

Proposition 4.2. The injective Σ-tensor norm on duals is injective.

Proof. Let A and B as in Definition 4.1. Since εβ verifies the uniform property then
we just prove that εθ(v) ≤ εβ(A ⊗ B(v)) holds for all v in Lθ (Z1, . . . , Zn)⊗. Let a and b in

Σθ
Z1...Zn

and w∗ in w∗ such that θ(a − b) < 1 and ‖w∗‖ < 1. There exist p and q in Σβ
X1...Xn

and y∗ such that A∗(p) = a, A∗(q) = b, B∗(y∗) = w∗, β(p− q) < 1 and ‖y∗‖ < 1. Then

| 〈(a− b)⊗ w∗ , v〉 | = | 〈(p− q)⊗ y , A⊗B(v)〉 | ≤ εβ(A⊗B(v))

completes the proof.

Definition 4.3. The Σ-θ-operator fQ : Σθ
Z1...Zn

→ Σβ
X1...Xn

is said to be quotient if:

1. Q̂ (Z1 ⊗ . . .⊗ Zn, θ)→ (X1 ⊗ . . .⊗Xn, β) is a linear quotient operator between normed
spaces.

2. fQ : Σθ
Z1...Zn

→ Σβ
X1...Xn

is 1-co-Lipschitz.

This notion of quotient Σ-operator is a combination between Lipschitz and linear theory.
The particular case n = 1 reduces to the classical notion of quotient operators since the met-
ric spaces Σθ

Z1...Zn
and Σβ

X1...Xn
become Banach spaces; moreover, the Lipschitz and linear

quotient notions coincide.

Notice that condition 1 implies that fQ is a Lipschitz function with Lipθ(fQ) ≤ 1. This
consequence in combination with (4.1) implies

β(p− q) = inf{θ(a− b) | fQ(a) = p, fQ(b) = q}. (4.2)
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Definition 4.4. A Σ-tensor norm on spaces α is called quotient if for every quotient Σ-θ-
operator fQ : Σθ

Z1...Zn
→ Σβ

X1...Xn
and every quotient operator P : W → Y the linear bounded

operator

fQ ⊗ P :
(
Z1 ⊗ . . .⊗ Zn ⊗W,αθ

)
→
(
X1 ⊗ . . .⊗Xn ⊗ Y, αβ

)
is quotient.

We may pay attention just in one side of this property. The Σ-tensor norm on spaces is
named domain quotient if fQ ⊗ IY :

(
Z1 ⊗ . . .⊗ Zn ⊗ Y, αθ

)
→
(
X1 ⊗ . . .⊗Xn ⊗ Y, αβ

)
is

quotient for all quotient Σ-θ-operator fQ and the identity operator in Y IY .

Proposition 4.5. The projective Σ-tensor norm π is domain quotient.

Proof. Let (X1, . . . , Xn, Y, β) and (Z1, . . . , Zn,W, θ) be elections in BAN . Let η > 0 and

u =
m∑
i=1

(pi − qi) ⊗ yi ∈ X1 ⊗ . . . ⊗ Xn ⊗ Y . Choose ai, bi ∈ Σθ
Z1...Zn

and wi ∈ W such that

fQ(ai) = pi, fQ(b) = qi, P (wi) = yi, and θ(ai−bi) ≤ (1+η β(pi−qi)) and ‖wi‖ ≤ (1+η) ‖yi‖.

Plainly, fQ ⊗ P
(∑

i
(ai − bi)⊗ wi

)
= u and

πθ

(∑
i

(ai − bi)⊗ wi

)
≤

∑
i

θ(ai − bi) ‖wi‖

≤ (1 + η)2
∑
i

β(pi − qi) ‖yi‖.

Hence, πθ
(∑

i
(ai − bi)⊗ wi

)
≤ πβ(u).

On the other hand, the uniform property of π implies that

fQ ⊗ P :
(
Z1 ⊗ . . .⊗ Zn ⊗W,πθ

)
→
(
X1 ⊗ . . .⊗Xn ⊗ Y, πβ

)
is bounded and ‖fR ⊗ P‖ ≤ 1. Thus,

πβ(u) = inf{πθ(u′) | fQ ⊗ P (u′) = u}

completes the proof.
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Proposition 4.6. If the tensor norm on duals ν is injective in FIN then the finite hull of
the dual norm on spaces α associated to ν is domain quotient in FIN .

Proof. Let fQ : Σθ
Z1...Zn

→ Σβ
X1...Xn

be a quotient Σ-θ-operator. The linear operator

Q̃∗ : Lβ (X1, . . . , Xn) → Lθ (Z1, . . . , Zn) is a linear isometry since Q̃ is a linear quotient
operator; moreover, it preserves Σ. We obtain the linear isometry

Q̃∗ ⊗ IY ∗ :
(
Lβ (X1, . . . , Xn)⊗ Y ∗, νβ

)
→
(
Lθ (Z1, . . . , Zn)⊗ Y ∗, νθ

)
whose adjoint operator(

Q̃∗ ⊗ IY ∗
)∗

:
(
Lθ (Z1, . . . , Zn)⊗ Y ∗, νθ

)∗
→
(
Lβ (X1, . . . , Xn)⊗ Y ∗, νβ

)∗
is quotient. This is nothing that

Q̃⊗ IY :
(
Z1 ⊗ . . .⊗ Zn ⊗ Y, αθ

)
→
(
X1 ⊗ . . .⊗Xn ⊗ Y, αβ

)
is a quotient operator.

The following definitions clearly are generalizations of injective and quotient ideals in the
sense of [41].

Definition 4.7. The ideal of Σ-operators [A, A] is said to be:

i) Injective if A(if) = A(f) whenever f ∈ A
(

Σβ
X1...Xn

; Y
)

and i : Y → W is a linear

isometry.

ii) Surjective if A(ffR) = A(f) whenever fR : Σθ
Z1...Zn

→ Σβ
X1...Xn

is a quotient Σ-θ-

operator and f ∈ A
(

Σβ
X1...Xn

; Y
)

.

Proposition 4.8. Let ν and [A, A] associated. Let α be the finitely generated Σ-tensor norm
on spaces defined by ν. Then:

i) If α is right quotient, then [A, A] is injective.

ii) If α is domain quotient, then [A, A] is surjective.

Proof. To prove (i), let f ∈ A
(

Σβ
X1...Xn

; Y
)

and i : Y → W a linear isometry. Then

ϕif = ϕf ◦ (IXi ⊗ i∗). The linear operator

IXi ⊗ i∗ :
(
X1 ⊗ . . .⊗Xn ⊗W ∗, αβ

)
→
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, αβ

)
is quotient since α is right quotient. In particular, ‖ϕf‖ = ‖ϕf ◦ (I ⊗ i∗)‖. Finally, the RT
implies

A(if) = ‖ϕif‖ = ‖ϕf‖ = A(f).
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To prove (ii), let fQ : Σθ
Z1...Zn

→ Σβ
X1...Xn

be a quotient Σ-θ-operator and f ∈ A
(

Σβ
X1...Xn

; Y
)

.

In this situation ϕffQ = ϕf ◦ (fQ ⊗ IY ∗). The linear operator

fQ ⊗ Iy∗ :
(
Z1 ⊗ . . .⊗ Zn ⊗ Y ∗, αβ

)
→
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, αβ

)
is quotient since α is domain quotient. Hence, ‖ϕf‖ = ‖ϕf ◦ (fQ ⊗ IY ∗)‖. Finally, the RT
implies

A(ffQ) = ‖ϕf ◦ (fQ ⊗ IY ∗)‖ = ‖ϕf‖ = A(f).

The ideal of bounded Σ-operators is a surjective while the ideal of p-summing Σ-operators
is injective.

4.2 Compact and Weakly Compact Σ-Operators

In this section we deal with compact and weakly compact Σ-operators. First, recall that a
linear operator T : X → Y is compact if every bounded subset of X if mapped into a relatively
compact subset of Y . Due to linear properties, this notion is equivalent to say that the image
of the closed unit ball is a relatively compact subset of Y . The same phenomenon occurs in the
multilinear case. Recall that a multilinear bounded operator T : X1×· · ·×Xn → Y is compact
if T (BX1 × · · · ×BXn) is a relatively compact subset of Y (see [8, 10, 18, 19, 23, 28, 62, 91]).
The case of Σ-operators preserves this property as we will see. Let us denote by Bβ(p, r) the

ball of Σβ
X1...Xn

with center p and radius r.

Definition 4.9. The Σ-operator f : Σβ
X1...Xn

→ Y is called compact if the set f
(
Bβ(p, r)

)
is

a relatively compact subset of Y for each p ∈ Σβ
X1...Xn

and r > 0.

The collection of all compact Σ-operators from Σβ
X1...Xn

into Y is denoted byK
(

Σβ
X1...Xn

;Y
)

and it is provided of the norm Lipβ.

Theorem 4.10. Let (X1, . . . , Xn, Y, β) be an election in BAN and T : X1 × · · · ×Xn → Y

be a bounded multilinear operator with associated Σ-operator fT : Σβ
X1...Xn

→ Y then:

i) T : X1 × · · · ×Xn → Y is compact.

ii) T̃ : (X1 ⊗ . . .⊗Xn, π)→ Y is compact.

iii) f : Σβ
X1...Xn

→ Y is compact for all reasonable crossnorm β.

iv) f
(
Bβ (0, 1)

)
⊂ Y is relatively compact for all reasonable crossnorm β.

v) T̃
(
(Σ− Σ) ∩B(X1⊗...⊗Xn,β)

)
⊂ Y is relatively compact.

are equivalent.
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Proof. The implication (i)⇒ (ii) is a well known fact, see for instance [62].

(ii) implies (iii): Since π(p− q) ≤ 2n β(p− q) holds for all p, q ∈ ΣX1...Xn , then Bβ(p, r) ⊂
Bπ(p, 2nr) for all p ∈ ΣX1...Xn and r > 0. The contentions

Bβ(p, r) ⊂ Bπ(p, 2nr) ⊂ p+ 2nB(X1⊗...⊗Xn,π)

asserts that f(Bβ(p, r)) is mapped into a relatively compact subset of Y .

(iii) implies (iv) is obvious.

(iv) implies (i): It is clear since T (BX1 × · · · ×BXn) ⊂ fT (Bβ(0, 1)).

(ii) implies(v): The inequality π(p− q) ≤ 2n β(p− q) asserts that

(Σ− Σ) ∩B(X1⊗...⊗Xn,β) ⊂ (Σ− Σ) ∩ 2nB(X1⊗...⊗Xn,π) ⊂ 2nB(X1⊗...⊗Xn,π).

Hence, the compactness of T̃ implies that T̃
(
(Σ− Σ) ∩B(X1⊗...⊗Xn,β)

)
is relatively compact.

(v) implies (i): Clearly, T (BX1 × · · · ×BXn) ⊂ T̃
(
(Σ− Σ) ∩B(X1⊗...⊗Xn,β)

)
.

Theorem 4.10 implies that compactness of a Σ-operator fT : Σβ
X1...Xn

→ Y is equivalent
to the compactness of the associated multilinear operator T : X1 × · · · ×Xn → Y . Moreover,
compactness of a Σ-operator is a property that not depends on the reasonable crossnorm β
chosen. As we said above, it is enough to prove relatively compactness of the image of the set
Bβ(0, 1). If we carefully inspect (v), we deduce that T is compact if and only if the set{

fT (p)− fT (q)

β(p− q)

∣∣∣ p 6= q

}
is relatively compact. In other words, compactness of a multilinear operator T is equivalent
to compactness of the associated Σ-operator fT : Σβ

X1...Xn
→ Y considered as a Lipschitz

function, see [61, 3].

Corollary 4.11. Let (X1, . . . , Xn, Y, β) be an election in BAN . Then, K
(

Σβ
X1...Xn

;Y
)

and

K (X1, . . . , Xn;Y ) are linearly isomorphic.

Proof. This fact is immediate from the equivalence of (i) and (ii) of Theorem 4.10 and
the inequalities 2n Lipβ(fT ) ≤ Lipπ(fT ) ≤ Lipβ(fT ).
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Proposition 4.12. The class of compact Σ-operators is an ideal of Σ-operators.

Proof. Corollary 4.11 asserts that K
(

Σβ
X1...Xn

;Y
)

is a Banach space. Even more,

it proves that every finite rank Σ-operator is compact. On the other hand, the inclusion

fR
(
Bθ(p, r)

)
⊂ Bβ

(
fR(p), ‖R̃‖r

)
asserts that the collection of compact Σ-operators verifies

the ideal property.

Consider the non compact Cesàro operator C : `2 → `2 defined by

C(x) =

(
1

n

n∑
i=1

xi

)
n

,

for all x = (xn)n in `2 (the non compactness of C can be found in [4] and [92]). Define

T : `2 × `2 → `2

(x, y) 7→ C

( ∞∑
n=1

xnynen

)
=

(
1

n

n∑
i=1

xiyi

)
n

.

Notice that T is well defined since the Hölder inequality implies that(
n∑
i=1

xiyi

)2

≤ (‖x‖ ‖y‖)2 .

Hence,

‖T (x, y)‖2 ≤
∞∑
n=1

1

n2

(
n∑
i=1

xiyi

)2

≤
∞∑
i=1

1

n2
‖x‖2 ‖y‖2

implies that T is bounded and ‖T‖ ≤
( ∞∑
n=1

1
n2

)1/2

. Now, consider the linearization of T to

the projective tensor product, this is

T̃ : (`2⊗̂`2, π)→ `2.

Define Tk as the k-th partial sums of T

Tk : `2 × `2 → `2

(x, y) 7→ C

(
k∑

n=1

xnynen

)
.
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Plainly, Tk has range contained in span{e1, . . . , ek}. Hence, T̃k : (`2⊗̂`2, π)→ `2 is a compact
linear operator. Moreover, the inequality

‖(T − Tk)(x, y)‖ ≤

( ∞∑
n=k+1

1

n2

)1/2

‖x‖ ‖y‖

implies that ‖(T̃ − T̃k)(u)‖ ≤

(
∞∑

n=k+1

1
n2

)1/2

π(u) holds for all u ∈ (`2 ⊗ `2, π). Then,

‖(T̃ − T̃k)(v)‖ ≤

( ∞∑
n=k+1

1

n2

)1/2

π(v)

holds for all v ∈ (`2⊗̂`2, π). We may conclude that T̃ is compact since it is a uniform limit of
compact operators.

However, T̃ : (`2⊗̂`2, H)→ `2 is not compact. To see this, we will show T̃
(
B(`2⊗̂`2,H)

)
=

C(B`2). To prove this affirmation let u =
∞∑

i,j=1
λijei ⊗ ej such that H(u) ≤ 1. Then,

T̃ (u) = C(λii). But, ‖(λii)‖ ≤

(
∞∑

i,j=1
|λij |2

)1/2

= H(u). This way, T̃ (B(`2⊗`2,H)) ⊂ C(B`2).

As a consequence, T̃
(
B(`2⊗̂`2,H)

)
⊂ C(B`2). On the other hand, for x ∈ `2 with ‖x‖ ≤ 1 de-

fine u =
∞∑
i=1

xi ei⊗ei. Hence, T̃ (u) =
∞∑
i=1

xi T (ei, ei) = C(x). Besides, H(u) =

( ∞∑
i=1
|xi|2

)1/2

=

‖x‖ ≤ 1. This asserts that C(B`2) ⊂ T̃
(
B(`2⊗̂`2,H)

)
. Finally, after taking closures we conclude

that T̃
(
B(`2⊗̂`2,H)

)
= C(B`2). Since C is not compact we obtain that T̃ : (`2⊗̂`2, H)→ `2 is

not compact.

This example shows that compactness of the Σ-operator fT : Σβ
X1...Xn

→ Y does not imply

the compactness of T̃ : (X1 ⊗ . . .⊗Xn, β)→ Y .

For the weakly compact case we have a similar situation. Recall that a multilinear operator
T : X1×· · ·×Xn → Y is said to be weakly compact if every bounded subset of X1×· · ·×Xn

is mapped into a relatively weakly compact subset of Y . For T to be weakly compact it is
enough that T (BX1 × · · · ×BXn) to be relatively weakly compact.

Definition 4.13. The Σ-operator f : Σβ
X1...Xn

→ Y is called weakly compact if f(Bβ(p, r)) is

a relatively weakly compact subset of Y for all p ∈ Σβ
X1...Xn

and r > 0. The weakly compact

norm of fT is defined as its Lipschitz norm Lipβ.
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The collection of all weakly compact Σ-operators from Σβ
X1...Xn

into Y is denoted by

W
(

Σβ
X1...Xn

;Y
)

and it is provided of the norm Lipβ.

Theorem 4.14. Let (X1, . . . , Xn, Y, β) be an election in BAN and T : X1 × · · · ×Xn → Y

be a bounded multilinear operator with associated Σ-operator fT : Σβ
X1...Xn

→ Y then:

i) T : X1 × · · · ×Xn → Y is weakly compact.

ii) T̃ : (X1 ⊗ . . .⊗Xn, π)→ Y is weakly compact.

iii) f : Σβ
X1...Xn

→ Y is weakly compact for all reasonable crossnorm β.

iv) f
(
Bβ (0, 1)

)
⊂ Y is relatively weakly compact for all reasonable crossnorm β.

v) T̃
(
(Σ− Σ) ∩B(X1⊗...⊗Xn,β)

)
⊂ Y is relatively weakly compact.

are equivalent.

Proof. The equivalence of (i) and (ii) follows from the Krein-Šmulian theorem. The other
equivalences are derived exactly as in Theorem 4.10.

Corollary 4.15. Let (X1, . . . , Xn, Y, β) be an election in BAN . Then, W
(

Σβ
X1...Xn

;Y
)

and

W (X1, . . . , Xn;Y ) are linearly isomorphic.

We may argue exactly as in Proposition 4.12 to prove the following result.

Proposition 4.16. The collection of all weakly compact Σ-operators is an ideal of Σ-operators.

4.3 Nuclear Σ-Operators

The notion of a nuclear Σ-operator can be easily extended from the linear case. Recall that a
linear operator T : X → Y between Banach spaces is called nuclear if it can be expressed as

T =

∞∑
i=1

x∗i · yi

where (x∗i ) and (yi) are bounded sequences in X∗ and Y such that
∞∑
i=1
‖x∗i ‖ ‖yi‖ <∞.

In the multilinear setting the notion of nuclear multilinear operator has a few versions, see
for instance [5, 31, 33, 75, 77, 88, 91]. On the side of Lipschitz theory we can see [3, 27, 38].
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Definition 4.17. The Σ-operator f : Σβ
X1...Xn

→ Y between Banach spaces is nuclear if it
can be expressed in the form

f =

∞∑
i=1

ϕi · yi

where (ϕi) and (yi) are bounded sequences in Lβ (X1, . . . , Xn) and Y respectively such that
∞∑
i=1

Lipβ(ϕi) ‖yi‖ <∞. The nuclear norm of f is defined by

N(f) := inf

{ ∞∑
i=1

Lipβ(ϕi) ‖yi‖

}

where the infimum is taken over the all possible representations as above.

The collection of all nuclear Σ-operators from Σβ
X1...Xn

into Y is denoted byN
(

Σβ
X1...Xn

;Y
)

and it is a Banach space with the nuclear norm N , see Proposition 4.20.

In the linear setting, the nuclear property is related with the projective tensor norm by
the surjective linear operator

X∗⊗̂πY → N(X,Y ). (4.3)

In analogy with the linear case, the collection of nuclear Σ-operators is related with the pro-
jective Σ-tensor norm on duals. To present the extension of (4.3) to the setting of Σ-operators,
first, we characterize the completion respective to the projective Σ-tensor norm on duals. We
use a similar argument to the presented in [96, P. 94]

Proposition 4.18. Let π be the projective Σ-tensor norm on duals and (X1, . . . , Xn, Y, β) be
an election on BAN . Every v in the completion of

(
Lβ (X1, . . . , Xn)⊗ Y, πβ

)
verifies

π̂β(v) = inf

{ ∞∑
i=1

Lipβ(ϕi) ‖yi‖
∣∣∣ v =

∞∑
i=1

ϕi ⊗ yi,
∞∑
i=1

Lipβ(ϕi) ‖yi‖ <∞

}
.

Proof. First notice that every series
∞∑
i=1

ϕi ⊗ yi such that
∞∑
i=1

Lipβ(ϕi) ‖yi‖ < ∞ defines

an element v in the completion of
(
Lβ (X1, . . . , Xn)⊗ Y, πβ

)
since it is absolutely convergent.

Moreover

π̂β(v) ≤
∞∑
i=1

Lipβ(ϕi) ‖yi‖.

On the other hand, let v be a non zero element in the completion and fix ε > 0. Choose
a sequence (ui) in

(
Lβ (X1, . . . , Xn)⊗ Y, πβ

)
such that

π̂β(v − ui) <
ε

2i+1
.
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Since πβ(u1) < ε + π̂β(v), there exist a representation
j1∑
j=1

ϕj ⊗ yj of u1 with the property

j1∑
j=1

Lipβ(ϕj) ‖yj‖ < ε+ π̂β(v). Define vi = ui+1 − ui for all i in N. Then

πβ(vi) ≤ πβ(v − ui+1) + πβ(v − ui) ≤
ε

2i+2
+

ε

2i+1
≤ ε

2i
.

Therefore, there exists a representation
ji+1∑

j=ji+1
ϕj⊗yj of vi such that

ji+1∑
j=ji+1

Lipβ(ϕj) ‖yj‖ < ε
2i

.

Hence, v = u1 +
∞∑
i=1

vi =
∞∑
j=1

ϕj ⊗ yj and

∞∑
j=1

Lipβ(ϕj) ‖yj‖ ≤
j1∑
j=1

Lipβ(ϕi) ‖yi‖+
∞∑
i=1

ε

2i
≤ 2ε+ π̂β(v).

The proof is complete since ε is arbitrary.

Slight modifications in the proof of Proposition 4.18 lead us to another useful formula for
for the projective Σ-tensor norm on duals. We obtain

π̂β(v) = inf

{ ∞∑
i=1

Lipβ(ϕi) ‖yi‖
∣∣∣ v =

∞∑
i=1

ϕi ⊗ yi,
∞∑
i=1

Lipβ(ϕi) <∞, ‖yi‖ → 0

}
.

Proposition 4.19. Let (X1, . . . , Xn, Y, β) be an election on BAN . Then the operator(
Lβ (X1, . . . , Xn)⊗ Y, πβ

)
→ N

(
Σβ
X1...Xn

;Y
)

(4.4)

ϕ⊗ y 7→ ϕ · y

is bounded. Moreover, the unique extension to the completion

J :
(
Lβ (X1, . . . , Xn) ⊗̂Y, π̂β

)
→ N

(
Σβ
X1...Xn

;Y
)

∞∑
i=1

ϕi ⊗ yi 7→
∞∑
i=1

ϕi · yi

is a surjective operator.

Proof. Plainly, the operator defined by (4.4) is well defined. Moreover, for any tensor v
in Lβ (X1, . . . , Xn)⊗ Y , the triangle inequality implies

N

(∑
i

ϕi ⊗ yi

)
≤
∑
i

Lipβ(ϕi) ‖yi‖

for every representation. The conclusion follows from Proposition 4.18.
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Proposition 4.20. The collection of nuclear Σ-operators is an ideal of Σ-operators.

Proof. Let (X1, . . . , Xn, Y, β) be an election on BAN . It is clear that N
(

Σβ
X1...Xn

;Y
)

is a vector space and N is non-negative, homogeneous and verifies the triangle inequality.
Besides,

‖f(p)− f(q)‖ ≤
∞∑
i=1

Lipβ(ϕi) ‖yi‖

holds for any representation of f . Therefore, Lipβ(f) ≤ N(F ). As a consequence N(f) = 0
implies f = 0.

The rank-one Σ-operator ϕ ·y is a nuclear Σ-operator; moreover, its nuclear norm satisfies
N(ϕ·y) ≤ Lipβ(ϕ) ‖y‖ by definition. As a consequence, every finite rank Σ-operator is nuclear.

Let p, q in Σβ
X1...Xn

and y∗ in Y ∗. We have

|tr
(
T̃Lpqy∗

)
| ≤ ‖y∗‖Lipβ(fT )β(p− q)

≤ ‖y∗‖N(fT )β(p− q)

for all nuclear Σ-operator fT .

To prove the ideal property consider the composition

Σθ
Z1...Zn

fR // Σβ
X1...Xn

f // Y
S //W

where fR is a Σ-θ-operator, S is a bounded linear operator and f is a nuclear Σ-operator. Let
∞∑
i=1

ϕi · yi be a nuclear representation of f . A simple calculation shows

SffR =

∞∑
i=1

(ϕi ◦ R̃) · S(yi).

Even more, the inequalities Lipθ(ϕi ◦ R̃) ≤ ‖R̃‖Lipβ(ϕi) and ‖S(yi)‖ ≤ ‖S‖ ‖yi‖ assert that
N(SffR) ≤ ‖R̃‖ ‖S‖N(f).

The completeness of N
(

Σβ
X1...Xn

;Y
)

with the nuclear norm follows from Proposition 4.19.

In the linear context J :
(
X∗⊗̂πY

)
→ N(X,Y ) is injective if either X∗ or Y has the

approximation property, see [93, Cor. 4.17]. In Proposition 4.21 we prove that J is injective

under certain approximation property on Y =

( n

⊗̂
i=1

Xi, β̂

)
, the completion of the normed
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space (X1 ⊗ . . .⊗Xn, β).

Consider (X1, . . . , Xn, Y, β) an election on BAN . Notice that Lipβ defines a norm on
Lβ (X1, . . . , Xn). The identity

Lβ (X1, . . . , Xn)→
(
Lβ (X1, . . . , Xn) , Lipβ

)
is a bounded linear operator with ‖I‖ ≤ 1. In the particular case β = π, I is an isometry.

Let ψ be a bounded linear functional on
(
Lβ (X1, . . . , Xn)⊗ Y, πβ

)
. Define

Lψ : Y →
(
Lβ (X1, . . . , Xn) , Lipβ

)∗
y 7→ Lψ(y) : ϕ 7→ ψ(ϕ⊗ y).

Since

| 〈Lψ(y) , ϕ〉 | ≤ ‖ψ‖πβ(ϕ⊗ y) = ‖ψ‖Lipβ(ϕ) ‖y‖

holds for all ϕ and y, the operator Lψ is bounded and ‖Lψ‖ ≤ ‖ψ‖.

Proposition 4.21. Let X1, . . . , Xn be Banach spaces and let β be a reasonable crossnorm on

X1 ⊗ . . .⊗Xn. Suppose that for every null sequence (wi)i in

( n

⊗̂
i=1

Xi, β̂

)
, for every bounded

functional ψ on

(
Lβ (X1, . . . , Xn)⊗

( n

⊗̂
i=1

Xi, β̂

)
, πβ

)
and ε > 0 there exists a finite rank

operator S :

( n

⊗̂
i=1

Xi, β̂

)
→
(
Lβ (X1, . . . , Xn) , Lipβ

)∗
such that S approximates Lψ on the

compact set {wi} ∪ {0}, that is

‖S(wi)− Lψ(wi)‖ < ε

for all i ∈ N. Then the linear map

J :

(
Lβ (X1, . . . , Xn) ⊗̂

( n

⊗̂
i=1

Xi, β̂

)
, π̂β

)
→ N

(
Σβ
X1...Xn

;

( n

⊗̂
i=1

Xi, β̂

))
is injective.

Proof. Let v =
∞∑
i=1

ϕi⊗wi where π̂β(wi)→ 0 and
∞∑
i=1

Lipβ(ϕi) <∞. Suppose v represents

the zero Σ-operator, this is

0 =
∞∑
i=1

ϕi(p)wi



78 Applications and Examples

for all p in Σβ
X1...Xn

. Hence

0 =
∞∑
i=1

η(ϕi)wi

for all η
(
Lβ (X1, . . . , Xn) , Lipβ

)∗
.

Let ψ be a bounded functional on

(
Lβ (X1, . . . , Xn) ⊗̂

( n

⊗̂
i=1

Xi, β̂

)
, πβ

)
and ε > 0. There

exist a finite rank operator S :

( n

⊗̂
i=1

Xi, β̂

)
→
(
Lβ (X1, . . . , Xn) , Lipβ

)∗
such that

| 〈Lψ(wi)− S(wi) , ϕ〉 | < εLipβ(ϕ) ∀ ϕ ∈ Lβ (X1, . . . , Xn) , i ∈ N.

Fix a representation
∑
j
fj⊗ηj of S with fj ∈

( n

⊗̂
i=1

Xi, β̂

)∗
and ηj ∈

(
Lβ (X1, . . . , Xn) , Lipβ

)∗
.

Notice that

∞∑
i=1

〈S(wi), ϕi〉 =
∞∑
i=1

〈∑
j

fj(wi) ηj , ϕi

〉

=

∞∑
i=1

∑
j

fj(wi) ηj(ϕi)

=
∑
j

∞∑
i=1

fj(wi) ηj(ϕi)

=
∑
j

fj

( ∞∑
i=1

ηj(ϕi)wi

)
= 0.
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Then

|ψ(v)| = |ψ

( ∞∑
i=1

ϕi ⊗ wi

)
|

= |
∞∑
i=1

ψ (ϕi ⊗ wi) |

= |
∞∑
i=1

〈Lψ(wi), ϕi〉 |

= |
∞∑
i=1

〈Lψ(wi)− S(wi), ϕi〉+

∞∑
i=1

〈S(wi), ϕi〉 |

≤
∞∑
i=1

| 〈Lψ(wi)− S(wi), ϕi〉 |

≤ ε

∞∑
i=1

Lipβ(ϕi)

asserts |ψ(v)| = 0. Since ψ is arbitrary we conclude that v = 0.

Definition 4.22. We say that the tuple (X1, . . . , Xn, β) has the approximation property if

for every compact subset K ⊂
( n

⊗̂
i=1

Xi, β̂

)
and ε > 0 there exists a finite rank operator

S :

( n

⊗̂
i=1

Xi, β̂

)
→
( n

⊗̂
i=1

Xi, β̂

)
such that

|ϕ(w)− ϕ(S(w))| ≤ ε Lipβ(ϕ) ∀ ϕ ∈ Lβ (X1, . . . , Xn) , w ∈ K.

Proposition 4.23. Let X1, . . . , Xn be Banach spaces and β be a reasonable crossnorm on
X1 ⊗ . . .⊗Xn. If (X1, . . . , Xn, β) has the approximation property then

J :

(
Lβ (X1, . . . , Xn) ⊗̂

( n

⊗̂
i=1

Xi, β̂

)
, π̂β

)
→ N

(
Σβ
X1...Xn

;

( n

⊗̂
i=1

Xi, β̂

))
is injective.

Proof. Let (wi) be a null sequence in

( n

⊗̂
i=1

Xi, β̂

)
. Let ψ be a non zero bounded func-

tional on

(
Lβ (X1, . . . , Xn)⊗

( n

⊗̂
i=1

Xi, β̂

)
, πβ

)
and ε > 0. Notice that {wi} ∪ {0} is com-

pact. The approximation property asserts the existence of a finite rank linear operators
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S :

( n

⊗̂
i=1

Xi, β̂

)
→
( n

⊗̂
i=1

Xi, β̂

)
such that

|φ(wi)− φ(S(wi))| ≤
ε

‖ψ‖
Lipβ(φ) ∀ φ ∈ Lβ (X1, . . . , Xn) , i ∈ N.

The condition

‖Lψ(wi)− Lψ ◦ S(wi)‖ ≤ ‖ψ‖β(wi − S(wi)) ∀ i ∈ N

implies

| 〈Lψ(wi)− Lψ ◦ S(wi) , ϕ〉 | ≤ Lipβ(ϕ) ε ∀ ϕ ∈ Lβ (X1, . . . , Xn) i ∈ N

since β(wi − S(wi)) ≤ sup
Lipβ(φ)≤1

|φ(wi)− φ(S(wi))|. Proposition 4.21 completes the proof

If the multilinear operator T : X1 × · · · ×Xn → Y is such that its associated Σ-operator
fT : Σβ

X1...Xn
→ Y is nuclear, then T is expressed in the form

T =

∞∑
i=1

ϕ · yi

where (ϕi) and (yi) are bounded sequences in Lβ (X1, . . . , Xn) and Y with
∞∑
i=1

Lipβ(ϕ) ‖yi‖
convergent.

4.4 p-Summing Σ-Operators

In this section we collect the most relevant facts about the collection of p-summing Σ-operator
developed in [7] (and [6]), see Definition 2.1. It is worth to point out that these results were
developed in the dissertation of Jorge Angúlo in the context of multilinear operators and
β = π.

The attempts to establish summability for the multilinear case has given place to several
generalizations; among others, we find [2, 12, 13, 14, 15, 43, 48, 76, 78, 79, 81, 82, 84, 89, 91, 98].
On the side of metric theory, in [53] is presented the notion of p-summability for Lips-
chitz functions. Following this reference, many research has been developed, see for instance
[3, 24, 25, 26, 28, 35, 37, 38, 60, 94, 95].

The notion of p-summability for Σ-operators has the advantage that they admit analogues
for Pietsch Domination and Factorization Theorems. Actually, this is the first factorization
result for multilinear operators obtained by Σ-operators.
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Theorem. The Σ-operator f : Σβ
X1...Xn

→ Y is p-summing if and only if there exist C > 0

and a regular, Borel, probability measure µ on the compact set K :=
(
B(X1⊗...⊗Xn,β)∗ , w

∗)
such that

‖f(a)− f(b)‖ ≤ C

∫
K

|ϕ(a)− ϕ(b)|pdµ(ϕ)

 1
p

for all a, b in Σβ
X1...Xn

. Under these circumstances πp(f) = inf C where the infimum is taken
over all C as above.

Using this result, it is easy to prove the Factorization Theorem for p-summing Σ-operators.
In order to make the factorization theorem easier to read , we denote by i : Σβ

X1...Xn
→

C(B(X1⊗...⊗Xn,β)∗ , w
∗) the Σ-operator given by evaluation, this is, 〈i(p) , h〉 = h(p).

Theorem. The Σ-operator f : Σβ
X1...Xn

→ Y is p-summing if and only if there exist a regular,

Borel, probability measure on
(
B(X1⊗...⊗Xn,β)∗ , w

∗), a subset M of Lp(µ) and a Lipschitz

function u : M → Y such that M = jp| ◦ i(Σβ
X1...Xn

),

Σβ
X1...Xn

i
��

f // Y

i(Σβ
X1...Xn

)

��

jp| //M

��

u

OO

C(B(X1⊗...⊗Xn,β)∗) jp
// Lp(µ)

commutes and πp(f) = Lip(u).

It is worth to notice that factorizations of p-summing Σ-operators are not linear anymore
since they are obtained through subsets of spaces Lp(µ). This fact naturally leads us to the
Lipschitz condition of the function u : M → Y .

In his doctoral dissertation, Jorge Angúlo defines a generalization of the Chevet-Saphar
tensor norm dp. In this approach we present a general definition of dp using reasonable
crossnorms β.

Definition 4.24. Let (X1, . . . , Xn, Y, β) be an election on BAN . We define the norm dβp on
X1 ⊗ . . .⊗Xn ⊗ Y by

dβp (u) = inf

{
‖(pi − qi)‖wβp∗ ‖(yi)‖p

∣∣∣ u =
m∑
i=1

(pi − qi)⊗ yi

}
.

Proposition 4.25. The norm dp is a finitely generated Σ-tensor norm on spaces.
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Proof. In Jorge Angúlo’s dissertation is proved that dp is a reasonable crossnorm in the
case β = π. The same proof works for the general case. Here we only prove the uniform and
finitely generated properties.

Let fR : Σθ
Z1...Zn

→ Σβ
X1...Xn

and S : W → Y be a Σ-θ-operator and linear operator

respectively. Let u =
m∑
i=1

(pi − qi)⊗ yi in Z1 ⊗ . . .⊗ Zn ⊗W . Then

dβp (fR ⊗ S(v)) = dβp

(∑
i

(fR(pi)− fR(qi))⊗ S(yi)

)
≤ ‖(fR(pi)− fR(qi))‖wβp∗ ‖(S(yi))‖p
≤ ‖R̃‖ ‖S‖ ‖(pi − qi))‖wθp∗ ‖(yi)‖p.

As a consequence, dβp (fR ⊗ S(v)) ≤ ‖R̃‖ ‖S‖ dθp(u).

To see that dβp is finitely generated let u in X1 ⊗ . . .⊗Xn ⊗ Y and η > 0. There exists a

representation of u,
m∑
i=1

(pi − qi)⊗ yi such that

‖(pi − qi)‖wβp∗ ‖(yi)‖p ≤ d
β
p (u) + η.

It is clear that there exist finite dimensional subspaces Ei and F of Xi and Y respectively

such that pi, qi ∈ Σ
β|
E1...En

and yi ∈ F . Hence

‖(pi − qi);E1 ⊗ . . .⊗ En‖wβ|p∗ = ‖(pi − qi)‖wβp∗

and

‖(yi);F‖wp = ‖(yi)‖wp .

Finally

dβ|p (u; EiF ) ≤ dβp (u; XiY ) + η

holds for all η > 0.

The relation of p-summing Σ-operators with the Σ-tensor norm on spaces dp is presented
in the following result.

Theorem 4.26. Let (X1, . . . , Xn, Y, β) be an election on BAN . Then(
X1 ⊗ . . .⊗Xn ⊗ Y, dβp∗

)∗
= Πp

(
Σβ
X1...Xn

;Y ∗
)

is a linear isometric isomorphism.
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This result in combination with Theorem 3.13 implies that [Πp, πp] fits in the context of
ideals of Σ-operators.

Proposition 4.27. The collection [Πp, πp] is a maximal ideal of Σ-operators.

Proof. Apply Criterion 3.14.

4.5 Σ-Images

Factorizations of Σ-operators (hence, of multilinear operators) are obtained in terms of the
image of a multilinear operator viewed as a subset of a Banach space. In order to have an easy
language and a good manipulation of these factorizations, we present the notion of Σ-image.

Definition 4.28. Consider the diagram

X1 × · · · ×Xn

��

A

&&

Y

Σπ
X1...Xn fA

//M

��

B

??

Z

where

i) X1, . . . , Xn, Y and Z are Banach spaces.

ii) M is a subset of Z.

iii) A : X1 × · · · ×Xn → Z is a bounded multilinear operator.

iv) fA : Σπ
X1...Xn

→ Z is the associated bounded Σ-operator of A.

v) B : M → Y is a Lipschitz function.

If A(X1×· · ·×Xn) = fA(Σπ
X1...Xn

) = M we say that M is the Σ-image associated to the tuple
(X1, . . . , Xn, fA).

The set
L (M ;Y ) := { ψ : M → Y | ψA is multilinear and Lipschitz }

is a vector space endowed with the sum and product by scalars defined pointwise and it
becomes a Banach space with the Lipschitz norm. For L(M ;K) we simply write M∗.

For any B ∈ L (M ;Y ) we define its adjoint linear operator by

B∗ : Y ∗ → M∗

y∗ 7→ y∗B.
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4.6 Factorization through Hilbert Spaces and the Σ-Tensor
Norms on Spaces γ

This section is dedicated to present the collection of Σ-operators that admit a factorization
through a Hilbert space. In order to have a good exposition we followed the steps of [87].
In this case we obtain three characterizations, the first is by definition of factorizations, see
Definition 4.29, the second by domination, see Theorem 4.34 and the last by tensorial repre-
sentation with the help of the Σ-tensor norm on spaces γ2, see Definition 4.35.

The Factorization theorem of p-summing Σ-operators taught us that factorizations of
Σ-operators (hence, of multilinear operators) cannote be expected linear. Even more, Lips-
chitz conditions are involved. Bearing this in mind, the proposal of Σ-operators that factor
through a Hilbert spaces is the next (compare with [36]).

Definition 4.29. We say that the Σ-operator f : Σβ
X1...Xn

→ Y admits a factorization
through a Hilbert space if there exist a Hilbert space H, a Σ-image M of H associated to
(X1, . . . , Xn, fA) and a Lipschitz map B : M → Y ∗∗ such that the diagram

Σβ
X1...Xn

fA ##

f // Y

M

B

??

��
H

commutes. Define Γ(f) = inf Lipβ(fA)Lip(B) where the infimum is taken over all possible
factorizations as above.

The collection of all Σ-operators form Σβ
X1...Xn

into Y that admit a factorization through

a Hilbert space is denoted by Γ
(

Σβ
X1...Xn

;Y
)

.

Proposition 4.30. The pair [Γ,Γ] is an ideal of Σ-operators.

Proof. It is straightforward to prove that Γ
(

Σβ
X1...Xn

;Y
)

is vector space and Γ is a

norm on it. Aside, let f = ϕ · y a rank-one Σ-operator. Then f = B ◦ ϕ where B : K → Y
is defined by B(λ) = λy. Then, by definition, f factors through the Hilbert space K and
Γ(f) ≤ Lipβ(ϕ) ‖y‖. Therefore, every finite rank Σ-operator factors through a Hilbert space.

For p and q in Σβ
X1...Xn

and y∗ in Y ∗ we have

|trLpqy∗ T̃ | ≤ ‖y∗‖ ‖f(p)− f(q)‖
= ‖y∗‖ ‖BfA(p)−BfA(q)‖
≤ ‖y∗‖Lip(B)Lipβ(fA)β(p− q)
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for all fT in Γ
(

Σβ
X1...Xn

;Y
)

, and fT = BfA.

To verify the ideal property consider the composition

Σθ
Z1...Zn

fR // Σβ
X1...Xn

f // Y
S //W

where fR is a Σ-θ-operator, f = BfA factors through a Hilbert space and S : Y → W is a
bounded linear operator. Then the composition SffR factors through the same Hilbert space
than f . Even more

Γ(SffR) ≤ Lipθ(fAfR)Lip(SB) ≤ ‖R̃‖ ‖S‖Lipθ(fA)Lip(B)

implies Γ(SffR) ≤ ‖R̃‖ ‖S‖Γ(f).

Actually, [Γ,Γ] is maximal. This result requires a bigger effort. The tool to prove it is the
technique of ultrafilters.

Theorem 4.31. The Σ-operator f : Σβ
X1...Xn

→ Y admits a factorization through a Hilbert
space and Γ(f) ≤ C if and only if for every finite dimensional subspace Ei of Xi and finite

codimensional subspace L of Y the Σ-operator QLffEi : Σ
β|
E1...En

→ Y/L admits a factorization
through a Hilbert space and Γ(QLffEi) ≤ C. In other words, [Γ,Γ] is maximal.

Proof. Suppose that f : Σβ
X1...Xn

→ Y factors through a Hilbert space. Let f = BfA be
a typical factorization for f . Let Ei and L as above. Consider the diagram

Σ
β|
E1...En

fAfEi **

fEi // Σβ
X1...Xn

f // Y
QL // Y/L

fAfEi

(
Σ
β|
E1...En

)
��

B|fAfEi (Σ
β|
E1...En

)

99

H

.

We have Lipβ|(fAfEi) ≤ Lipβ(fA) and Lip(B|fAfEi (Σ
β|
E1...En

)) ≤ Lip(B). Thus, QLffEi fac-
tors trough a Hilbert space and Γ(QLffEi) ≤ Γ(f).

For the converse, define P = F(X1) × · · · × F(Xn) × CF(Y ). The relation ≤ defined by
(E1, . . . , En, L) ≤ (M1, . . . ,Mn, N) if Ei ⊂ Mi and N ⊂ L defines a partial order on P. Let
A be an ultrafilter on P containing the sets

(E1, . . . , En, L)# = {(M1, . . . ,Mn, N) | (E1, . . . , En, L) ≤ (M1, . . . ,Mn, N)}.
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For each (E1, . . . , En, L) ∈ P there exist a factorization as follows

Σ
β|
E1...En

f
AEiL $$

QLffEi // Y/L

MEiL

BEiL

<<

��
HEiL

with Lipβ(AEiL) ≤ 1 and Lip(BEiL) ≤ C. By the finite dimensional hypothesis we may

assume that HEiL = `
n(E1,...,En,L)
2 where n(E1, . . . , En, L) is a natural number.

Define

AEiL : Σβ
X1...Xn

→ `
n(E1,...,En,L)
2

p 7→

{
AEiL(p) p ∈ Σ

β|
E1...En

0 otherwise
.

It is not difficult to see that

A : X1 × · · · ×Xn →
(
`
n(E1,...,En,L)
2

)
A

(x1, . . . , xn) 7→ (AEiL(x1 ⊗ . . .⊗ xn))A

is a multilinear mapping. The associated Σ-operator is given by

fA : Σβ
X1...Xn

→
(
`
n(E1,...,En,L)
2

)
A

p 7→ (AEiL(p))A.

Moreover,

‖fA(p)− fA(q)‖A = ‖(AEiL(p)−AEiL(q))‖A
= lim

A
‖AEiL(p)−AEiL(q)‖

`
n(E1,...,En,L)
2

≤ β(p− q)

asserts that fA is a bounded Σ-operator with Lipβ(fA) ≤ 1.

Aside, consider the functions

(BEiL)∗ : Y ∗ → (MEiL)∗

y∗ 7→
{

(BEiL)∗(ζ) y∗ = Q∗L(ζ) ∈ Q∗L((Y/L)∗)
0 otherwise

.
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Define

B : fA(Σβ
X1...Xn

) → Y ∗∗

fA(p) 7→ BfA(p)

where

BfA(p) : Y ∗ → K

y∗ 7→ lim
A

〈
(BEiL)∗(y∗) , AEiL(p)

〉
.

The inequality

|
〈

(BEiL)∗(y∗) , AEiL(p)
〉
−
〈

(BEiL)∗(y∗) , AEiL(q)
〉
| ≤ C ‖y∗‖ ‖AEiL(p)−AEiL(q)‖

in the case q = 0 implies that BfA(p) is well defined. Even more, (AEiL(p))A = (AEiL(q))A
asserts that B does not depend on representants since lim

A
‖AEiL(p)−AEiL(q)‖ = 0. Moreover,

the general case ensures that B is a Lipschitz function and Lip(B) ≤ C.

Finally, notice that for every p ∈ Σβ
X1...Xn

and y∗ ∈ Y ∗ there exists (E1, . . . , En, L) ∈ P
such that p ∈ Σ

β|
E1...En

and y∗ ∈ Q∗L(Y/L)∗. Then (E1, . . . , En, L)# ∈ A ensures that

lim
A

〈
(BEiL)∗(y∗) , AEiL(p)

〉
= y∗(f(p)).

As a consequence BfA(p) = KY f(p) for all p in Σβ
X1...Xn

. This means that

Σβ
X1...Xn

fA ''

f // Y

fA(Σβ
X1...Xn

)

K−1
Y B

99

��(
`
n(E1,...,En,L)
2

)
A

is commutative. Now, if we considering all the spaces `
n(E1,...,En,L)
2 as abstract L2-spaces then

there exist a measure space (Ω, µ) such that
(
`
n(E1,...,En,L)
2

)
A

is (order) isometric to L2(µ),

see [67, Th. 1.b.2]. This means that f factors through a Hilbert space and Γ(f) ≤ C.

The Σ-operators that factor through a Hilbert space can be characterized under their
behavior on finite sequences.
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Definition 4.32. Given finite sequences (pi), (qi), (aj), (bj) contained in ΣX1...Xn we will
write (pi, qi) ≤β (aj , bj) if∑

i

|ϕ(pi)− ϕ(qi)|2 ≤
∑
j

|ϕ(aj)− ϕ(bj)|2

holds for all ϕ ∈ Lβ (X1, . . . , Xn).

In last definition it is clear that we may assume that all the sequences have the same
length. This domination is characterized in terms of scalar matrices as follows.

Proposition 4.33. (pi, qi)1≤i≤m ≤β (aj , bj)1≤j≤m if and only if there exists an m×m scalar
matrix (aij) such that ∑

i

∣∣∑
j

aijαj
∣∣2 ≤∑

j

|αj |2

for all (αj) ∈ Km and

ϕ(pi)− ϕ(qi) =
∑
j

aij (ϕ(aj)− ϕ(bj))

for all ϕ in Lβ (X1, . . . , Xn). As a consequence,

pi − qi =
∑
j

aij(aj − bj).

Proof. For the if part define

S :=
{

(ϕ(aj)− ϕ(bj))j | ϕ ∈ L
β (X1, . . . , Xn)

}
.

We may consider S as a subspace of `m2 . The operator A : S → `m2 defined by

A
(

(ϕ(aj)− ϕ(bj))j

)
:= (ϕ(pi)− ϕ(qi))i

is bounded and ‖A‖ ≤ 1 since∥∥∥A((ϕ(aj)− ϕ(bj))j

)∥∥∥2

`m2

=
∑
i

|ϕ(pi)− ϕ(qi)|2 ≤
∑
j

|ϕ(aj)− ϕ(bj)|2.

It is possible to extend A to an operator Ã : `m2 → `m2 with ‖Ã‖ ≤ 1. Let (aij) the m ×m
matrix associated to Ã, then

(ϕ(pi)− ϕ(qi))i = Ã
(
(ϕ(aj)− ϕ(bj))i

)
= (aij)

(
(ϕ(aj)− ϕ(bj))i

)
=

∑
j

aij (ϕ(aj)− ϕ(bj))


i

.
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Conversely, since the norm of (aij) as operator is less than 1 we conclude∑
i

|ϕ(pi)− ϕ(qi)|2 =
∑
i

∣∣∑
j

aij (ϕ(aj)− ϕ(bj))
∣∣2 ≤∑

j

|ϕ(aj)− ϕ(bj)|2.

In other words, (pi, qi) ≤β (aj , bj).

Theorem 4.34. The Σ-operator f : Σβ
X1...Xn

→ Y admits a factorization through a Hilbert
space if and only if there exists a constant C > 0 such that∑

i

‖f(pi)− f(qi)‖2 ≤ C2
∑
i

β(ai − bi)2, (4.5)

for all finite sequences such that (pi, qi) ≤β (ai, bi). In this case Γ(f) coincides with the
smallest constant C as above.

Proof. First, let us prove that (4.5) implies that f admits a factorization through a Hilbert
space. For this end, we will use Theorem 4.31. Let Ei be a finite dimensional subspace of Xi.
Set

K :=
{
ζ ∈ (E1 ⊗ . . .⊗ En, β|)∗ | ‖ζ‖β| = 1

}
.

Since the spaces Ei are finite dimensional K is compact. Define S the subset of C(K) given
by the functions of the form

φ(ζ) =
∑
i

|ζ(pi)− ζ(qi)|2 −
∑
i

|ζ(ai)− ζ(bi)|2

where (ai), (bi), (pi) and (qi) are finite sequences in Σ
β|
E1...En

such that

C2
∑
i

β|(ai − bi)2 ≤
∑
i

‖f(pi)− f(qi)‖2.

Every element φ in S satisfy ‖φ‖ > 0 since there exist ζ in K such that φ(ζ) > 0. Moreover,
S is a convex cone disjoint of the negative open cone C− := { φ | supφ < 0 }. An application
of the Hahn-Banach theorem ensures the existence of a measure µ on K which separates C−
and S. It is possible to adjust µ to be a positive measure such that

0 ≤
∫
K

φ(ζ) dµ(ζ)

for all φ in S. Since Ei is a finite dimensional space

D = sup


∫
K

|ζ(a)− ζ(b)|2dµ(ζ)

 1
2 ∣∣∣ β|(a− b) ≤ 1, a, b ∈ Σ

β|
E1...En

 > 0.
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Thus, we may adjust µ such that D = C.

For every a, b, p and q in Σ
β|
E1...En

such that C β|(a− b) ≤ ‖f(p)− f(q)‖ we have

∫
K

|ζ(a)− ζ(b)|2dµ(ζ) ≤
∫
K

|ζ(p)− ζ(q)|2dµ(ζ).

In particular, given p and q in Σ
β|
E1...En

such that C < ‖f(p)− f(q)‖ and a, b in Σ
β|
E1...En

with
β|(a− b) < 1, then ∫

K

|ζ(a)− ζ(b)|2dµ ≤
∫
K

|ζ(p)− ζ(q)|2dµ.

As a consequence

C ≤

∫
K

|ζ(p)− ζ(q)|2dµ

1/2

for all p, q in Σ
β|
E1...En

with C ≤ ‖f(p) − f(q)‖. Take c = ‖f(p) − f(q)‖ and ε > 0. The
homogeneous property of f asserts that

C < (C + ε)
c

c
=

∥∥∥∥f (C + ε

c
p

)
− f

(
C + ε

c
q

)∥∥∥∥ .
Hence,

C

C + ε
‖f(p)− f(q)‖ ≤

∫
K

|ζ(p)− ζ(q)|2dµ

 1
2

holds for all ε > 0. This way,

‖f(p)− f(q)‖ ≤

∫
K

|ζ(p)− ζ(q)|2dµ

 1
2

∀ p, q ∈ Σ
β|
E1...En

. (4.6)

On the other hand, it is clear that

∫
K

|ζ(a)− ζ(b)|2dµ

 1
2

≤ C β|(a− b) ∀ a, b ∈ Σ
β|
E1...En

. (4.7)
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Finally, we obtain a factorization as follows

Σ
β|
E1...En

fA %%

fEi // Y

fA(Σ
β|
E1...En

)

��

B

;;

L2(µ)

where

A : E1 × · · · × En → L2(µ)

(x1, . . . , xn) 7→ A(x1, . . . , xn) : ζ 7→ ζ(x1, . . . , xn)

and B(fA(p)) := f(p). Boundedness of fA is deduced by (4.7); moreover, Lipβ(fA) ≤ C.
Aside, (4.6) asserts that B is a well defined Lipschitz function and Lip(B) ≤ 1. This way, the
Σ-operators QLfEi factors through a Hilbert space and Γ(QLfEi) ≤ C. Theorem 4.31 implies
that f factors through a Hilbert space and Γ(f) ≤ inf C.

Conversely, suppose that f : Σβ
X1...Xn

→ Y admits a factorizations through a Hilbert space.
Let f = BfA be a typical factorization of f through the Hilbert spaceH. If (pi−qi) ≤β (ai−bi),
then it is clear that (fA(pi)− fA(qi)) ≤ (fA(ai)− fA(ai)) in H. Given an orthonormal basis
(eα)α∈I of H we have ‖h‖2 =

∑
α
|〈h, eα〉|2. Then∑

i

∑
α∈F
| 〈fA(pi)− fA(qi) , eα〉 |2 =

∑
α∈F

∑
i

| 〈fA(pi)− fA(qi) , eα〉 |2

≤
∑
α∈F

∑
i

| 〈fA(ai)− fA(bi) , eα〉 |2

for all finite subset F of I. Thus∑
i

‖fA(pi)− fA(qi)‖2 ≤
∑
i

‖fA(ai)− fA(bi)‖2.

Finally ∑
i

‖f(pi)− f(qi)‖2 =
∑
i

‖BfA(pi)−BfA(qi)‖2

≤ Lip(B)2
∑
i

‖fA(pi)− fA(qi)‖2

≤ Lip(B)2
∑
i

‖fA(ai)− fA(bi)‖2

≤ Lip(B)2Lipβ(fA)2
∑
i

β|(ai − bi)2
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implies that (4.5) holds and inf C ≤ Lip(B)Lipβ(fA). As a consequence, inf C ≤ Γ(f).

The tensorial representation of the maximal ideal [Γ,Γ] is presented next. First, we define
the involved Σ-tensor norm on spaces (compare with [36, Def 4.2] and [87, Ch. 2 Sec. b]).

Definition 4.35. Let (X1, . . . , Xn, Y, β) be an election in BAN . For u in X1⊗ . . .⊗Xn⊗Y
define

γβ2 (u) = inf

{
‖(aj − bj)‖β2 ‖(yi)‖2

∣∣∣ u =

m∑
i=1

(pi − qi)⊗ yi, (pi, qi) ≤β (aj , bj)

}
.

Proposition 4.36. γ2 is a finitely generated Σ-tensor norm on spaces.

Proof. First, let us prove that εβ ≤ γβ2 . Let u =
m∑
i=1

(pi − qi) ⊗ yi. For finite sequences

(aj), (bj) such that (pi, qi) ≤β (aj , bj), the Holder inequality implies

| 〈ϕ⊗ y∗ , u〉 | = |
∑
i

ϕ(pi − qi) y∗(yi)|

≤

(∑
i

|ϕ(pi)− ϕ(qi)|2
) 1

2
(∑

i

|y∗(yi)|2
) 1

2

≤

∑
j

|ϕ(aj)− ϕ(bj)|2
 1

2 (∑
i

|y∗(yi)|2
) 1

2

≤ ‖ϕ‖β ‖yi‖

∑
j

|β(aj − bj)|2
 1

2 (∑
i

‖(yi)‖2
) 1

2

Hence, εβ ≤ γβ2 . In particular γβ2 (u) = 0 implies u = 0. The homogeneous property of γβ2 is
clear.

For the triangle inequality take u, v in X1 ⊗ . . . ⊗ Xn ⊗ Y and η > 0. There exist

representations
m∑
i=1

(pi − qi) ⊗ yi and
∑
l

(sj − tj) ⊗ zj of u and v respectively, and sequences

(ai), (bi), (xj) and (wj) such that (pi, qi) ≤β (ai, bi), (sj , tj) ≤β (xj , wj) and

‖(ai − bi)‖β2 ≤ (γβ2 (u) + η)1/2

‖(yi)‖2 ≤ (γβ2 (u) + η)1/2

‖(xj − wj)‖β2 ≤ (γβ2 (v) + η)1/2

‖(zj)‖2 ≤ (γβ2 (v) + η)1/2.
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Then
m∑
i=1

(pi − qi)⊗ yi +
∑
l

(sj − tj)⊗ zj is a representation of u+ v. Moreover,

∑
i

|ϕ(pi)− ϕ(qi)|2 +
∑
j

|ϕ(sj)− ϕ(tj)|2 ≤
∑
i

|ϕ(ai)− ϕ(bi)|2 +
∑
j

|ϕ(xj)− ϕ(wj)|2.

Then, the inequalities∑
i

β(ai − bi)2 +
∑
j

β(xj − wj)2 ≤ γβ2 (u) + γβ2 (v) + 2η

and ∑
i

‖(yi)‖2 +
∑
j

‖(zj)‖2 ≤ γβ2 (u) + γβ2 (v) + 2η

asserts that

γβ2 (u+ v) ≤ γβ2 (u) + γβ2 (v) + 2η

holds for all η > 0. This way, γβ2 verifies the triangle inequality.

Plainly, γβ2 ((p − q) ⊗ y) ≤ β(p − q) ‖y‖. As a result, γβ2 ≤ πβ. Hence, γβ2 is a reasonable
crossnorm on X1 ⊗ . . .⊗Xn ⊗ Y .

To prove the uniform property let (Z1, . . . , Zn,W, θ) be another election in BAN . Let

fR : Σθ
Z1...Zn

→ Σβ
X1...Xn

be a Σ-θ-operator and S : W → Y be a bounded linear operator.

For u =
m∑
i=1

(pi − qi)⊗ yi and (aj), (bj) such that (pi, qi) ≤θ (aj , bj) we have that

∑
i

|ϕ(fR(pi))− ϕ(fR(qi))|2 =
∑
i

|ϕR̃(pi)− ϕR̃(qi)|2

≤
∑
j

|ϕR̃(aj)− ϕR̃(bj)|2

≤
∑
j

|ϕ(fR(aj))− ϕ(fR(bj))|2

is verified for all ϕ ∈ Lβ (X1, . . . , Xn). This is, (fR(pi), fR(qi)) ≤β (fR(aj), fR(bj)). Then

γβ2 (fR ⊗ S(u)) ≤ ‖(fR(pi)− fR(qi))‖β2 ‖(S(yi))‖2
≤ ‖R̃‖ ‖S‖ ‖(pi − qi)‖θ2 ‖(yi)‖2.

Hence, γβ2 (fR ⊗ S(u)) ≤ ‖R̃‖ ‖S‖ γθ2(u). In other words, the linear operator

fR ⊗ S : (Z1 ⊗ . . .⊗ Zn ⊗W,γθ2)→ (X1 ⊗ . . .⊗Xn ⊗ Y, γβ2 )
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is bounded and ‖fR ⊗ S‖ ≤ ‖R̃‖ ‖S‖.

To see that γβ2 is finitely generated, first notice that γβ2 (u; XiY ) ≤ γ
β|
2 (u; EiF ) holds for

all u and finite dimensional subspaces Ei and F of Xi and Y such that u ∈ E1⊗ . . .⊗En⊗F .

Aside, let η > 0. Then, there exists a representation
m∑
i=1

(pi − qi) ⊗ yi of u and finite

sequences (aj) and (bj) such that (pi, qi) ≤β (aj , bj) and

‖(aj − bj)‖β2 ‖(yi)‖2 ≤ (1 + η) γβ2 (u).

Let us denote pi = x1
i ⊗ . . .⊗ xni , pi = z1

i ⊗ . . .⊗ zni , aj = s1
j ⊗ . . .⊗ snj and bj = t1j ⊗ . . .⊗ tnj .

We set Ei := span{xij , zij , sij , tij} ⊂ Xi and F = span{yi} ⊂ Y . Hence, u ∈ E1⊗ . . .⊗En⊗F ,

and pi, qi, aj , bj ∈ Σ
β|
E1...En

. Moreover, the Hahn-Banach theorem implies (pi, qi) ≤β| (aj , bj).
Hence,

γ
β|
2 (u; EiF ) ≤ ‖(aj − bj)‖β|2 ‖yi‖2

= ‖(aj − bj)‖β2 ‖yi‖2
≤ (1 + η) γβ2 (u)

asserts that γβ2 is finitely generated.

Theorem 4.37. Let (X1, . . . , Xn, Y, β) be an election in BAN . The operator(
X1 ⊗ . . .⊗Xn ⊗ Y, γβ2

)∗
→ Γ

(
Σβ
X1...Xn

;Y ∗
)

ϕ 7→ fϕ

is a linear isometric isomorphism.

Proof. We will use the linear isometry (Y ⊕`2 · · · ⊕`2 Y )∗ = Y ∗ ⊕`2 · · · ⊕`2 Y ∗.

Suppose that f factors through a Hilbert space. The combination of the above isometry
and Theorem 4.34, implies that for all (yi)i and (pi, qi) ≤β (aj , bj),∣∣∣∣∣∑

i

〈f(pi)− f(qi) , yi〉

∣∣∣∣∣ ≤ Γ(f) ‖(aj − bj)‖β2 ‖(yi)‖2.

So, if u =
m∑
i=1

(pi − qi)⊗ yi is an element in X1 ⊗ . . .⊗Xn ⊗ Y and (pi, qi) ≤β (aj , bj) then

|ϕf (u)| ≤ Γ(f) ‖(aj − bj)‖β2 ‖(yi)‖2
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which means that ϕf is bounded and ‖ϕf‖ ≤ Γ(f).

Conversely, suppose ϕ ∈
(
X1 ⊗ . . .⊗Xn ⊗ Y, γβ2

)∗
. Let (pi, qi) ≤β (aj , bj) and (yi)i.

Define u =
m∑
i=1

(pi − qi)⊗ yi, then

∣∣∣∣∣∑
i

〈fϕ(pi)− fϕ(qi), yi〉

∣∣∣∣∣ = |ϕ(u)| ≤ ‖ϕ‖ ‖(aj − bj)‖β2 ‖(yi)‖2.

After taking suprema over
∑
i
‖yi‖2 ≤ 1 we obtain

(∑
i

‖fϕ(pi)− fϕ(qi)‖2
) 1

2

≤ ‖ϕ‖ ‖(aj − bj)‖β2 .

This means that fϕ : Σβ
X1...Xn

→ Y ∗ factors through a Hilbert space and Γ(fϕ) ≤ ‖ϕ‖.

4.7 2-Dominated Σ-Operators and the Σ-Tensor Norm
on Spaces ω2

This section is dedicated to the case of 2-dominated Σ-operators. We present three char-
acterizations for a Σ-operator f to be 2-dominated. The first, by definition, is generalizing
the factorization of a typical 2-dominated linear operators. The second is by domination of
the values y∗(f(p)) uniformly by 2-summing linear operators and Σ-operators. The third is
the tensorial representation where we extend the Hilbert tensor norm ω2 to the setting of
Σ-tensor norms on spaces.

Definition 4.38. A Σ-operator f : Σβ
X1...Xn

→ Y is named 2-dominated if there exist a
Banach space Z, a Σ-image M of Z associated to (X1, . . . , Xn, fA) and a Lipschitz function

B : M → Y such that fA : Σβ
X1...Xn

→ Z is a 2-summing Σ-operator, B∗ is a 2-summing linear
operator and the diagram

Σβ
X1...Xn

fA ##

f // Y

M

B

??

��
Z
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commutes. The 2-dominated norm of f is defined to be

D2(f) = inf π2(fA) π2(B∗)

where the infimum is taken over all possible factorizations as above.

LetD2

(
Σβ
X1...Xn

;Y
)

denote the Banach space of all 2-dominated Σ-operators from Σβ
X1...Xn

into Y endowed with D2.

In the definition of a 2-dominated Σ-operator we may chose Z as a Hilbert space. Thus,
every 2-dominated Σ-operator factors through a Hilbert space. This time, the Σ-operator
fA : Σβ

X1...Xn
→ Z is not just bounded but 2-summing in the sense of Section 4.4. The same

is true for the Lipschitz function B : M → Y , B∗ : Y ∗ → M∗ is 2-summing. It is worth
to notice that B is defined just in the set M . Aside, this definition can be interpreted as
a composition of an ideal of Σ-operators and an ideal of Lipschitz functions (those whose
adjoint linear operator is 2-summing).

The Hilbertian tensor norm ω2 (see for instance [93, Sec. 7.4]) is easily extended to the
case of Σ-tensor norm as following.

Definition 4.39. Let (X1, . . . , Xn, Y, β) be an election in BAN . Define

ωβ2 (u) := inf

{
‖ (pi − qi) ‖wβ2 ‖(yi)‖w2

∣∣∣ u =
m∑
i=1

(pi − qi)⊗ yi

}
for all u in X1 ⊗ . . .⊗Xn ⊗ Y .

Proposition 4.40. ω2 is a finitely generated Σ-tensor norm on spaces.

Proof. First, observe that given ϕ ∈ Lβ (X1, . . . , Xn) and y∗ ∈ Y ∗ we have by definition

of ωβ2 and Holder inequality

| 〈ϕ⊗ y , u〉 | ≤
∑
i

|ϕ(pi − qi) y∗(yi)|

≤

(∑
i

|ϕ(pi − qi)|2
)1/2 (∑

i

|y∗(yi)|2
)1/2

≤ ‖ϕ‖β ‖y∗‖ ‖(pi − qi)‖wβ2 ‖(yi)‖w2 .

After taking infimum over all the representations of u we obtain

| 〈ϕ⊗ y, u〉 | ≤ ‖ϕ‖β ‖y∗‖ ωβ2 (u).

Hence, εβ(u) ≤ ωβ2 (u). This way, ωβ2 (u) = 0 implies u = 0 since εβ is a norm. Condition

ωβ2 (λu) = |λ| ωβ2 (u) is clear by definition.
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For the triangle inequality take u, v in X1 ⊗ . . . ⊗ Xn ⊗ Y and η > 0. There exist

representations
m∑
i=1

(pi − qi)⊗ yi and
∑
j

(aj − bj)⊗ zj of u and v respectively such that

‖(pi − qi)‖wβ2 ≤ (ωβ2 (u) + η)1/2

‖(yi)‖w2 ≤ (ωβ2 (u) + η)1/2

‖(aj − bj)‖wβ2 ≤ (ωβ2 (v) + η)1/2

‖(zj)‖w2 ≤ (ωβ2 (v) + η)1/2.

Then
m∑
i=1

(pi − qi)⊗ yi +
∑
j

(aj − bj)⊗ zj is a representation of u+ v and satisfies

∑
i

|ϕ(pi − qi)|2 +
∑
j

|ϕ(aj − bj)|2
1/2

≤ (ωβ2 (u) + ωβ2 (v) + 2η)1/2

and ∑
i

|y∗(yi)|2 +
∑
j

|y∗(zj)|2
1/2

≤ (ωβ2 (u) + ωβ2 (v) + 2η)1/2

for all ϕ ∈ Lβ (X1, . . . , Xn) and y∗ ∈ Y ∗ both with norm less than one. Then

ωβ2 (u+ v) ≤ (ωβ2 (u) + ωβ2 (v) + 2η)

holds for all η > 0. This way, ωβ2 verifies the triangle inequality.

It is clear that ωβ2 ((p− q)⊗ y) ≤ β(p− q) ‖y‖ since we are in the case of two sequences of

just one term. We may conclude that ωβ2 is reasonable and crossed.

To prove the uniform property let (Z1, . . . , Zn,W, θ) be another election in BAN . Let

fR : Σθ
Z1...Zn

→ Σβ
X1...Xn

be a Σ-θ-operator and S : W → Y be a bounded linear operator.
Then, Proposition 1.6 ensures

ωβ2 (fR ⊗ S(u)) ≤ ‖(fR(pi)− fR(qi)))‖wβ2 ‖(S(yi))‖w2
≤ ‖R̃‖ ‖S‖ ‖(pi − qi)‖wβ2 ‖(yi)‖w2 .

Hence, ωβ2 (fR ⊗ S(u)) ≤ ‖R̃‖ ‖S‖ ωβ2 (u). In other words, the linear operator

fR ⊗ S : (Z1 ⊗ . . .⊗ Zn ⊗W,ωθ2)→ (X1 ⊗ . . .⊗Xn ⊗ Y, ωβ2 )

is bounded and ‖fR ⊗ S‖ ≤ ‖R̃‖ ‖S‖.
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The uniform property asserts that ωβ2 (u; XiY ) ≤ ω
β|
2 (u; EiF ) holds for all finite dimen-

sional subspaces Ei and F of Xi and Y respectively whose tensor product contains u. Recip-

rocally, given η > 0 there exists a representation
m∑
i=1

(pi − qi)⊗ yi of u such that

‖(pi − qi)‖wβ2 ‖(yi)‖w2 ≤ (1 + η) ωβ2 (u; XiY ).

If we denote pi = x1
i ⊗ . . .⊗ xni and qi = z1

i ⊗ . . .⊗ zni we may consider the finite dimensional
subspaces Ei := span{xij} ⊂ Xi and F := span{yi} ⊂ Y . These spaces clearly satisfy
u ∈ E1 ⊗ . . .⊗ En ⊗ F . Hence,

‖(pi − qi);Ei‖wβ|2 ≤ ‖(pi − qi)‖wb2

‖(yi);F‖w2 ≤ ‖(yi)‖w2

ensures

ω
β|
2 (u; EiF ) ≤ ‖(pi − qi);Ei‖wβ|2 ‖(yi);F‖w2

≤ ‖(pi − qi)‖wb2 ‖(yi)‖w2
≤ ωβ2 (u; XiY ) (1 + η).

Finally, ωβ2 is finitely generated.

Since Σ-operators can be represented by functional on a tensor product, we characterize
those functional which are bounded with the norm ωβ2 . This result is a generalization of the
Kwapień Domination Theorem (see [93, Th. 7.32] and [41, Sec. 19.2]).

Theorem 4.41. Let (X1, . . . , Xn, Y, β) be an election in the class of Banach spaces. Suppose
ϕ : X1⊗ . . .⊗Xn⊗Y → K is a linear functional. Then the following conditions are equivalent:

i) ϕ is bounded on
(
X1 ⊗ . . .⊗Xn ⊗ Y, ωβ2

)
.

ii) There exists a regular Borel probability measure µ on K := B(X1⊗...⊗Xn,β)∗ × BY ∗ and
C > 0 such that

|ϕ((p− q)⊗ y)| ≤ C

∫
K

|φ(p)− φ(q)|2dµ(φ, y∗)

 1
2
∫
K

|y∗(y)|2dµ(φ, y∗)

 1
2

for all (p− q)⊗ y ∈ X1 ⊗ . . .⊗Xn ⊗ Y .

iii) There exists a Banach space Z, a Σ-image M of Z associated to the tuple (X1, . . . , Xn, fS)
and a linear operator R : Y →M∗ such that fS and R are 2-summing and

ϕ(x1 ⊗ . . .⊗ xn ⊗ y) =
〈
R(y), fS(x1 ⊗ . . .⊗ xn)

〉
.
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Under this circumstances ‖ϕ‖ = inf C = inf π2(fS) π2(R) where the first infimum is taken
over all constants C of (ii) and the other over the all possible factorizations as in (iii).

Proof. (i)⇒(ii). Boundedness of ϕ implies that for every u =
m∑
i=1

(pi − qi)⊗ yi

|ϕ(u)| ≤
∑
i

|ϕ((pi − qi)⊗ yi)|

≤ ‖ϕ‖ ‖(pi − qi)‖w2 ‖(yi)‖w2

≤ ‖ϕ‖ sup
φ∈B(X1⊗...⊗Xn,β)∗

y∗∈BY ∗

(∑
i

|φ(pi)− φ(qi)|2
) 1

2
(∑

i

|y∗(yi)|2
) 1

2

≤ ‖ϕ‖
2

sup
φ∈B(X1⊗...⊗Xn,β)∗

y∗∈BY ∗

∑
i

|φ(pi)− φ(qi)|2 +
∑
i

|y∗(yi)|2.

Define the subset L of C
(
B(X1⊗...⊗Xn,β)∗ ×BY ∗

)
as the functions fA of the form

fA(φ, y∗) =

∣∣∣∣∣∑
i

ϕ ((pi − qi)⊗ yi)

∣∣∣∣∣− ‖ϕ‖2 ∑
i

|φ(pi)− φ(qi)|2 + |y∗(yi)|2

where A is a finite subset of elements of the form (p − q) ⊗ y. The set L is convex and has
at least a non positive value. By the Hahn-Banach theorem there exist a Borel measure µ on
B(X1⊗...⊗Xn,β)∗ ×BY ∗ such that there exist a constant α with

µ(f) ≤ α ≤ µ(g)

for all f in L and g in the positive cone P . Since the vector zero is an element of L we obtain
0 ≤ α and by the cone property of P we have α ≤ 0. This way we may assume that µ is a
nonnegative probability measure such that µ(f) ≤ 0 for all f in L.

For the set A := {(p− q)⊗ y} we have

|ϕ((p− q)⊗ y)| ≤ ‖ϕ‖
2

∫
K

|φ(p)− φ(q)|2dµ+

∫
K

|y∗(y)|2dµ

 .

Recall that for all real numbers a and b

ab = inf

{
(ta)2 + (t−1b)2

2

∣∣∣ t > 0

}
.

Notice that for all t > 0 we have (p− q)⊗ y = tp⊗ t−1y − tq ⊗ t−1y. Hence

|ϕ((p− q)⊗ y)| ≤ ‖ϕ‖
2

∫
K

|φ(tp)− φ(tq)|2dµ+

∫
K

|y∗(t−1y)|2dµ

 .
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After taking infimum over t > 0 we conclude (2) and inf C ≤ ‖ϕ‖.

(ii) ⇒ (iii). Consider the space L2(µ) and the multilinear operator

S : X1 × · · · ×Xn → L2(µ)

(x1, . . . , xn) 7→ S(x1, . . . , xn) : (φ, y∗) 7→ φ(x1 ⊗ . . .⊗ xn).

We claim that fS : Σβ
X1...Xn

→ L2(µ) is 2-summing. To see this, let 1 : BY ∗ → K the constant
function with value 1. The Σ-operator fS factors as follows

Σβ
X1...Xn

I // C(B(X1⊗...⊗Xn,β)∗)
·×1 // C(K)

j2 // L2(µ)

p � // I(p) � // I(p)× 1 � // j2(I(p)× 1)

where I is the evaluation map and j2 is the 2-summing linear identity. Then, for finite
sequences (pi) and (qi) in Σβ

X1...Xn
we have∑

i

‖fS(pi)− fS(qi)‖2 =
∑
i

‖j2(I(pi)× 1)− j2(I(qi)× 1)‖2

≤ sup
(φ,y∗)∈K

∑
i

|I(pi)× 1(φ, y∗)− I(qi)× 1(φ, y∗)|2

≤ sup
(φ,y∗)∈K

∑
i

|φ(pi)− φ(qi)|2

= sup
φ∈B(X1⊗...⊗Xn,β)∗

∑
i

|φ(pi)− φ(qi)|2.

As a consequence, fS is 2-summing and π2(fS) ≤ 1.

Aside, consider the evaluation map i : Y → C(By∗). Set M := fS(Σβ
X1...Xn

) ⊂ L2(µ).
Condition (ii) implies that for each y ∈ Y we have a well defined Lipschitz function

Ry : M → K
fS(p) 7→ ϕ(p⊗ y)

with Lip(Ry) ≤ C ‖j2i(y)‖L2. Define R by the composition

Y

��

R //M∗

1× i(Y )

��

j2|
// j2(1× i(Y ))

��

b

OO

C(K)
j2

// L2(µ)
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where b(j2(1× i(y))) = Ry. Condition (ii) implies that b is a well defined linear operator. The
2-summing property of j2 implies that of R and π2(R) ≤ C.

Finally, it is clear that ϕ(p⊗ y) = RyfS(p) = 〈R(y), fS(p)〉. Moreover, πβ2 (fS) π2(R) ≤ C.
This means that inf πβ2 (fS) π2(R) ≤ C.

(iii)⇒ (i). Given u =
m∑
i=1

(pi − qi)⊗ yi in X1 ⊗ . . .⊗Xn ⊗ Y we have

|ϕ(u)| ≤
∑
i

|ϕ((pi − qi)⊗ yi)|

=
∑
i

|〈 R(yi) , fS(pi) 〉 − 〈 R(yi) , fS(qi) 〉|

≤
∑
i

Lip(R(yi)) ‖fS(pi)− fS(qi)‖

≤

(∑
i

Lip(R(yi))
2

) 1
2
(∑

i

‖fS(pi)− fS(qi)‖2
) 1

2

≤ π2(R) π2(S) ‖(yi)‖w2 ‖(pi − qi)‖
wβ
2 .

After taking infimum over all the representations of u of the form
m∑
i=1

(pi − qi)⊗ yi we obtain

that ϕ :
(
X1 ⊗ . . .⊗Xn ⊗ Y, ωβ2

)
→ K is bounded and ‖ϕ‖ ≤ inf π2(R)π2(fS).

Theorem 4.42. For every election (X1, . . . , Xn, Y, β) in BAN(
X1 ⊗ . . .⊗Xn ⊗ Y, ωβ2

)∗
= D2

(
Σβ
X1...Xn

;Y ∗
)

holds linearly isomorphic and isometric.

Proof. Suppose f : Σβ
X1...Xn

→ Y ∗ is such that ϕf is bounded on
(
X1 ⊗ . . .⊗Xn ⊗ Y, ωβ2

)
.

We know that the canonical extension ϕf of ϕf is bounded on
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗∗, ωβ2

)
with

the same norm. By the last proposition there exist a regular Borel probability measure µ on
K := B(X1⊗...⊗Xn,β)∗ ×BY ∗∗∗ such that

| 〈ϕf , (p− q)⊗ y∗∗〉 | ≤ ‖ϕf‖ ‖p− q‖L2(µ) ‖y∗∗‖L2(µ),

or equivalently

| 〈 y∗∗, f(p)− f(q) 〉 | ≤ ‖ϕf‖ ‖p− q‖L2(µ) ‖y∗∗‖L2(µ). (4.8)
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Define

A : X1 × · · · ×Xn → L2(µ)

(x1, . . . , xn) 7→ A(x1, . . . , xn) : (ϕ, y∗) 7→ ϕ(x1 ⊗ . . .⊗ xn)

and consider its associated Σ-operator fA : Σβ
X1...Xn

→ L2(µ). We claim that fA is 2-summing.

To see this, let us denote Lβ (X1, . . . , Xn) by Lβ. Let 1 : BY ∗∗∗ → K the constant function
with value 1. The Σ-operator fA factors as follows

Σβ
X1...Xn

I // C(BLβ )
·×1 // C(K)

j2 // L2(µ)

p � // I(p) � // I(p)× 1 � // j2(I(p)× 1)

where I is the evaluation map and j2 is the 2-summing linear identity. Then, for finite
sequences (pi) and (qi) in Σβ

X1...Xn
we have

∑
i

‖fA(pi)− fA(qi)‖2 =
∑
i

‖j2(I(pi)× 1)− j2(I(qi)× 1)‖2

≤ sup
(ϕ,y∗∗∗)∈K

∑
i

|I(pi)× 1(ϕ, y∗∗∗)− I(qi)× 1(ϕ, y∗∗∗)|2

≤ sup
(ϕ,y∗∗∗)∈K

∑
i

|ϕ(pi)− ϕ(qi)|2

= sup
ϕ∈BLβ

∑
i

|ϕ(pi)− ϕ(qi)|2.

As a consequence, fA is 2-summing and π2(fA) ≤ 1.

Aside, define

B : fA(Σβ
X1...Xn

) → Y ∗

fA(p) 7→ f(p).

By (4.8), B is well defined. Moreover, the adjoint operator B∗ = Y ∗∗ →M∗ verifies

|B∗(y∗∗)(fA(p))−B∗(y∗∗)(fA(q))| = | 〈 y∗∗, f(p)− f(q) 〉 |
≤ ‖ϕf‖ ‖p− q‖L2(µ) ‖y∗∗‖L2(µ).

Last inequality asserts that B∗(y∗∗) is a Lipschitz function on M for each y∗∗, and its Lipschitz
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norm satisfies L(B∗(y∗∗)) ≤ ‖ϕf‖ ‖y∗∗‖L2(µ). The linear operator B∗ factors as follows

Y ∗∗

��

B∗ //M∗

1× i(Y ∗∗)

��

j2|
// j2(1× i(Y ∗∗))

��

b

OO

C(K)
j2

// L2(µ)

where i : Y ∗∗ → C(BY ∗∗∗) is the evaluation map and

b : j2(1× i(Y ∗∗)) → M∗

j2(1× i(y∗∗)) 7→ B∗(y∗∗).

Once again, (4.8) implies that b is well defined. In this case, the 2-summability of j2 implies
that of B∗ and π2(B∗) ≤ ‖ϕf‖.

Finally, f = BfA : Σβ
X1...Xn

→ Y ∗ is a 2-dominated Σ-operator with

Dβ
2 (f) ≤ πβ2 (fA) π(B∗) ≤ ‖ϕf‖ = ‖ϕf‖.

Conversely, if ϕ is such that fϕ is 2-summing, take a factorization fϕ = BA with fA and
B∗ 2-summing. Then,

ϕ(p⊗ y∗∗) = 〈y∗∗ , fϕ(p)〉
= 〈y∗∗ , BfA(p)〉
= 〈B∗y∗∗ , fA(p) 〉

means that the canonical extension of ϕ is bounded on
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗∗, ωβ2

)
. This way,

ϕ is bounded on
(
X1 ⊗ . . .⊗Xn ⊗ Y, ωβ2

)
and

‖ϕ‖ = ‖ϕ‖ ≤ π2(fA) π2(B∗)

holds for all factorizations of fϕ. This ensures that ‖ϕ‖ ≤ Dβ
2 (fϕ).

Proposition 4.43. The collection of 2-dominated Σ-operators is a maximal ideal.

Proof. Apply Criterion 3.14
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4.8 (p, q)-Dominated Σ-Operators and Lapresté Σ-Tensor
Norms on Spaces

In the literature, dominated multilinear operators are defined as a particular case of abso-
lutely (s; r1 . . . rn)-summing operators, see [31, 32, 59, 77, 80, 90]. In this section we define
the collection of (p, q)-dominated operators by duality with the Lapresté Σ-tensor norm on
spaces, see Definition 4.44 below.

If we consider the factorization diagrams of p-summing Σ-operators and those of factors
through Hilbert space and 2-dominated Σ-operators, a reasonable proposal for factorizations
of (p, q)-dominated Σ-operator is

Σβ
X1...Xn

fA ##

f // Y

M

B

??

��
Z

(4.9)

where Z is Banach space, M is a Σ-image of Z associated to (X1, . . . , Xn, fA) and B : M → Y
is a Lipschitz function such that fA is p-summing and B∗ is q-summing. Even more, a pro-
posal for the (p, q)-dominated norm of f is Dp,q(f) = inf πβp (A) πq(B

∗) where the infimum is
taken over all the possible factorizations.

In this section we define the analogous of the Lapresté tensor norms for the case of
Σ-tensor norm on spaces αp,q. Then, we define the ideal of (p, q)-dominated Σ-operators
as the maximal ideal associated to the Σ-tensor norm on duals defined by αq∗,p∗ . In Theo-
rem 4.49 we will see that, indeed, a (p, q)-dominated Σ-operator admits a factorization as in
(4.9). Other approximations for tensor norms of Lapresté type can be find in [68, 69]

Definition 4.44. Let p, q ∈ [1,∞] such that 1
p + 1

q ≥ 1. Take the unique r ∈ [1,∞] with the

property 1 = 1
r + 1

q∗ + 1
p∗ . For any election (X1, . . . , Xn, Y, β) in BAN we define the Lapresté

norm on X1 ⊗ . . .⊗Xn ⊗ Y by

αβp,q(u) := inf

{
‖(λi)‖r ‖(pi − qi)‖wβq∗ ‖(yi)‖

w
p∗

∣∣∣ u =
∑
i

λi(pi − qi)⊗ yi

}
.

Proposition 4.45. The Lapresté norm αp,q is a finitely generated Σ-tensor norm on spaces.

Proof. Let (X1, . . . , Xn, Y, β) be an election on BAN . It is clear that αβp,q is a no-negative

function and αβp,q(λu) = |λ| αβp,q. Let ϕ ∈ Lβ (X1, . . . , Xn) and y∗ ∈ Y ∗. Then, the Hölder
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inequality implies that

| 〈ϕ⊗ y∗ , u〉 | ≤
∑
i

|λi| |ϕ(pi − qi)| |y∗(yi)|

≤

(∑
i

|λi|r
) 1

r
(∑

i

|ϕ(pi − qi)|q
∗

) 1
q∗
(∑

i

|y∗(yi)|p
∗

) 1
p∗

≤ ‖ϕ‖β ‖y∗‖ ‖(λi)‖r ‖(pi − qi)‖wβq∗ ‖(yi)‖
w
p∗ .

Therefore, εβ(u) ≤ αβp,q(u) for all u in X1 ⊗ . . .⊗Xn ⊗ Y . In particular, αβp,q(u) = 0 implies
u = 0.

For the triangle inequality let u and v in X1⊗ . . .⊗Xn⊗Y and fix η > 0. By definition of
αβp,q there exist representations

∑
i
λi(pi−qi)⊗yi and

∑
j
µj(aj−bj)⊗zi of u and v respectively

such that

‖(λi)‖r ≤ (αβp,q(u) + η)
1
r

‖(pi − qi)‖wβq∗ ≤ (αβp,q(u) + η)
1
q∗

‖(yi)‖wp∗ ≤ (αβp,q(u) + η)
1
p∗

and

‖(µj)‖r ≤ (αβp,q(v) + η)
1
r

‖(aj − bj)‖wβq∗ ≤ (αβp,q(v) + η)
1
q∗

‖(zj)‖wp∗ ≤ (αβp,q(v) + η)
1
p∗ .

Notice that
∑
i
λi(pi − qi)⊗ yi +

∑
j
µi(aj − bj)⊗ zi is a representation of u+ v. Moreover

∑
i

|λi|r +
∑
j

|µj |r
 1

r

= (‖(λi)‖rr + ‖(µj)‖rr)
1
r

≤
(

(αβp,q(u) + η) + (αβp,q(v) + η)
) 1
r

=
(
αβp,q(u) + αβp,q(v) + 2η

) 1
r
.

The same reasoning produces

‖(p1 − q1, . . . , pm − qm, a1 − b1, . . . , am − bm)‖wβq∗ ≤
(
αβp,q(u) + αβp,q(v) + 2η

) 1
q∗
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and

‖(y1 − y1, . . . , ym − ym, z1 − z1, . . . , zm − zm)‖wβp∗ ≤
(
αβp,q(u) + αβp,q(v) + 2η

) 1
p∗
.

This way,

αβp,q(u+ v) ≤ αβp,q(u) + αβp,q(v) + 2η

holds for every η > 0. This means that αβp,q verifies the triangle inequality.

We have already proved that αβp,q is reasonable. For u = (p− q)⊗ y we have that

αβp,q(u) ≤ 1 · β(p− q) ‖y‖.

In other words, αβp,q is a reasonable crossnorm.

To see that αp,q verifies the uniform property let fR : Σθ
Z1...Zn

→ Σβ
X1...Xn

be a Σ-θ-operator
operator and S : W → Y be a bounded linear operator. For any v =

∑
i
λi(pi − qi) ⊗ yi in

Z1 ⊗ . . .⊗ Zn ⊗W we have

αβp,q (fR ⊗ S(v)) = αβp,q

(∑
i

λi(fR(pi)− fR(qi))⊗ S(yi)

)
≤ ‖(λi)‖r ‖(fR(pi)− fR(qi))‖wβq∗ ‖(S(yi))‖wp∗

≤ ‖R̃‖ ‖S‖ ‖(λi)‖r ‖(pi − qi))‖wθq∗ ‖(yi)‖wp∗ .

This asserts that R⊗S :
(
Z1 ⊗ . . .⊗ Zn ⊗W, αθp,q

)
→
(
X1 ⊗ . . .⊗Xn ⊗ Y, αβp,q

)
is bounded

and ‖fR ⊗ S‖ ≤ ‖R̃‖ ‖S‖.

It only remains to prove that αp,q is finitely generated. This is easy since, for any u and
η > 0 there exists a representation

∑
i
λi(pi − qi)⊗ yi of u with the property

‖(λi)‖r ‖(pi − qi)‖wβq∗ ‖(yi)‖
w
p∗ ≤ αβp,q(u) + η.

It is clear that there exist finite dimensional subspaces Ei and F of Xi and Y respectively

such that pi, qi ∈ Σ
β|
E1...En

and yi ∈ F . Hence

‖(pi − qi);E1 ⊗ . . .⊗ En‖wβ|q∗ = ‖(pi − qi)‖wβq∗

and

‖(yi);F‖wp∗ = ‖(yi)‖wp∗ .
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Finally
αβ|p,q(u; EiF ) ≤ αβp,q(u; XiY ) + η

holds for all η > 0.

Definition 4.46. Let p, q ∈ [1,∞] such that 1
p + 1

q ≤ 1. We define the maximal ideal of
(p, q)-dominated Σ-operators, denoted by [Dp,q, Dp,q], as the maximal ideal associated with the
Σ-tensor norm on duals defined by αq∗p∗.

Notice that p, q ∈ [1,∞] such that 1
p + 1

q ≤ 1 implies 1
p∗ + 1

q∗ ≥ 1. Hence αq∗p∗ makes
sense. Aside, the components of [Dp,q, Dp,q] are defined by(

X1 ⊗ . . .⊗Xn ⊗ Y, αβq∗,p∗
)∗

= Dpq
(

Σβ
X1...Xn

;Y ∗
)

(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, αβq∗,p∗

)∗
∩ L

(
Σβ
X1...Xn

;Y
)

= Dpq
(

Σβ
X1...Xn

;Y
)
.

The (p, q)-dominated norm of the Σ-operator f : Σβ
X1...Xn

→ Y is given by

Dp,q(f) = ‖ϕf :
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, αβq∗,p∗

)
→ K‖.

Naturally, if we want to formulate an equivalent form for (p, q)-dominated Σ-operators we

have to characterize those functionals bounded on
(
X1 ⊗ . . .⊗Xn ⊗ Y, αβp,q

)
.

Proposition 4.47. Let (X1, . . . , Xn, Y, β) be an election of Banach spaces. The following are
equivalent:

i) ϕ ∈
(
X1 ⊗ . . .⊗Xn ⊗ Y, αβp,q

)∗
.

ii) There exists C > 0 such that

‖(ϕ((pi − qi)⊗ yi))‖r∗ ≤ C ‖(pi − qi)‖wβq∗ ‖(yi)‖
w
p∗ .

In this case ‖ϕ‖ = inf C where the infimum is taken over all the constants C as above.

Proof. If (i) holds, then u =
∑
i
λi(pi − qi)⊗ yi implies

∣∣∣∣∣∑
i

λiϕ((pi − qi)⊗ yi)

∣∣∣∣∣ = |ϕ(u)|

≤ ‖ϕ‖ ‖(λi)‖r ‖(pi − qi)‖wβq∗ ‖(yi)‖
w
p∗ .

After taking suprema over ‖(λi)‖r ≤ 1 we obtain

‖(ϕ((pi − qi)⊗ yi))‖r∗ ≤ ‖ϕ‖ ‖(pi − qi)‖wβq∗ ‖(yi)‖
w
p∗
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and inf C ≤ ‖ϕ‖.

In the opposite direction, (ii) implies that

|ϕ(u)| =

∣∣∣∣∣∑
i

λiϕ((pi − qi)⊗ yi)

∣∣∣∣∣
≤ C ‖(λi)‖r ‖(pi − qi)‖wβq∗ ‖(yi)‖

w
p∗

holds for any representation of u. Then |ϕ(u)| ≤ C αβp,q(u) and ‖ϕ‖ inf C.

The next result is a generalization of the Kwapień Domination Theorem, see [41, Sec 19.2]
and [63].

Theorem 4.48. Let (X1, . . . , Xn, Y, β) be an election of Banach spaces and αp,q be the
Lapresté Σ-tensor norm on spaces. The following are equivalent:

i) ϕ is a bounded linear functional on
(
X1 ⊗ . . .⊗Xn ⊗ Y, αβp,q

)
.

ii) For any w∗-compact subsets K ⊂ B(X1⊗...⊗Xn,β)∗ and L ⊂ BY ∗ there exist a nonnegative
constant C and probability regular Borel measures µ and ν on K and L respectively such
that

| 〈ϕ, (p− q)⊗ y〉 | ≤ C

∫
K

|ψ(p)− ψ(q)|q∗dµ

1/q∗∫
L

|y∗(y)|p∗dν

1/p∗

.

Under these circumstances ‖ϕ‖ = inf C.

Proof. Condition (ii) when combined with Hölder inequality for q∗

r∗ and p∗

r∗ implies

‖ (ϕ((pi − qi)⊗ yi)) ‖r∗ =

(∑
i

|ϕ((pi − qi)⊗ yi)|r
∗

) 1
r∗

≤ C

∑
i

∫
K

|ψ(pi)− ψ(qi)|q
∗
dµ(ψ)

 r∗
q∗
∫
L

|y∗(yi)|p
∗
dν(y∗)

 r∗
p∗


1
r∗

≤ C

∑
i

∫
K

|ψ(pi)− ψ(qi)|q
∗
dµ(ψ)

 1
q∗
∑

i

∫
L

|y∗(yi)|p
∗
dν(y∗)

 1
p∗

= C

∫
K

∑
i

|ψ(pi)− ψ(qi)|q
∗
dµ(ψ)

 1
q∗
∫
L

∑
i

|y∗(yi)|p
∗
dν(y∗)

 1
p∗

≤ C ‖(pi − qi)‖wβq∗ ‖(yi)‖
w
p∗ .
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Proposition 4.47 ensures that ϕ is bounded and ‖ϕ‖ ≤ inf C.

For the converse, assume ‖ϕ‖ = 1. Let M+
1 (K) ⊂ C(K)∗ be the set of probability mea-

sures on K. Analogously, M+
1 (L) ⊂ C(L)∗. Define C := M+

1 (K)×M+
1 (L) ⊂ C(K)∗×C(L)∗.

Consider the continuous functions

Ipq : (K,w∗) → R
ψ 7→ |ψ(p)− ψ(q)|q∗ ,

Iy : (L,w∗) → R
y∗ 7→ |y∗(y)|p∗

and the canonical embeddings KC(K) : C(K)→ C(K)∗∗ and KC(L) : C(L)→ C(L)∗∗. Then

KC(K)(Ipq) : C(K)∗ → R

µ 7→ µ(Ipq) =

∫
K

|ψ(p)− ψ(q)|q∗dµ(ψ).

and

KC(L)(Iy) : C(L)∗ → R

ν 7→ ν(Iy) =

∫
L

|y∗(y)|p∗dν(y∗).

Hence, the operator

Hpqy : C → R× R
(µ, ν) 7→ (KC(K)(Ipq)(µ) , KC(L)(Iy)(ν) )

is bounded. Define
fpq = π1 ◦Hpqy

and
gy = π2 ◦Hpqy

where πj : R× R→ R is the j-th projection. Also, consider the constant function

cpqy : C → R× R
(µ, ν) 7→ | 〈ϕ , (p− q)⊗ y〉 |r∗ .

The functions fpq, gy and cpqy are continuous by construction. Moreover, it is a simple matter
to prove that they are affine.
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Let F be the set of all functions f : C → R for which there exist finite sequences (pi), (qi)

in Σβ
X1...Xn

and (yi) in Y such that

f =
∑
i

r∗

q∗
fpiqi +

r∗

p∗
gyi + cpiqiyi .

In particular, every f in F is upper semicontinuous and concave.

We claim that F is a convex set. To see this let

f1 =
∑
i

r∗

q∗
fpiqi +

r∗

p∗
gyi + cpiqiyi

and

f2 =
∑
i

r∗

q∗
faibi +

r∗

p∗
gwi + caibiwi .

A simple calculation shows that

λ1f
1 + λ2f

2 =
∑
i

r∗

q∗

(
f
λ

1
q∗ piλ

1
q∗ qi

+ f
λ

1
q∗ aiλ

1
q∗ bi

)
+
r∗

p∗

(
g
λ

1
p yi

+ g
λ

1
p∗ wi

)
+ c

λ
1
q∗ piλ

1
q∗ qiλ

1
p∗ yi

+ c
λ

1
q∗ aiλ

1
q∗ biλ

1
p∗ wi

.

The set C consider with the product topology of (C(K)∗, w∗) × (C(L)∗, w∗) is compact.
Even more, it is convex.

We claim that any f in F is nonnegative in at least one point. To prove this, notice that
every sequence (yi) defines a w∗-continuous function

Y ∗ → R

y∗ 7→

(∑
i

|y∗(yi)|p
∗

) 1
p∗

.

Compactness of L ensures the existence of y∗o such that

‖(yi)‖wp∗ =

(∑
i

|y∗0(yi)|p
∗

) 1
p∗

.

Analogously, there exists ψ0 ∈ K such that

‖(pi − qi)‖wβq∗ =

(∑
i

|ψ0(pi)− ψ0(qi)|q
∗

) 1
q∗

.
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For the Dirac measures δψ0 on K and δy∗0 in L we have

f(δψ0 , δy∗0 ) =
r∗

q∗

(
‖(pi − qi)‖wβq∗

)q∗
+
r∗

p∗
(
‖(yi)‖wp∗

)q∗ −∑
i

| 〈ϕ, (pi − qi)⊗ yi〉 |r
∗

≥
(
‖(pi − qi)‖wβq∗

) q∗r∗
q∗ (

‖(yi)‖wp∗
) p∗r∗

p∗ −
∑
i

| 〈ϕ, (pi − qi)⊗ yi〉 |r
∗

=
(
‖(pi − qi)‖wβq∗

)r∗ (
‖(yi)‖wp∗

)r∗ −∑
i

| 〈ϕ, (pi − qi)⊗ yi〉 |r
∗

≥ 0.

Where the first inequality follows from the fact a
s + b

s∗ ≥ a
1
s b

1
s for all a ≥ 0 and b ≥ 0 and

1 < s <∞ and the second from ‖ϕ‖ = 1.

We may apply the lemma of Ky Fan (see [41, A3]) to obtain (µ, ν) ∈ M+
1 (K) ×M+

1 (L)
such that

0 ≤ f(µ, ν) ∀f ∈ F .

As a consequence

| 〈ϕ, (p− q)⊗ y〉 |r∗ ≤ r∗

q∗

∫
K

|ψ(p)− ψ(q)|q∗dµ(ψ) +
r∗

p∗

∫
L

|y∗(y)|p∗dν(y∗).

Notice that for any a, b > 0 we have

| 〈ϕ, (p− q)⊗ y〉 | = ab |
〈
ϕ, a−1(p− q)⊗ b−1y

〉
|

≤ ab

 r∗

aq∗q∗

∫
K

|ψ(p)− ψ(q)|q∗dµ(ψ) +
r∗

bp∗p∗

∫
L

|y∗(y)|p∗dν(y∗)

 1
r∗

.

Taking a =

(∫
K

|ψ(p)− ψ(q)|q∗dµ(ψ)

) 1
q∗

and b =

(∫
L

|y∗(y)|p∗dν(y∗)

) 1
p∗

we obtain

| 〈ϕ, (p− q)⊗ y〉 | ≤ ab

=

∫
K

|ψ(p)− ψ(q)|q∗dµ(ψ)

 1
q∗
∫
L

|y∗(y)|p∗dν(y∗)

 1
p∗

For the general case, a normalization of ϕ leads us to

| 〈ϕ, (p− q)⊗ y〉 | ≤ ‖ϕ‖

∫
K

|ψ(p)− ψ(q)|q∗dµ(ψ)

 1
q∗
∫
L

|y∗(y)|p∗dν(y∗)

 1
p∗
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and inf C ≤ ‖ϕ‖.

The next theorem is a generalization of the Kwapień’s factorization theorem [41, Sec. 19.3]
(see also [63]).

Theorem 4.49. Let (X1, . . . , Xn, Y, β) be an election on the class BAN . The Σ-operator

f : Σβ
X1...Xn

→ Y is (p, q)-dominated if and only if f factors as follows

Σβ
X1...Xn

fA ##

f // Y

M

B

??

��
Z

(4.10)

where Z is a Banach space, M is a Σ-image of Z associated with (X1, . . . , Xn, fA) and B :
M → Y is a Lipschitz function such that fA is p-summing and B∗ : Y ∗ →M∗ is q-summing.

Proof. First, suppose f : Σβ
X1...Xn

→ Y is a (p, q)-dominated Σ-operator. Then, by

definition, ϕf is a bounded functional on
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, αβq∗,p∗

)
.

By Theorem 4.48 there exist measures µ, ν on K := B(X1⊗...⊗Xn,β)∗ and L := BY ∗∗

respectively such that

| 〈y∗, f(p)− f(q)〉 | = | 〈ϕ, (p− q)⊗ y∗〉 |

≤ Dp,q(f)

∫
K

|ψ(p)− ψ(q)|pdµ(ψ)

 1
p
∫
L

|y∗∗(y∗)|qdν(y∗∗)

 1
q

.

Define

A : X1 × · · · ×Xn → Lp(µ)

(x1, . . . , xn) 7→ jpι(x
1, . . . , xn)

where ι : X1 × · · · × Xn → C(K) acts by evaluation on K and jp : C(K) → Lp(µ) is the
canonical map. The bounded Σ-operator fA is p-summing since jp so is, and K is the unit ball

of (X1 ⊗ . . .⊗Xn, β). Even more, πβp (A) ≤ ‖ι‖πp(jp) = 1 since µ is a probability measure.

Aside, define

B : fA(Σβ
X1...Xn

) → Y

fA(p) 7→ f(p).
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The inequality

| 〈y∗, BfA(p)−BfA(q)〉 | ≤ Dp,q(f) ‖fA(p)− fA(q)‖

∫
L

|y∗∗(y∗)|qdν(y∗∗)

 1
q

ensures that B is well defined. Furthermore, it implies

| 〈B∗y∗, fA(p)− fA(q)〉 | ≤ Dp,q(f) ‖fA(p)− fA(q)‖

∫
L

|y∗∗(y∗)|qdν(y∗∗)

 1
q

.

As a consequence, B∗(y∗∗) is a Lipschitz function with

Lip(B∗(y∗)) ≤ Dp,q(f)

∫
L

|y∗∗(y∗)|qdν(y∗∗)

 1
q

.

Pietsch Domination Theorem asserts that B∗ : Y ∗ → fA(Σβ
X1...Xn

)∗ is a linear q-summing op-

erator with πq(B
∗) ≤ Dp,q(f). This way, f factors as in (4.10) and πp(fA)πq(B

∗) ≤ Dβp,q(f).

Conversely, let fA and B as in (4.10). The Hölder inequality implies

‖(ϕf ((pi − qi)⊗ y∗i ))‖r = ‖ (〈y∗i , f(pi)− f(qi)〉) ‖r
= ‖ (B∗y∗i fA(pi)−B∗y∗i fA(qi)) ‖r

=

(∑
i

| 〈B∗y∗i (fA(pi))−B∗y∗i (fA(qi))〉 |r
) 1

r

≤

(∑
i

Lip(B∗y∗i )
r‖fA(pi)− fA(qi)‖r

) 1
r

≤

(∑
i

Lip(B∗y∗i )
q

) 1
q
(∑

i

‖fA(pi)− fA(qi)‖p
) 1

p

≤ πq(B
∗)πβp (fA) ‖(pi − qi)‖wβp ‖(y∗i )‖wq

Proposition 4.47 asserts that ϕf is bounded on
(
X1 ⊗ . . .⊗Xn ⊗ Y, αβq∗,p∗

)
and its norm

is dominated by πp(B
∗)πβq (fA). Finally, since the factorization was arbitrary, we obtain

Dβq∗p∗(f) ≤ inf πp(B
∗)πβq (fA)
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4.9 (p, q)-Factorable Σ-Operators and Lapresté Σ-Tensor
Norms on Duals

In this section we present the generalization of the Lapresté tensor norms to the setting
of Σ-tensor norms on duals. In this case, we define the maximal ideal of (p, q)-factorable
Σ-operators as the associated with the Lapresté Σ-tensor norm on duals. In Theorem 4.57
we present the resulting factorization of a typical (p, q)-factorable Σ-operator.

The definition of the Lapresté Σ-tensor norms on duals is presented next. We will use the
same symbol αp,q than we used in the case of spaces.

Definition 4.50. Let p, q ∈ [1,∞] such that 1
p + 1

q ≥ 1. Take the unique r ∈ [1,∞] with the

property 1 = 1
r + 1

q∗ + 1
p∗ . For any election (X1, . . . , Xn, Y, β) in BAN we define the Lapresté

norm on duals on Lβ (X1, . . . , Xn)⊗ Y by

αp,q,β(v) := inf

{
‖(λi)‖r ‖(ϕi)‖wdq∗ ‖(yi)‖wp∗

∣∣∣ v =
∑
i

λi ϕi ⊗ yi

}
.

Proposition 4.51. The Lapresté norm αp,q is a Σ-tensor norm on duals.

Proof. Given p, q in ΣX1...Xn , y∗ in Y ∗ and v ∈ Lβ (X1, . . . , Xn)⊗Y , the Hölder inequality
implies

| 〈p− q ⊗ y , v〉 | =
∑
i

|λi (ϕi(p)− ϕi(q)) y∗(yi)|

≤

(∑
i

|λi|r
)1/r(∑

i

|ϕi(p)− ϕi(q)|q
∗

)1/q∗ (∑
i

|y∗(yi)|p
∗

)1/p∗

≤ β(p− q) ‖y∗‖ ‖(λi)‖r ‖(ϕi)‖wdq∗ ‖(yi)‖wp∗ .

This means that
εβ(v) ≤ αp,q,β(v)

holds for all v ∈ Lβ (X1, . . . , Xn) ⊗ Y ∗. In particular,αp,q,β(v) = 0 implies v = 0. It is clear
that αp,q,β(λv) = |λ| αp,q,β(v) for any scalar λ.

For the triangle inequality take representations
∑
i
λiϕi ⊗ yi and

∑
i
µiφi ⊗ zi of v and u

respectively such that

‖(λi)‖r ≤ (αpqb(v) + η)
1
r

‖(ϕi)‖wdq∗ ≤ (αpqb(v) + η)
1
q∗

‖(yi)‖wp∗ ≤ (αpqb(v) + η)
1
p∗



(p, q)-Factorable Σ-Operators and Lapresté Norms αp,q 115

and

‖(µi)‖r ≤ (αpqb(u) + η)
1
r

‖(φi)‖wdq∗ ≤ (αpqb(u) + η)
1
q∗

‖(zi)‖wp∗ ≤ (αpqb(u) + η)
1
p∗

The sum
∑
λiϕi ⊗ y∗i + µjφj ⊗ z∗j is a representation of v + u that verifies

‖ (λi, µi) ‖r ‖ (ϕi, φi) ‖wdq∗ ‖ (y∗i , z
∗
i ) ‖ ≤ αp,q,β(v) + αp,q,β(u) + 2η

where (λi, µi) stands for the finite sequence obtained by the terms of (λi) and (µi). Analo-
gously for the remaining two. Last inequality ensures that αp,q,β verifies the triangle inequality.

For ϕ⊗ y it is immediate that

αp,q,β(ϕ⊗ y) ≤ Lipβ(ϕ) ‖y∗‖ ≤ ‖ϕ‖β ‖y∗‖.

In other words, αp,q,β is reasonable and crossed.

To prove that αp,q is uniform let A : Lθ (Z1, . . . , Zn) → Lβ (X1, . . . , Xn) be a bounded
operator that preserves Σ and B : W → Y be a bounded linear operator. For v =

∑
i
λi ϕi⊗yi

we have A⊗B(v) =
∑
i
λiA(ϕi)⊗B(yi). Hence

αp,q,β (A⊗B(v)) ≤ ‖(λi)‖r ‖A(ϕi)‖wdq∗ ‖(B(yi))‖wp∗
≤ ‖A‖ ‖B‖ ‖(λi)‖r ‖(ϕi)‖wdq∗ ‖(yi)‖wp∗ .

After taking infimum over the representations of v we obtain

αp,q,β(A⊗B(v)) ≤ ‖A‖ ‖B‖ αp,q,θ(v).

Definition 4.52. The maximal ideal of (p, q)-factorable Σ-operators, denoted by [Lpq, Lpq],
is defined as the associated with the Lapresté Σ-tensor norm on duals αp,q.

Under this definition, any component of [Lpq, Lpq] in the class FIN has the form

Lpq
(

Σβ
E1...En

;F
)

=
(
Lβ (E1, . . . , En)⊗ F, αp,q,β

)
=

(
E1 ⊗ . . .⊗ En ⊗ F ∗, (α′p,q)β

)∗
.

where α′p,q is the finitely generated Σ-tensor norm on spaces defined by the Σ-tensor norm on
duals αp,q, see Theorem 2.23 and Definition 3.1. Be definition, Lp,q(f) = αp,q,β(vf ), where vf
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is the correspondent tensor of f in Lβ (E1, . . . , En) ⊗ F . Furthermore, every representation
of vf induces a representation of f of the form

∑
i
λiϕi · yi. It is easy to verify that f can be

factored as

Σβ
E1...En

fR
��

f // F

`Nq∗ Dλ
// `Np

S

OO

(4.11)

where

fR : Σβ
E1...En

→ `Nq∗

p 7→
∑
i

ϕi(p) ei

Dλ : `Nq∗ → `Np

(ai) 7→ (λi ai)

S : `Np → F

(bi) 7→ bi yi

are a bounded Σ-operator and bounded linear operators respectively. Moreover, it is verified
that

Lipβ(fR) = ‖(ϕi)‖wdq∗
‖Dλ‖ = ‖(λi)‖r
‖S‖ = ‖(yi)‖wp∗ .

Conversely, every factorization as (4.11) induces a representation of vf . As a consequence,

Lpq(f) = inf Lipβ(fR) ‖Dλ‖ ‖S‖

where the infimum is taken over all possible factorizations as (4.11). In other words, the
collection of (p, q)-factorable Σ-operators in the class FIN are those which admits a factor-
ization as in (4.11).

Now, let ϕ be a bounded linear operator on
(
E1 ⊗ . . .⊗ En ⊗ F ∗, (α′p,q)β

)
. Then, fϕ can

be factored as fϕ = SDλfR. This decomposition induces a factorization of ϕ as we see next.
Let x1 ⊗ . . .⊗ xn ⊗ y∗ in E1 ⊗ . . .⊗ En ⊗ F ∗. We have

ϕ(x1 ⊗ . . .⊗ xn ⊗ y∗) =
〈
y∗ , f(x1 ⊗ . . .⊗ xn)

〉
=

〈
S∗y∗ , DλfR(x1 ⊗ . . .⊗ xn)

〉
= δλ(R̃⊗ S∗(x1 ⊗ . . .⊗ xn ⊗ y∗)).
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where δλ is the bounded functional on
(
`Nq∗ ⊗ `Np∗ , π

)
associated to the linear operator Dλ. In

diagram, we have obtained

E1 ⊗ . . .⊗ En ⊗ F ∗
R̃⊗S∗ // `Nq∗ ⊗ `Np∗

δλ // K (4.12)

In this formulation, ‖ϕ‖ = inf Lipβ(fR) ‖δλ‖ ‖S‖ where the infimum is taken over all the
possible factorizations. Notice that without loss of generality we may suppose that all λi is
non-negative.

In Theorem 4.54 we extend the diagram (4.12) to the general case of Banach spaces. The
tool we use to achieve this goal is the ultraproduct technique. For general results about
ultraproducts of Banach spaces the reader may see [58] and [99, Sec. 2].

Proposition 4.53. Let I be a directed set and U be an ultrafilter on it. Suppose that for each
ι ∈ I we have a bounded Σ-operator

ϕι : Σβι
E1
ι ...E

n
ι
→ Gι.

If there exists a constant C > 0 such that Lip(ϕι) ≤ C for all ι ∈ I, then the well defined
Σ-operator

(ϕι)U : Σ(E1
ι )U ...(E

n
ι )U

→ (Gι)U

(x1
ι )U ⊗ . . .⊗ (xnι )U 7→ (ϕι(x

1
ι ⊗ . . .⊗ xnι ))U .

is bounded and Lipschitz with the metric induced by the ultraproduct
(
(E1

ι ⊗ . . .⊗ Enι , βι)
)
U

with Lip ((ϕι)U ) ≤ C.

Proof. First, notice that the application

`∞(E1
ι )× · · · × `∞(Enι ) → (Gι)U(

(x1
ι )ι, . . . (x

n
ι )ι
)
7→ (ϕι(x

1
ι ⊗ . . .⊗ xnι ))U

does not depend of the representation. To see this, fix (xjι )ι with 2 ≤ j ≤ n and let (x1
ι )ι and

(y1
ι )ι such that (x1

ι )ι − (y1
ι )ι belongs to c0(E1

ι ). Then

‖(ϕι(x1
ι ⊗ . . .⊗ xnι ))U − (ϕι(y

1
ι ⊗ . . .⊗ xnι ))U‖U = lim

U
‖ϕι(x1

ι ⊗ . . .⊗ xnι )− ϕι(y1
ι ⊗ . . .⊗ xnι )‖

≤ C lim
U
βι((x

1
ι − y1

ι )⊗ . . .⊗ xnι ))

= C lim
U
‖x1

ι − y1
ι ‖ ‖x2

ι ‖ . . . ‖xnι ‖

≤ C lim
U
‖x1

ι − y1
ι ‖ sup

ι∈I
‖x2

ι ‖ . . . sup
ι∈I
‖xnι ‖·
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implies (ϕι(x
1
ι ⊗ . . .⊗xnι ))U = (ϕι(y

1
ι ⊗ . . .⊗xnι ))U . The same phenomenon occurs in the other

entries.

Define the multilinear map

(E1
ι )U × · · · × (Enι )U → (Gι)U(
(x1
ι )U , . . . , (x

n
ι )U
)
7→ (ϕι(x

1
ι ⊗ . . .⊗ xnι ))U .

The algebraic embedding

(E1
ι )U ⊗ . . .⊗ (Enι )U →

(
(E1

ι ⊗ . . .⊗ Enι , βι)
)
U

(x1
ι )U ⊗ . . .⊗ (xnι )U 7→ (x1

ι ⊗ . . .⊗ xnι )U

Allows us to define a norm on (E1
ι )U ⊗ . . . ⊗ (Enι )U . Let us denote this norm by (βι)U the

norm of
(
(E1

ι ⊗ . . .⊗ Enι , βι)
)
U . Then∥∥(ϕι)U ((x1

ι )U ⊗ . . .⊗ (xnι )U ) − (ϕι)U ((y1
ι )U ⊗ . . .⊗ (ynι )U )

∥∥
U

= lim
U
‖ϕι(x1

ι ⊗ . . .⊗ xnι )− ϕι(y1
ι ⊗ . . .⊗ ynι )‖

≤ C lim
U
βι
(
x1
ι ⊗ . . .⊗ xnι − y1

ι ⊗ . . .⊗ ynι
)

= C(βι)U ((x1
ι )U ⊗ . . .⊗ (xnι )U − (y1

ι )U ⊗ . . .⊗ (ynι )U )

completes the proof.

Theorem 4.54. Any functional ϕ bounded on
(
X1 ⊗ . . .⊗Xn ⊗ Y,

(
α′p,q

)β)
can be factored

as

X1 ⊗ . . .⊗Xn ⊗ Y
fR⊗S // Lq∗(µ)⊗π Lp∗(ν)

δ // K

where µ and ν are strictly localizable measures, fR : Σβ
X1...Xn

→ Lq∗(µ) is a bounded Σ-operator,

S : Y → Lp(ν) is bounded and δ is a positive functional such that Lipβ(R) ‖S‖ ‖δ‖ ≤ ‖ψ‖.

Proof. Let I := F(X1) × · · · × F(Xn) × F(Y )×]0, 1] and U be an ultrafilter on I con-
taining the set {ι | ι0 ≤ ι} for all ι0 in I.

For each ι = (M1, . . . ,Mn, N, ε) let ϕι be the restriction of ϕ to M1 ⊗ . . .⊗Mn ⊗N , and
take a factorization as follows

M1 ⊗ . . .⊗Mn ⊗N
fRι⊗Sι// `nιq∗ ⊗π `

nι
p∗

δι // K

such that ‖δι‖ ≤ 1, ‖Sι ≤ 1‖ and Lipβι(Rι) ≤ ‖ϕι‖ (1 + ε) ≤ ‖ϕ‖ (1 + ε), where βι := β|. Set
Miι := Mi. Define, for any xi ∈ Xi

xiι :=

{
xi if xi ∈Mi

0 otherwise
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Then,

Ji : Xi → (Miι)U

xi 7→ (xiι)U

is a linear isometry. Analogously, define

JY : Y → (Nι)U

y 7→ (Nι)U .

Proposition 4.53 ensures that the bounded Σ-operator

(fRι)U : Σ(M1ι)U ,...,×(Mnι)U → (`nιq∗)U .

is Lipschitz with the norm induced by ((M1ι ⊗ . . .⊗Mnι, βι))U .

Consider the compositions

R := (Rι)U ◦ J1 × · · · × Jn : X1 × · · · ×Xn → (`nιq∗)U

S := (Sι)U ◦ JY : Y → (`nιp∗)U .

The Σ-operator fR is bounded. To see this let p = x1 ⊗ . . . ⊗ xn and q = z1 ⊗ . . . ⊗ zn in
Σβ
X1...Xn

. Then

‖fR(p)− fR(q)‖U = lim
U
‖(fRι)U ((x1ι)U ⊗ . . .⊗ (xnι)U )− (fRι)U ((z1ι)U ⊗ . . .⊗ (znι))U‖

≤ ‖ϕ‖ (1 + ε) lim
U
βι(x1ι ⊗ . . .⊗ xnι − z1ι ⊗ . . .⊗ znι)

≤ ‖ϕ‖ (1 + ε)β(x1 ⊗ . . .⊗ xn − z1 ⊗ . . .⊗ zn).

Aside, the ultraproduct δ := (δι)U : (`nιq∗)U ⊗ (`nιp∗)U → K is bounded and positive. Finally,
consider the composition

X1 ⊗ . . .⊗Xn ⊗ Y
R̃⊗S // (`nιq∗)U ⊗ (`nιp∗)U

δ // K

factors ϕ since〈
δ , R̃⊗ S(x1 ⊗ . . .⊗ xn ⊗ y)

〉
= lim

U
〈δι , Rι(x1ι ⊗ . . .⊗ xnι)⊗ Sι(yι)〉

= lim
U
ϕι(x1ι ⊗ . . .⊗ xnι ⊗ yι)

= ϕ(x1 ⊗ . . .⊗ xn ⊗ y).

Hence linearity asserts ϕ = δ ◦ R̃⊗S. Moreover, Lipβ(fR) ‖S‖ ‖δ‖ ≤ ‖ϕ‖ (1 + ε) ensures that

Lipβ(fR) ‖S‖ ‖δ‖ ≤ ‖ϕ‖.
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The proof is complete since the ultraproducts (`nιq∗)U , (`nιp∗)U are linearly (order) isometric to
some Lq∗(µ) and Lp∗(ν) respectively where µ and ν are strictly localizable measures, see[67,
Th. 1.b.2].

An immediate consequence of this Theorem is that every (p, q)-factorable Σ-operator ad-
mits a factorization through some Lq∗(µ) and Lp(ν).

Corollary 4.55. For any (p, q)-factorable Σ-operator f : Σβ
X1...Xn

→ Y there exist two strictly

localizable measures µ and ν, a Σ-operator fR : Σβ
X1...Xn

→ Lq∗(µ), a bounded linear operator
S : Lp(ν) → Y ∗∗ and a positive bounded linear operator D : Lq∗(µ) → Lp(ν) such that KY f
factors as

Σβ
X1...Xn

R

��

f // Y
KY // Y ∗∗

Lq∗(µ)
D

// Lp(ν)

S

OO

with Lipβ(fR) ‖S‖ ‖D‖ ≤ Lpq(f).

Proof. By definition, the functional ϕf is bounded on
(
X1 ⊗ . . .⊗Xn ⊗ Y ∗, (α′p,q)β

)∗
is

bounded. Theorem 4.54 implies the existence of fR : Σβ
X1...Xn

→ Lq∗(µ), S0 : Y ∗ → Lp∗(ν)

and δ : Lq∗(µ)⊗π Lp∗(µ)→ K such that ϕf = δ ◦ R̃⊗ S0. Hence

〈KY f(p) , y∗〉 = 〈y∗ , f(p)〉
= ϕf (p⊗ y∗)
= δ ◦ R̃⊗ S0(p⊗ y∗)
= δ(fR(p)⊗ S0y

∗)

= 〈DfR(p) , S0y
∗〉

= 〈S∗DfR(p) , y∗〉

where D is the linear operator associated to the functional δ and S = S∗0 .

In section [41, Sec. 18.2] the authors prove that the inclusion operator I : Lq∗(µ)→ Lp(µ)
is (p, q)-factorable with (p, q)-factorable norm equal to the bounded norm. Moreover, in [41,
Sec. 18.10] it is proved that a positive operator D : Lq∗(µ) → Lp(ν) factors through an
inclusion I : Lq∗(µ0)→ Lp(µ0) for some finite measure µ0 with Lpq(D) = ‖D‖.

Before presenting the complete characterization of a (p, q)-factorable operators we prove
the next proposition.
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Proposition 4.56. Let αp,q be the Lapresté Σ-tensor norm on duals. Let (X1, . . . , Xn, Y, β)
be an election of Banach spaces. Let R : X1×· · ·×Xn → X be a bounded multilinear operator.
Then the operator

R̃⊗ IY :
(
X1 ⊗ . . .⊗Xn ⊗ Y, (α′p,q)β

)
→
(
X ⊗ Y, (α′p,q)β

)
is bounded.

Proof. Let u ∈ X1 ⊗ . . . ⊗ Xn ⊗ Y . Let Ei and F be finite dimensional subspaces
such that u ∈ E1 ⊗ . . . ⊗ En ⊗ F . Choose E ⊂ X such that R̃ ⊗ I(u) ∈ E ⊗ F . Let
v =

∑
i
λi x

∗
i ⊗ y∗i ∈ E∗ ⊗ F ∗. Then

|
〈
R̃⊗ I(u) , v

〉
| = |

〈∑
i

λi (x∗i fRfEi)⊗ y∗i , u

〉
|

where
∑
i
λi (x∗i fRfEi)⊗ y∗i ∈ Lβ| (E1, . . . , En)⊗ F ∗. The isometry

(
Lβ| (E1, . . . , En)⊗ F ∗, (αp,q)β|

)
=
(
E1 ⊗ . . .⊗ En ⊗ F, (α′p,q)β|

)∗
implies

|
〈
R̃⊗ I(u) , v

〉
| ≤ (αp,q)β|

(∑
i

λi(x
∗
i fRfEi)⊗ y∗i

)
(α′p,q)

β|(u;EiF )

≤ ‖(λi)‖r ‖(x∗i fRfEi)‖q∗ ‖(y∗i )‖ (α′p,q)
β|(u;EiF )

≤ Lipβ(fR) ‖(λi)‖r ‖(x∗i )‖q∗ ‖(y∗i )‖ (α′p,q)
β|(u;EiF ).

After taking infimum over all the representation of v we obtain

|
〈
R̃⊗ I(u) , v

〉
| ≤ Lipβ(fR)αp,q(v,E

∗F ∗)(α′p,q)
β|(u; EiF ).

Hence

α′p,q

(
R̃⊗ I(u); XY

)
≤ α′p,q(R̃⊗ I(u); EF ) ≤ Lipβ(fR) (α′p,q)

β(u; EiF ).

Finally, since (α′p,q)
β is finitely generated

α′p,q(R̃⊗ I(u); XY ) ≤ Lipβ(fR) (α′p,q)
β(u; XiY ).

But this is nothing than R̃⊗ I is bounded and ‖R̃⊗ I‖ ≤ Lipβ(fR).

Proposition 4.56 asserts that the composition Σβ
X1...Xn

f // X
T // Y is (p, q)-factorable

whether the linear operator T is. Even more, Lpq(Tf) ≤ Lipβ(f) ‖T‖. With this result in
hand we establish the characterization of (p, q)-factorable Σ-operators.
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Theorem 4.57. For every Σ-operator f : Σβ
X1...Xn

→ Y the following are equivalent:

i) f is (p, q)-factorable.

ii) There exist a finite measure µ, a Σ-operator fR : Σβ
X1...Xn

→ Lq∗(µ), a bounded linear
operator S : Lp(µ)→ Y ∗∗ such that

Σβ
X1...Xn

fR
��

f // Y
KY // Y ∗∗

Lq∗(µ)
I

// Lp(µ)

S

OO

commutes.

Under these circumstances Lpq(f) = inf Lipβ(fR) ‖I‖ ‖S‖ where the infimum is taken over all
the factorizations as above.

Proof. If f is (p, q)-factorable, then Corollary 4.55 implies that KY f = SDfR where
D is a positive linear operator and Lpq(f) ≥ Lipβ(fR) ‖S‖ ‖D‖. By the comments above,
D admits a factorization as BIA where I : Lq∗(µ) → Lp(µ) is an inclusion for some finite
measure µ with Lpq(D) = ‖D‖ = ‖A‖ ‖I‖ ‖B‖. Hence KY f = SDfR = (SB)I(AfR) and

Lpq(f) ≥ Lipβ(fR) ‖S‖ ‖D‖ ≥ Lipβ(fR) ‖S‖ ‖A‖ ‖I‖ ‖B‖ ≥ Lipβ(AfR) ‖SB‖ ‖I‖.

Conversely, if f admits a factorization as in (ii) then Proposition 4.56 implies that f is
(p, q)-factorable since I : Lq∗(µ)→ Lp(µ) is a (p, q)-factorable linear operator. Moreover

Lpq(f) = Lpq(KY f) ≤ Lipβ(fR)Lpq(I) ‖S‖ = Lipβ(fR) ‖I‖ ‖S‖.

Following this approximation, we may consider the maximal ideal of p-integrable Σ-
operators, defined as (p, 1)-factorable Σ-operators. Thus, we extend the notion of p-integrable
operators (see [41, 18.7]) to the setting of Σ-operators and so, to the multilinear context. A

typical factorization induced by a p-integral Σ-operator f : Σβ
X1...Xn

→ Y is

Σβ
X1...Xn

fR
��

f // Y
KY // Y ∗∗

L∞(µ)
I

// Lp(µ)

S

OO

.

Other approximations of integral (or 1-integral) multilinear operators can be found in
[5, 14, 27, 31, 32, 77, 100]. On the side of the metric theory the reader could be interested in
[38].
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General Symbols

N Natural numbers

R Field of real numbers

C Field of complex numbers

K Field of real or complex numbers

ΣX1...Xn Subset of simple tensors of X1 ⊗ . . .⊗Xn, p. 1

Σβ
X1...Xn

The metric space (Σ, β), p. 8

〈f, a〉 Image of the function f at a

FIN Class of finite dimensional normed spaces

NORM Class of normed spaces

BAN Class of Banach spaces

F (X) Collection of finite dimensional subspaces of X

CF (X) Collection of finite codimensional subspaces of X

Let X be a normed space

X# Algebraic dual of the vector space Y

X∗ Topological dual of the normed space Y

BX Closed unit ball

KX : X → X∗∗ Canonical embedding (even in the algebraic case)

Associated functions

T̃ Linearization of T : X1 × · · · ×Xn → Y

fT Σ-operator associated to T , p. 2

ϕf Associated functional of the Σ-operator f , p. 2

ϕ Canonical extension of ϕ, p. 3

fϕ Σ-operator associated to the functional ϕ, p. 3
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Spaces of Multilinear Functions

L (X1, . . . , Xn, Y ) n-linear operators from

L (X1, . . . , Xn, Y ) Bounded n-linear operators

L
(

Σβ
X1...Xn

, Y
)

Bounded Σ-operators, p. 9

Lβ (X1, . . . , Xn) β-bounded n-linear forms, p. 12

F
(

Σβ
X1...Xn

;Y
)

:=
{
fT : Σβ

X1...Xn
→ Y | T̃ is β-bounded and has finite rank

}
, p. 15

Σ-tensor norms

πβ Projective Σ-tensor norm on spaces, p. 23

πβ Projective Σ-tensor norm on duals, p. 30

εβ Injective Σ-tensor norm on spaces, p. 31

εβ Injective Σ-tensor norm on duals, p. 26

dβp Chevet-Saphar Σ-tensor norm on spaces, p. 33

γ2 Σ-tensor norm see factor through Hilbert, p. 92

ω see 2-dominated operators, p. 96

αβp,q Lapresté Σ-tensor norm on duals, p. 114

αp,q,β Lapresté Σ-tensor norm on spaces, p. 104

~αβ Finite hull of the Σ-tensor norm on spaces α, p. 48
←−ν β Cofinite hull of the Σ-tensor norm on duals ν, p. 51

Ideals of Σ-operators[
Amax, Amax] Maximal hull of the ideal [A, A], p. 54[
K, ‖ · ‖

]
Compact Σ-operators, p. 69[

W, ‖ · ‖
]

Weakly compact Σ-operators, p. 72[
N , N

]
Nuclear Σ-operators, p. 74[

Πp, πp
]

p-summing Σ-operators, p. 19[
Γ,Γ

]
Σ-operators that factor through a Hilbert space, p. 84[

D2, D2

]
2-Dominated Σ-operators, p. 95[

Dp,q, Dp,q

]
(p,q)-Dominated Σ-operators, p. 107[

Lpq, Lpq
]

(p,q)-Factorable Σ-operators, p. 115
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[28] M. G. Cabrera-Padilla and A. Jiménez-Vargas, A new approach on Lipschitz compact
operators, Topology and its Applications 203 (2016), 22–31.

[29] J. R. Campos, Cohen and multiple Cohen strongly summing multilinear operators, Lin-
ear and Multilinear Algebra 62 (2014), no. 3, 322–346.

[30] D. Carando, V. Dimant, and S. Muro, Coherent sequences of polynomial ideals on Ba-
nach spaces, Mathematische Nachrichten 282 (2009), no. 8, 1111–1133.

[31] D. Carando, V. Dimant, and P. Sevilla-Peris, Limit orders and multilinear forms on
`p spaces, Publications of the Research Institute for Mathematical Sciences 42 (2006),
no. 2, 507–522.

[32] , Ideals of multilinear forms – a limit order approach, Positivity 11 (2007), no. 4,
589–607.

[33] D. Carando, V. Dimant, P. Sevilla-Peris, and R. Villafañe, Diagonal extendible multi-
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[69] , (n + 1)-tensor norms of Lapresté type, Glasgow Mathematical Journal 54
(2012), no. 3, 665–692.

[70] Landsberg J. M., Tensors: Geometry and applications, Graduate Studies in Mathemat-
ics, vol. 128, American Mathematical Society, Providence R. I., 2012.



130 BIBLIOGRAPHY

[71] O. Maleva, Lipschitz quotient mappings with good ratio of constants, Mathematika 49
(2002), no. 1-2, 159–165.

[72] , Components of level sets of uniform co-lipschitz functions on the plane, Pro-
ceedings of the American Mathematical Society 133 (2005), 841–850.

[73] , On Lipschitz ball noncollapsing functions and uniform co-Lipschitz mappings
of the plane, Abstract and Applied Analysis 2005 (2005), no. 5, 543–562.

[74] M. Marcus and B. N. Moyls, Transformations on tensor product spaces, Pacific Journal
of Mathematics 9 (1959), no. 4, 1215–1221.

[75] M. C. Matos, On multilinear mappings of nuclear type, Revista Matematica de la Uni-
versidad Complutense de Madrid 6 (1993), no. 1, 61–81.

[76] , Fully absolutely summing and Hilbert-Schmidt multilinear mappings, Col-
lectanea Mathematica 54 (2003), no. 2, 111–136.

[77] D. Pellegrino and J. Ribeiro, On multi-ideals and polynomial ideals of Banach spaces: a
new approach to coherence and compatibility, Monatshefte für Mathematik 173 (2014),
no. 3, 379–415.

[78] D. Pellegrino and J. Santos, Absolutely summing multilinear operators: A panorama,
Quaestiones Mathematicae 34 (2011), no. 4, 447–478.
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