
Bernoulli Society for Mathematical Statistics and Probability
 

 
Recurrent Extensions of Self-Similar Markov Processes and Cramér's Condition
Author(s): Víctor Rivero
Source: Bernoulli, Vol. 11, No. 3 (Jun., 2005), pp. 471-509
Published by: International Statistical Institute (ISI) and the Bernoulli Society for
Mathematical Statistics and Probability
Stable URL: https://www.jstor.org/stable/3318859
Accessed: 03-10-2018 20:36 UTC

 
REFERENCES 
Linked references are available on JSTOR for this article:
https://www.jstor.org/stable/3318859?seq=1&cid=pdf-reference#references_tab_contents 
You may need to log in to JSTOR to access the linked references.

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

International Statistical Institute (ISI), Bernoulli Society for Mathematical Statistics
and Probability are collaborating with JSTOR to digitize, preserve and extend access to
Bernoulli

This content downloaded from 148.235.65.253 on Wed, 03 Oct 2018 20:36:41 UTC
All use subject to https://about.jstor.org/terms



 Bernoulli 11(3), 2005, 471-509

 Recurrent extensions of self-similar Markov

 processes and Cramer's condition
 VICTOR RIVERO

 Laboratoire de Probabilites et Modeles Aleatoires, Universite Pierre et Marie Curie, 175, rue du
 Chevaleret, F-75013 Paris, France. E-mail: rivero@ccrjussieu.fr

 Let ? be a real-valued Levy process that satisfies Cramer's condition, and X a self-similar Markov
 process associated with ? via Lamperti's transformation. In this case, X has 0 as a trap and satisfies
 the assumptions set out by Vuolle-Apiala. We deduce from the latter that there exists a unique
 excursion measure n, compatible with the semigroup of X and such that n(Xo+ > 0) = 0. Here, we
 give a precise description of n via its associated entrance law. To this end, we construct a self-similar

 process XA, which can be viewed as X conditioned never to hit 0, and then we construct n similarly
 to the way in which the Brownian excursion measure is constructed via the law of a Bessel(3) process.
 An alternative description of n is given by specifying the law of the excursion process conditioned to
 have a given length. We establish some duality relations from which we determine the image under
 time reversal of n.

 Keywords: description of excursion measures; Levy processes; self-similar Markov process; weak
 duality

 1. Introduction

 Let X = (Xt, t > 0) be a strong Markov process with values in [0, 0c[ and, for x > 0,
 denote by Px its law starting from x. Assume that X possesses the following scaling
 property: there exists some a > 0 such that

 the law of (cXtc-ila, t > 0) under Px is Px, (1)
 for any x > 0 and c > 0. Such processes were introduced by Lamperti (1972) under the name
 of semi-stable processes; nowadays they are called a-self-similar Markov processes. We refer
 to Embrechts and Maejima (2002) for a recent account of self-similar processes.

 Lamperti established that for each fixed a > 0, there exists a one-to-one correspondence
 between a-self-similar Markov processes on [0, oc[ and real-valued Levy processes which
 we now sketch. Let (D, D) be the space of cadlag paths w : [0, oc[ -+ ] - oc, oc[ endowed
 with the a-algebra generated by the coordinate maps and the natural filtration (D', t 0),
 satisfying the usual conditions of right continuity and completeness. Let P be a probability
 measure on D' such that under P the coordinate process c is a Levy process. Throughout
 out this paper we will refer to this process as the unkilled L6vy process. Let P be the law
 of the Levy process ~ which is obtained by killing & at a rate k > 0, that is, & is killed at

 an independent exponential time e with parameter k. We denote by ( the lifetime of $, and

 1350-7265 ? 2005 ISI/BS
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 472 V Rivero

 (Dt, t > 0) its filtration. If k = 0 we assume furthermore that ? drifts to -oo, i.e.
 lims s =-o, P-almost surely. Set, for t > 0,

 r(t) =inf s > 0, {exp{jr/a}dr > t ,

 with the usual convention that inf{0} = oc00. For an arbitrary x > 0, let Px be the distribution
 on DE+ = { : [0, 00oc[ --+ [0, 00oc[; cadlag}, of the time-transformed process

 Xt = x exp(,(tx-_/p)), t >I 0,
 where the above quantity is assumed to be 0 when r(tx-l/a) = 00. We define P0O as the law
 of the process identical to 0. Classical results on time transformation yield that under
 (Px, x > 0) the process X is Markovian with respect to the filtration (t = Dr(t), t > 0).
 Furthermore, X has scaling property (1). Thus, X is a self-similar Markov process on [0, 00[
 having 0 as a trap or absorbing point. Conversely, any self-similar Markov process that has 0
 as a trap can be constructed in this way (Lamperti 1972).
 Let To be the first hitting time of 0 for X, that is,

 To = inf{t > 0 : Xt = 0 or Xt = 0}.

 It should be clear that the distribution of To under Px is the same as that of xl/al under
 P, with I the so-called Levy exponential functional associated with ? and a, that is,

 I exp{fs/a}ds. (2)

 If k > 0, or if k = 0 and ? drifts to -oc, we have that I < o00, P-a.s. As a consequence, we
 have that if k > 0 then

 Px(XT0 > 0, To < 00>) = 1, for all x > 0,

 whereas if k = 0 and ? drifts to -o0,

 Px(XTo = 0, To < 00) = 1, for all x > 0.
 Denote by Pt and Vq respectively the semigroup and resolvent for the process X killed at

 time To, say (X, To),

 Ptf(x) = E~x(f(Xt), t < To), x > 0,

 00 Vqf(x) J e-qtPtf(x)dt, x > 0,

 for non-negative or bounded measurable functions f. It is customary to refer to (X, To) as
 the minimal process.

 Given that the preceding construction enables us to describe the behaviour of the self-
 similar Markov process X until the first time it hits 0, Lamperti (1972) raised the following
 question: what are the self-similar Markov processes X on [0, 00[ which behave like
 (X, To) up to the time T0? Lamperti solved this problem in the case where the minimal
 process is a Brownian motion killed at 0. Then Vuolle-Apiala (1994) tackled this problem

This content downloaded from 148.235.65.253 on Wed, 03 Oct 2018 20:36:41 UTC
All use subject to https://about.jstor.org/terms



 Recurrent extensions of self-similar Markov processes 473

 using excursion theory for Markov processes and assuming that the following hypotheses
 hold: there exists K > 0 such that

 (Hla) the limit

 lim Ex(1 - e-TO)
 x--o xK

 exists and is strictly positive, and

 (Hlb) the limit

 lim Vqf (x)

 x---O xK

 exists for all f E CK]0, c[ and is strictly positive for some such functions,

 with CK]0, 00[ = { : R --+ R, continuous and with compact support on ]0, oo[}. The main
 result of Vuolle-Apiala (1994) is the existence of a unique entrance law (ns, s > 0) such that

 lim nsBc =0,
 s--+o

 for every neighourhood B of 0 and
 00

 e-snslds = 1.
 o

 This entrance law is determined by its q-potential via the formula

 _ 1 Vq f(x) 0e-qsnsf ds = lim Vqf(X) q > 0(3) o x--+O Ex(1 -e-To)' q>, (3)
 for f e CK]0, 0o[. Then, using the results of Blumenthal (1983), Vuolle-Apiala proved that
 associated with the entrance law (ns, s > 0) there exists a unique recurrent Markov process
 X having scaling property (1) which is an extension of the minimal process (X, To), hence,
 X killed at time T0 is equivalent to (X, To) and 0 is a recurrent regular state for X', that is,

 Px(To <C 0)- l=, Vx > 0, PO(To = 0) = I,
 with 0 the law on D+ of X. Furthermore, the results of Blumenthal (1983) ensure that there
 exists a unique excursion measure, say n, on (D+, go) compatible with the semigroup Pt
 such that its associated entrance law is (ns, s > 0); the property limsonsBc= 0, for any B-
 neighourhood of 0, is equivalent to n(Xo+ > 0) = 0, that is, the process leaves 0 continuously
 under n. Then the excursion measure n is the unique excursion measure having the properties
 n(Xo+ > 0) = 0 and n(1 - e-To) = 1. See Section 2.1 for the definitions.

 The first aim of this paper is to provide a more explicit description of the excursion
 measure n and its associated entrance law (ns, s > 0). To this end, we shall mimic a well-
 known construction of the Brownian excursion measure via the Bessel(3) process that we
 next sketch for ease of reference. Let P (R) be a probability measure on (D?, 00) under
 which the coordinate process is a Brownian motion killed at 0 (a Bessel(3) process). The
 probability measure R appears as the law of the Brownian motion conditioned never to hit
 0. More precisely, for u > 0, x > 0,
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 lim Px(A To > t) = Rx(A), t--*OO

 for any A E !,, (e.g. McKean 1963). Moreover, the function h(x) = x-1, x > 0, is excessive
 for the semigroup of the Bessel(3) process and its h-transform is the semigroup of the

 Brownian motion killed at 0. Let n be the h-transform of R0 via the function h(x)- x-1, that is, n is the unique measure on (D+, ,0) with support in { To > 0} such that under n the
 coordinate process is Markovian with semigroup that of Brownian motion killed at 0, and for

 every gt-stopping time T and any positive 9T-measurable functional Fr,

 n(Fr, T < To) Ro (i). (XT)

 Then the measure n is a multiple of It6's excursion measure for Brownian motion (Imhof
 1984, Section 4).

 In order to carry out this programme we will make the following hypotheses on the Levy
 process :

 (H2a) $ is not arithmetic, that is, the state space is not a subgroup of kZ for any real
 number k.

 (H2b) There exists 6 > 0 such that E(e', 1 < I ) 1.

 (H2c) E(+e??', 1 < )<oc, with a+-aV0. Condition (H2c) can be stated in terms of the L6vy measure -I of ? as

 (H2c') fJ{x>I} xeOxH(dx) < oc00
 (cf. Sato 1999, theorem 25.3). Such hypotheses are satisfied by a wide class of L6vy
 processes, in particular by those associated, via Lamperti's transformation, with self-similar
 diffusions and stable processes. We will refer to these hypotheses as (H2).

 Condition (H2b) is called Cramir 's condition for the Levy process ? and, in the case
 k 0, forces ? to drift to -oc or equivalently E(?1) < 0. Thus if the (H2) hypotheses hold
 we will refer to the case where k - 0 and ? drifts to -oc as the case k 0. Cramer's
 condition enables us to construct a law P? on D, such that under Ph the coordinate process

  is a Levy process that drifts to oc00 and phIv, -e?'PIp,. Then we will show that the self-
 similar Markov process X? associated with the Levy process  plays the r6le of a Bessel(3)
 process in our construction of the excursion measure n.

 The rest of this paper is organized as follows. In Section 2.1 we recall It6's programme
 as established by Blumenthal (1983). The excursion measure n that interests us is the
 unique (up to a multiplicative constant) excursion measure having the property
 n(Xo+ > 0)= 0. Nevertheless, this is not the only excursion measure compatible with the
 semigroup of the minimal process, which is why in Section 2.2 we review some properties
 that should be satisfied by any excursion measure corresponding to a self-similar extension
 of the minimal process. There we also obtain necessary and sufficient conditions for the
 existence of an excursion measure n1 such that n'(Xo+ 0) 0, which are valid for any
 self-similar Markov process having 0 as a trap. In Section 2.3 we construct a self-similar
 Markov process X which is related to (X, To) in an analogous way to that in which the
 Bessel(3) process is related to Brownian motion killed at 0. We also prove that conditions
 (HI) are satisfied under hypotheses (H2), give a more explicit expression for the limit in
 equation (3) and show that hypotheses (Hi) imply the conditions (H2b) and (H2c). Next, in
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 Recurrent extensions of self-similar Markov processes 475

 Section 3 we give our main description of the excursion measure n and give an answer to
 the question raised by Lamperti that can be sketched as follows: given a Levy process
 satisfying (H2), then an a-self-similar Markov process X associated with ? admits a
 recurrent extension that leaves 0 continuously a.s. if and only if 0 < aO < 1. The purpose
 of Section 4 is to give an alternative description of the measure n by determining the law of
 the excursion process conditioned by its length (for Brownian motion this corresponds to

 the description of the It6 excursion measure via the law of a Bessel(3) bridge). In Section 5
 we study some duality relations for the minimal process and in particular we determine the
 image under time reversal of n. Finally, in Appendix A we establish that the extensions of
 any two minimal processes which are in weak duality, are still in weak duality as might be
 expected.

 Sometimes it will be necessary to distinguish between the case k > 0 and k = 0 in order
 to obtain our results. However, given that the methods are quite similar in both cases we
 have chosen to only present the complete proofs when k = 0. We will indicate the places
 where changes are necessary to obtain the results in the case k > 0.

 Note, finally, that the development of this work uses Doob's theory of h-transforms (see
 Sharpe 1988) without further reference.

 2. Preliminaries and first results

 This section contains several parts. In Section 2.1, we recall It6's programme and the results
 in Blumenthal (1983). The purpose of Section 2.2 is to study the excursion measures
 compatible with the semigroup of the minimal process (X, To). Finally, in Section 2.3 we
 establish the existence of a self-similar Markov process XA which bears the same relation to
 the minimal process (X, To) as the Bessel(3) process does to Brownian motion killed at 0.
 The results in Sections 2.1 and 2.2 do not require (H2).

 2.1. Some general facts on recurrent extensions of Markov processes

 A measure n on (D+, Q) having infinite mass is called a pseudo-excursion measure
 compatible with the semigroup Pt if the following conditions are satisfied:

 (i) n is carried by

 {w E D +|10 < To <oc and Xt = 0, Vt >0};

 (ii) for every bounded !)-measurable H and each t > 0 and AE gt,

 n(HoOt, Afn{t < To})= n(Ext(H),Afn{t < To}),
 where Ot denotes the shift operator.

 If, moreover,

 (iii) n(1 - e- To) < 00,
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 476 V Rivero

 we will say that n is an excursion measure. A normalized excursion measure n is an
 excursion measure n such that n(1 - e- To) = 1. The role played by condition (iii) will be
 explained below.
 The entrance law associated with a pseudo-excursion measure n is defined by

 ns(dy) := n(Xs E dy, s < To), s > 0.

 A partial converse holds: given an entrance law (ns, s > 0) such that
 00

 J(1 - e-s)dns1 <00,
 there exists a unique excursion measure n such that its associated entrance law is (ns, s > 0),
 (see Blumenthal 1983).

 It is well known in the theory of Markov processes that one way to construct recurrent

 extensions of a Markov process is Itr's programme or pathwise approach that can be
 described as follows. Assume that there exists an excursion measure n compatible with the
 semigroup of the minimal process Pt. Realize a Poisson point process A = (As, s > 0) on
 D+ with characteristic measure n. Thus each atom As is a path and To(As) denotes its
 lifetime:

 To(As) = inf{t > 0 : As(t)= 0}.

 Set

 OF =t TO(As), t > 0.
 sat

 Since n(1 - e-TO) < 00, at < 00 a.s. for every t > 0. It follows that the process
 O = (at, t > 0) is an increasing cadlag process with stationary and independent increments,
 that is, a subordinator. Its law is characterized by its Laplace exponent q, defined by

 E(e- 1) = e- O), A > 0,
 and O(A) can be expressed thanks to the Levy-Khinchine formula as

 (=) -f]0,[(1 - e-As)v(ds),
 with v a measure such that f]o,oo(s A 1)v(ds) < 00, called the Levy measure of a (see Bertoin
 1996, Chapter 3, for background). An application of the exponential formula for Poisson
 point processes gives

 E(e- "U) = e-n(G-e-ATo), > 0,
 that is, O(A) = n(1 - e-ATO) and the tail of the Levy measure is given by

 v[s, 0c[ = n(s < To) = nsl, s > 0.

 Observe that if we assume /(1) n(1 -e- ?) - 1 then # is uniquely determined. Since n
 has infinite mass, Ut is strictly increasing in t. Let Lt be the local time at 0, that is, the
 continuous inverse of a:
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 Recurrent extensions of self-similar Markov processes 477

 Lt-inf{r>0:Ur>t}=inf{r> 0 oUr t}.
 Define a process (Xt, t > 0) as follows. For t > 0, let Lt= s; then as- < t < as. Set

 X = As(t- as-), if as- < as
 0, if as - = uas or s = 0.

 That the process so constructed is a Markov process has been established in full generality by
 Salisbury (1986a; 1986b) and under some regularity hypotheses on the semigroup of the
 minimal process by Blumenthal (1983). See also Rogers (1983) for its analytical counterpart.
 In our setting, the hypotheses of Blumenthal (1983) are satisfied, as is shown by the following
 lemma.

 Lemma 1. Let Co]0, oc[, be the space of continuous functions on ]0, oc[ vanishing at 0 and
 00.

 (i) Iff E Co]0, o[, then Ptf E Co]0, c0[ and Ptf -* f uniformly as t -* 0.
 (ii) Ex(e-qTo) is continuous in x for each q > 0 and

 lim Ex(e-TO) = 1 and lim Ex(e To) = 0. x-o+0 X--o

 This lemma is an easy consequence of Lamperti's transformation. Alternatively, a proof can
 be found in Vuolle-Apiala (1994, pp. 549-550).
 Therefore we have from Blumenthal (1983) that XA is a Markov process with Feller
 semigroup and its resolvent { Uq, q > 0} satisfies

 Uqf(X) -= Vqf(X) + Ex(e-qTo)Uqf(0), x > 0,

 for f E Cb(R+) = {f: R+ --+ R, continuous and bounded}. That is, X is an extension of the
 minimal process. Furthermore, if {X', t > 0}O is a Markov process extending the minimal one
 with It6's excursion measure n and local time at 0, say {L', t > 0}, such that

 E' ( e-sdL' 1,
 where E' is the law of X'. Then the process X and X' are equivalent and It6's excursion
 measure for X is n.

 Thus, the results in Blumenthal (1983) establish a one-to-one correspondence between
 excursion measures and recurrent extensions of Markov processes. Given an excursion
 measure n, we will say that the associated extension of the minimal process leaves 0
 continuously a.s. if n(Xo+ > 0)= 0 or, equivalently, in terms of its entrance law,

 lims~ons(Bc) -0 for every neighourhood B of 0, (Blumenthal 1983); if n is such that
 n(Xo+ -0) 0, we will say that the extension leaves 0 by jumps a.s. The latter condition
 on n is equivalent to the existence of a jumping-in measure ij, that is, ij is aa -finite
 measure on ]0, 00[ such that the entrance law associated with n can be expressed as
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 nsf = n(f(Xs), s < To) = ][17(dx)Psf(x), s > 0, 1]0,00[

 for every f E Cb(R+) (Meyer 1971).
 Finally, observe that if n is a pseudo-excursion measure that does not satisfy condition

 (iii), we can still realize a Poisson point process of excursions on (D+, g ) with
 characteristic measure n but we cannot form a process extending the minimal one by
 sticking together the excursions because the sum of lengths EstTo(As) is infinite P-a.s.
 for every t > 0.

 2.2. Some properties of excursion measures for self-similar Markov
 process

 Next, we deduce necessary and sufficient conditions that must be satisfied by an excursion
 measure in order that the associated recurrent extension of the minimal process be self-
 similar. For c e R, let H, be the dilatation Hef(x)= f(cx).

 Lemma 2. Let n be an excursion measure and X the associated recurrent extension of the
 minimal process. The following are equivalent:

 (i) The process X has the scaling property.
 (ii) There exists y e ]0, 1[ such that, for any c > 0,

 n (fOe-qsf(Xs)ds) c-(-y)/an(fo e-(qc/as)Hcf(Xs)ds),

 for f E Cb(R+).
 (iii) There exists y e ]0, 1[ such that, for any c > 0,

 nsf - c-y/ans/lc/a Hcf, for all s > 0,

 for f E Cb(R+)

 Remark If conditions (i)-(iii) in the preceding lemma hold, the subordinator a which is the
 inverse local time of X is a stable subordinator of parameter y, with y determined by
 condition (ii) or (iii).

 Proof (ii) += (iii) is straightforward.
 (i) =? (ii). Suppose that there exists an excursion measure n such that the associated

 recurrent extension X has scaling property (1). Let M be the random set of zeros of the

 process X, that is, M = {t > 01jX(t) = 0}. By construction M is the closed range of the
 subordinator a =(a, t > 0), that is, M. is a regenerative set. The recurrence of X implies
 that M is unbounded a.s. By the scaling property for X, we have that

 d
 Mm-cM, for each c >0,
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 that is, M is self-similar. Thus the subordinator should have the scaling property and since
 the only Levy processes that have the scaling property are the stable processes it follows that
 a is a stable subordinator of parameter y for some y E ]0, 1[ or, in terms of its Laplace
 exponent, O(A) = n(1 - e-TO) = AY, A > 0. Recall that the scaling property for the extension
 can be stated in terms of its resolvent by saying that, for any c > 0,

 Uqf(x) -= cl/a Uqc/a Hcf(x/c), for all x > 0, (5)
 for f E Cb(R+). Using the compensation formula for Poisson point processes, we obtain that

 n(JTo e-qsf(Xs)ds)

 Uqf(O) n(1 - e-qTo) (6)
 From equation (5) we have that the measure n should be such that

 n(foT e-qs fT(Xs)ds) _ / n(fT? e-qclasHcf (Xs)ds) n(JTOe f(Xs)ds) =1C/a n(J'O
 n(1 - e-qTo) n(1 - e-qcl/la To)

 and therefore we conclude that

 n (Oe-qs f(Xs)ds) = c(l-y)/a n (fe-(qcO/as) Hcf(Xs)ds).

 (ii) =? (i). The scaling property of X is obtained by means of (5). In fact, the only thing
 that needs to be checked is that equation (5) holds for x = 0, since we have the identity

 Uqf(x) = Vqf(x) ?+ Ex(e TO)Uqf(0), x> 0,

 and the scaling property of the minimal process stated in terms of its resolvent Vq, that is,

 Vqf(x) = c1/a Vqcui Hcf(x/c), x > 0, c > 0, q > 0.

 Indeed, by construction it follows that formula (6) holds and hypothesis (ii) implies that
 n(1 - e-qTO) = qY, q > 0; the conclusion is immediate. E

 In the following lemma we give a description of the sojourn measure of X and a
 necessary condition for the existence of a excursion measure n such that one of the
 conditions in Lemma 2 holds.

 Lemma 3. Let n be a normalized excursion measure and X the associated extension of the
 minimal process (X, To). Assume that one of the conditions (i)-(iii) in Lemma 2 holds. Then

 /TO

 n(f 1{XEdy}ds) = Ca,yy(t-a-y)/a dy, y > 0,

 with y determined by (ii) of Lemma 2 and Cay e ]0, 00[ a constant. As a consequence,
 E(I-(-1)) < 0c and Cay = (aE(I-(11-))F(1 - y))-1, where I denotes the exponential
 functional (2).
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 Proof Recall that the sojourn measure

 n (f0 { XSEdy}ds) - ons(dy)ds
 is a a-finite measure on ]0, oc[ and is the unique excessive measure for the semigroup of the
 process X (Dellacherie et al. 1992, XIX.46). Next, using result (iii) in Lemma 2 and Fubini's
 theorem, we obtain the following representation of the sojourn measure, for f > 0
 measurable:

 nsfds {s-Y ni(Hsa f)ds

 J ni(dz) s-7f(saz)ds
 00

 = Ca,1y U(l-a-y)/af(u)du,

 with 0 < Ca,y, a-1 f ni(dz)z-(1-y)/a < 0c. This proves the first part of the lemma.
 We now prove that E(I-(l-Y)) < 0c. On the one hand, the function q(x) Ex(e-To) is

 integrable with respect to the sojourn measure. To see this, use the Markov property under
 n to obtain

 (TO 00
 n q(j (Xs)ds -Jn(q(Xs), s < To)ds

 0 0o
 = n(e-To o Os, s < To)ds

 0

 = n(e-(To-s), s < To)ds

 = n(1 - e-TO) = 1.

 On the other hand, using the representation of the sojourn measure, Fubini's theorem and the
 scaling property, we have that

 OO OO

 Ca,y1 fEy(e-To)Y(l-a-Y)/ady Ca,y E(e-YI/a)y(l -a-W)/ady

 = Ca,,yaE(I1-1))F(1 - y).

 Therefore, E(I-(1-Y)) < oc and Ca,y - (aE(I-(-Y))F(1 - y))-1.O
 We next study the extensions X that leave 0 a.s. by jumps. Using only scaling property

 (1) it can be verified that the only possible jumping-in measures such that the associated
 excursion measure satisfies (ii) in Lemma 2 are of the type

 rl(dx)- ba,px-(l+)dx, x > 0, 0 < a/3 < 1,
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 Recurrent extensions of self-similar Markov processes 481

 with a constant bafi > 0, depending on a and 3, (Vuolle-Apiala 1994). This having been said,
 we can state an elementary but satisfactory result on the existence of extensions of the
 minimal process that leave 0 by jumps a.s.

 Proposition 1. Let P E ]0, 1/a[. The following are equivalent.:

 (i) E(lap) < 00.
 (ii) The pseudo-excursion measure nJ = P7, based on the jumping-in measure

 r/(dx) =x- (+)dx, x> 0, is an excursion measure. (iii) The minimal process (X, To) admits an extension X, that is a self-similar recurrent
 Markov process, and leaves 0 by jumps a.s. according to the jumping-in measure

 r(dx) = ba,px-l+) dx, with ba, p = //E(IaP)F(1 - af)).

 If one of these conditions holds then y in (ii) in Lemma 2 is equal to ap.

 Condition (i) in Proposition 1 is easily verified under weak technical assumptions. That is
 to say, if we assume (H2), the aforementioned condition is verified for every
 /3 E ]0, (1/a)/A 6[; this will be deduced from Lemma 4 below. On the other hand, the
 condition is verified in other settings, as can be seen in the following example.

 Example 1 Generalized self-similar sawtooth processes. Let a > 0, k =0, 6 be a
 subordinator such that E(&1) < oc, and X the a-self-similar process associated with the

 L6vy process - -6. Then ? is a Levy process with infinite lifetime that drifts to -oc, X
 has a finite lifetime To and X decreases from its starting point until the time To, when it is
 absorbed at 0. Furthermore, it was proved by Carmona et al. (1997) that the Levy exponential

 functional I = fo exp{-Js/a}ds has finite integral moments of all orders. It follows that
 condition (i) in Proposition 1 is satisfied by every/3 E ]0, 1/a[. Thus for each / E ]0, 1/a[
 the a-self-similar extension X that leaves 0 by jumps according to the jumping-in measure in
 (iii) of Proposition 1 is a process having sample paths that looks like a saw with 'rough'
 teeth. These are all the possible extensions of X, that is, it is impossible to construct an
 excursion measure such that its associated extension of (X, To) leaves 0 continuously a.s.,
 since we know that the process X decreases to 0.

 Proof of Proposition 1. Let r(dx) - x-('+)dx, x > 0, and ni be the pseudo-excursion
 measure n -I= P. By definition, the entrance law associated with nj is

 00

 nOf = dxx-(l+f)Psf(x), s > 0.

 Thus, for n1 to be an excursion measure, the only condition it needs to satisfy is
 n (1 - e-r) < 00. This follows from the elementary calculation

This content downloaded from 148.235.65.253 on Wed, 03 Oct 2018 20:36:41 UTC
All use subject to https://about.jstor.org/terms



 482 V Rivero

 dxx-('+#)Ex(1 - e-T) =- dxx-(l+)E(1 - e-x/al)

 =aE ( dyy-aP-1(1 - e-YI))

 F(1 a/3)

 = E(Iap)( af)

 That is, n(1 - e-To) < o~ if and only if E(IaP) < 00, which proves the equivalence between
 the assertions in (i) and (ii). If (ii) holds it follows from the results in Blumenthal (1983) and
 Lemma 2 that associated with the normalized excursion measure ni' = ba,IP1 there exists a
 unique extension of the minimal process (X, To) which is a self-similar Markov process and

 which leaves 0 by jumps according to the jumping-in measure baflx-l_(1)dx, x> 0, which
 establishes (iii). Conversely, if (iii) holds the It6 excursion measure of X is ni' = baoP7 and
 the statement in (ii) follows. O

 2.3. The process X? analogous to the Bessel(3) process

 Here we shall establish the existence of a self-similar Markov process XA that can be
 viewed as the self-similar Markov process (X, To) conditioned never to hit 0. In the case
 where (X, To) is a Brownian motion killed at 0, XA corresponds to the Bessel(3) process.
 To this end, we next recall some facts on L6vy processes and density transformations and
 deduce some consequences for self-similar Markov processes. We henceforth assume (H2).
 The law of a Levy process ? obtained by killing at a rate k is characterized by a function

 T: R --+ C defined by the relation

 E(eiu"', 1 < ) = exp{-W(u)}, u E R.

 The function T is called the characteristic exponent of the L6vy process ? and can be
 expressed thanks to the L6vy-Khinchine formula as

 U2U2

 t(u) = k - iau + 2+ U? (1 - e" + iuxl xl<l})H11(dx),

 where 1 is a measure on R\{0} such that f(ix12 A 1)HI(dx) < oo. The measure L is called
 the Levy measure, a2 the Gaussian coefficient and k the killing rate. Conditions (H2b) and

 (H2c) imply that the L6vy exponent of ? admits an analytic extension to the complex strip
 3(z) E [-0, 0]. Thus we can define a function V : [0, 0] -R by

 E(e~1, 1 < ) - ev() and V(A) = -W(-i2), 0 < -< 0.
 Holder's inequality implies that V is a convex function and that 0 is the unique solution to

 the equation ip(A) = 0 for i > 0. This happens if and only if there exists a 0 > 0 such that

 k = aO + u202/2 + J(eox - 1 - 0x1{1<i})H(dx).
 JR
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 Furthermore, the function h(x) = eox is invariant for the semigroup of ?. Let P? be the h-

 transform of P via the invariant function h(x) = eOx. That is, the measure P? is the unique

 measure on (D, D) such that, for every finite Dr-stopping time T and each A E Dr,

 P (A) = P(e OTA n { T < }).

 Under P? the process (, t t> 0) is a L6vy process with infinite lifetime, characteristic
 exponent

 tl(u) = (u - io), u E R,
 and drifts to oo; more precisely,

 0 < mt := E (?) = p'(O-) < 00.

 For a proof of these facts and more about this change of measure, see Sato (1999, Section
 33).

 Let Px denote the law on D+ of the self-similar Markov process starting at x > 0 and associated with the Levy process ( via Lamperti's transformation. In what follows it will
 be implicit that the superscript ? refers to the measure P or P?. We now establish a relation
 between the probability measures P and P0 analogous to that between the law of a
 Brownian motion killed at 0 and the law of a Bessel(3) process (McKean 1963). Informally,
 the law P? can be interpreted as the law under Px of X conditioned never to hit 0.

 Proposition 2. (i) Let x > 0 be arbitrary. Then we have that P is the unique measure such
 that, for every gt-stopping time T, we have

 P (A) = x-9Px(AX?, T < To),

 for any A E . In particular, the function h*: [0, oo[ --+ [0, o[ defined by h*(x) = x is
 invariant for the semigroup Pt.

 (ii) For every x > 0 and t > 0, we have

 Px(A) = lim Px(AI To > s),
 s---+oo

 for any A E9t.

 The proof of (i) in Proposition 2 is a straightforward consequence of the fact that P? is

 the h-transform of P and that for every Gt-stopping time T we have that r(T) is a Dr-
 stopping time. To prove (ii) in Proposition 2 we need the following lemma that provides us
 with a tail estimate for the law of the Levy exponential functional I associated with ? as
 defined in (2).

 Lemma 4. Under conditions (H2) we have that

 lim taoP(I > t) = C, t--*oc

 where
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 0 C = tao-l(P(I > t) - P(e?'I > t))dt < 0,

 d

 with  = $ and independent of I. If 0 < aO < 1, then

 C = aE(I-(1-ao)).

 Two proofs of this result have been given in a slightly restrictive setting by Mejane
 (2002). However, one of these proofs can be extended to our case and in fact it is an easy
 consequence of a result on random equations originally due to Kesten (1973) who in turn
 uses a difficult result on random matrices. A simpler proof of Kesten's result was given by
 Goldie (1991).

 Sketch of proof of Lemma 4. We study first the case k = 0. In this case = c a.s. and
 I = fo exp{fs/a}ds. It is straightforward that the Levy exponential functional I satisfies in
 law the equation

 d

 I e s/ads + e /aI' = Q + MI',

 with I' the Levy exponential functional associated with ?' = { ' = 1+t- $1, t > 0}, a Levy
 process independent of D, and with the same distribution as ?. Thus, according to Kesten
 (1973) and Goldie (1991), if the conditions (i)-(iv) below are satisfied then there exists a
 strictly positive constant C such that

 lim taP(I > t) = C.
 t---+ 

 The hypotheses of Kesten's theorem are:

 (i) M is not arithmetic.
 (ii) E(Mao) = 1.
 (iii) E(MaO In +(M)) < c00.
 (iv) E(QUO) < 0.

 Assuming conditions (H2), the only thing that needs to be verified is that (iv) holds. Indeed,

 E(Qao) < E(sup{eo?s :s e [0, 1]})
 e

 < (1 + Osup{E(?+ e?s) s e [0, 1]}) < C. e-1

 The second inequality is obtained using the fact that (eo?', t > 0) is a positive martingale and
 Doob's inequality. The first formula for the value of the limit, C = limt toAP(I > t), is a
 consequence of Goldie (1991, Lemma 2.2 and Theorem 4.1). That the latter limit exists
 implies that E(Ia) < 00, for all 0 < a < aO. Now, to obtain the expression for C when
 0 < aO < 1, we will use the following formula for the moments of I:
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 a

 E(ia) = a E(ia-1)9 for 0 < a < aO, (7) -V(a/a)
 which can be proved with arguments similar to those given by Bertoin and Yor (2002b,
 Proposition 2). We will also use the well-known identity

 Aa = a (1 - e-Ax)x-(l+a)dx, 2A > 0, a E ]0, 1[.
 F(1 - a) J0

 On the one hand, since 0 < aO < 1, we have from Bingham et al. (1989, Corollary 8.1.7)
 that

 lim E(1 - e-sI) lim, = CF(1 - aO). s-+0 SaO

 On the other hand, by equation (7) we have

 E(I-(1-aO))aO = lim E(Ia-)a a--+aO

 aO lim (--(a/a)) s-(l+a)E(1 - e-sI)ds F(1 - aO) aTaOo

 = CaO lim-(aa)
 atao aO - a

 = C0V'(o-), (8)
 which proves the claimed result in the case k = 0. In the case k > 0, the Levy exponential

 functional I has the same law as Ae = fo exp{s/a}ds, with the unkilled Levy process and e an exponential random variable with parameter k and independent of 5. Using the
 memorylessness of the exponential law we can easily verify that Ae satisfies the equation in

 law Ae d Q + MA', with Q= fo exp { s}1{s<e}ds, M = e I/a1{l<e} and A', with the same law as Ae and independent of (Q, M) and e. Next we verify, in the same way as in the case
 k = 0, that the random variables (Q, M) satisfy hypotheses (i)-(iv) of Kesten's theorem.
 Finally, to estimate the value of the constant C when 0 < aO < 1, we use an identity similar
 to (7) for Ae,

 E(Aa) = a E(A 1), 0 < a < aO,
 -V)(a/a)

 which is obtained in Carmona et al. (1997, Proposition 3.1(i)). E

 The proof of Proposition 2 follows by standard arguments.

 Proof of (ii) in Proposition 2. Recall that the law of To under Px is that of xl/aI under P.
 Thus we deduce from Lemma 4 that, for every x > 0,

 lim sa?Px(To > s) = xAC.

 Using the Markov property and a dominated convergence argument, we obtain that

This content downloaded from 148.235.65.253 on Wed, 03 Oct 2018 20:36:41 UTC
All use subject to https://about.jstor.org/terms



 486 V Rivero

 Px(AlTo > s)= Px(Al{t<To}Px,(To > s- t)/Px(To > s))

 --+ x?-Px(AX l {t<To}). s--+00oo

 By Proposition 2, the semigroup of X under P is given by

 P f(x) := (f(Xs)) = x-Ex(f(Xs)Xsl{s<To}), for x > 0,
 with f a positive or bounded measurable function. Let J be the L6vy exponential functional
 associated with the process , that is,

 J = Jexp {- /a}ds, (9)
 0

 which is finite Ph-a.s. since  drifts to 00. Now, since under P? the process ( , s > 0) is a
 non-arithmetic L6vy process with 0 < m < 00, the measure PW converges in the sense of

 finite-dimensional distributions to a probability measure P+ as x --+ 0+ (Bertoin and Yor
 2002a, Theorem 1). Moreover, the law of Xs under Po+ is an entrance law for the semigroup
 P? and is related to the law of the Levy exponential functional J under P? by the formula

 Eo*+(f(X )a- --a E (f(s/J)/J), s > 0, (10)

 for f measurable and positive. Recall also that mb/a = ED(1/J) < 0c. See Bertoin and Yor
 (2002a) for a proof of these facts.

 The next result states that under (H2) conditions (HI) hold, and gives a first description
 of the entrance law (ns, s > 0).

 Proposition 3. Assume hypotheses (H2).

 (i) If 0 < aO < 1, then hypotheses (HI1) hold for K = 0. Furthermore, the q-potential of
 the entrance law (ns, s > 0) admits the representation

 cds e-qnsnf = Ya,oJ f(y)E?(exp {-qyl/aJ})y(l-a-aO)/a dy,

 where

 Ya,O = (aE(I-(1-ao))F(1 - aO))-1

 for every f E Cb(R+).
 (ii) If aO > 1, then either (Hla) or (Hlb) fails to hold.

 Proof (i) That (Hia) holds is easily proved. Indeed, since 0 < aO < 1 we have from
 Bingham et al. (1989, Corollary 8.1.7) that the result in Lemma 4 is equivalent to
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 lim Ex(1 - e-To) =lim E(1 - e-x/a) - a )aE(I-(l-a)) =lim - m I(1 - aO) (11)
 x-o x? x-O x m "

 To prove (Hlb) we recall the identity,

 Vqf(x)
 x = V = (f /lh*)(x), X0 qJJXJ x

 where V0 is the resolvent of the semigroup P? and h*(x) = xO, x > 0. As has already been
 pointed out, the results in Bertoin and Yor (2002a) are applicable in our setting to the self-
 similar process XK. In particular, their formula (4) states that

 lim V~ g(x) = a J (a)E(e yJ)dy x__O --qgyaEe-YJJY

 for every function g E Cb(R+). Therefore,

 lim Vqf(X)= lim V(f /h*)(x)
 x-40 X0 x-0

 IOO
 = a fa -aoE(e(-qyj)dy,
 1 fl/

 m= J- f(y)E~(e-qYaJ)Y(l-a-aO)/ady (12) m? o

 for every f CK]0, oo[. Thus we have verified hypotheses (HI1) and the expression for the q-
 resolvent of the entrance law (ns, s > 0) follows from the identity (3) using the calculations
 in equations (11) and (12).

 (ii) If aO f> 1, Fatou's lemma and the scaling property imply

 liminf x(1 - e- To) > e-ss-aO (liminf taoP(I > t) ds = 0c. x--40 X0 t---)o
 But from the proof of (i) we know that the limit

 lim Vqf (x) q>
 xm o , q > O, x-~ox

 still exists and is not 0 for every non-negative function f CK]0, 9o[ and, indeed, f > 0 in a

 set of positive Lebesgue measure. As a consequence, even if there exists K < 06, such that the

 limit limxoX- Ex(1 - e-To), exists and is positive, the limit limx0ox-K Vqf(x) is equal to
 zero for every continuous function f with bounded support on ]0, 00[. O

 Proposition 3 proves that hypotheses (H2) imply (HI). In the next proposition we
 establish a converse.

 Proposition 4. Assume that there exists a K> 0 such that hypotheses (HI) hold. Then

 (i) 0 <tK < 1,
 (ii) (H2b) and (H2c) are satisfied with 6 = K.
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 Proof To prove (i) we recall that under (HI1) Vuolle-Apiala (1994, Theorem 2.1) proved that
 the q-resolvent of the entrance law (ns, s > 0) is characterized by equation (3). Next, it is
 easily verified using the self-similarity of the minimal process (X, To) that, for every q > 0,
 c >0,

 lim Vqf(x) C(-aK)/a lim Vqcia Hcf(x)
 x-o0 Ex(1 - e-To) x-o0 Ex(1 - e-To)

 Then the excursion measure n is such that, for every c > 0,

 ({TOeqsf(Xs)ds) - C(-aK)/a n(f-qc1/aSHcf(Xs)ds).

 The latter fact implies that (ii) in Lemma 2 is satisfied with y = aK and 0 < aK < 1.
 Next we prove (ii). We first prove that under (HI1) the process (XK, t > 0) is a martingale

 for Px, which implies Cramer's condition (H2b). Indeed, since (Hla) holds we have that

 lim Ex(1 - e- To) = B E]0, oc[, x--O XK

 and, given that 0 < aK < 1, the existence of this limit is equivalent to the existence of the
 limit

 lim SaKLPx(TO > s) = xKB/F(1 - aK).
 S-* OC

 This fact suffices to prove that, for every x > 0 and t > 0,

 lim Px(AITo > s) = x-KPx(XK, A n {t < To), S---0C

 for any A gt. To see this, just repeat the arguments in the proof of (ii) in Proposition 2. In
 particular, we have that, for every x > 0 and t > 0, x9 = Ex(XK, t < To). Using the Markov
 property we obtain that, for every x > 0, under Px the process XK is a martingale and as a
 consequence Cramer's condition follows. Moreover, the Levy process ? associated with X via
 Lamperti's transformation has a characteristic exponent W that admits an analytic extension
 to the complex strip 3(z)E [-K, 0[ defined by V(z)=--W(-iz) (see the survey at the
 beginning of this subsection). Now to prove that (H2c) is satisfied, we recall that under (HI)
 we have that

 lim SaKP(I > s) = X-K lim SaIPx( TO > s) = B/F(1 - aK), S---40 S---00

 and that E(I-(l-aK)) < 00, the latter being a consequence of Lemma 3. Repeating the
 arguments in the calculation of the constant in the proof of Lemma 4, we obtain that

 E(I-(1-aK)) = Bp'(O-)/F(1 - aK) < oO,

 that is, the exponent i of P has a left derivative at K which is equivalent to

 E((ieK', 1 < ) K0.
 Using the elementary relation
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 0 < (1 exp{K$l})- = ) -- exp{K?1} = - exp{-K~ } < K

 with a- = (-a) V 0, we obtain that 0 < E((IeK1)-, 1 < ) < 1/K. Therefore,
 E( eK,1, 1 < ) < oO if and only if E(-eKI, 1 < ) < oc, which concludes the proof. D

 Remarks

 1. If 0 < aO < 1 we have the equality

 E(I-(1-ao))_ E(J-(1-ao)).
 Indeed, straightforward calculations lead to

 f Ya o Ei(J-(1-a?))
 e-Sns1 ds = Ya,o EJ(e-YaJ)y(1-a-aO)/a dy = E(i-(1 ao) ,

 and comparing this with the fact that f e-Snsl1ds = 1 gives the equality.
 2. A consequence of Lemma 4 is that

 E(Ifa) < 0, for every 0 < P < O,

 and that E(Ia?) - oc. Then under (H2) any extension which leaves 0 by jumps a.s.
 has a jumping-in measure ry(dx) = ba,Px-(l'+)dx, x > 0, with 0 < f < 0 A 1/a and
 ba,p as defined in Proposition 1.

 3. Existence of recurrent extensions that leaves 0 continuously

 We next study the excursion measure such that the related extension leaves 0 continuously.
 To this end, we suppose throughout the rest of this section that hypotheses (H2) hold.

 Theorem 1. There exists a pseudo-excursion measure n' such that n'(Xo+ > 0)= 0. Its
 associated entrance law (n', s > 0) is given by

 n'f _-E+(f(Xs)X-jO), s > 0.
 We have that n' is an excursion measure if and only if 0 < aO < 1. Assume that this
 condition holds and let

 aa,o = aE (J-(1-aO))F(1 - aO)/mK.

 Then the measure (aa,oe)-ln', is the normalized excursion measure n.

 Proof We know from Proposition 2 that the function h(x) = x-O is excessive for the

 semigroup P? and the corresponding h-transform is Pt. Let n' be the h-transform of E+ via
 the excessive function h(x) = x-?, x > 0. That is, n' is the unique measure in D+ carried by
 { To > 0}, such that under n' the coordinate process is Markovian with semigroup Pt and for

 every Gt-stopping time T and any Ar 7,

 n'(AT, T < To) = E-+(AT, X-6).
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 Therefore, n' is a pseudo-excursion measure such that n'(Xo+ > 0) = 0 and the entrance law
 associated with n' is defined by

 n'f :n'(f(Xs), s < To) = +((Xs)X-), s > 0, (13)

 for f : ~R - R+ measurable.
 To prove the second assertion we have to specify when n'(1 - e-T) is finite. Using

 standard arguments, we obtain that

 00 n'(1 - e-T?) ={ dse-Sn'(To > s)

 = {dse-sEo+(XsO) 0

 SaE?(J-(1-aO))F(1 - aO)/m?, if aO < 1,
 00, if aO > 1;

 the third equality is obtained from (10). If 0 < aO < 1, then Ei(J-(l-aO)) < 00 since
 ED(J-1) < 00. As a consequence, n'(1 - e-To) < o00 if and only if 0 < aO < 1. If we assume

 that 0 < aO < 1, it follows that the measure a-, n' is a normalized excursion measure compatible with the semigroup Pt. Furthermore, it is straightforward to check that aOn'

 satisfies condition (ii) in Lemma 2 for yV- aO. The normalized excursion measure a-,n' is equal to the measure n since this is the unique normalized excursion measure having the
 property n(Xo+ > 0) = 0. D

 A consequence of the Markov property is that under n' the excursions leave 0
 continuously and either hit 0 continuously or by a jump according to whether k = 0 or
 k > 0, that is,

 n'(Xo+ > 0, XTO > 0) = 0 or n'(Xo+ > 0, XT0 = 0) = 0,

 respectively.
 In the following theorem we give a simple criterion to determine, in terms of the Levy

 process ?, whether there exists a self-similar recurrent extension of (X, To) that leaves 0
 continuously. Furthermore, with this result we give a complete solution to the problem
 posed by Lamperti since we have already established the existence of self-similar recurrent
 extensions of the minimal process that leave 0 by jumps.

 Theorem 2. (i) Assume 0 < aO < 1. The minimal process admits a unique self-similar
 recurrent extension X = (Xt, t > 0) that leaves 0 continuously a.s. The resolvent of X is
 determined by

 Uqf'() - f (y)Ea(e- J)yo- o)/ dy,
 with ya,o as defined in Proposition 3 and
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 Uqf(x) = Vqf(x) + Ex(e--qTo) Uqf(O), x > 0,

 for f E Cb(R+) The resolvent Uq is Fellerian.
 (ii) If aO > 1, there does not exist any self-similar recurrent extension that leaves 0

 continuously.

 Proof To obtain (i) we use Lemma 1. This enables us to apply the results of Blumenthal
 (1983) to ensure that associated with the excursion measure n, described in Theorem 1, there
 exists a Markov process X, having a Feller resolvent which is an extension of the minimal
 process. The self-similarity of X follows from Lemma 2. All that needs justifying is the
 expression for the q-resolvent of the extension. Using the compensation formula for Poisson
 point processes, we obtain that

 Uqf(O) = n Oe-q~s f(Xs)ds /n(1 - e-qO),

 for every f Cb(lR+). From Lemma 2 we deduce that n(1 - e-qT) = qaO. The expression of
 Uqf(O) is then obtained from Proposition 3.

 The proof of (ii) is a straightforward consequence of Lemma 5 below. -

 The next lemma states that if aO > 1, the only excursion measures compatible with
 (X, To) which satisfy (ii) in Lemma 2 are those associated with a jumping-in measure as in
 (ii) in Proposition 1.

 Lemma 5. Assume that aO > 1. If there exists a normalized excursion measure m compatible
 with the minimal process such that conditions (ii) and (iii) in Lemma 2 are satisfied, then
 m(Xo+ = 0) = 0.

 Sketch of proof We recall from the proof of Proposition 3 that if aO > 1 then we have that

 liminf Ex(1 - e-TO) x-O x0 =

 and that

 lim Vqf(X) q > 0,
 x--O x

 exists in R for every function f CK]0, c [. Therefore,

 lim Vqf(X) -0 x-0o Ex(1 - e-To)

 for every function f E CK]0, oo[. Then we may simply repeat the arguments in Vuolle-
 Apiala (1994, Lemma 1.1) to prove that, for q > 0,

 m(Je-qs f(Xs)ds) = bJ Vqf(x)x-(1+)dx,
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 for some fl E ]0, 1/a[ and a constant b E ]0, oo[. The result follows. O

 Corollary 1. Assume 0 < aO < 1.

 (i) The law of To under n is
 aO

 n(To e ds) = aO s-(l+aO)ds. F(1 - aO)

 (ii) Under n the law of the height of the excursion, say H :=supot<TOXs, is given by

 n(H > z) = pa,oz-0, z > 0,

 with pa,o = p(aOED(J-(-aO))F(1 -aO))- and p E ]0, 1] a constant that depends on
 the law of ?.

 Proof The result in (i) follows from the fact that the subordinator a which is the inverse
 local time of X is a stable subordinator of parameter aO; cf. Lemma 2.

 The main ingredient in the proof of (ii) is that the tail distribution of the random variable

 S = supO<r<??r is such that

 lim eosP(S? > s) = p/mO6, S--+00

 for a constant p G ]0, 1]. This result was obtained by Bertoin and Doney (1994) in the case
 k = 0, but in fact their proof extends easily to the case k > 0. We deduce from this a tail
 estimate for the behaviour of the supremum of the minimal process (X, To) as the initial

 point tends to 0. More precisely, defining Sx := supo r<XTor,

 limx-0Px(S > z) = z-?(p/m?O), z > 0. x--+o

 Let Ht = supts<ToXs, t > 0. We have that, for any z > 0,
 lim n(H, > z, t < To) = n(H > z),
 t -o+

 and that for any E, 6 > 0, there exists a to > 0 such that

 n(Xt G (c, 0c), t < To) < 6, Vt < to.

 Therefore,

 n(Xt G ]0, E[, Ht > z, t < To) < n(Ht > z, t < To) < 6 + n(Xt E ]0, E[, Ht > z, t < To),

 and by the Markov property under n, we obtain that

 n(Xt E ]0, c[, Ht > z, t < To) = (aa,o)-Eo-+(Xt E ]0, c[, Xt-_Ext(S > z))
 ~ Pa,oz E+(Xt G ]0, C[)

 - Pa,oz ,

 for t small enough. Thus,
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 pa,0z-0 < n(H > z) < 6 + pa,oz-,
 and the result follows by letting 6 - 0.

 If 0 < aO < 1, it was shown by Vuolle-Apiala that given an excursion measure, the
 extension X associated with this excursion measure leaves 0 either continuously or by
 jumps. This fact is natural when we observe that the excursions that leave 0 continuously
 have different duration than those leaving 0 by jumps. Indeed, the duration of the former
 has distribution

 n(To > t) = t-ao(F(1 - aO))-,

 and for the latter

 nJ(To > t) = t-a#(F(1 - ap))-1, 0 < 3 < 6.
 In the case where the L6vy process ? is a Brownian motion with negative drift, the

 criterion in Theorem 2 coincides with the classification from Feller's diffusion theory for 0
 to be a regular or an exit boundary point, as is explained in Example 2 below. By analogy,
 we can say that 0 is a regular boundary point for X if 0 < aO < 1 and an exit boundary
 point if 1 < aO. Even in the case aO < 0, which is not considered in this paper, it is easy
 to see that if ? is a Levy process with infinite lifetime and such that 6 < 0 in Cramer's
 condition then the Levy process ? drifts to oc. The only way to extend a self-similar
 Markov process X associated with a Levy process that drifts to oc is by making 0 an
 entrance boundary point. This possibility is considered by Bertoin and Caballero (2002),
 Bertoin and Yor (2002a; 2002b) and Caballero and Chaumont (2004).

 4. Excursions conditioned by their durations

 It is well known that the excursion measure for the Brownian motion can be described

 using the law of the excursion process conditioned to return to 0 at time 1, that is, the law
 of a Bessel(3) bridge of length 1 (McKean 1963; Revuz and Yor 1999, Section XII.4). In
 this section we follow this idea to describe the law under the excursion measure n defined

 in Theorem 1 of the excursion process conditioned to return to zero at a given time. We
 then give an alternative description of the excursion measure n.

 4.1. The case k- 0

 To deal with this case, we will make the additional hypothesis:

 (H2d) E(,1)> -oc and the distribution of the Levy exponential functional I has a
 continuous density on [0, oc[, say p, with respect to Lebesgue measure.

 The condition that the law of the exponential functional I has a continuous density is satisfied
 by a wide variety of Levy processes (Carmona et al. 1997, Proposition 2.1). We next

 introduce another self-similar process. Denote by - = (-bs, s > 0) the dual Levy process,
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 and by P and E its probability and expectation. Then define (Px, x > 0) to be the distribution
 on D+ of the a-self-similar process associated with the Levy process with law P. The process
 X is usually called the dual a-self-similar process; the term 'dual' is justified by the relation

 Jg(x) Vqf(x)x(l-a)/adx = f(x) Vqg(x)x(l-a)/adx, (14)

 for every f, g : ]0, oo[-+ R+ measurable (Bertoin and Yor 2002a, Lemma 2). By (H2d) we

 have that 0 < m ":=I'(0+)l = E( 1)< c0. Let Po+ be the limit in the sense of finite- dimensional marginals of Px as x -+ 0, whose existence is ensured by Bertoin and Yor
 (2002a, Theorem 1). The latter theorem also establishes that for every t > 0 and for
 f : R+-* + R+ measurable, we have

 IEo+( f (Xt)) = -E( f ((t/I)a)/I), (15) m

 where I is defined in (2). Hypothesis (H2d) implies that for any t > 0 the law of Xt under
 Po+ has a density with respect to the measure v(dy) = y(1-a)/ady, y > 0, given by the
 formula

 Po0+(Xt Edy) _ - ly-1/ap(ty-1/a) := Pt(y), y > 0. v(dy)

 Let (s(dy) = Po+(Xs E dy), s > 0). A consequence of the duality relation (14) is that the
 relation AsPts = -,t for s < t can be shifted to the semigroup of the minimal process Pt as
 Pt = PSPt-s v-a.s. It was proved in Rivero (2003, Section 4) that these densities can be used

 to construct a regular version of the family of probability measures (Px(.I To = r), r > 0)
 when the underlying Levy process is a subordinator. Moreover, the same argument applies to

 any L6vy process assuming only (H2d). Here the densities (Pt, t > 0) will be used to
 construct a bridge for the coordinate process under Eo?+; the techniques here used are
 reminiscent of those in Fitzsimmons et al. (1993).

 Recall that the semigroup (P%, t > 0) is the h-transformation of the semigroup
 (Pt, t > 0) via the invariant function h(x) = xo, x > 0. Using the fact that for every
 t > s > 0, the equality pt= PsPt-s v-a.s. holds, we obtain that, for r > 0 arbitrary, the
 function

 h?r(s, x) - pr-s(X)x-Ol{s<r}, X> 0, S > 0,

 is excessive for the semigroup (irt P0 , t > 0) of the space-time process. Let A, be the h-
 transform of the measure IE+ by means of the space-time excessive function hhr(s, x). Then
 under Ar the space process (Xt, t > 0) is an inhomogeneous Markov process with entrance
 law

 r f =E~+(f(Xs)Pr-s(Xs)Xs), < s < r,
 for f: R+ -- r+ Rmeasurable, and inhomogeneous semigroup

 Kr( dy) Ph(x, dy)hhr(t + s, y) Ps(x, dy)tpr-(t+s)(y) K rr tsx),Pd-y)X= Y > 0; t, t + s < r.
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 Observe that the inhomogeneous semigroup Krt+s is that of X conditioned to die at 0 at time
 r (Rivero 2003, Lemma 7). Moreover, using the fact that Ar is an h-transform of the measure

 Eo+ it is easily verified that the measure A~r has the property

 Ar(F(Xs, 0 < s < r)) - r-(l+aO)Al1(F(raXs, 0 < s < 1)),

 for every positive measurable F. In particular, the total mass of Ar is determined by

 br Ar(1) = r-(l+aO)Al(1),
 and it will be shown below that

 AI a2OE V(J-(1-aO) 1 O(1)- = ( -( < 00. (16)
 A1(1) mhm

 Therefore, assuming hypotheses (H2a)-(H2d) and AI'(1) < o00, we can define a probability

 measure on go by Ar- = brlr. The distribution under Ar of the lifetime To is the Dirac
 distribution at r, that is, Ar(T0o- r)- 1 (Rivero 2003, Lemma 7). We can now state the
 main result of this section.

 Proposition 5 (ItS's description of the measure n). Assume hypotheses (H2a)-(H2d) hold
 and 0 < aO < 1. Then AI'(1) < oo. Let n be the unique normalized excursion measure such
 that n(Xo+ > 0) - 0. For FE 9oo,

 aO f" F dr

 n(F) - =- aO ) A r(F n { To - r}) rl+a o" F(1 - aO) Jo r

 The proof of this proposition is similar to that given in Revuz and Yor (1999, Theorem
 XII.4.2) for the analogous result for Brownian excursion measure.

 Proof We first show that

 n(F) -m Ar(F n { To = r})dr, (17)
 aa,oJo

 with aa,o as defined in Theorem 3. We will deduce from this that

 X a2OEh(J-(1-a)) At (1) = ~
 m m

 Indeed, by the monotone class theorem it is enough to prove the assertion for sets F of the
 form

 n

 F = n{X(ti) E Bij, i=1

 with 0 < t1 < t2 <...< tn and Borel sets Bg C ]0, 00[, i e {1, ..., n}. On the one hand,
 according to Theorem 1, we have
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 n(F)- = B1nt,(dx1)f B2Pt2-t(xl, dx2) ... JBPtf-t-l(xn-l, dxn).
 JBy B2 Bn

 On the other hand, using that F n { To < t, } = 0, we have that the right-hand term in (17)
 can be written as

 m" "
 mdr At (dxi) Kt,,t2(xI, dx2) ? ? ? Ktnl,tn(Xn-1, dxn). (18) aa,o Jn B J B2 n

 Recall from Theorem 1 that

 r(dxi) = o+(Xtl E dXl)Pr-tl(Xi)Xl = aa,ont,(dxi)kr-tl(xi).
 Using this identity and the expression of the transition probabilities Kti,t,+, we obtain that (18) is equal to

 m drj nt,(dxi) Pt2-tl(xl, dx2) ... Pt,-tn_,(Xn-I, dxn)Pr-t,(Xn). tn BI B2 Bn

 Finally, using

 dr

 m jr-s(x)dr = 0p((r- S)X-1/a) i/a = 1,

 for all x > 0, we conclude that both expressions in (17) for n(F) coincide. In particular, if
 F - 1 - e-To we have that

 m a41(1 ml (1 -oa0)
 1 =- n(1 - e-To) - m 00Ar(1)(1 - e-r)dr = (1)m F(1-aO)

 aa, 0,o-aa,e- aO "
 The value of A 1(1) in (16) is obtained by using the expression for aa,o and we derive from
 (17) that

 m Al(1) (0 dr
 n(F) N = , Ar(F n {To - r}) rl+a' aa, orJ

 and the result follows. 0

 Remark. A result analogous to that in Proposition 5 can be obtained for the excursion

 measure ni obtained via the jumping-in measure r/(dx) - ba,px-(l )dx. The method is similar and we leave the details to the interested reader.

 4.2. The case k > 0

 In this setting we have noted that the random variable I has the same law as

 Ae -jfo exp {/a}ds, with the unkilled LAvy process and e an exponential random
 variable of parameter k and independent of $. Then it is easy to prove that, under our
 assumptions, the law of the random variable Ae has a density p with respect to Lebesgue
 measure (cf. Carmona et al. 1994, Proposition 2.3). More precisely,
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 P(Ae E dt) = p(t)dt = kE?(X11/a-0)dt, t > 0.

 Furthermore, the Markov property implies that, for any r > 0, the function

 hir(s, x) := Ex(X a-o )l{s<r}, X > 0, S > 0,
 is excessive for the space-time Markov process ((t, X ), t > 0). Therefore we can simply
 repeat the arguments in the previous subsection to construct the law Ar of the excursion
 process conditioned to have a length r and obtain a description of the excursion measure n
 similar to that given in Proposition 5.

 It was proved by Chaumont (1997, Theorem 3) that in the case where X is a stable
 process with negative jumps killed at its first entrance into ]-oc, 0], the law of the
 excursion process conditioned to have a given length is absolutely continuous with respect
 to the law of the stable meander process. An analogous result still holds in our setting. To
 give a precise statement, we next recall the definition of the law of the meander process.

 For any r > 0, the probability measure Mr defined over D+([0, r]) by

 Mr(.) := n(- o kr, To > r)/n(To > r),

 with kr the killing operator at time r > 0, is called the law of the meander process. This

 corresponds to the law of the process (Xgt+s, 0 s < t- gt) conditioned by t- gt = r for
 some t> r and gt the last hitting time of 0 before t, gt-=-sup{s t:Xs = 0} (Getoor
 1979).

 We can now state the following corollary which is the analogue of (Chaumont 1997,
 Theorem 3).

 Corollary 2. For any r > 0, t < r and F E Gt, we have that

 rk

 Ar(F) =r Mr(F, X r/. aO

 Proof On the one hand, by the very definition of the law of the meander and Theorem 1, we
 have that

 Mr(F) = rao(1 - aO) E+(F, X0).
 aa,o

 On the other hand, by the construction of Ar in Proposition 4.1 and the Markov property, we
 have that

 Ar(F) = (br)-lE-+(F, hr(t, Yt)) - (br)-l~+(F, X(1/a)-O).

 Finally, in this case the normalizing constant br is given by br_ r-l-aobi with
 bl := a2 (-(1-a?))/mik. The result follows by identifying the constants. [
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 5. Duality

 In this section we will construct a self-similar Markov process which is in weak duality
 with the process X and whose excursion measure is the image under time reversal of n. To
 this end, we first introduce some notation.

 Let be a Levy process with law Ph and  its dual, that is, S = -_. Denote by Ph
 and EV the probability and expectation for gh. The process drifts to -oo since drifts to
 oo. Let (Px, x > 0) be the law on D+ of the a-self-similar process IA = (Xt, t> 0)
 associated by Lamperti's transformation with the L6vy process with law PV. The processX

 has a lifetime To= inf{t > 0: X t = 0} which is finite Px-a.s. for all x > 0. Denote by
 (P, t > 0) and (V0z, q > 0) the semigroup and resolvent of the minimal process for XK:

 Pf(x) = P~(f(Xt), t < To), t > 0,
 and

 Vq f(x) =e-qtePf(x)dt, q > 0.

 By the duality relation (14), the resolvents V and V0 are in weak duality with respect to the
 measure v(dx) = x(1-a)/adx, x > 0. Furthermore, it follows that the resolvents Vq and Vq are

 in weak duality with respect to the measure Q,(dx) = x(1-a-aO)/1adx, x > 0. In the following lemma we construct a candidate for the process dual to X.

 Lemma 6. Assume hypotheses (H2) and suppose that 0 < aO < 1.

 (i) Let k = 0. Assume
 (H2e) E($-) < 00, with a- - (-a) V 0.

 Then the minimal process (X , To) admits a unique extension (Zt, t > 0), which
 leaves 0 continuously a.s. Its resolvent is given by

 Ya,o [I' /  - OC

 Uqf(O) - q J0f(y)E(e-qy al)Qn(dy), Uqf(x) = V0f(x) + E_(e-o)Uqf (0),
 for x > Q with ya,o = (aE(I-(I-ao))F(1 - aO)/m)-.

 (ii) Let k > 0. The process (X9, To) admits a self-similar recurrent extension Zo =
 (Zo,, tt > 0) which leaves 0 by a jump according to the jumping-in measure

 yo(dx) = ba,ox-(1+o)dx, x > 0,

 with ba,o = O/F(1 - aO)E (JaO). The resolvent of Zo is given by

 Uqf(O) - baoq-ae y-(1+0) VIf(y)dy, g Uqf(x) =- V0f(x) + --(e-To)UqJ(0),

 for x > 0.

 Proof (i) According to Theorem 1, all that we have to do is to verify that  satisfies
 hypotheses (H2a)-(H2c). Indeed, that (H2b) holds follows from
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 E(e?e') - E (e-?') = E(e-? = eo') = 1,

 and it is verified in same way that (H2c) holds,

 E (-e?') = E ((-g1)+e-?') - E($z-) < 00.
 The results in Section 3 can be applied to the minimal process (X , To) to ensure that there
 exists a unique normalized excursion measure in compatible with the semigroup (Pt, t > 0).
 The entrance law associated with fi admits the representation

 fisf = (ia,o)_- Eo+(f(Xs)Xs-O), s > 0,
 where aia,o = aE(I-(1-a9))F(1 - aO)/m, for f continuous and bounded. To see this it should
 be verified that the measure PV obtained by h-transformation of the law PV by means of the
 function h(x) = eox is P. To this end, it suffices to prove that both probability measures have
 the same one-dimensional marginals. Indeed,

 P( f(?s)) = P (f(ls)eo?s) - P_(f(-?s)e-ols) = P(f(-?s)) = P(f(?s)),
 for every bounded continuous f. Then the a-self-similar Markov process associated with the

 Levy process with law PV is equivalent to that associated to the Levy process with law P.
 Note that the law of J under PV is the same as that of I under P.

 (ii) According to Proposition 1, all that we have to verify in order-to prove the claimed

 result is that Eq(Iao) < 00. Indeed, owing to (H2c) we have that -E(1) - m E ]0, 00oc[
 and by the identity (2.7) that Eh(I-1) = mn/a < 00 (observe that I under PV is equal to J

 under Pd). Therefore, we have that E(I(ao-1) < o00. The claim follows using the identity

 F(Ia)= a# (iaflp-1), for 0 </ 3 0, (19)
 with 9: [0, 0] - -+ R defined by

 EV(eA ') = eP, O ? 2 0 0.
 The identity (19) is analogous to that in (7) and is proved as in Bertoin and Yor (2002b,
 Proposition 2). Note that VO(A) = p(6 - 2), for every 0 A 2 0. D

 Because of the weak duality relation between the resolvents Vq and V0 it is natural to

 ask if this property is inherited by the resolvents Uq and Uq (or Uq). That is the content of
 the following result.

 We assume throughout this section that the hypothesis (H2) are satisfied and, if
 k = 0, that E(-) < oo.

 Lemma 7. If k = 0, for any q > 0 the resolvents Uq and Uq are in weak duality with respect

 to the measure Qn(dx) = x(1-a-a)/adx, x > 0. If k > 0, the same result holds true with 1q instead of Uq.
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 Proof We first treat the case k = 0. Using the expression for the resolvents Uq and Uq ofX
 and Z respectively, obtained in Theorem 2 and Lemma 6 (i) respectively, it is straightforward

 that, for any f, g : R --+ R+, we have

 fo OOOC O O JQn(dy)g(y)Uqf(y) J Qn(dy)g(y) Vqf(y) + Uqf(O)J Qn(dy)g(y)Ey(e-To)

 J Qn(dy)f(y) V g(y) + Uqf(0) Qn(dy)g(y)E(e-qy' /aI) o qf

 Co Qn(dy)f(y) Vg(y)

 + q, g(O) QnQ(dx)f(x)E (e-qx'lJ) aa,om ? o
 ioo

 = Qn(dy)f(y) Uqg(y),
 0

 where the last equality follows from the fact that the constants Ya,o and Ya,o are equal. To see

 this, recall that E(I-(-aO)) = E?(J-(l-aO)), as remarked after Proposition 3.
 The case k > 0 follows the same lines but uses the following identity. For every q > 0

 and f:R+ -+ R+ measurable,
 OOCOO

 ba,o fY-(1+0) V ,f(y)dy = Ca,aO Qn(dy)f(y)iEy(e-qTo)dy,

 with Ca,aO := (aE?(J-(-ao))F(1 -a0))-1 = ba,o/k, and ba,o as in Lemma 6. The preceding
 identity is an easy consequence of the fact that the random variable Ae has density

 p(t)- kE(Yt(1/a)-O) for t > 0 and that under Py the random variable To has the same law
 as yl/aAe. O

 Some results on time reversal can be derived from the preceding facts. To give a precise
 statement we introduce some notation. Let Q denote the operator of time reversal at time
 To, that is

 _X ) Y=X(To-t)-( ), if 0 < t < To < 00, 0, otherwise,

 and let gn denote the image under time reversal at time To of n. Recall that L is a return
 time if

 L o Ot = (L - t)+, a.s. for all t 3> 0.
 The first part of the following result is an extension for self-similar processes of the
 celebrated result on time reversal of Williams (1974): a three-dimensional Bessel process
 starting from 0 and reversed at its last exit time from x > 0 is identical in law to a Brownian

 motion killed at its first hitting time of 0. In the second part we determine Qn.
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 Proposition 6. (i) If L is a finite return time then under E+ the reversed process
 (X(L-t)-, 0 < t < L) is Markovian and has semigroup (Pt, t > 0).

 (ii) k= 0, we have that Qn = ni, with ni the It6 excursion measure of Z.
 (iii) If k > 0, we have that

 (n(.) = ba,o dxx-(l+o)P(.).

 In particular, n(XT0- e dx) = ba,ox-(l+o)dx, x > 0, and Qn(.IXTo - x) = ().

 Proof (i) The potential of the measure Eo+ is determined by

 Eo+ (iOdsf(Xs)) = aa,oods ns(fh*)

 = aa,o f(y)Y(1-a)/ady,

 with the notation of Sections 2.3 and 3. Because of the weak duality between the resolvents

 V and ^'V with respect to the measure y(1-a)/ady, y > 0, the statement in (i) is a direct
 consequence of a result of Nagasawa (1964) on time reversal. A general version of
 Nagasawa's result can be found in Dellacherie et al. (1992, Section XVIII.46).

 (ii) Since n(Xo+ > 0, XT0 > 0)= 0, the excursion of X from 0 starts and ends at 0,
 (Getoor and Sharpe 1982, Section 9). This and the weak duality in Lemma 7 enable us to

 use a result due to Mitro (1984, Section 4) to deduce that Qn =1n.
 (iii) We first note that an application of Lemma 3 proves that the entrance laws

 (ns(dy), s > 0) and Nof = ba,o dxx-(I+o)P f(x), s > 0 ,

 for the semigroups (Pt, t > 0) and (P?, s > 0) respectively, have the same potential

 dsnsf = Ca,ao f(x)x/a-l-odx = dsN?f,

 with Ca,ao = (mbaa,o)-'. This enables us to use a result on time reversal of Kusnetzov
 measures established in Dellacherie et al. 1992 (Section XIX.33) to verify the claimed
 result. -

 Remark A consequence of Lemma 6 and Getoor and Sharpe (1981, Theorem 4.8) is that the
 process obtained by time-reversing one by one the excursions of X starting at 0 has the same
 law as Z (Zo) started at 0. Furthermore, it follows from Proposition 6 that the process Z (Zo)

 has the same law as that constructed using Ito's programme and the Poisson point process

 QA = (QAs, s > 0) which is the image under 0 of the Poisson point process of excursions of
 X, A = (As, s > 0).
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 6. Examples

 Example 2 Self-similar diffusions. Here we consider the case where the Levy process is a
 Brownian motion with negative drift. Let (t = EBt - sit, t > 0) with (Bt, t > 0) a Brownian
 motion and e, y > 0. Hypotheses (H2) are satisfied with 0 = 2i/E2 and under P? the law of
  is that of eBt + Y t. Then the a-self-similar Markov process X associated with ? has
 continuous paths and has an infinitesimal generator of the form

 Lf(x) = (e2/2 - )xl-1/a f'(x) + E2/2x2-1/a f"'(x), x > 0.

 Then for a > 0 we have that 0 < aO < 1 if and only if 0 <Ku < e2/2a. This corresponds to
 the case when the point 0 is a regular boundary point for the self-similar diffusion associated
 with the infinitesimal generator L just described; in the case 1 aO, or equivalently
 E2/2a:<- i, 0 is an exit boundary point. See Lamperti (1972, Theorem 5.1) and Vuolle-
 Apiala (1994, Theorem 3.1) for a related discussion. If 0 <KU < e2/2a holds, the process X
 admits a unique extension that is continuous and is characterized by Theorem 2. Furthermore,

 using the fact that the law of J under E? is that of 2a2/(c2 Zao), with Zao a random variable of law gamma with parameter aO, (Dufresne 1990), we deduce that the entrance law in
 Theorem 1 has a density

 ns(dy) __ caos-2(1-aO)-1 y2(1-aO)/a-1 exp (--y1/as-1de,a), y > 0, dy

 with respect to Lebesgue measure, with

 (1- aO)a (.2 aO 2a2
 cao - and d,,a =
 Co-F(1 - ao)t2 2a2 and d ,2

 Example 3 Reflected stable processes. Let Y be a stable process of parameter a c ]0, 2[ and

 (EX, x > 0) its law. Assume that YI is not a subordinator. Define p = P(Y1 > 0) and

 X't f Yt - infos-stYs, if t > T]-o,0o t Yt if t < T]-K,0],
 with T]-o,0,o] the first hitting time of ] - oc, 0] by Y. Then p E ]0, 1[ and 0 is a regular
 recurrent state for X' - we refer to Bertoin (1996, Section VIII) and Chaumont (1997) for
 background on stable processes and its excursion theory. We denote by (X, To) the process

 X' killed at T]-,o,o]; this process is 1/a-self-similar. Let s be the Levy process associated with (X, To) via Lamperti's transformation - see Caballero and Chaumont (2004) for a
 precise description of ?. Observe that in the case where Y has negative jumps ? is a Levy
 process killed at an exponential time, while in the case where Y has no negative jumps ? has
 infinite lifetime and drifts to -oo. We claim that hypotheses (H2) are satisfied for
 S= a(1 - p). This can be verified either by doing the calculations using the results in

 Caballero and Chaumont (2004) or by the following arguments.
 It is known that the function h(x)= xa(1-p), x > 0 is, up to a multiplicative constant, the

 only invariant function for the semigroup of the process (X, To). Then Cramer's condition
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 (H2b) for ? is satisfied with 0 = a(1 - p). A consequence of this fact and Mejane (2002,
 Proposition 3.1) is that the Levy exponential functional I =fo exp {as}ds has finite
 moments

 E(Ifl/a) < 00 for every 0 </3 < a(1 - p).

 The excursion measure for X' away from 0, say n, is an excursion measure compatible with
 the minimal process (X, To) such that its entrance law satisfies (iii) in Lemma 2 with
 y - 1 - p, and n(Xo+ > 0) - 0 - see Chaumont (1997) and the reference therein. Thus
 E(I-P) < 0c, by Lemma 3. Therefore, it is easily verified by repeating the arguments in the
 proof of Proposition 4 that condition (H2c) is satisfied.

 The excursion measure n defined in Theorem 1 is equal to n and the recurrent extension
 X in Theorem 2 associated with n is equivalent to X'. Finally, it can be shown that the
 process dual of X constructed in Section 5 has the same law as the process -Y conditioned
 to stay positive and reflected at its future infimum. We omit the details.

 Example 4 Let ? be a non-arithmetic Levy process with no positive jumps such that ? drifts
 to -oo. We assume that ? is neither the negative of a subordinator nor a deterministic drift.
 The case of the negative of a subordinator was discussed in Example 1 and the case of a
 deterministic drift can be treated in the same way. From the theory of Levy processes with no

 positive jumps we know that E(e ') < 00, for all A > 0. Then the convex function

 p(A) : R+~* -+ R defined by E(e ') - e(' ) is such that p(0)- 0, and lim__,p((A) = 00.
 Since ? drifts to -oo there exists a unique 0 > 0 such that p(0)- = 0. It follows that
 satisfies (H2). Let 0 < a < 1/0, and let (X, To) be the a-self-similar minimal process
 associated with ?. Owing to the absence of positive jumps, we have that XTt = z whenever

 Ttza[ < To, with T[z,o) = inf{ t > 0: Xt > z}. The excursion measure n compatible with the process (X, To) defined in Theorem 1 has the property that under the probability measure on

 D+, nl(T[z,[ < To), the processes (Xt, t< T[z,l[) and (XT,+t, t< To-T[z,o[), are
 independent. The law of the former is E+ killed at T[z,,[ and of the latter is that of
 (X, To) started at z. Here ni(T[z,,[ < To) means n(A n {T[z,Z[ < To})/n({T[z,O[ < To}) for
 A E g. This claim is easily verified using the fact that the measure n is a multiple of the h-
 transform of E~+ via the excessive function h*(x)= x-9, x > 0. Moreover, the law of the

 Levy exponential functional I -fo exp {fs/a}ds, associated with ? is self-decomposable
 and as a consequence the law of I has a continuous density (Rivero 2003, Proposition 4).
 Therefore, to apply the results in Sections 4 & 5, the only hypothesis that should be made on
 ? is that E(?1) > -oo.

 Appendix: On dual extensions

 This section is motivated by Section 5, where we proved that given two minimal processes
 X and X which are self-similar and in weak duality, there exist Markov processes X and Z
 extending (X, To) and (X, To) respectively, which are still in weak duality. The purpose of
 this section is to give a generalization of this fact under the hypotheses of Blumenthal. The
 result given here is of independent interest, and to make the section self-contained we next
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 introduce some notation. Let (Yt, t > 0) and (Yt, t > 0) be Markov processes having 0 as a
 trap. Denote by P, E, (P, E) the probability and expectation for Y (Y), and by To (To) the

 first hitting time of 0 for Y (Y), that is, To- inf{t> 0 : Yt-0}. Assume
 Px(To < 00) Px(To < o) 1 for any x > 0. Let Qt, W (Q, W) denote the semigroup and A-resolvent for Y (Y) killed at 0. For A > 0, define the functions qpA, ^A : R - [0, 1],
 by

 (p(x)- BEx(e-ATo), q(x) = Ex(e-ATo), x > 0.

 The main assumptions of this section are as follows:

 (H3a) Y, Y, both satisfy the basic hypotheses in Blumenthal (1983).
 (H3b) The resolvents W5 and WTV are in weak duality with respect to a o-finite measure

 Q(dx) on ]0, 0[.
 (H3c) We have

 J]O,0[ Q(dx)(p (x)< 0 cx J]0,[Q(dx)<^ (x) < 00, for all A > 0.

 Theorem3. Assume hypotheses (H3). Then there exist excursion measures m and Mn
 compatible with the semigroups (Qo, t > 0) and (Q?, t > 0), respectively. The Laplace
 transforms of the entrance laws (ms, s > 0) and ('ns, s > 0) associated with m and ^n,
 respectively, are determined by

 eAsmsfds Q(dx)f(x)^;t(x); e-ASnsfds Q(dx)f(x)(x), J0 ] o, 9 [o ]=O,oo[
 for A > 0, and f continuous and bounded. Furthermore, associated wtih these excursion
 measures there exist Markov processes Y* and Y* which are extensions for Y and Y
 respectively and which are still in weak duality with respect to the measure Q(dx).

 The proof of this theorem will be given via three lemmas. The first ensures the existence
 of the excursion measures.

 Lemma 8. The family offinite measures M f f]0,0,[ Q(dx)f (x)9&(x), A > 0, is such that the
 following hold:

 (i) limA MA 1 = 0,
 (ii) For /,, A > 0, A, ,

 (Y - A)MAWof MAf - Mjf,

 for f continuous and bounded.

 Proof That MA -* 0 as - oc follows from the monotone convergence theorem. Using the
 weak duality for the resolvents W5 and WV, we obtain
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 M Wof = JoQ(dx) Wo2f(x)<^(x) it ]0,oo[ It (

 = J]o,[Q(dx)f(x)Vw^g(x).
 The result is then obtained from the elementary identity

 ExA(e-To - ero)

 El

 From Lemma 8 and Getoor and Sharpe (1973, Theorem 6.9), there exists a unique
 entrance law (mt, t > 0), for the semigroup (Qt, t > 0), such that, for each ) > 0,

 M4f= je-Atmtfdt,
 0

 for f measurable and bounded, and

 mtl dt < o0. o

 According to Blumenthal (1983), for an entrance law (ms, s > 0) there exists a unique
 excursion measure m having this entrance law. The same method ensures the existence of
 an excursion measure ^n and an entrance law (tnt, t > 0) for the semigroup (Qt, t > 0).

 Using the results in Blumenthal (1983), we obtain that associated with the excursion
 measure m (rh) there exists a unique Markov process Y* (Y^* extending Y (Y) and the A-
 resolvent of Y* is determined by

 WAf(O) = M , WAf(x) = W5f(x) + pA(x) W Af(O), x > 0, AMxl'

 for f measurable and bounded; the A-resolvent for Y*, say WA, is defined in a similar way. To

 establish weak duality with respect to the o-finite measure Q(dx) for the resolvents WA and
 WA we will need the following technical result.

 Lemma 9. For every A > 0, we have that AMA = )AM 1.

 Proof Since m l is a decreasing function of s and f ms 1 ds < oc, we have that
 00 00

 IMl = -= e-'tmtl dt = lim ms1 + (1 - e-lt)v(dt), f s---+ 0() J
 where v(dt) = -dmtl. Analogously,

 tMy l =p e-/*trn t 1dt = lim rhs1 + (1 - e-t)D)(dt). O s--+m

 Therefore, to establish the lemma we will prove that, for ) > 0,
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 (1 - e-~s)v(ds) = (1 - e-'s)i3(ds), (20)

 and

 lim m, = 0-= lim ns. S--+40 S--+00

 To this end we will use the following elementary identities: for ), f > 0,

 (A - Y)MA( = -AMA 1 - pMI l
 and

 ( A - Y) Mx t, = A M4 l -/ Ms 1.

 Next, since

 MA.q = ,Q(dx)^A.(x)?, (x)-= M, ^PA, we have

 AMAl - pMYl -I = AMA 1- pMil.
 Letting , -- 0, we obtain that

 AMA 1I- lim ms1 = AMAl1 - lim ,^nsl. S---+4 S---+00

 This proves the equality (20). To prove that lims_,o msl = 0, we use the fact that m is the excursion measure associated to the entrance law (ms, s > 0). Indeed,

 m(1 - e-ATO) - = AMA= lim ms1 + (1 - e-At)v(dt). J-mo

 Letting A -* 0, in this equation we obtain, thanks to the monotone convergence theorem, that

 lims-ocmsIl = 0. In the same way it is proved that lims-oohInsIl = 0. D

 Finally, the following lemma establishes weak duality for the resolvents WA and WA.

 Lemma 10. For every A > 0 and every measurable function f, g : [0, oo[--* R+, we have

 J]O[ Q(dy) g(y) WAf (y) = J]Oo Q(dy)f(y) WA g(y)

 The proof of this lemma is a straightforward consequence of Lemma 9 and the
 construction of WA and Wa; see the proof of Lemma 7.
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 Remarks.

 1. Observe that

 lim dse-Asmsf = dsms f Q(dy)f(y). A--+ 0 J0 J0,00[
 By the weak duality relation in Lemma 10 we have that Q(dy) is invariant for the
 semigroup of Y* and since 0 is a recurrent state for Y* then Q(dy) is in fact the
 unique (up to a multiplicative constant) excessive measure for this semigroup,
 (Dellacherie et al. 1992, XIX.46).

 2. We have not considered here the possibility of a stickiness parameter in the
 construction of the processes Y* and Y*; that is, constructing Y* and Y* via the
 subordinators

 ort =dt+ Z To(As), t = dt+ ZTo(As), t > 0,
 s<t s< t

 for some d, d > 0 - see Section 2.1 or Blumenthal (1992, Section 5) for an account.

 In such a case, the A-resolvent for Y* (Y*) at 0 is given by

 df(O) + MJ W(O) df(O) + Mf WAMf() = ; WA f (0) =
 Ad +AMAl Ad +AMAlI

 for f continuous and bounded and, if d= d then the resolvents WA and WA are still in
 weak duality but this time with respect to the measure Qd(dx)= d6o(dx) + Q(dx).

 3. Assume, moreover, that for every x > 0, Px(To E dt) is absolutely continuous with
 respect to Lebesgue measure, having a density

 Px(To E dt) a(x, t) dt= x, t > O, dt

 which is jointly Borel measurable. Then, for A > 0,

 00 00

 ds e-smsf J Q(dx) pA(x)f(x) = ds e-As Q(dx)a(x, s)f(x),
 0 ]0,0[ [ o0]0,00[

 for f continuous and bounded. The second equality is a consequence of Fubini's
 theorem. By inverting the Laplace transform we obtain that, for s > 0,

 msf - ]o[Q(dx)a(x, s)f(x).

 A similar result was obtained in (Getoor 1979, Proposition 10.10) in a different
 setting.
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