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Abstract. A class of upsilon transformations of Lévy measures for matrix subordinators is
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1. Introduction. Let X = {Xt}t�0 be a Lévy process, denote by ρ the Lévy

measure of X1, and write L(R) for the class of all Lévy measures on R. The upsilon
transformation Υ0, introduced in [7] and studied further in [8], [1], and [2], is defined
as the mapping on L(R) into L(R), given by

(1.1) ρ̃(dx) =

∫ ∞

0

ρ(ξ−1 dx) e−ξ dξ.

This mapping is one-to-one, smooth, and strongly regularizing, and Υ0(L(R)) is a
proper subset of L(R). Furthermore, Υ0 has a stochastic representation as follows.
Let Y be the random variable defined by the stochastic integral

(1.2) Y =

∫ 1

0

∣∣ log(1 − s)
∣∣ dXs.

Then Y has Lévy measure ρ̃.
In [2] the mapping is extended to a mapping on the class L(Rd) of all d-dimen-

sional Lévy measures, via the direct extension of (1.2) to higher dimension, with X
now a d-dimensional Lévy process. Relations to self-decomposability and to dis-
tributions of Steutel–Goldie–Bondesson type and Thorin type are discussed in the
above-mentioned papers.

In the present paper we extend some of these results to the case where X is

a matrix subordinator, with the mapping Υ0 then being from L(M
+

m) into L(M
+

m),

where L(M
+

m) is the class of Lévy measures on the cone M
+

m of symmetric nonnegative

definite m×m matrices. This extension, from R+ to M
+

m, is rather different in nature
than the one from R to Rd studied in [2]. Our approach is based on analytic concepts,
such as Laplace transforms, and not on stochastic integral representation tools.

This approach leads to the construction of concrete and new examples of infinitely

divisible distributions on M
+

m and their associated matrix subordinators. Such matrix-
valued Lévy processes are important in the study of subordination of cone-parameter
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2 O. E. BARNDORFF-NIELSEN AND V. PÉREZ-ABREU

Lévy processes; see [21], [22]. Furthermore, random matrices of this type are useful in
constructing other infinitely divisible random vectors and matrices, which are covari-
ance mixtures of Gaussian vectors and matrices, respectively; cf. [4], [6]. We also note

that instances of infinitely divisible random matrices in the cone M
+

m arise naturally
as quadratic covariation matrices of vector-valued Lévy processes [19].

It is relevant to mention that the most common examples in statistics of laws
of positive definite random matrices, such as the Wishart and gamma matrix distri-
butions, are not infinitely divisible [18], [13]. Constructions of matrix distributions
analogous to one-dimensional distributions have traditionally been done by fairly di-
rect generalization of the one-dimensional probability densities (see, for example, [14]).
There is no reason to believe that such an approach will lead to infinitely divisible ma-
trix laws. In this paper we use the framework of Lévy measures and the mapping Υ0

to construct infinitely divisible matrix versions of one-dimensional distributions, in-
cluding the gamma distribution and simple cases of tempered stable distributions.
A different approach, using Lévy copulas and the one-dimensional Υ0 mapping, is
discussed in [1].

Section 2 of this paper sets out some, mostly well-known, results from matrix the-
ory that are needed for defining and establishing properties of the Υ0-type mapping
for matrix subordinators. The class of matrix subordinators is introduced in section 3.
A family of upsilon transformations Υq for matrix subordinators is defined and stud-
ied in section 4, where we establish their key properties of uniqueness, smoothness,
and regularization. We investigate, in particular, the image set B = Υ0(L(M+

m)),

where M+
m is the open subcone of M

+

m. The class B constitutes a matrix generaliza-
tion of the Steutel–Goldie–Bondesson class of infinitely divisible laws on R+. Section 5
considers several subclasses of matrix subordinators. Specifically, we characterize the
stable matrix distributions that belong to B, introduce infinitely divisible matrix ex-
tensions of the one-dimensional gamma distribution and of some simple tempered
stable laws, and study their images under Υ0. As a by-product, our construction of
Lévy measures yields examples of completely monotone matrix functions, including
Bessel-type functions, different from those commonly used in the classical matrix dis-
tribution theory. Finally, in section 6 we show a relation of the transformation Υm/2

to the so-called matG random matrices.

2. Some matrix theory. In this section we establish matrix notation and recall
factorization results and integration over the cone of positive definite matrices. We
also review completely monotone functions of matrices and the gamma and bi-gamma
matrix functions.

2.1. Notation. First, we introduce the following standard notation. Let Mm×m

be the linear space of m×m real matrices, Mm be the linear subspace of symmetric ma-

trices, M
+

m the closed cone of nonnegative definite matrices in Mm, M+
m or {X > 0}

be the open cone of positive definite matrices in Mm, and let U+
m (respectively, L+

m) be
the open cone of upper (respectively, lower) triangular matrices with positive diagonal
elements.

For X ∈ Mm×m, X� is the transpose of X and tr(X) is the trace of X. For X

in M
+

m, X1/2 is a unique symmetric matrix in M
+

m such that X = X1/2X1/2. Given
a nonsingular matrix X in Mm×m, X−1 denotes its inverse, |X| its determinant,
and X−� the inverse of its transpose. The eigenvalues of X in Mm, arranged in
increasing order, are denoted by x1, . . . , xn. When X is in M+

m we simply write X > 0.
For a matrix X = (Xij) in Mm, the upper triangular matrix (Xkj)1�k�j�m
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MATRIX SUBORDINATORS AND UPSILON TRANSFORMATIONS 3

with [m] entries determines X, where we use consistently the notation [m] = m(m +
1)/2 and 〈m〉 = (m + 1)/2. In this way we identify M+

m with a subset of R[m],
considering (Xkj)1�k�j�m as a column vector in R[m]. The identity matrix in Mm is
denoted by Im.

When dealing with matrix subordinators, a useful matrix norm is the trace norm
defined for X ∈ Mm×m as

(2.1) ‖X‖ = tr
({

XX�}1/2)
.

We denote by Sm = {U ∈ Mm : ‖U‖ = 1} the unit disk of Mm×m and write S
+

m =

Sm ∩ M
+

m. Whenever the product of two matrices X and Y makes sense, one has

(2.2) tr(XY ) � ‖X‖ ‖Y ‖.

For X in M
+

m, ‖X‖ = tr(X), and, in particular, if U ∈ S+
m, tr(U) = ‖U‖ = 1.

For X > 0, Y > 0 one has the trace inequalities (see [16], [17])

(2.3) x1 tr(Y ) � tr(XY ) � xn tr(Y )

and also

(2.4) |X| � xm
m �

(
tr(X)

)m
.

An axis Eij = (eijkl) is a matrix in Mm×m which has zero elements everywhere
except for a one in the ith row and jth column. For any i = 1, . . . ,m, j = 1, . . . , n,
Eij is such that ‖Eij‖ = 1. The set of matrix axes is the canonical basis for Mm×m

and the only ones belonging to M
+

m are the diagonals Eii, i = 1, . . . ,m.
For a general random matrix M in Mm×m its Fourier transform is defined as

φM (Θ) = E exp
(
i tr

(
MΘ�)), Θ ∈ Mm×m.

2.2. Factorization of matrices, disintegration, and Jacobians. A useful
tool in the study of probability measures in M+

m is the so-called LU-decomposition
(lower-upper decomposition) of matrices. For X > 0 we denote by X a unique matrix

in U+
m such that X = X

�
X. Sometimes it is useful to write X = X�X, where

X = X
�

is in L+
m. One trivially has |X| =

∏m
j=1 X

2

jj =
∏m

j=1 X
2
jj .

An important role in this work is played by the anti-matrix of X (abbreviated as
anti-X) defined for X > 0 as a unique matrix X in M+

m such that

(2.5) X = XX
�
.

Sometimes anti-X is called the disguised matrix (see [14]). We observe that tr(X) =
tr(X) and |X| = |X|.

Given a function h : M+
m → [0,∞) we write

(2.6)

∫
X>0

h(X) dX =

∫
X>0

h(X) dX11 dX12 · · ·dXmm,

where the right-hand side is the Lebesgue integral over the cone M+
m considered as

a subset of R[m]. We recall that the Lebesgue measure of M
+

m\M+
m is zero (see [30,

Lemma 4.73]) and that the measure

(2.7) ϑ(dX) =
dX

|X|〈m〉
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4 O. E. BARNDORFF-NIELSEN AND V. PÉREZ-ABREU

is invariant under the transformation X → AXA�, for X ∈ M+
m and any nonsingu-

lar m×m matrix A (see [12, Example 6.19]).
There are two alternative representations of integral (2.6) which are useful in this

work. First, using the facts that dX = 2mJ̄(X) dX and dX = 2mJ(X) dX (see [20,
Theorem 1.28]), we have∫

X>0

h(X) dX = 2m
∫
U+

m

h
(
X

�
X

)
J̄(X) dX(2.8)

= 2m
∫
L+

m

h
(
X�X) J(X

)
dX,(2.9)

where dX =
∏

1�i�j�m dXij , dX =
∏

1�i�j�m dXij and where, for a triangular

matrix T with nonzero diagonal elements, we write

J̄(T ) =
m∏
j=1

Tm+1−j
jj =

∣∣TT�∣∣〈m〉
J
(
T−1

)
,(2.10)

where

J(T ) =

m∏
j=1

T j
jj .(2.11)

The function J̄(T ) is [m]-homogeneous, that is, for each t > 0

J̄(tT ) = t[m]J̄(T ).(2.12)

On the other hand, making the change of variable X = rU , r = tr(X), for which
tr(U) = 1 and dX = r[m]−1 dr dU (see [20, p. 111]), we also have∫

X>0

h(X) dX =

∫
S+

m

∫ ∞

0

h(rU) r[m]−1 dr dU.(2.13)

In addition, the following transformations and Jacobians are used several times
in this work. Given X > 0, and A and B upper triangular matrices with positive
diagonals, for V = AXB we have (see [20, Theorem 1.16])

dV = J̄(A) J(B) dX.(2.14)

For a symmetric matrix X > 0 and a nonsingular matrix C > 0, if Y = CXC�, we
have (see [20, Theorem 1.20])

dY = |C|m+1 dX.(2.15)

If V > 0, Y > 0, and V = Y
−1

, we have (see [20, Theorem 1.27])

dV = |Y |−(m+1)dY .(2.16)

2.3. Completely monotone matrix functions. Given a Radon measure Q
on M+

m, its Laplace transform is defined as

LQ(Θ) =

∫
M

+
m

exp
(
− tr(ΘX)

)
Q(dX),(2.17)
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MATRIX SUBORDINATORS AND UPSILON TRANSFORMATIONS 5

where in the trace operation the matrix parameter Θ is interpreted as Θ = (1
2 (1 +

δij) Θij), in which case

tr(XΘ) = tr(ΘX) =
∑

1�k�j�m

ΘjkXjk.(2.18)

Sometimes we use the notation etr(−XΘ) = exp(− tr(ΘX)).
As in the one-dimensional case, there is a one-to-one correspondence between

Laplace transforms and completely monotone functions of matrices.
For a function h : M+

m → R and Y ∈ M+
m, define the operator ΔY h : M+

m → R
by ΔY h(X) = h(X + Y )− h(X) and let ∇X := −ΔX . We say that h is a completely
monotone function of X if it is nonnegative and if for all finite sets {X1, . . . , Xn}⊂ M+

m

and Y ∈ M+
m, ∇X1 · · · ∇Xnh(Y ) � 0.

From [25] and [32] we have the following analogue of Bernstein’s theorem.
Lemma 2.1. For any function M+

m → R+ completely monotone in X there
exists a unique nonnegative Radon measure Q on M+

m such that

h(X) =

∫
M

+
m

etr(−XY )Q(dY ), X ∈ M
+

m,(2.19)

and conversely.
A completely monotone function on M+

m is called regular [6] if Q is concentrated
on the open cone M+

m (and in particular Q({0}) = 0). In this work we very often
deal with functions that are completely monotone with respect to the anti-matrix X
rather than with respect to X. We observe in what follows that there are functions
which are completely monotone in both X and X, but this is not the case in general.

There are two matrix functions which play a similar role, as does 1/x for real
valued functions. First, for a > 1

2 (m − 1), consider the Laplace transform (see [14,
equation 1.4.6])

|X|−a =
1

Γm(a)

∫
Y >0

etr(−Y X)|Y |a−〈m〉 dY.(2.20)

Then the function h(X) = |X|−a is completely monotone in X, and since |X| = |X|,
the function |X|−a is also completely monotone in X for a > 1

2 (m− 1).
Another important class of functions completely monotone in X is given by inverse

powers of the trace function. Specifically, for p > 0 and a fixed Y0 > 0, define the
Radon measure

QY0(A) =
1

Γ(p)
(
tr(Y0)

)p
∫ ∞

0

∫
S+

m

1A(rω) rp−1 δ{tr(Y0)−1Y0}(dω) dr.(2.21)

Then

(
tr(XY0)

)−p
=

∫
M

+
m

etr(−XY )QY0
(dY )(2.22)

is a function completely monotone in X for all p > 0 and Y0 > 0. However, this
function is not completely monotone in X unless Y0 = Im.

Section 5 presents additional concrete examples of functions completely mono-
tone in X.
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6 O. E. BARNDORFF-NIELSEN AND V. PÉREZ-ABREU

2.4. The matrix gamma and bi-gamma functions. The matrix gamma
function Γm(a) is defined for Re a > 1

2 (m− 1) as

Γm(a) =

∫
X>0

exp
(
− tr(X)

)
|X|a−〈m〉 dX.(2.23)

We denote by Γ(X; a,m) the corresponding matrix distribution on M+
m whose density

is given by

γ(X; a,m) = Γm(a)−1 exp
(
− tr(X)

)
|X|a−〈m〉, X > 0.(2.24)

When a = 〈m〉, using (2.23) and (2.13) and recalling that Γm(〈m〉) = πm/2, one
can prove that

cm =

∫
S+

m

dU =
πm/2

([m] − 1)!
.(2.25)

Another important matrix function that appears in this work is the bi-gamma
matrix function, defined, for Re a > 1

2 (m− 1) and Θ1,Θ2 in M+
m, as

Γm(a,Θ1,Θ2) =

∫
X>0

exp
(
− tr(XΘ1 + XΘ2)

)
|X|a−〈m〉 dX.(2.26)

One can easily prove that for a nonnegative constant b

Γm(a, 0,Θ) = |Θ|−a−〈m〉J(Θ )2 Γm(a),(2.27)

Γm(a, bIm,Θ) = Γm(a, 0, bIm + Θ).(2.28)

3. Infinite divisibility in the cone M+
m. We now review several facts about

infinitely divisible matrices with values in the cone M
+

m. The study of infinitely divis-
ible random elements in closed cones was initiated in [10], [31] and recently considered
in [3], [21], [22], [23], [24].

A random matrix M is infinitely divisible in M
+

m if and only if for each integer
p � 1 there exist p independent identically distributed random matrices M1, . . . ,Mp

in M
+

m such that M
law
= M1 + · · · + Mp.

3.1. Lévy–Khinchin representation. As for general cones, the Lévy–Khin-

chin representation of infinitely divisible random matrices in M
+

m has the following
special form. We refer to [31].

Proposition 3.1. A random matrix M is infinitely divisible in M
+

m if and only
if its cumulant transform is of the form

C(Θ;M) = i tr(Ψ0Θ) +

∫
M

+
m

(
ei tr(XΘ) − 1

)
ρ(dX), Θ ∈ M+

m,(3.1)

where Ψ0 ∈ M
+

m is called the drift and the Lévy measure ρ is such that ρ(Mm\M+

m) = 0
and ρ has order of singularity∫

M
+
m

min
(
1, tr(X)

)
ρ(dX) < ∞.(3.2)
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MATRIX SUBORDINATORS AND UPSILON TRANSFORMATIONS 7

Moreover, the Laplace transform of M is given by

LM (Θ) = exp
{
−K(Θ;M)

}
, Θ ∈ M+

m,(3.3)

where K is the cumulant transform or Laplace exponent

K(Θ;M) = tr(Ψ0Θ) +

∫
M

+
m

(
1 − e− tr(XΘ)

)
ρ(dX).(3.4)

We denote by ID(M
+

m) the set of infinitely divisible matrix distributions with

cumulant transform function (3.1). By L(M
+

m) we denote the cone of Lévy measures

on M
+

m, i.e., the measures on M
+

m with order of singularity (3.2). The subclass of
Lévy measures concentrated on the open cone M+

m is denoted by L(M+
m). We use the

notation M ∈ ID(M
+

m) to indicate that the law of M belongs to ID(M
+

m).

Remark 3.1. (a) A random matrix M in ID(M
+

m) has independent components
if and only if it is diagonal. This follows from the Lévy–Khinchin representation (3.1)

and the fact that the only matrix axes Eij in M
+

m are the diagonal ones. In this case
the Lévy measure ρ is concentrated in the diagonal matrix axes Eii, i = 1, . . . ,m.

(b) The above fact proves that there are infinitely divisible matrices with values

in M+
m whose Lévy measures are concentrated on the singular matrices M

+

m \ M+
m.

3.2. Matrix subordinators and the Lévy–Itô decomposition. If M is an

infinitely divisible matrix in M
+

m with cumulant transform K given by (3.4), there is
a matrix-valued Lévy process {Mt}t�0 such that

LMt(Θ) = exp
(
− tK(Θ; M)

)
.

We call this Lévy process a matrix subordinator, in view of the following result.

A matrix process {Mt} is said to be M
+

m-increasing if for all 0 � s < t, Mt−Ms ∈
M

+

m with probability one. The following result is obtained from [24, Theorem 83]
and [23], where it was proved for more general closed cones.

Lemma 3.1. Let {Mt} be a matrix subordinator. Then

(a) the norm process {mt = ‖Mt‖; t � 0} is a one-dimensional subordinator;

(b) P{Mt ∈ M
+

m, 0 � t < ∞} = 1;

(c) P{Mt is M
+

m-increasing} = 1;

(d) {Mt} is of bounded variation with respect to the trace norm ‖ · ‖;
(e) P{limt→∞ ‖t−1Mt − Ψ0‖ = 0} = 1.

If {Mt} is a matrix subordinator with Lévy–Khinchin representation (3.1), it has
a Lévy–Itô decomposition

Mt = tΨ0 +

∫
M

+
m

xNt(dx),(3.5)

where Nt(dx) is a Poisson random measure on M
+

m with

E
{
Nt(dx)

}
= ρ(dx) t.
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8 O. E. BARNDORFF-NIELSEN AND V. PÉREZ-ABREU

4. Upsilon transformations for matrix subordinators. In this section we
define the upsilon transformations for Lévy measures of matrix subordinators and
establish their key properties of uniqueness, smoothness, and regularization. As a
tool, a Laplace-type transformation of such measures is introduced.

We recall that L(M
+

m) denotes the set of Lévy measures concentrated on the

closed cone M
+

m, while L(M+
m) is the subset of Lévy measures concentrated in the

open cone M+
m.

4.1. Definition and first properties. For ρ in L(M
+

m) and real q consider
the mapping Υq : ρ → ρ̃q given by

ρ̃q(dZ) =

∫
X>0

ρ
(
X

−�
dZ X

−1 )|X|qe− tr(X) dX.(4.1)

Remark 4.1. (a) A useful equivalent representation of the measure ρ̃ is obtained
using (2.8)

ρ̃q(dZ) = 2m
∫
U+

m

ρ
(
X

−�
dZX

−1 ) |X|2q J̄(X ) e− tr(X
�
X) dX.(4.2)

(b) Using (2.13) the mapping ρ̃ is also expressible as

ρ̃q(dZ) =

∫ ∞

0

∫
S+

m

r[m]+mq−1 e−uρ
(
r−1U

−�
dZ U

−1) |U |q dU dr.(4.3)

For q = 0, m = 1 the definition (4.1) specializes to the mapping Υ0 on L(R+)
given by (1.1). As proved in [7], [8], [9], and [2] this mapping, although arising as
establishing a connection between classical and free infinite divisibility (see [7]), has
turned out to possess a number of other properties of interest purely in classical infinite
divisibility. In particular, it was shown that Υ0 maps the class of self-decomposable
laws on R+ into the Thorin class (the class of generalized gamma convolutions), and
that the class of all infinitely divisible laws on R+ is mapped into the Steutel–Goldie–
Bondesson class (the class of mixtures of nonnegative exponential distributions). Fur-
ther, there are extensions of these results to the infinitely divisible distributions on Rd

(see [2]).
In the matrix case it is possible to prove that ρ̃q = Υq(ρ) is a Lévy measure

on M
+

m for q > −1. However, in the present paper we deal only with the case q = 0,
except in section 6, where we point out a relation of the map Υm/2 to matG random
matrices. The case q = −1, m = 1 was considered in [2] and [29]. The case q > −2,
m = 1 and its relation to Rosiński’s tempered stable laws [27] will be considered
elsewhere.

In what follows we write ρ̃ for ρ̃0. We first prove that ρ̃ = Υ(ρ) is a Lévy measure

on M
+

m. If μ is a probability measure in ID(M
+

m) with Lévy measure ρ, we shall also
use the notation μ̃ = Υ(μ) to indicate that μ̃ is the infinitely divisible probability
measure associated to the transformed Lévy measure ρ̃.

Lemma 4.1. Υ0 is a well-defined linear mapping from L(M
+

m) into L(M
+

m).

Proof. Since for any Z ∈ M
+

m, V ∈ M
+

m one has that V −�ZV −1 ∈ M
+

m, it follows

that ρ̃ is a measure on M
+

m. The linearity is obvious. Further we have to prove that ρ̃
is a Lévy measure, i.e., ∫

M
+
m

min
(
1, tr(Z)

)
ρ̃(dZ) < ∞,
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MATRIX SUBORDINATORS AND UPSILON TRANSFORMATIONS 9

under the assumption that∫
M

+
m

min
(
1, tr(X)

)
ρ(dX) < ∞.

In what follows we use several times the fact that for nonnegative a, b, c such that
a � c, we have min(a, b) � min(c, b).

Using (2.13) we find∫
M

+
m

min
(
1, tr(Z)

)
ρ̃(dZ) =

∫
M

+
m

∫
X>0

e− tr(X) min
(
1, tr(Z)

)
ρ
(
X

−�
dZX

−1 )
dX

=

∫
X>0

e− tr(X)

∫
M

+
m

min
(
1, tr

(
X

�
Y X

))
ρ(dY ) dX

=

∫
S+

m

dU

∫ ∞

0

r[m]−1e−r

∫
M

+
m

min
(
1, r tr

(
U

�
Y U

))
ρ(dY ) dr.(4.4)

We notice that tr(U
�
Y U) � tr(U) tr(Y ) = tr(Y ). Assuming that 0 < r < 1, we

have
(i) min(1, r tr(U

�
Y U)) � min(1, tr(Y )) since r tr(U

�
Y U) � tr(Y ),

(ii)
∫ 1

0
r[m]−1 dr < ∞ since [m] > 0.

Then, splitting the last expression in (4.4) into two parts and using also the fact
that ρ is a Lévy measure, we obtain that

I1 =

∫
S+

m

dU

∫ 1

0

r[m]−1e−r

∫
M

+
m

min
(
1, r tr

(
U

�
Y U

))
ρ(dY ) dr

� cm

∫ 1

0

r[m]−1 dr

∫
M

+
m

min
(
1, tr(Y )

)
ρ(dY ) < ∞,

where cm is given by (2.25).
Next when r > 1, we have

(i) min(1, r tr(U
�
Y U)) � min(1, r tr(Y )) � min(r, r tr(Y )) = rmin(1, tr(Y )),

(ii)
∫∞
1

r[m]e−r dr < ∞ since [m] > −1.
Then

I2 =

∫
S+

m

dU

∫ ∞

1

r[m]−1e−r

∫
M

+
m

min
(
1, r tr

(
U

�
Y U

))
ρ(dY ) dr

� cm

∫ ∞

1

r[m]e−r dr

∫
M

+
m

min
(
1, tr(Y )

)
ρ(dY ) < ∞.

Hence,
∫
M

+
m

min(1, tr(Z)) ρ̃(dZ) = I1 + I2 < ∞. Lemma 4.1 is proved.

Several properties and characteristics of ρ are transferred immediately to ρ̃. For
example, finiteness of ρ̃ is determined by that of ρ.

Lemma 4.2. Υ0(ρ) is finite if and only if ρ is finite.
Proof. It follows since∫

M
+
m

ρ̃(dZ) =

∫
M

+
m

∫
X>0

ρ
(
X

−�
dZX

−1 )
e− tr(X) dX =

∫
X>0

e− tr(X) dX

∫
M

+
m

ρ(dY )

and
∫
X>0

e− tr(X) dX = Γm(〈m〉a) < ∞ by (2.23).
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10 O. E. BARNDORFF-NIELSEN AND V. PÉREZ-ABREU

We next show how the cumulant transform of ρ̃ is computed from the one for ρ.

For a Lévy measure ν ∈ L(M
+

m), we denote by Kν(Θ) its cumulant transform given
by (3.4) with Ψ0 = 0.

Lemma 4.3. The cumulant transform of Υ0(ρ) is given by

KΥ0(ρ)(Θ) =

∫
X>0

e− tr(X) Kρ

(
XΘX

� )
dX.

Proof. Using (3.4) and the change of variable Y = X
−�

ZX
−1

we have

Kρ̃(Θ) =

∫
M

+
m

(
1 − etr

(
−X

�
Y XZΘ

))
ρ̃(dZ)

=

∫
M

+
m

∫
X>0

(
1 − etr(−ZΘ)

)
ρ
(
X

−�
dZX

−1 )
e− tr(X) dX

=

∫
X>0

e− tr(X) dX

∫
M

+
m

(
1 − etr

(
−X

�
Y XΘ

))
ρ(dY )

=

∫
X>0

e− tr(X) Kρ

(
XΘX

� )
dX

as claimed. Lemma 4.3 is proved.

4.2. Laplace transform and uniqueness. A useful tool is the following

Laplace transform of Lévy measures on M
+

m.

Lemma 4.4. For ρ in L(M
+

m), the Laplace transform

Lρ(Θ) =

∫
X>0

etr(−XΘ)|X| ρ(dX)(4.5)

is finite for any Θ ∈ M+
m.

Proof. Recall that tr(XΘ) > 0 since X,Θ ∈ M+
m. If tr(X) � 1, then |X| � xm

m �
xm � tr(X), where xm is the maximum eigenvalue of X. Hence∫

tr(X)�1

etr(−XΘ)|X| ρ(dX) �
∫

tr(X)�1

etr(−XΘ) tr(X) ρ(dX)

�
∫

tr(X)�1

tr(X) ρ(dX) < ∞,

since ρ is a Lévy measure.
Next, if θ1 > 0 is the smallest eigenvalue of Θ, from (2.3) we have tr(XΘ) �

θ1 tr(X) > 0. Hence, using (2.4) and (2.2)

|X| �
(
tr(X)

)m � θ−m
1

(
tr(XΘ)

)m � (mp)! θ−m
1 etr(XΘ)

and therefore∫
tr(X)�1

etr(−XΘ)|X| ρ(dX) � m! θ−m
1

∫
tr(X)�1

ρ(dX) = m! θ−m
1 ρ(tr(X) � 1) < ∞,

since ρ is a Lévy measure. Lemma 4.4 is proved.
The above Laplace transform has the following property which implies that the

mapping Υ0 is one-to-one.
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MATRIX SUBORDINATORS AND UPSILON TRANSFORMATIONS 11

Theorem 4.1. For ρ in L(M
+

m)

Lρ̃(Θ) = |Θ|−〈m〉−1

∫
V >0

Lρ(V) |V | etr(−Θ−1V ) dV,(4.6)

for Θ ∈ M+
m.

Proof. Using (4.1) and (4.2), we have

Lρ̃(Θ) =

∫
Z>0

|Z| etr(−ZΘ) ρ̃(dZ)

= 2m
∫
Z>0

|Z| etr(−ZΘ)

∫
U+

m

J̄(X ) etr
(
−X

�
X

)
ρ
(
X

−�
dZX

−1 )
dX

= 2m
∫
U+

m

|X|2J̄(X ) etr
(
−X

�
X

) ∫
Y >0

|Y | etr
(
− Y X ΘX

� )
ρ(dY ) dX

= 2m
∫
U+

m

|X|2J̄(X ) etr
(
−X

�
X

)
Lρ

(
XΘX

� )
dX.

Further we make the change of variable V = X Θ� for which dV = J
(
Θ�) dX

(see (2.14)) and using the facts
(a) X = V Θ−�,
(b) J̄(X) = J̄(V ) J(Θ)−1,

(c) X
�
X = Θ−1V

�
V Θ−�, XΘX

�
= V V

�
,

(d) tr(X
�
X) = tr(Θ−1V

�
V Θ−�) = tr((ΘΘ�)−1 V

�
V ) = tr(Θ−1V ),

(e) from (2.10) J̄(Θ)−1 = |Θ|−〈m〉J(Θ),
(f) |X| = |V | |Θ−1|

we obtain

Lρ̃(Θ) =
2m

|Θ|

∫
U+

m

|V |2
J(Θ)

J̄(V ) J(Θ)−1 etr(−Θ−1V )Lρ(V) dV

= 2m|Θ|−〈m〉−1

∫
U+

m

|V |2J̄(V ) etr(−Θ−1V )Lρ(V) dV .

Hence, using (2.8)

Lρ̃(Θ) = |Θ|−〈m〉−1

∫
V >0

etr(−Θ−1V )Lρ(V) |V |dV

as claimed. Theorem 4.1 is proved.
Corollary 4.1. The mapping Υ0 is one-to-one.

Proof. Making the change of variable Σ = Θ−1 (for which Σ
�

Σ
−1

= (Θ Θ
�

)−1)
in (4.6) we have

|Σ|−〈m〉−1Lρ̃(Σ−1) =

∫
V >0

|V | etr(−ΣV )Lρ(V) dV,

where the right-hand side is the Laplace transform of g(V ) = |V |Lρ(V) with respect
to the Lebesgue measure dV on R[m]. Then the result follows from the inversion
formula for the Laplace transform of matrix functions in [15] and recalling that, given

X > 0, the anti-matrix X = XX
�

is uniquely determined. Corollary 4.1 is proved.
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12 O. E. BARNDORFF-NIELSEN AND V. PÉREZ-ABREU

4.3. Regularizing properties of Υ0. The following result gives the existence
of the Lévy density of the transformed Lévy measure determined by the mapping
ρ̃ = Υ0(ρ), when ρ is concentrated on the open cone M+

m, in which case ρ̃ is also
concentrated on M+

m. Furthermore, we prove that its Lévy density l̃(X) is completely
monotone in X. That is, there exists a completely monotone function g such that
l(X) = g(X).

Given a measure Q on M+
m, we denote by Q←− the measure on M+

m induced by the

mapping X → X−1. In particular, when ρ is a Lévy measure, ρ←− satisfies

∫
Y >0

min
(
1, tr(Y −1)

)
ρ←−(dY ) < ∞.(4.7)

Theorem 4.2. Let ρ be in L(M+
m). Then the Lévy measure ρ̃ is absolutely

continuous with respect to the Lebesgue measure on M+
m, with Lévy density l̃ given by

l̃(X) =

∫
Y >0

J̄(Y )−2 etr(−XY −1) ρ(dY ).(4.8)

Moreover, l̃(X) = g(X), where

g(X) =

∫
Y >0

etr(−XY )Q(dY ),(4.9)

and Q(dY ) is a Radon measure concentrated on M+
m such that∫

Y >0

min
(
1, tr(Y −1)

)
J̄(Y )−2 Q(dY ) < ∞.(4.10)

The connection between Q and the Lévy measure ρ is given by

Q(dY ) = J̄(Y )2 ρ←−(dY ).(4.11)

Proof. Let A be a Borel set of M+
m. Using (2.8) we have

ρ̃(A) = 2m
∫
Y >0

∫
U+

m

1A
(
X

�
Y X

)
etr

(
−X

�
X

)
J̄(X ) dX ρ(dY ).

For fixed Y , we make the change of variable V = Y X for which dX = J(Y
−1

) dV
(see (2.14)). We observe that

(a) X = Y
−1

V ,

(b) J̄(X) = J̄(V ) J(Y
−1

),

(c) V = V
�
V = X

�
Y

�
Y X = X

�
Y X,

(d) X
�
X = V

�
Y

−�
Y

−1
V = V

�
Y−1V ,

(e) tr(X
�
X) = tr(V

�
Y−1V ) = tr(V V

�
Y−1) = tr(VY −1).

Then we have that for each Y > 0∫
U+

m

1A
(
X

�
Y X

)
etr

(
−X

�
X

)
J̄(X ) dX

= 2m
∫
U+

m

1A
(
V

�
V
)

etr(−VY −1) J̄(Y )−2 J̄(V ) dV
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MATRIX SUBORDINATORS AND UPSILON TRANSFORMATIONS 13

and

ρ̃(A) = 2m
∫
Y >0

∫
U+

m

1A
(
V

�
V
)

etr(−VY −1) J̄(Y )−2 J̄(V ) dV ρ(dY )

= 2m
∫
Y >0

J̄(Y )−2

∫
U+

m

1A
(
V

�
V
)

etr(−VY −1) J̄(V ) dV ρ(dY ).

Finally, using (2.8) and the Fubini theorem we obtain

ρ̃(A) =

∫
V >0

1A(V )

∫
Y >0

J̄(Y )−2 etr(−VY −1) ρ(dY ) dV

=

∫
V >0

1A(V )

∫
Y >0

J(Y )2 etr(−VY ) ρ←−(dY ) dV.

Formula (4.10) follows from the first expression, and the rest of the theorem is obtained
from the second one, on defining Q(dY ) by (4.11).

Remark 4.2. Condition (4.10) may be restated as follows: There is a finite
measure H concentrated on M+

m such that

Q(dY ) = max
(
1,
(
tr(Y −1)

)−1
)
J̄(Y )2 H(dY ).

4.4. The image class B = Υ0(L(M+
m)). In this section we consider the

image of the Lévy measures in L(M
+

m) under the mapping Υ0 and their associ-
ated infinitely divisible matrix distributions. In particular, we characterize the im-
age Υ0(L(M+

m)) showing that it is a natural matrix analogue of the so-called Steutel–
Goldie–Bondesson class of infinitely divisible laws in R+ (see [2], [28, Theorem 51.10]).

Definition 4.1. A probability measure μ in the set ID(M+
m) belongs to class

B = B(M+
m) if its Lévy measure is of the form ρ̃ = Υ0(ρ) for some ρ ∈ L(M+

m). We
shall say that a random matrix M belongs to B or that its Lévy density belongs to B

if its probability law is in B(M+
m).

Given an infinitely divisible random matrix with the Lévy density ρ, we also use
the notation Υ0(M) to indicate a nonnegative definite and infinitely divisible random
matrix having Lévy measure Υ0(ρ).

As for the one-dimensional case, there is a simple characterization of the class B

in terms of the complete monotonicity of Lévy densities. In the matrix case the Lévy
density is completely monotone with respect to the anti-matrix X.

Theorem 4.3. A probability measure μ in ID(M+
m) belongs to B if and only if

its Lévy density l̃(X) exists and is completely monotone in X. That is, l̃(X) = g(X)
for some completely monotone function g on M+

m.
Proof. The “if part” follows from Theorem 4.2. Conversely, suppose that μ is in-

finitely divisible with Lévy density l̃(X) = g(X), where g is completely monotone, i.e.,

g(X) =

∫
Y >0

etr(−XY )Q(dY ),(4.12)

where Q is a Radon measure concentrated on M+
m. Observe that since l̃ is a Lévy

density the measure Q satisfies

(4.13)∫
Y >0

∫
X>0

min
(
1, tr(X)

)
etr(−XY )Q(dY ) dX =

∫
X>0

min
(
1, tr(X)

)
l̃(X) dX < ∞.
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14 O. E. BARNDORFF-NIELSEN AND V. PÉREZ-ABREU

Let

ρ(dY ) = J̄(Y )2 Q←−(dY ).

Then ∫
Y >0

(
1 − etr(−YΘ)

)
ρ̃(dY )

=

∫
Y >0

∫
X>0

(
1 − etr(−YΘ)

)
ρ
(
X

−�
dY X

−1 )
e− tr(X) dX

=

∫
Y >0

∫
X>0

(
1 − etr(−YΘ)

)
e− tr(X) J̄

(
X

−�
Y
)2

dXQ←−
(
X

−�
dY X

−1 )
=

∫
Z>0

∫
X>0

(
1 − etr

(
− ΘX

�
ZX

))
J̄(Z )2e− tr(X) dXQ←− (dZ)

and using (2.8)∫
Y >0

(
1 − etr(−YΘ)

)
ρ̃(dY )

= 2m
∫
Z>0

∫
U+

m

(
1 − etr

(
− ΘX

�
ZX

))
J(Z )2 e− tr(X

�
X)J̄(X ) dX Q←−(dZ).

For Z fixed, making the change of variable V = Z X for which dV = J̄(Z) dX
(see (2.14)) and using the fact that J̄(X) = J̄(V ) J̄(Z)−1 we obtain∫

Y >0

(
1 − etr(−ΘY )

)
ρ̃(dY )

= 2m
∫
Z>0

∫
U+

m

(
1 − etr

(
− ΘV

�
V
))

etr
(
− V V

�
Z

−�
Z

−1 )
J̄(V ) dV Q←−(dZ)

= 2m
∫
Z>0

∫
U+

m

(
1 − etr

(
− ΘV

�
V
))
|V |q etr(−VZ−1) J̄(V ) dV Q←−(dZ).

Finally, using again (2.8)∫
Y >0

(
1 − etr(−ΘY )

)
ρ̃(dY ) =

∫
Z>0

∫
V >0

(
1 − etr(−ΘV )

)
etr(−VZ−1) dV Q←−(dZ)

=

∫
V >0

(
1 − etr(−ΘV )

) ∫
Z>0

etr(−VZ−1)Q←−(dZ) dV

=

∫
V >0

(
1 − etr(−ΘV )

)
g(V) dV,

where

g(V) =

∫
Z>0

etr(−VZ−1) Q←−(dZ) =

∫
Z>0

etr(−VZ)Q(dZ).

Hence, by the uniqueness of the Lévy–Khinchin representation, ρ̃ has a Lévy density
l̃(X) = g(X) and therefore l̃ is the Levy density of the law μ, showing that μ ∈ B.
Theorem 4.3 is proved.

When the Lévy measure ρ ∈ L(M+
m) has a density l, the image measure ρ̃ belongs

always to the class B and its Lévy density is given as follows.
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MATRIX SUBORDINATORS AND UPSILON TRANSFORMATIONS 15

Corollary 4.2. Let ρ be a Lévy measure with Lévy density l. Then ρ̃ belongs
to the class B(M+

m), with Lévy density given by

l̃(X) =

∫
V >0

etr(−XY −1) l(Y)
dY

|Y |〈m〉 .(4.14)

Proof. Since ρ has a density, it is concentrated on the open cone M+
m and therefore,

from the last theorem, ρ̃ is in B(M+
m). Moreover, we use (2.8) in (4.8) and make the

change of variable V = Y
�

(for which dV = dY ) to obtain

l̃(X) =

∫
Y >0

J̄(Y )−2 etr(−XY −1) l(Y ) dY

= 2m
∫
U+

m

J̄(Y )−2 etr
(
− XY

−�
Y

−1 )
l(Y ) J(Y ) dY

= 2m
∫
L+

m

etr
(
− XV −1V −�) l(V) J̄(V )−1 dV .

Using the fact J̄(V ) = |V |〈m〉 J(V )−1 (see (2.10)) and (2.9) we finally obtain

l̃(X) = 2m
∫
L+

m

etr(−XV −1) l(V)|V |−〈m〉J(V ) dV =

∫
V >0

etr(−XV −1) l(V)
dV

|V |〈m〉

as we wanted to prove. Corollary 4.2 is proved.
From the proof of the above theorem, we obtain that the cumulant transform of

a random matrix in the class B can be expressed in terms of the measure Q and the
bi-gamma function Γm(a, ·, ·) defined by (2.26).

Corollary 4.3. The law of M in ID(M+
m) belongs to B if and only if its

cumulant transform is given by

K(Θ;M) = tr(Ψ0Θ) +

∫
X>0

{
Γm(〈m〉, 0, X) − Γm(〈m〉,Θ, X)

}
Q(dX),(4.15)

where Q is a Radon measure on M+
m such that∫

X>0

(
|X|−(m+1)J(X )2 − |Im + X|−(m+1)J

(
Im + X

))2

Q(dX) < ∞,(4.16)

and Ψ0 ∈ M
+

m.
Proof. From the last theorem we have that M is in B(M+

m) if and only if there
exists Q such that (4.12) and (4.14) are satisfied, where l̃ is the density of the Lévy
measure of M . Then, using (2.26) we have that for Θ in M+

m,∫
X>0

(
1 − etr(−ΘX)

)
l̃(X) dX

=

∫
X>0

(
1 − etr(−ΘX)

) ∫
Y >0

etr
(
−XX

�
Y
)
Q(dY ) dX

=

∫
Y >0

{
Γm(〈m〉, 0, Y ) − Γm(〈m〉,Θ, Y )

}
Q(dY ),

proving (4.15). When Θ = I, condition (4.14) yields∫
Y >0

{
Γm(〈m〉, 0, Y ) − Γm(〈m〉, Im, Y )

}
Q(dY ) < 0.

Then, (4.16) is obtained using (2.27) and (2.28). Corollary 4.3 is proved.
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16 O. E. BARNDORFF-NIELSEN AND V. PÉREZ-ABREU

5. Examples. The purpose of this section is to illustrate the usefulness of The-
orem 4.3 in constructing infinitely divisible random matrix laws belonging to the
class B. Specifically, we characterize the subclass of stable matrix distributions be-
longing to B and introduce infinitely divisible matrix versions of the gamma distri-
bution. Further examples will be considered elsewhere.

5.1. A subclass of stable matrix distributions. Let Sα = Sα(M+
m) be

the class of α-stable matrix distributions on M+
m. In this subsection we character-

ize the matrix stable distributions that belong to the class B and characterize the
image Υ0(Sα).

We recall from [4] that for 0 < α < 1, the Lévy measure ρ of an α-stable random
matrix in M+

m has the form

ρ(C) =

∫
S+

m

λ(dU)

∫ ∞

0

1C(rU)
dr

r1+α
, C ∈ B0(Mm),(5.1)

where λ is a finite measure (the spectral measure) on S+
m. Recall also that ρ is the Lévy

measure of an α-stable matrix distribution if and only if ρ(a−1 dX) = aαρ(dX) for
all a > 0. In terms of densities, the change of variable Y = aX gives dY = a[m] dX,
and therefore a function l : M+

m → R+ is the density of an α-stable Lévy measure if
and only if l(a−1X) = aα+[m]l(X) for each a > 0.

The simplest example of a matrix stable distribution is constructed from the
function

h(X) =
1

(tr(X))α+[m]
(5.2)

on M+
m, for which we have the following properties.

Lemma 5.1. Let h : M+
m → R+ be given by (5.2). Then

(a) h is a Lévy density of a matrix stable law on M+
m if and only if 0 < α < 1;

(b) h is a completely monotone function of X and X whenever α > 0.
Proof. From the polar decomposition (2.13)∫

X>0

min
(
1, tr(X)

)
h(X) dX =

∫
S+

m

∫ ∞

0

min(1, r) r−[m]−αr[m]−1 dr dU

=

∫
S+

m

∫ ∞

0

min(1, r) r−1−1 dr dU =

∫ ∞

0

min(1, r) r−1−α dr < ∞,

since cm =
∫
S+

m
dU < ∞ and r−1−α is the one-dimensional Lévy density of the α-

stable distribution. Finally, h is completely monotone in X and X, by (2.22) with
Y0 = I0. Lemma 5.1 is proved.

Contrary to the one-dimensional case, there are α-stable matrix distributions
whose Lévy measures are not absolutely continuous with respect to the Lebesgue
measure on M+

m, and thus they cannot belong to the class B. For example, let M
be a random diagonal matrix with independent diagonal elements, each one with a
positive one-dimensional α-stable distribution. The corresponding Lévy measure ρ
of M is of the form

ρ(C) =
m∑
i=1

ai

∫ ∞

0

1C(rEii)
dr

r1+α
,

where ai = λ(Eii), i = 1, . . . ,m. Since Eii belongs to M
+

m\M+
m, i = 1, . . . ,m, ρ

cannot have a density with respect to the Lebesgue measure on M+
m.
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MATRIX SUBORDINATORS AND UPSILON TRANSFORMATIONS 17

A characterization of the matrix stable distributions that belong to the class B

is given by the following result.
Proposition 5.1. Let 0 < α < 1. An α-stable matrix distribution μ in M+

m

belongs to the class B if and only if its Lévy measure has a density that is repre-
sentable as ∫

S+
m

J̄(U )−2

[tr(XU−1)]α+[m]
λ(dU)(5.3)

for some finite measure λ on S+
m concentrated on positive definite matrices.

Proof. We first prove that, when λ is a finite measure on S+
m concentrated on M+

m,
the function given by (5.3) is the Lévy density of an α-stable matrix distribution
in B. Let ρ be the Lévy measure (5.1) of an α-stable matrix law, corresponding to
the measure λ. Then μ̃ = Υ0(μ) belongs to B and, using (4.8), its Lévy density is
computed as follows:

l̃(X) =

∫
Y >0

J̄(Y )−2 etr(−XY −1) ρ(dY )

=

∫
S+

m

λ(dU)

∫ ∞

0

J(r1/2U )−2 etr(−r−1XU−1)
dr

r1+α

=

∫
S+

m

λ(dU)

∫ ∞

0

r−[m]J̄(U )−2 etr(−r−1XU−1)
dr

r1+α
,

where we have used (2.12). Hence, making the change of variable t = 1/r, we find

l̃(X) =

∫
S+

m

λ(dU) J(U )−2

∫ ∞

0

t[m]+α−1 etr(−tXU−1) dt.

Using the one-dimensional gamma function, we have that∫ ∞

0

t[m]+α−1 exp
(
− t tr(XU−1)

)
dt = Γ(α + [m])[tr(XU−1)]−α−[m].

Therefore,

l̃(X) = Γ(α + [m])

∫
S+

m

J̄(U )−2[tr(XU−1)]−α−[m] λ(dU)(5.4)

which is of the form (5.3) with λ substituted by Γ(α + [m])λ. It is trivial that
l̃(a−1X) = aα+[m] l̃(X) for each a > 0; therefore the measure μ̃ is α-stable.

Conversely, suppose that μα is an α-stable matrix distribution with completely
monotone Lévy density lα. We have to prove that lα is of the form (5.3). From
Theorem 4.3, there is a Radon measure Q on M+

m such that

lα(X) =

∫
Y >0

etr(−XY )Q(dY ),

and, moreover, ρ(dY ) = J̄(Y )2Q←−(dY ) is a Lévy measure. Then

lα(X) =

∫
Y >0

J̄(Y )−2 etr(−XY −1) ρ(dY ).

We show that ρ is also α-stable. From the fact that lα is a stable density, we obtain
that Q(adY ) = aα+[m]Q(dY ) and Q←−(a−1 dY ) = aα+[m]Q←−(dY ) for all a > 0. Hence

ρ(a−1 dY ) = aαρ(dY ) for all a > 0, i.e., ρ is the Lévy measure of an α-stable matrix
distribution μ. That is, μα = Υ0(μ), and by the first part of the proposition, lα(X)
is of the form (5.3), as we had to prove. Proposition 5.1 is proved.
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18 O. E. BARNDORFF-NIELSEN AND V. PÉREZ-ABREU

5.2. Gamma-type and simple tempered matrix distributions. In the
one-dimensional case, the gamma distribution G(η, σ) with probability density

f(x) =

(
σ−η

Γ(η)

)
xη−1 exp

(
− x

σ

)
, x > 0, σ, η > 0,(5.5)

is an infinitely divisible law with the Lévy density

h(x) = ηx−1 exp(−σ−1x).(5.6)

As mentioned before, the usual matrix gamma distribution with density (2.24) is
not infinitely divisible. Using a matrix analogue of (5.6) we show how to construct
a gamma-type matrix distribution which belongs to the class B and therefore is
infinitely divisible.

We first present a general class of simple Lévy densities whose matrix distributions
belong to B and are related to a simple case of the tempered stable distributions of

Rosiński [26], [27]. For β < 1, define hβ(X) : M
+

m → R+ by

hβ(X) =
1

(tr(X))[m]+β
etr(−X).(5.7)

The following is a straightforward result. We recall that cm = πm/2/([m] − 1)!
(see (2.25)).

Lemma 5.2. Let hβ : M+
m → R+ be given by (5.7). Then

(a) hβ is a Lévy density on M+
m if and only if β < 1;

(b) if β < 0,
∫
X>0

hβ(X) dX = cm and for β � 0,
∫
X>0

hβ(X) dX = +∞;
(c) if β > −[m], hβ is completely monotone in X and in X.
Proof. Using (2.13) we have∫

X>0

min
(
1, tr(X)

)
hβ(X) dX =

∫
S+

m

∫ ∞

0

min(1, r) r−[m]−βe−rr[m]−1 dr dU

=

∫
S+

m

dU

∫ ∞

0

min(1, r) r−β−1e−r dr

= cm

∫ ∞

0

min(1, r) r−β−1e−r dr,

where cm < ∞ (see (2.25)). Hence, (a) follows since in the one-dimensional case
r−β−1e−r is a Lévy density if and only if β < 1. The first part of (b) is obtained
since

∫∞
0

r−β−1e−r dr = Γ(−β) for β < 0 and using (2.25). The second part follows

since
∫∞
0

r−β−1e−r dr = +∞ if β > 0. Finally, assertion (c) follows from (2.22) with
Y0 = Im. Lemma 5.2 is proved.

The above lemma shows that when β < 1, the function hβ is the Lévy density
of an infinitely divisible matrix distribution in the class B. We write M ∼ Gβ(Im)
to indicate that the random matrix M has an infinitely divisible distribution with
Lévy density (5.7). Any random matrix M ∼ Gβ(Im) has an orthogonal-symmetric

distribution, in the sense that O�MO
law
= M for any O in the orthogonal group O(m).

The matrix distributions Gβ(Im), β < 1, form a building block for constructing
more interesting matrix laws.

In the case of linear transformations, for any Σ ∈ M+
m, the random matrix

R = Σ1/2MΣ1/2 is infinitely divisible with Lévy density

hβ(X,Σ) =
|Σ|−〈m〉

(tr(XΣ−1))[m]+β
etr(−XΣ−1).(5.8)
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MATRIX SUBORDINATORS AND UPSILON TRANSFORMATIONS 19

We write R ∼ Gβ(Σ) to indicate that the random matrix R has the matrix distribution
associated to (5.8).

In particular, the case β = 0 is a gamma-type matrix distribution. The name is
suggested by the following facts.

Proposition 5.2. Let R ∼ G0(Σ) and Σ ∈ M+
m. Then R has cumulant

transform

K(Θ;R) =

∫
S+

m

log
(
1 + tr(UΣ1/2ΘΣ1/2)

)−1
dU.(5.9)

Proof. Using (3.4) (with Ψ0 = 0) and (2.13) we have

K(Θ; Σ1/2MΣ1/2) =

∫
X>0

(1 − e− tr(XΣ1/2ΘΣ1/2))h(X) dX

=

∫
S+

m

∫ ∞

0

(1 − e−r tr(UΣ1/2ΘΣ1/2)) r−1 e−r dr dU.

From the cumulant transform of the one-dimensional gamma distribution∫ ∞

0

(1 − e−r tr(UΣ1/2ΘΣ1/2)) r−1e−r dr = log
(
1 + tr(UΣ1/2 ΘΣ1/2)

)−1
,

from which (5.9) follows. Next, we recall that tr(X) = tr(X) and therefore h(X) =
h(X). Using the change of variable Y = Σ1/2XΣ1/2 for which dY = |Σ|〈m〉 dX
(see (2.15))

K(Θ;R) =

∫
X>0

(1 − e− tr(XΣ1/2ΘΣ1/2))h(X) dX

=

∫
Y >0

(1 − e− tr(Y Θ))h(Σ−1/2Y Σ−1/2)|Σ|−〈m〉 dY.

Proposition 5.2 is proved.
If M ∼ G0(Im), tr(M) follows a one-dimensional gamma distribution and, more

generally, any marginal distribution tr(ΣM) follows a one-dimensional gamma con-
volution (i.e., it is the weak limit of finite convolutions of gamma distributions). We
write M ∼ G0(Σ) to indicate that the random matrix M has a matrix law given
by (5.9).

Corollary 5.1. (a) If M ∼ G0(Σ) for Σ ∈ M+
m, tr(ΣM) follows a one-

dimensional gamma convolution law.
(b) If M ∼ G0(Im), tr(M) has the one-dimensional gamma distribution G(cm, 1).
Proof. From (5.9), by taking Θ = θΣ, θ > 0, we have that the cumulant transform

of tr(ΣM) is

log Ee−θ tr(ΣM) =

∫
S+

m

log
(
1 + θ tr(ΣU)

)−1
dU =

∫ ∞

0

log(1 + θu)−1 νΣ(du),

where νΣ is the measure on (0,∞) induced by dU under the transformation U →
tr(Σ1/2UΣ1/2). Then tr(ΣM) follows a one-dimensional gamma convolution [11].
When Σ = Im, ∫

S+
m

log
(
1 + θ tr(U)

)−1
dU = log(1 + θ)−cm ,
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20 O. E. BARNDORFF-NIELSEN AND V. PÉREZ-ABREU

which is the cumulant transform of the one-dimensional gamma distribution G(cm, 1).
Corollary 5.1 is proved.

For 0 < β < 1, the matrix law Gβ(Im) is related to the one-dimensional tempered
β-stable distributions recently introduced in [26] and [27]. The relation is in the sense
that any one-dimensional marginal has a tempered β-stable distribution.

Proposition 5.3. Let 0 < β < 1 and let M ∼ Gβ(Im). Then
(a) M has cumulant transform Kβ(Θ,M)

Kβ(Θ,M) = −kβ

{∫
S+

m

(
1 + tr(UΘ)

)β
dU − cm

}
,(5.10)

where kβ = Γ(1 − β)/β;
(b) for any Σ ∈ M+

m, tr(ΣM) has a one-dimensional tempered β-stable distribu-
tion.

Proof. Using (3.4) (with Ψ0 = 0) and (2.13) we have

Kβ(Θ;M) =

∫
X>0

(1 − e− tr(XΘ))hβ(X) dX

=

∫
S+

m

∫ ∞

0

(1 − e−r tr(UΘ)) r−1−βe−r dr dU.

For 0 < β < 1 one has∫ ∞

0

(1 − e−r tr(UΘ)) r−1−βe−r dr =
1

β
Γ(1 − β)

[(
1 + tr(UΘ)

)β − 1
]
,

from which (a) follows.
From (5.10), taking νΣ as the measure on (0,∞) induced by dU and the trans-

formation U → tr(ΣU), we have

log Ee−θ tr(ΣM) = −kβ

{∫
S+

m

(
1 + θ tr(ΣU)

)β
dU − cm

}

= −kβ

{∫ ∞

0

(1 + θu)βνΣ(du) − cm

}
,

which is the cumulant transform of a tempered β-stable distribution, 0 < β < 1 [26,
Proposition 2.2]. Proposition 5.3 is proved.

5.3. The class Υ0(Gβ) of matrix distributions. In this subsection we study
the matrix distributions which are the image of Gβ under the upsilon transforma-
tion Υ0. More specifically, an infinitely divisible random matrix R in M+

m will have
a matrix distribution Υ0(Gβ(Σ)) if its Lévy measure is of the form Υ0(ρ), where ρ is
the Lévy measure with Lévy density hβ(X; Σ) given by (5.8), for Σ > 0 and β < 1.
In this case we write R ∼ Υ0(Gβ(Σ)).

The Lévy density of an Υ0(Gβ(Σ)) law is obtained from Corollary 4.2. This
construction yields a matrix extension of the one-dimensional Bessel function, different
from the one defined in [15], commonly used in the classical multivariate statistical
literature [14].

For β < 1 and Σ > 0 fixed, define the matrix Bessel-type function K : M+
m→ R+ by

(5.11)

K(X;β,Σ) = |Σ|−〈m〉
∫
Y >0

etr
{
− (XY −1 + Σ−1Y)

}(
tr(YΣ−1)

)−[m]−β dY

|Y |〈m〉 .
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The following result is based on infinite divisibility theory and shows that the
function K is well defined and completely monotone in X.

Proposition 5.4. Let β < 1 and Σ > 0. Then K(X;β,Σ) is the Lévy density
of the matrix distribution Υ0(Gβ(Σ)).

Proof. From (4.14) in Corollary 4.2, the Lévy density l̃ of Υ0(R) is computed as
follows:

l̃(X) =

∫
Y >0

etr(−XY −1)hβ(Y; Σ)
dY

|Y |〈m〉

= |Σ|−〈m〉
∫
Y >0

etr(−XY −1)
(
tr(YΣ−1)

)−[m]−β
etr(−YΣ−1)

dY

|Y |〈m〉

= |Σ|−〈m〉
∫
Y >0

etr
{
− (XY −1 + Σ−1Y)

}(
tr(YΣ−1)

)−[m]−β dY

|Y |〈m〉

= K(X;β,Σ).

Proposition 5.4 is proved.
As a by-product of the above result we obtain the following analytical property

of K.
Corollary 5.2. The integral

∫
X>0

K(X;β,Σ) dX is finite if and only if β < 0.

Proof. From Lemma 5.2 we have that
∫
X
hβ(X; Σ) dX is finite if and only if β < 0.

Let ρ and ρ̃ be the Lévy measures given by hβ and K(X;β,Σ), respectively. Since
ρ̃ = Υ0(ρ), by Lemma 4.2, ρ̃ is a finite measure if and only if ρ is finite. Corollary 5.2
is proved.

Remark 5.1. (a) When m = 1 the Lévy density (5.12) takes the form

K(x;β, τ) = τβ
∫ ∞

0

exp
{
− (xy + τ−1y−1)

}
yβ dy,

which is related to the one-dimensional modified Bessel function of the third kind
and with index κ = β + 1. In particular, when β = 0, we obtain the image class of
one-dimensional distributions under the mapping Υ0.

(b) The image class Υq(Gβ(Σ)) for β < 1 and q < 0 will be studied elsewhere.

6. A relation of the mapping Υm/2 to mat G random matrices. In this
section we point out a connection with matG random matrices when considering the
mapping ρ̃m/2 = Υm/2(ρ) of a Lévy measure ρ in L(M+

m).

Following [5], we say that a random matrix GR in Mn×m is matG if GR
law
= NR,

where R is a random matrix in Mp×m such that R�R is in ID(M
+

m) and N is a
standard normal random matrix Nnp(0; Im ⊗ Ip) in Mn×p independent of R.

For Δ ∈ M+
n ,Σ ∈ M+

m, denote by ϕnm(Z; Δ ⊗ Σ) the density function of a zero
mean normal matrix distribution with covariance Δ ⊗ Σ. That is,

ϕnm(Z; Δ ⊗ Σ) =
|Δ|−n/2|Σ|−m/2

(2π)mn/2
etr

(
− 1

2

(
Δ−1ZΔ−1Z�)).

Let ρ be the Lévy measure of R�R and assume it is concentrated on M+
m. For

simplicity let m = p. It is proved in [6] that GR is an infinitely divisible random
matrix whose Lévy measure νρ is absolutely continuous with Lévy density

uυ(Z) =

∫
Σ>0

ϕnm(Z; In ⊗ Σ) ρ(dΣ), Z ∈ Mnm.

D
ow

nl
oa

de
d 

10
/0

3/
18

 to
 1

48
.2

35
.6

5.
25

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

22 O. E. BARNDORFF-NIELSEN AND V. PÉREZ-ABREU

For ρ ∈ L(M+
m), let ρ̃m/2 be the Lévy measure given by (4.1), and let X,Y be

in ID(M
+

m) with Lévy measures ρ and ρ̃m/2, and let N ∼ Nnm(0; In ⊗ Im) be inde-

pendent of X and Y . Then GY = NY has Lévy density given by

uρ̃m/2
(Z) =

∫
Σ>0

ϕnm(Z; In ⊗ Σ) ρ̃m/2(dΣ)

=

∫
Σ>0

∫
X>0

ϕnm(Z; In ⊗ Σ) ρ
(
X

−�
dΣX

−1 )|X|m/2e− tr(X) dX

=

∫
Σ>0

∫
X>0

ϕnm

(
Z; In ⊗XΣX

� )
ρ(dΣ)|X|m/2e− tr(X) dX

=

∫
Σ>0

∫
X>0

ϕnm(ZX
−1

; In ⊗ Δ) ρ(dΣ) e− tr(X) dX

=

∫
X>0

e− tr(X)

∫
Σ>0

ϕnm(ZX
−1

; In ⊗ Σ) ρ(dΣ) dX

=

∫
X>0

e− tr(X)νρ(ZX
−1

) dX.

Thus, we have proved the following result.
Proposition 6.1. For ρ ∈ L(M+

m), let X,Y be infinitely divisible random
matrices in M+

m with Lévy measures ρ and ρ̃m/2 = Υm/2(ρ), respectively. Then, the
Lévy measure νρ̃m/2

of the matG random matrix GY is given by the mapping

νρ̃m/2
= Υm/2(νρ),(6.1)

where νρ is the Lévy measure of GX .
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