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Abstract

In this thesis, we consider the inverse scattering problem of reconstructing a

penetrable homogeneous obstacle from near-field measurements of a scattered

wave in 2D. This classical inverse scattering problem is challenging because it

is both, ill-posed and nonlinear. On the other hand, since data is polluted

with noise, the inverse problem may be regarded as a statistical inference

problem. Consequently, we have opted for a Bayesian inferential framework.

The Bayesian approach has allowed us to introduce a priori knowledge about

the nature of the scatterer, i.e., we assume a star-shaped obstacle with

constant refractive index. We rely on Markov Chain Monte Carlo (MCMC)

methods to explore the arising posterior distribution. Each sample from the

posterior distribution requires the solution of the direct problem, which is

equivalent to integrating the Lippmann-Schwinger equation on the support of an

approximating scatterer. We approximate the support of the scattering obstacle

using a point cloud, which is a high-level representation. Of note, high-level

representations are a well established topic of computational geometry. Our

motivation to use high-level representations is two-fold: in the one hand,

the direct problem has a threshold property, i.e., the derivative of the direct

problem can be arbitrarily approximated by a finite rank operator, giving rise
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to a low dimensional data-informed subspace. On the other hand, high level

representations are intrinsically low dimensional, i.e. we design a suitable low

dimensional parameter space to make inference easier.

In this thesis, we have introduced an efficient method to solve the

Lippmann-Schwinger equation and a probability transition kernel that

commutes with affine transformations of space to sample the posterior

distribution. We offer numerical evidence of the following facts: First, we

can recover simultaneously both, the (non)convex support of a star-shaped

scattering obstacle and its constant refractive index. Second, we show that

the MCMC separates the multiple scales of the inverse problem. Indeed, the

MCMC first locates the position of the scatterer, and adjusts the shape and

refractive index afterwards. We believe that our methods can be extended to

multifrequency data.
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Chapter 1

Introduction

Most of the information that we receive from physical reality comes through

waves [72], e.g., acoustics, electromagnetics, geophysics, etc. Consequently, it

is of paramount importance to develop mathematical methods to compute,

explore and analyze wave phenomena. In particular, we need reliable methods

to probe physical systems through scattering phenomena.

Indeed, scattering phenomena represents the most widely used mathematical

model to recover unknown physical, geophysical, or medical objects from

exterior observations [50, 44, 22]. These problems are fundamental in a

wide range of applications such as medical imaging, materials engineering,

geophysical explorations, nuclear energy, among others [4, 30, 67, 84, 54, 73, 76].

In a broad sense, scattering problems study the effect of an obstacle on an

incident field.

In this work, the direct scattering problem consists of computing the

scattered field given the incident field and the differential equations governing

the wave motion. On the other hand, the inverse scattering problem requires

estimating a feature (size, shape and refractive index) of the scatterer, from

knowledge of the scattered field.
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The inverse scattering problem, as defined above, is particularly difficult to

solve for two reasons: it is (1) nonlinear and (2) ill-posed [23]. A number of

numerical methods have been proposed to overcome these issues. They can be

broadly classified into two categories: nonlinear optimization based iterative

methods and imaging based direct methods. The iterative methods require

good initial guesses and are computationally expensive. The direct methods

are computationally efficient, but are qualitative in nature [59].

In the presence of noisy data, the mapping between unknown parameters

and data is probabilistic; the inverse problem is a problem in statistical

inference. Bayesian inferential methods offer solutions taking into account

the stochastic structure of data, and the uncertainty on the parameters to be

inferred [78]. Of note, the Bayesian formulation has been used as a paradigm

for both, the solution of the inverse problem and the uncertainty quantification

of model parameters [16, 81, 26, 28, 17, 34, 82, 48]. In this thesis, we care about

the robust reconstruction of the obstacle and the refractive index, consequently,

we have used the Bayesian framework.

The forward problem is modeled through of the Lippmann-Schwinger

equation. This integral equation is approximated using a corrected trapezoidal

rule [2] and the method of Vainikko [85]. A low-dimensional representation of

the obstacle is posed using a point cloud. Initially, we approach the case of

convex obstacles. Later, the formulation is extended to star-shaped obstacles

using an α- shape algorithm [31].

The Markov Chain Monte Carlo (MCMC) with Metropolis-Hastings (MH)

algorithm is applied to the exploration of the posterior probability distribution.

Affine invariant proposals in the Metropolis-Hastings algorithm are used to

guarantee efficiency [21, 38, 29]. The suitability of the proposed MCMC

sampler is verified for several reconstruction examples using synthetic near-field

data.

The thesis is organized as follows:
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In Chapter II, the forward mapping is defined as the solution of

Lippmann-Schwinger equation [23], and we present two numerical methods to

approximate its solution. A high-level representation of the obstacle is detailed,

the inverse scattering problem is formulated in the Bayesian framework, and

we introduce an affine invariant Markov Chain Monte Carlo method to sample

the arising posterior distribution.

In Chapter III, several numerical examples are proposed to show the

performance of our approach using synthetic near-field data.

In Chapter IV, the numerical results are discussed, and the contributions of

this thesis are summarized.

This thesis comprises scientific work; one paper published by the author.

Daza, Maria L., et al. “Solution of the inverse scattering problem from

inhomogeneous media using affine invariant sampling.” Mathematical Methods

in the Applied Sciences 40.9 (2017): 3311-3319.

In this paper, it is tackled a classical inverse scattering problem: to estimate

the support and refractive index of a scatterer given near-field measurements

of scattered waves. It is posed a Bayesian formulation of the problem and

introduced a transition kernel that is invariant under affine transformations of

space. The support of the obstacle is approximated using a point cloud. The

main contribution of the paper is that we offer evidence that it is possible to

sample efficiently from the arising multiscale posterior distribution.
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Chapter 2

Theoretical Framework

In this chapter, it is set each step to solve the inverse scattering problem in

the Bayesian framework. The chapter is structured as follows: in section 2.1,

the direct scattering problem is defined as the solution of the Helmholtz

equation with a variable index of refraction. This problem is equivalent to

the Lippmann-Schwinger equation. In section 2.1, two numerical methods to

solve the Lippmann-Schwinger equation are presented. The above results thus

enable us to define an operator F mapping the scattering obstacle and the

refractive index onto the scattered field. In section 2.2, a representation of the

obstacle based on a point cloud is explained. Employing the above results, in

section 2.3, the inverse scattering problem is formulated in the Bayesian setting.

The solution of the inverse problem is the posterior probability distribution.

Thereby, in section 2.4 an affine invariant Markov Chain Monte Carlo (MCMC)

to sample the posterior distribution is designed.

2.1 Scattering Problem

In this section, the direct scattering problem of incident time-harmonic plane

waves in an inhomogeneous medium is established. In this case, the governing

equation is the Helmholtz equation with an outgoing radiation condition, which

is equivalent to the Lippmann-Schwinger equation. An efficient numerical

method to approximate the Lippmann-Schwinger equation using corrected
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trapezoidal rule is introduced. The efficiency of the indicated numerical method

is exhibited using a benchmark.

2.1.1 Helmholtz Equation

Let consider a time-harmonic wave ui that travels through an inhomogeneous

acoustic medium, the wave is scattered by a penetrable obstacle of refractive

index b(x). The medium is represented by the space R2 and the scattering

obstacle by the compact subset D ⊂ R2 with boundary ∂D.

Figure 2.1: Scattering Problem.

Given the scatterer D ⊂ R2, the refractive index b(x), and the incident plane

wave ui, the scattering problem consists of determining the total field u = ui+us

as a solution of

∆u(x) + k2(b(x) + 1)u(x) = 0 in R2

u(x) = eikx·d + us(x)

lim
r→∞

r

(
∂us(x)

∂r
− ikus(x)

)
= 0

(2.1)
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where us(x) is the scattered field, r = |x|, k is the wave number [23].

For the intend of this thesis, the refractive index is assumed to be constant

on D,

b(x) =


b, if x ∈ D

0, if x ∈ R2 −D

for b 6= −1 ∈ R.

The Sommerfeld radiation condition (the third line of the equation (2.1))

guarantees that the scattered wave is outgoing and decaying. The existence

and uniqueness of solutions for the equation (2.1) is assured [23]. Hence, the

direct problem is well posed.

Current methods for modeling time-harmonic waves through

inhomogeneities applying finite difference or finite element techniques to

the Helmholtz differential equation lead to sparse, Hermitian matrices that

show increasingly poor conditioning as the discretization is refined. An

alternative to a finite element or finite difference discretization is to formulate

the Helmholtz equation as the Lippmann-Schwinger equation. The numerical

solution of this equation only requires discretization of the scattering domain

and satisfies the outgoing condition automatically.

2.1.2 The Lippmann-Schwinger Equation

The scattering problem (2.1) is equivalent to the Lippmann-Schwinger equation

(for further details see [23]), which is a weakly singular integral equation given

by

u(x) = ui − k2

∫
D

Φ(k|x− y|)b(y)u(y)dy (2.2)

where

Φ(r) = − i
4
H

(1)
0 (r) (2.3)
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and H
(1)
0 is the Hankel function of the first class of order zero.

The equation (2.2) is more compactly expressed as

A = I + K (2.4)

where A : L2(R2) −→ L2(R2) is continuously invertible on the Hilbert space

L2(R2), I is the identity operator, and K is the integral operator given by

(Ku)(x) = k2

∫
D

Φ(k|x− y|)b(y)u(y)dy. (2.5)

Note that the integral operator K is a convolution operator with a weakly

singular kernel. Thus, the operator K on the Hilbert space L2(R2) is a compact

operator, and therefore bounded [23].

The numerical solution of (2.2) requires efficient and high-order quadrature

rules. In this thesis, we introduce a numerical solution based on the

discretization of Vainikko [85] and a corrected trapezoidal rule [2].

2.1.3 Discretization of Vainikko

Vainikko [85] introduces an approach for piecewise smooth (discontinuous)

scatterers that produces O(h2(1 + log h)) convergence, where h is the

discretization spacing in each direction. This approach requires approximating

the area fraction of each cell that lies on each side of a discontinuity in the

refractive index.

To the numerical handling of the integral equation (2.2), it is assumed that

the scattered lies inside a square domain G = [l, L] × [l, L], D ⊂ G for some l,

L ∈ R, L > l, and it is taken h = (L− l)/N for some N ∈ N.

For every j = (j1, j2) ∈ Z2, let xj,h = (l, l) + jh and Bj,h the square of area
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h2 centered at the point xj,h, i. e.,

Bj,h =

{
x = (x1, x2) ∈ R2 : l +

(
jk −

1

2

)
h < xk < l +

(
jk +

1

2

)
h, k = 1, 2

}
.

The grid approximation of b is defined as follows

bj,h =


b(xj,h), if Bj,h ∩ ∂D = ∅

b(xj,h)meas(B
(p)
j,h)h−2, if Bj,h ∩ ∂D 6= ∅

where B
(p)
j,h is the connectivity component of the open set Bj,h \ ∂D wich

contains xj,h.

Let us define

Φj,h =


Φ(k|j|h), if j 6= 0

0, if j = 0.

We denote with GN,h the grid points

GN,h = {xj,h : j ∈ Z2
N} (2.6)

where Z2
N = {j ∈ Z2 : 0 ≤ jk ≤ N, k = 1, 2},

the equation (2.2) is approximated by the discrete equation

uj,h = uij,h − h2k2
∑
l∈Z2

N

Φj−l,hbl,hul,h (j ∈ Z2
N). (2.7)

The equation (2.7) in matrix form is

(K + I)uh = uih. (2.8)

The system (2.8) is uniquely solvable for all sufficiently small h > 0 and
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max
j∈Z2

N

|uj,h − u(jh)| ≤ ch2(1 + | lnh|). (2.9)

For details see Theorem 2.1 in [85]. On the other hand, the operator

A = I + K is a compact perturbation of the identity. The compactness of

K implies that there exist only a finite number of eigenvalues of K outside

any ball of nonzero radius around the origin [53]. For compact perturbations

of the identity, Generalized Minimum Residual Method (GMRES) converges

superlinearly at a rate determined by the distribution of the eigenvalues [86]. On

account of this, we solve the discrete system (2.8) using GMRES implementation

of the Scipy library.

2.1.4 Corrected Trapezoidal Quadrature Rule

A fourth order corrected trapezoidal rule is applied to deal with the logarithmic

singularity of the integral operator (2.5) using the correction coefficients

calculated in [2].

uj,h = uij,h − h2k2
∑
l∈Z2

N

Φj−l,hbl,hul,h +O(h4), j ∈ Z2
N (2.10)

where

Φj,h =

{
Φ(k|j|h), if j 6= 0

Φj,h = β1, if j = 0,

β1 = − i
4

+ 1
2π

(
ln
(
hk
2

)
+ γ + c1

)
and c1 is a corrected coefficient (see details in

[2]).

The equation (2.10) in matrix form is

(KT + I)uh = uih. (2.11)

KT is an n× n matrix , n = (N + 1)2.

A way to solve (2.11) efficiently is using the structure of the arising matrix

10



KT , Figure 2.2.

Figure 2.2: Drawing values of KT obtained in example 2.1.1.

Let us denote the sets of indices by

iin = {j : b(jh) 6= 0}

iout = icin.

The columns and rows of the matrix KT + I are reordered in this way; first,

the columns and rows with index in the set iout. Thus, KT +I becomes a matrix

in the form (
I C12

0 C22

)
where C12 is a submatrix nout × nin and C22 is nin × nin

nin = #iin

nout = n− nin.

11



Hence, the system solution is

urh =

(
u1

u2,

)

u2 = C−1
22 u

i
2

u1 = ui1 − C12u2.

ui1 and ui2 are the vectors corresponding to the reordering of the vector uih.

The numerical solution uh is obtained permuting the elements of urh. This

reordering of KT + I decreases the computational time to solve (2.11); it is

solved C22u2 = ui2 and a matrix-vector product.

The numerical solver of the direct scattering problem using either, Vainikko or

Trapezoidal method is denoted by F ,

uh = F (D, b) (2.12)

F is known as the forward mapping.

2.1.5 Numerical Example

In this section, a numerical example is given to show the effectiveness of the

discrete solution of the Lippmann-Schwinger equation discussed in section 2.1.4.

The method of Vainikko is used to compare computational times.

Example 2.1.1 We shall consider the kite (introduced in [51]) with refractive

index b = 25 depicted in Figure 2.3 (a) as the scattering obstacle. On the

other hand, Figure 2.3 (b) shows the real part of the incident field with k = 1,

d = (1, 0).
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Figure 2.3: (a) Kite described by the equation x(t) = (1.5 sin(t), cos(t) +
0.65 cos(2t) − 0.65), 0 ≤ t ≤ 2π (b) Real part of the plane wave exp(ikd · r)
with k = 1, d = (1, 0).

Figure 2.4: (a)-(b) Real part of the scattered field, <(us).

In Figure 2.4, parts (a) and (b) respectively, the numerical solution using

Vainikko and Trapezoidal method are displayed. The incident wave impinges

on the obstacle at 0 degree angle with the positive x-axis in both cases.

13



Figure 2.5: Comparison of computational times (in seconds) for solving the
Lippmann-Schwinger equation with the configuration depicted in Figure 2.3

From Figure 2.3, it is apparent that the method for the numerical solution

of the Lippmann-Schwinger equation introduced in section 2.1.4 is considerably

faster than the method of Vainikko.

2.2 High-Level Representation

In this section, it is introduced a parametric representation of the scattering

obstacle based on a point cloud, which is a high-level representation. The

representation of geometric shapes based on a point cloud is a mature area of

computational geometry and has been used for shape and appearance modeling

[68, 49, 87]. It has a structural simplicity which supports efficient adaptation.

Furthermore, this representation allows us to model prior knowledge of the

obstacle in a precise way, i.e. we model into the prior distribution star-shaped

scatterers.

Two ways to obtain a smooth boundary of the obstacle D from a point

cloud are proposed; one using the convex hull for convex obstacle and another
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using the α-shape for a star-shaped obstacle. Of note, through this thesis we

have assumed D to be a star-shaped obstacle.

2.2.1 Parametric Representation: Convex Obstacles

Let us Q = {pi}mt=1 a set of m points within the domain of the problem, Q ⊂ G.

We construct a smooth and convex boundary ΓQ from point cloud Q as follows:

1. Calculate the convex hull of Q, represented by a subset of points H(Q) ⊂
Q. Joining these points creates a convex polygon containing all Q.

2. Compute continuous, smooth, and closed curve ΓQ interpolating the points

that define the polygon H(Q) with a third order B-spline (see Figure 2.6).

This algorithm creates a well defined mapping of Q to a convex boundary

ΓQ.

Figure 2.6: (a) The convex hull from a point cloud and the B-spline curve of
degree 3 in the points that define the polygon H(Q) (b) When a point of the
convex hull is moved. It can be seen the stability of the representation locally.
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The significant advantage of spline representations (as opposed to

polynomial and series representations) is their local nature [71]. For example,

if part of a contour is perturbed by an intrusion the change in a spline

representation will affect very few arcs (see Figure 2.6(b)).

2.2.2 Parametric Representation: Star-Shaped

Obstacles

In order to consider the case of nonconvex scatterers we shall work with

domains D whose boundary is star-shaped, i.e., there is a point x0 ∈ D such

that every ray that departs from x0 crosses the boundary ∂D once. This class

of nonconvex scatterers is commonly regarded as a benchmark in the literature

of inverse scattering problems [23, 15].

To represent a star-shaped obstacle from a point cloud Q, the α-shape of

Q is calculated. The α-shape of a point cloud is a subgraph of the Delaunay

triangulation [31] of the point cloud; two points are connected if there is an

empty disk of radius α touching two points. When α → ∞ the disk of radius

α is replaced by half-plane, and hence the α-shape of points will be equal

to the convex hull of these points. On the other hand, the α-shape of S

degenerates to the point-set S when α → 0. This definition is a generalization

of the convex hull of a point set and formalize the intuitive notion of its “shape.”

The parametric representation of a star-shaped obstacle from a point cloud

and an α-parameter is introduced in [64]. This parametrization to represent

∂D using the α-shape algorithm [31] is computed as follows;
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Algorithm 1: Compute a smooth boundary, ΓQ,α

Data: Q = {pi}mi=1 uniformly distributed on G, α

Step 1. Compute the Delaunay triangulation DT (Q), (Figure 2.8(a))

Step 2. Compute Sα by inspecting all triangles ∆T in DT (Q) :

if its circumcircle has smaller radius (ri) than α then

accept ∆T , (Figure 2.8(b)-(c))

Step 3. Get ∂Sα consists of all 1- simplices (the edges of the triangles in Sα) in

Sα, which are α− exposed, (Figure 2.8(c)(d) and Figure 2.7)

Step 4. Obtain the respective polygon P (∂Sα), (fig. 2.8(d))

Step 5. Calculate a smooth boundary ΓQ,α interpolating the points that define

the polygon P (∂Sα) with a third-order B-spline, (Figure 2.8(d))

Figure 2.7: (a) not α-exposed (b) α-exposed.

Of note, algorithm 1 creates a well defined mapping from Q and an

α-parameter to a boundary ΓQ,α. Indeed, the polygon P (∂Sα), and thus the
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smooth boundary ΓQ,α, depends on all cloud points.

Figure 2.8: (a) Delaunay triangulation, DT (Q) (b) The circumcircles of the
Delaunay triangulation (c) Sα; the α− shape from Q with α = 0.5 (d) ΓQ,α; the
B-spline curve of degree 3 in the points that define the polygon P (Sα).

It can be said that the α-parameter measures “the non-convexity” of the

obstacle. In Figure 2.9, we show how given a cloud of points the parameter α

defines the shape of the boundary.
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Figure 2.9: ΓQ,α for different values of the α.

Figure 2.10: (a) ΓQ,α with α = 0.5, when a point of the ∂Sα is perturbed, (b)
and an interior point of Sα is perturbed. It can be perceived the stability of the
representation locally.

The parametric representation ΓQ,α is locally stable in its interior points and
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boundary. Indeed, it can be observed in Figure 2.10 the effect on the boundary

ΓQ,α when moving a boundary point, and unlike in the convex case, local changes

in the interior points cause local changes in the boundary ΓQ,α.

2.3 Inverse Problem: Bayesian Framework

In this chapter, the inverse scattering problem is formulated in the Bayesian

framework. This formulation allows us restating the inverse problem as a

well-posed extension in a larger space of probability distributions [48]. The

solution of the inverse problem is the posterior probability distribution.

The case of recovering a convex obstacle is treated first. Subsequently, the

formulation is extended to a star-shaped obstacle using an additional parameter.

2.3.1 Inverse Problem

The inverse scattering problem is defined as follows: given the scattered field

us on some points of the domain G, estimate the shape of the scatterer D and

the refractive index b. The scattered field is obtained from several incoming

plane waves with different directions d. This problem is formulated in a finite

dimensional space using the parametric representation of the obstacle described

in section 2.2. Thereby, the parameter space to be estimated is θ = (θg,b);

• θg = Q for convex obstacles, and θg = (Q,α) for star-shaped obstacles.

• b is the refractive index (e.g. in medical applications, it is related to the

elastic properties of tissue), it is taken constant on the obstacle.

We refer to θg as geometric parameters, and b as the constitutive parameter.

The forward mapping on θ is defined as follows:

FΓ(θ) := F (Γθg ,b). (2.13)

FΓ is well-defined, sections 2.1 and 2.2.
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2.3.2 Bayesian Formulation

In Bayesian parameter estimation, θ ∈ Θ is taken as a random variable and

the solution of the inverse problem is summarized in the posterior distribution.

It shall be assumed that there are measurements of the scattered field ũ with

additive Gaussian noise at the points on GN,h

ũ = FΓ(θ) + η (2.14)

where η ∼ N (0, σ2). The Bayesian solution to our inverse problem is, by virtue

of the Bayes’ theorem [48]

π(θ|ũ) =
L(ũ|θ)π(θ)

π(ũ)
(2.15)

where

• The posterior distribution π(θ|ũ) quantifies our uncertainty regarding θ

given data ũ.

• The prior distribution π(θ) encodes the information available on the

unknown parameters.

• The likelihood L(ũ|θ) describes the relation between the observed data

and the unknown parameters. In terms of data noise and the governing

equation.

• π(ũ) is a normalizing constant.

These distributions are settled below.

Likelihood:

The likelihood is given by the noise distribution (2.14),

L(ũ|θ) ∝ exp

(
− 1

2σ2
||ũ− FΓ(θ)||2

)
(2.16)

assuming independent measurements.
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Prior Distribution

The prior distribution for a convex obstacle is modeled as follows:

1. The refractive index (b) and the point cloud Q are taken as independent

parameters, therefore π(θ) = π(Q)π(b).

2. A uniform distribution for Q is imposed, as a default selection.

Consequently, the prior probability π(Q) is constant on the domain G.

3. The choice of a gamma distribution for b is motivated by the application

of the inverse scattering problem in elasticity imaging methods. The

refractive index represents the Young modulus [39]. In this manner, the

refractive index is assumed as a positive parameter

b ∼ Gamma(k̃, λ̃). (2.17)

Likewise, the prior distribution for a star-shaped obstacle is modeled as follows:

1. The refractive index (b), the point cloud Q and α are taken as independent

parameters, therefore π(θ) = π(Q)π(b)π(α).

2. The distributions π(Q), π(b) are chosen in the same way that in the

convex obstacle case.

3. Once again it is used a uniform distribution as a default selection for the

α-parameter. Thus, the prior probability π(α) is constant on the domain

G.

The arising posterior distribution does not belong to a known family of

distributions. Therefore, we resort to an MCMC simulation algorithm to

sample from it. The MCMC algorithm requires the evaluation of the energy

function, that is minus log of the non-normalized posterior,

Energy(θ) = E − log L(ũ|θ)− log π(b) (2.18)
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for any suitably chosen constant E. The terms log π(Q) and log π(α) are not

considered in the evaluation of the energy because are constant.

2.4 Markov Chain Monte Carlo Method

(MCMC)

In this section, an MCMC method with the affine invariant property, motivated

by the t-walk [21], is constructed to explore the arising posterior distribution.

The t-walk is a sampling method proposed by Christen and Fox [21] to sample

from general continuous distributions, and its performance is independent of

the distribution scale. This property of the MCMC method is called affine

invariance, and it implies that the performance of the MCMC method remains

independent regardless of the aspect ratio in highly anisotropic distributions.

Later, Goodman and Weare introduced this property in the emcee hammer [38].

2.4.1 Metropolis-Hastings (MH)

The MH algorithm simulates samples from a probability distribution by making

use of the full joint density function and (independent) proposal distributions

for each of the variables of interest. The algorithm 2 provides the details of a

generic MH algorithm.
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Algorithm 2: Metropolis - Hastings Algorithm

1. Pick the initial value x1 ∈ Rn and set k = 1.

2. Draw y ∈ Rn from q(xk, y). Calculate

ρ(xk, y) = min

{
1,
π(y)q(y, xk)

π(x)q(xk, y)

}

3. Draw t ∈ [0, 1] from uniform probability density.

4. if ρ(xk, y) ≥ t then

set xk+1 = y, else
xk+1 = xk

5. When k = K, stop. else
increase k → k + 1 and go to step 2

Note that samples from the proposal distribution are not accepted

automatically as posterior samples. These candidate samples are accepted

probabilistically based on an acceptance probability [48]. There are mainly

two kinds of proposal distributions, symmetric and asymmetric. A proposal

distribution is a symmetric if q(x|y) = q(y|x).

The performance of the Metropolis Hastings method depends very much

on the proposal distribution used, q(x, y). A proposal distribution that accepts

too many or too few proposals will produce highly autocorrelated chains.

There are infinite ways to propose the transition kernel Metropolis-Hastings.

Typically a naive transition kernel has many numerical efficiency problems.

Below, we introduce a proposal for q(x, y) with the affine invariance property.

2.4.2 MCMC Design for a Convex Obstacle

The Markov Chain Monte Carlo provides a simple and rich ground for building

point cloud move proposals in a Metropolis-Hastings (MH) scheme. The
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affine invariant proposals on the point cloud to the scattering problem were

defined before [64, 29]. In this work, we work further on the proposal for the

α parameter. The affine invariant feature may be seen as the capability of the

MCMC in locating the obstacle, independently of its relative position in the

domain G and its size.

The moves for the cloud points Q(t) = {p(t)
i }mi=1 at iteration t are as follows,

1. Point move:

Move randomly a single point p
(t)
k ∈ Q(t)

p
(t+1)
k = p

(t)
k + u−k

where u−k ∼ U(−d̄−k, d̄−k), and d̄−k is the mean of the pairwise distances

|p(t)
j − p

(t)
l | for j 6= l, p

(t)
j , p

(t)
l ∈ Q

(t) \ {p(t)
k }.

2. Translate:

Move randomly every point in Q(t)

p
(t+1)
i = p

(t)
i + u, for 1 < i < m

where u ∼ U(−d̄, d̄), and d̄ is the mean of the pairwise distances

|p(t)
j − p

(t)
l |, for j 6= l , p

(t)
j , p

(t)
l ∈ Q

(t).

We move the parameter using the prior distribution (2.17) as instrumental

b ∼ π(b).

The instrumental proposal for the obstacle boundary is symmetric because

when computing the pairwise distances without the point p
(t)
k in the point

move, we produce a symmetric proposal on the MCMC. Similarly, when the

translation move is chosen, the entire cloud is moved with the same direction

u, and therefore the proposal is also symmetric [64]. A detailed description of
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the algorithm is as follows:

Algorithm 3: Point Cloud-MH Random Walk 1

Data:

• Q(0) = {p(0)
i }mi=1 uniformly distributed on G

• b(0) ∼ U(0,M0)

Step 1. Take t = 0

Step 2. Randomly choose:

1. Move randomly a point p
(t)
k ∈ Q(t)

p
(t+1)
k = p

(t)
k + u−k

2. Move randomly every point in Q(t) = {p(t)
i }mi=1

p
(t+1)
i = p

(t)
i + u

3. b(t) ∼ Gamma(k̃, λ̃)

Step 3. Compute the energy

Energy(Q(t),b(t)) = −log L(ũ|Q(t),b(t))− log π(b(t)).

Step 4. Apply the MH criterion

ρ = Energy(Q(t−1),b(t−1))− Energy(Q(t),b(t))

and accept the proposal with probability e−ρ.

Step 5. t = t+ 1

Step 6. Repeat from Step 2 until t = tmax

In the example displayed in section 3.1, the probability of choosing each
proposal is 1

3
.

2.4.3 MCMC Design for a Star-Shaped Obstacle

In this case, there is an additional parameter, α. The proposals for the point
cloud Q and the refractive index b are the same than the convex case. An affine
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invariant proposal for α is constructed from the radius of the circumcircles of
the Delaunay triangulation in the iteration t, DT (Q(t)). Thus,

α(t+1) =
1

2
α(t) +

1

2
U(rmin, rmax) (2.19)

where rmin, rmax are the minimum and maximum radius of the circumcircles
of Delaunay triangulation, respectively. The α value is modeled in [rmin, rmax],
given that for values of α ≥ rmax is obtained always the convex hull and for
α ≤ rmin the set of points.

The probability density function q is given by

q(α(t+1), α(t)) =
2

rmax − rmin
IC(α(t+1)), (2.20)

where IC is the characteristic function of the set
(

1
2
(α(t) + rmin), 1

2
(α(t) + rmax)

)
.

The quotient q(α(t+1),α(t))

q(α(t),α(t+1))
is a constant on the support of the distribution (2.20).

A detailed description of the algorithm is as follows:
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Algorithm 4: Point Cloud MH Random Walk 2.

Data:

• Q(0) = {p(0)
i }mi=1 uniformly distributed on G

• b(0) ∼ U(0,M0), α = α0

Step 1. Take t = 0

Step 2. Randomly choose:

1. Move randomly a point p
(t)
k ∈ Q(t)

p
(t+1)
k = p

(t)
k + u−k

2. Move randomly every point in Q(t) = {p(t)
i }mi=1

p
(t+1)
i = p

(t)
i + u

3. b(t) ∼ Gamma(k̃, λ̃)

4. Move α:
α(t+1) = 0.5α(t) + 0.5U(rmin, rmax)

Step 3. Compute the energy

Energy(Q(t), α(t),b(t)) = −log L(ũ|Q(t), α(t),b(t))− log π(b(t)).

Step 4. Apply the MH criterion

ρ = Energy(Q(t−1), α(t−1),b(t−1))− Energy(Q(t), α(t),b(t))

and accept the proposal with probability e−ρ.

Step 5. t = t+ 1

Step 6. Repeat from Step 2 until t = tmax

In the examples displayed in section 3.2, the probability of choosing each

proposal is given by

w =

[
1

3
,
1

3
,
1

6
,
1

6

]
.

Also, the support of α is defined
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supp(α) = {α : P (Sα) is a valid polygon,ΓQ,α is a valid boundary}

• P (Sα) is a valid polygon if P (Sα) is a polygon and Q ⊂ P (Sα).

• ΓQ,α is a valid boundary if ΓQ,α does not intersect itself and it does not

have a peak thinner than the mesh size.

Figure 2.11: (a)-(c) Non-valid Sα (d) non-valid ΓQ,α.

The Metropolis-Hastings algorithm 4 guarantees that the transition kernel

P is irreducible, aperiodic and the measure µ induced by the posterior

distribution is asymptotically invariant under P , i.e., µ is a limit distribution

for the transition kernel P [48].

This convergence result establishes that the Markov Chain converges

asymtotically to a stationary distribution, which is the solution of the inverse

problem.
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Chapter 3

Results

In this chapter, we offer numerical examples to illustrate the reaches and

limitations of our approach to the inverse scattering problem. In section 3.1,

the obstacle is assumed to be convex, and the scheme described in section 2.4.2

is used. In section 3.2, a star-shaped obstacle is assumed and the effect of the

α parameter to recover the non-convexity of the obstacle using the scheme

proposed in section 2.4.3 is shown.

3.1 Numerical Results: Convex Obstacle

In this section is exhibited the results of the reconstruction of an ellipse given

by

x(t) = (0.3 cos(t), 0.05 sin(t)), t ∈ [0, 2π] (3.1)

with a refractive index, b = 25.

3.1.1 Generation of Synthetic Data

The data has been produced by numerically solving the direct scattering

problem in each direction di; using the method of Vainikko (as it is described in

section 2.1.3) and adding Gaussian noise with mean zero and standard deviation

σ = 0.012. The standard deviation of the noise is computed using the signal to
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noise ratio (SNR), defined as:

SNR =
magnitude of signal

variance of noise

it is taken the 1% of the magnitude of data.

• Eight incident waves are taken with directions uniformly distributed over

the unit circle

di =

(
cos

(
2π

8
i

)
, sin

(
2π

8
i

))
, i = 1, ..., 8.

• The search domain we have considered is G = [−0.5, 0.5]× [−0.5, 0.5].

• We have let N = 40 and h = 0.025.

• A prior information that obstacle (3.1) is within in G is assumed.

• We let k = 1.

3.1.2 Bayesian Parameters

• The instrumental parameters in the prior distribution π(b) of the

refractive index are taken λ̃ = 1.5, k̃ = 60 which are the scale and

shape parameters of the Gamma distribution. i.e. E(b) = λ̃k̃ = 90 and

var(b) = λ̃k̃2 = 5400. The instrumental parameters λ̃ and k̃ are chosen

of the prior distribution of the refractive index to represent that little is

known regarding such parameter, other than it is positive and bounded.

• 200,000 MCMC iterations are performed (computation time: 32.3 hours

using Intel Core i5 dual-core 2.5 Ghz processor).

• In [65] we observe that the effective dimension of the parameters space

informed by the data is 11. Therefore m = 10 points in the point cloud

are taken (10 points plus the α parameter).

• The forward map in the likelihood (2.16) is evaluated with the corrected

trapezoidal quadrature rule (see section 2.1.4).
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3.1.3 Results

Example 3.1.1 The ellipse defined by the equation (3.1) is reconstructed using

the formulation proposed in section 2.4.2.

The algorithm 3 is implemented in Python. After a burn-in period of 3,000

iterations the chain seems to be sampling from the equilibrium distribution (i.e.,

the posterior distribution), see Figure 3.1(a).

Figure 3.1: (a) After the initial burn-in, the affine invariant point cloud MCMC
reaches the region where the scatterer lies. Of note sampling starts in a relatively
distant point cloud. (b) Logarithm of the posterior distribution with a burn-in
period of 3,000 iterations, after that the MCMC seems to be stable (inset).
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Figure 3.2: After the initial burn-in (3,000 iterations), (a) the true obstacle
shown in blue, the maximum a posteriori (MAP) in red, the conditional mean
(CM) in green and the probability region obtained through affine invariant
MCMC sampling in grey. (b) Prior and marginal posterior distribution for
the refractive index b = 25.

In Figure 3.2 trace plots for the conditional mean (CM), the maximum a

posterior (MAP) estimator and probability regions are reported. Probability

regions are obtained by plotting MCMC simulations after the burn-in period

Figure 3.1(a).

The performance of the affine invariant property of MCMC may be seen

in Figure 3.1(a), as the cloud of initial points, starting in a small area move

and increases in size until the obstacle is found. Moreover, in Figure 3.3 trace

plots of the proposals actually accepted, for the three proposals are presented.

Note from Figure 3.3(a) how, in a transient period for the first 200 iterations,

the translate proposal dominates the accepted moves. This is needed to first
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locate the obstacle. The point move is subsequently used, to adapt the obstacle

boundary and only then the refractive index is updated. After that, the

proposals are accepted at stationary rates as seen in Figure 3.3(b), to explore

the posterior distribution (uncertainty) for the scatterer. Note that at this point

the translate proposal is seldom used. Of note, a standard MH MCMC is used.

The adaptation just described was not decided or set by us, nor ‘learned’ from

the chain itself, since the proposals are selected with probability 1/3 from the

onset. Instead, the affine invariant design leads automatically to this transient

and stationary adjusting.

Figure 3.3: (a) Proportion of accepted proposals, every 30 iterations. The
translation proposal is first used, to locate the object, then the points are moved
to adapt the boundary and finally the refractive index is updated. (b) After
the latter transient period, the proposals are accepted at stationary rates. Note,
however, that from the onset the proposals are selected with probability 1/3 and
that we are working with a standard homogeneous Metropolis-Hastings Markov
Chain Monte Carlo: adaptation is a result of the affine invariant design of the
transition kernel.

By construction, it is expected that the chains eventually converge to the
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stationary distribution, which also is the posterior distribution. However, we

need to know if the chain has converged after M draws. Therefore we will show

the results of some criteria that help us to establish the convergence of the chain.

Figure 3.4: (a) Autocorrelation (b) iterations against the mean of the draws up
to each iteration (c) Iteration number against the value of the index refractive
draw at each iteration.

• One way to see if our chain has converged is to see how well our chain

is mixing or moving around the parameter space, which is shown in the

Figure 3.4(a)(b).

• Correlations between draws of the Markov chain are evaluated. One

should expect a smaller autocorrelation lag if t increases, Figure 3.4(c).

Finally, making the diagnostic of Gelman Rubin [27], we get a “shrink

factor” (R) R = 1.0819746481999699, which tells us that all chains have

escaped from their starting points influence and have traversed all of the target

distribution.
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Then, with this diagnosis, and considering the points from above, it can be

ensured that the chain is sampling from the posterior distribution.

3.2 Numerical Results: Star-Shaped Obstacle

In this section, several numerical tests for the reconstruction of the kite are

presented. The kite was introduced by Kirsch in [51]. From there, it has been

used as a benchmark in the literature of inverse scattering problems. Of note,

the kite is a star-shaped obstacle. The boundary of the kite is described by

x(t) = (1.5 sin(t), cos(t) + 0.65 cos(2t)− 0.65), 0 ≤ t ≤ 2π. (3.2)

with refractive index b = 25. This figure is of interest for two reasons: firstly

because it is non-convex and secondly, because it possesses detailed structures

(the wings) that are small compared with the scale of the figure and hence

should be difficult to recover with a fixed frequency in the probing wave.

3.2.1 Generation of Synthetic Data

The data has been produced by numerically solving the direct scattering

problem in each direction di; using the method of Vainikko (as it is described in

section 2.1.3) and adding Gaussian noise with mean zero and standard deviation

σ = 0.012. The standard deviation is taken the same that in the example of the

convex case.

• Eight incident waves are taken with directions uniformly distributed over

the unit circle

di =

(
cos

(
2π

8
i+ γ

)
, sin

(
2π

8
i+ γ

))
, i = 1, ..., 8.

with γ = 0, π
6
.

• The search domain we have considered is G = [0, 0.8]× [0, 0.8].
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• We have taken N = 40, 80. h = 0.02, 0.01.

• A prior information that obstacle (3.2) is within in G is assumed.

• k = 1, 5 are taken at alternating incident directions.

3.2.2 Bayesian Parameters

• The instrumental distribution for b is taken as in the example of the

convex case (section 3.1).

• 2,000,000 MCMC iterations are performed (computation time: 22 hours

using Intel Core i7-4790K 4.00 Ghz processor), and m = 10 points in the

point cloud (for the result mentioned above).

• The forward map in the likelihood (2.16) is evaluated with the corrected

trapezoidal quadrature rule (see section 2.1.4).

3.2.3 Results

Example 3.2.1 The kite (3.2) is reconstructed using the formulation proposed

in section 2.4.3. In this example k = 1, N = 40, h = 0.02 and γ = 0.

After a burn-in period of 10,000 iterations the chain seems to be sampling

from the equilibrium distribution (i.e. the posterior distribution), see Figure 3.6.
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Figure 3.5: After the initial burn-in (10,000 iterations), (a) the true obstacle
shown in blue, the maximum a posteriori (MAP) in red, conditional mean (CM)
in green and the probability region obtained through affine invariant MCMC
sampling in grey (the last 20,000 MCMC iterations). (b) Prior and marginal
posterior distribution for the refractive index b = 25.

Figure 3.6: Logarithm of the posterior distribution, (a) first 50,000 MCMC
iterations (logarithmic scale), (b) and with a burn-in period of 10,000 iterations,
after that the MCMC seems to be stable.
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In Figure 3.5, trace plots for the maximum a posterior (MAP) estimator,

conditional mean (CM) and probability regions are reported. Probability

regions are obtained by plotting MCMC simulations after the burn-in period,

see burn-in in Figure 3.6 (a).

For a fixed frequency k = 1, it is difficult to recover the non-convex

part of the kite, Figure 3.5(a). If the wavelength of the incident field is

small with respect to the size of the obstacle, there will be a shadow behind

the obstacle and the interaction between the wave and obstacle is weaker

in this region. To improve the resolution, it is desirable to use an incident

field with a shorter wavelength or higher frequency to illuminate the scatterer[9].

In the following example, two frequencies are used for the incident field,

k = 1 and k = 5.

Example 3.2.2 Two frequencies are taken to recover the kite (3.2)

• k = 1, in the directions d1, d3, d5, d7

• k = 5, in the directions d2, d4, d6, d8.

It is taken N = 40, h = 0.02 and γ = 0.

After a burn-in period of 50,000 iterations the chain seems to be sampling

from the equilibrium distribution (i.e. the posterior distribution), see Figure 3.7

and Figure 3.8.
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Figure 3.7: After the initial burn-in (50,000 iterations), (a) the true obstacle
shown in blue, the maximum a posteriori (MAP) in red, conditional mean (CM)
in green and the probability region obtained through affine invariant MCMC
sampling in grey (the last 20,000 MCMC iterations). (b) Prior and marginal
posterior distribution for the refractive index b = 25.

Figure 3.8: Logarithm of the posterior distribution, (a) first 100,000 MCMC
iterations (logarithmic scale), (b) and with a burn-in period of 50,000 iterations,
after that the MCMC seems to be stable.
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In Figure 3.7, the effect of using two scales for the frequency is observed. A

higher resolution in the non-convex part of the kite is achieved.

To show that the results obtained are independent of the directions of the

incident field, an example in which none of these directions coincide with an

axis of symmetry of the obstacle is attempted.

Example 3.2.3 In this example, we considered the data of example above and

the directions in the incident field are rotated taking γ = π
6
.

After a burn-in period of 50,000 iterations the chain seems to be sampling

from the equilibrium distribution (i.e. the posterior distribution), see

Figure 3.10.

Figure 3.9: After the initial burn-in (50,000 iterations), (a) the true obstacle
shown in blue, the maximum a posteriori (MAP) in red, conditional mean (CM)
in green and the probability region obtained through affine invariant MCMC
sampling in grey (the last 20,000 MCMC iterations). (b) Prior and marginal
posterior distribution for the refractive index b = 25.
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Figure 3.10: Logarithm of the posterior distribution, (a) first 100,000 MCMC
iterations (logarithmic scale), (b) and with a burn-in period of 50,000 iterations,
after that the MCMC seems to be stable.

The refinement of the mesh is also an important parameter to consider in this

approach. In the following example, the effect of a finer mesh on the approach

is illustrated.

Example 3.2.4 In this example, the data is taken from example 3.2.2, and we

refined the mesh taking N = 80, h = 0.01.

After a burn-in period of 50,000 iterations the chain seems to be sampling

from the equilibrium distribution (i.e. the posterior distribution), see

Figure 3.12.
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Figure 3.11: After the initial burn-in (50,000 iterations), (a) the true obstacle
shown in blue, the maximum a posteriori (MAP) in red, conditional mean (CM)
in green and the probability region obtained through affine invariant MCMC
sampling in grey (the last 20,000 MCMC iterations). (b) Prior and marginal
posterior distribution for the refractive index b = 25.

Figure 3.12: Logarithm of the posterior distribution, (a) first 200,000 MCMC
iterations (logarithmic scale), (b) and with a burn-in period of 50,000 iterations,
after that the MCMC seems to be stable.
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In this example, a finer mesh to solve the direct problem has allowed us to

recover the kite with higher resolution. Although the number of iterations in

which the MCMC converges is reduced Figure 3.12(b), the computational time

increases because the evaluation of the forward mapping is more expensive. In

this point, we need to make a compromise between the accuracy of the forward

mapping and the convergence of the MCMC to the posterior distribution. A

result that relates the precision in the solution of the forward mapping and

the approach to the posterior distribution has been previously discussed in

Capistrán et al. [18].
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Chapter 4

Summary and Conclusions

In this thesis, we address a classical inverse scattering problem: to determine

the shape of a scattered D and the refractive index b from the scattered field

us and the incident field ui. Of note, this is a challenging problem given that

is non-linear and ill-posed. In this thesis we have introduced a method to

recover both, the support of the scatterer and the constant refractive index.

This method relies on the finite rank property of the direct problem, i.e., the

derivative of the direct problem can be arbitrarily approximated by a finite

rank operator, giving rise to a low dimensional data-informed subspace.

In this thesis, the following methods are proposed:

1. A efficient numerical solution of the direct scattering problem.

2. A high-level representation based on a point cloud to parameterize the

support of the obstacle.

3. The Bayesian formulation of the inverse scattering problem on a

low-dimensional space.

4. The design of an affine invariant MCMC that allows us to locate the

obstacle regardless of the size, location, and its shape.

In a first approach to the problem, we consider only convex obstacles.

This result is reported in Daza et al.[29]. Later, this result is extended to a
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star-shaped obstacle using the α-shape algorithm. Below we describe in detail

the results obtained in each approach.

The following remarks summarize our findings in the case of convex

obstacles:

• the parameter space (location, shape and constitutive properties of the

obstacle) is recovered for a fixed frequency, Figure 3.2

• the efficiency of the MCMC affine invariant is showed by adapting to the

multiple scales (size, location, and shape) of the problem, Figure 3.3.

In the case of star-shaped obstacles, we had the following findings:

• a parametric representation of star-shaped obstacles calculating the

α-shape of a point cloud

• for an incident field with k = 1 , we did not get good results due to the

different size scales that have a non-convex obstacle, Figure 3.5

• to improve the resolution, it is used a low-wavenumber data to locate the

scatterer approximately, and higher-wavenumber data to resolve details,

Figure 3.7.

The numerical approximation that we have proposed in this thesis to address

the scattering problem does not have free parameters. The wavenumbers are

comparable with the diameter of the scatterer. The number of points in the

point cloud is chosen using the result of the effective dimension obtained in

[65].

Note that when the scatterer is a non-convex obstacle, we show that data

at a low frequency does not allow us to recover the non-convex part. For the

case of star-shaped using two numbers of waves gives us good approximations.

We believe that our approach can be generalized to recover arbitrarily-shaped

obstacles using multiple frequencies.
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