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ϕ-Dialgebras and a Class of Matrix
“Coquecigrues”

Fausto Ongay

Abstract. Starting with the Leibniz algebra defined by aϕ-dialgebra, we construct examples of “coque-

cigrues,” in the sense of Loday, that is to say, manifolds whose tangent structure at a distinguished point

coincides with that of the Leibniz algebra. We discuss some possible implications and generalizations

of this construction.

1 Introduction

Around 1990 J. L. Loday introduced the notion of a Leibniz algebra [L1], a gen-
eralization of a Lie algebra where the skew-symmetry of the bracket is suppressed.

Although his initial (and main) motivation was the homology theory that can be de-
fined on them, it was soon realized that Leibniz algebras were useful in a variety of
contexts.

More to the point, Loday also posed “Lie’s third problem for Leibniz algebras”.

That is, given a (say) finite dimensional Leibniz algebra, find a manifold with an
algebraic operation, whose tangent structure at some distinguished point would in-
herit the structure of the Leibniz algebra. Since no such objects (besides the “trivial”
case of Lie groups) were explicitly known, they were jokingly dubbed by him “co-

quecigrues” (which translates to something like “nonsense”). Their construction has
proven to be quite an elusive task indeed [KW].

On the other hand, a few years later, Loday also introduced the notion of dialge-
bra [L2], which is in turn a generalization of associative algebra, but possessing two

operations, and showed the existence of a functor relating Leibniz algebras to dialge-
bras, analogous to the functor existing between Lie algebras and associative algebras.
Quite recently, Loday’s definition of dialgebra was taken as a basis to define digroups
[F, K, L], where the key elements are the introduction of an appropriate notion of

neutral element and inversion.

Following this line of reasoning, in this paper I will construct some very explicit
examples of manifolds with the algebraic structure of a digroup that are not Lie

groups, but that have the essential properties required for a “coquecigrue.” More-
over, we shall see that they have a rather nice geometrical structure.

Certainly, I do not claim to have solved the general problem posed by Loday.
My point is rather that the Leibniz algebra structure by itself might not in general
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uniquely determine the type of integral manifold. Hence, most likely there are dif-
ferent classes of “coquecigrues” (and so the ones discussed here would be just one of

them). I hope nevertheless that the construction given here sheds some additional
light on a possible general structure of these intriguing objects.

2 ϕ-Dialgebras and Coquecigrues

Let us begin by recalling that a dialgebra is a vector space V together with two bilinear
associative operations, ⊣ and ⊢, satisfying the relations

x ⊣ (y ⊣ z) = x ⊣ (y ⊢ z),

(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),

(x ⊣ y) ⊢ z = (x ⊢ y) ⊢ z.

And a well-known fact is that a dialgebra canonically defines a Leibniz algebra, with

bracket [x, y] = x ⊣ y − y ⊢ x.
Also, recall that a non-trivial bar unit in a dialgebra is an element e satisfying

e ⊢ x = x = x ⊣ e ∀x ∈ V.

Here “non-trivial” just means that the corresponding relations from the pointer side,

i.e., e ⊣ x = x = x ⊢ e, do not necessarily hold (in which case it is also well known
that the two operations coincide, and the dialgebra is simply an associative algebra
with unit).

The set of bar units is called the halo of the dialgebra, and shall be denoted here

by hl(V ). When it exists, it is an affine subspace of the dialgebra. Indeed, since by
bilinearity the operations in V satisfy 0 ⊢ x = x ⊢ 0 = 0 ⊣ x = x ⊣ 0 = 0, if we set

N⊢ = {x|x ⊢ y = 0 ∀y} and ⊣N = {x|y ⊣ x = 0 ∀y},

and e is a non-trivial bar unit, then the halo is the affine space modelled after the
subspace N⊢ ∩ ⊣N and passing through e.

The important example for us, considered also in [F], is the following: Let V be
any vector space and fix ϕ ∈ V ′ (the algebraic dual). Then one can define a dialgebra

structure on V by setting x ⊣ y = ϕ(y)x and x ⊢ y = ϕ(x)y. Verification of the
dialgebra axioms is straightforward. For instance, to check the first axiom, we have
for the left-hand side x ⊣ (y ⊣ z) = x ⊣ (ϕ(z)y) = xϕ(z)ϕ(y), while for the right-
hand side we have (x ⊣ y) ⊣ z = (xϕ(y)) ⊣ z = xϕ(y)ϕ(z), etc. We shall call such a

dialgebra a ϕ-dialgebra, and sometimes denote it by Vϕ.
However, the main reason why ϕ-dialgebras are of interest to us is that it is easy to

exhibit their non-trivial bar units. More precisely, we have the following lemma.

Lemma 2.1 Let V be any vector space, and fix ϕ ∈ V ′, ϕ 6= 0. Then Vϕ is a di-
algebra with non-trivial bar units. Moreover, its halo is an affine space modelled after
the subspace kerϕ.
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Proof Since ϕ 6= 0, from the equation x ⊣ e = x, for all x ∈ Vϕ, we get that e
is a bar unit in Vϕ if and only if ϕ(e) = 1. So, if x0 is any element in Vϕ such that

ϕ(x0) 6= 0, x0/ϕ(x0) is a bar unit.

Moreover, if e is any fixed bar unit, it is clear that another element e ′ will be a bar
unit if and only if ϕ(e − e ′) = 0. In other words, N⊢ = ⊣N = kerϕ in this case, and
hence the bar units in Vϕ form an affine hyperplane modelled after kerϕ, as stated.

The ϕ-dialgebras give rise to trivial Leibniz algebras, because, as one easily checks,

the bracket vanishes identically. In particular, these Leibniz algebras are Lie algebras.
Nevertheless, from the point of view of “integration of the linear structure,” they are
not really trivial. Indeed, and mostly as a motivation for what follows, let us discuss
the following example:

Let V = R
n (∼= V ∗) denote Euclidean n-space, with the usual interior (dot) prod-

uct, and fix e ∈ Sn−1. Putting ϕ(x) = e · x defines a ϕ-dialgebra structure in V ,
hence also a Leibniz algebra structure (abelian in this case). Now, by Lemma 2.1, the
fixed element e is a bar-unit for this dialgebra, and, since e ∈ Sn−1, projection along

the subspace kerϕ is orthogonal. (Thus, e is somewhat special, being the bar unit of
minimal length, but this is not essential).

Now fix this bar unit e and say that x ∈ V is (pointer) invertible (relative to e)1 if
there exists a unique y ∈ V such that y ⊣ x = x ⊢ y = e. For a ϕ-dialgebra this

simply means ϕ(x)y = e. Hence, applying ϕ to this equation we see that this is the
same as ϕ(x)ϕ(y) = 1, and so x is invertible if and only if x /∈ kerϕ, with inverse

x−1
=

1

ϕ(x)
e.

The set of invertible elements is therefore the open subset V×
= V \ kerϕ.

Thus, inversion is a well-defined operation for those x /∈ kerϕ, and actually it has

a nice geometrical interpretation: to invert an element x we take its projection ϕ(x)e
onto the space spanned by e, and then we take the inverse on this line of ϕ(x)e in the
sense of classical geometry (see Figure 1).

On the other hand, notice that inversion is certainly not an involution in V×, since
x and y will have the same inverse if and only if x − y ∈ kerϕ. In fact, y = x−1 ⇒
x = y−1 if and only if x = ϕ(x)e. Thus, the set of invertible elements is not a group,
but the subset consisting of the line spanned by e is actually a group isomorphic to

the non-zero real numbers.

The key step is now the observation that we can make sense of conjugation by
elements of V× by considering the action (x, y) 7→ x ⊢ y ⊣ x−1. (One a priori
reason why this is the right combination of the dialgebra operations to define an

adjoint action comes from the second axiom for Leibniz algebras, which guarantees
that the left and right translations so defined commute.)

1When abstracted, this notion of invertibility leads precisely to the definition of digroup, in the sense
of [L, F, K].
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ker ϕ

e

x

ϕ(x)e

x-1

< e >

Figure 1: Inversion of an element in V×

Actually, for this particular example this action is trivial, since

x ⊢ y ⊣ x−1
= ϕ(x)ϕ

( e

ϕ(x)

)

y = y.

The point, however, is the following. Take an element a ∈ V , and consider a curve

x(t) in V× such that x(0) = e and x ′(0) = a, and let y ∈ V be any other vector. Then
we can compute:

d

dt
|t=0

(

x(t) ⊢ y ⊣ x(t)−1
)

=

(

ϕ(x(t)) ′ yϕ(x−1(t)) + ϕ(x(t))y(ϕ(x−1(t)) ′
)

|t=0

= ϕ(a)yϕ((e) + ϕ(e)yϕ
( ϕ(a)e

ϕ(e)2

)

= ϕ(a)y − yϕ(a)

= y ⊣ a − a ⊢ y = [y, a].

This might not seem very interesting at first, since, y being fixed, the derivative is

of course zero. This is all right, because the Leibniz algebra V is also abelian. Thus,
what we have seen is that the tangent space to V× at e can be identified with the
Leibniz algebra Vϕ, as required by Loday’s program, and so following his suggestion
we might call V× a ϕ-coquecigrue.

Remark This example already shows that the Leibniz algebra structure alone is not
enough to determine the coquecigrue, even locally, since in this case the Leibniz al-
gebra is a Lie algebra, but the coquecigrue just constructed is not a Lie group.

Obviously, by Riesz’s theorem, what was said applies equally well, for instance,
to any Hilbert space. To avoid the technical difficulties involved in the definition of
vector fields, tensor products, etc., in infinite dimensions, I will nevertheless stay in
the finite dimensional case.
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3 The Matrix Case

Using the example of the previous section as a guide, let us now construct a more
general and interesting class of coquecigrues.

For this, we recall first that if V is a dialgebra, it is well known that the space

Mk = Mat(k,V ) of square k×k matrices with entries in V is also a dialgebra with the
operations defined entry-wise and again denoted⊣, ⊢ [L2]. And if V has a non-trivial
bar unit e, Mk also has a non-trivial bar unit, namely

E =











e 0 . . . 0
0 e . . . 0

. . .

0 0 . . . e











.

Moreover, since as a vector space Mk
∼
= Mat(k,R) ⊗ V ∼

= V ⊗ Mat(k,R), Mk is
a Mat(k,R)-bimodule, i.e., the product of scalars with vectors in V extends to give

actions of the algebra Mat(k,R) on Mk, both on the right and the left, in an obvious
way:

(X,A) 7→ X ⊗ A, where (X ⊗ A)i j =

∑

k

xikak j , A ∈ Mat(k,R),X ∈ Mk,

and similarly for the product on the left side. (We shall usually omit the symbol ⊗).

Now, fix a ϕ-dialgebra Vϕ, which we could assume is given as in the example of

the previous section, and an integer k, and consider the corresponding space Mk. As
noted, Mk is also a dialgebra with the distinguished bar unit E, and moreover, the
linear functional ϕ defines a linear map Mk → Mat(k,R), which we still denote ϕ,
sending X = (xi j ) to ϕ(X) = (ϕ(xi j )).

Let us state a few properties of this space:

Lemma 3.1 Let Vϕ be a ϕ-dialgebra, and Mk the associated dialgebra of square k × k
matrices. The following properties hold

(i) ϕ(E) = Id ∈ Mat(k,R);
(ii) AE = EA, for all A ∈ Mat(k,R);

(iii) ϕ(ϕ(X)Y ) = ϕ(X)ϕ(Y ) = ϕ(Xϕ(Y )) for all X,Y ∈ Mk;
(iv) X ⊣ Y = Xϕ(Y ), X ⊢ Y = ϕ(X)Y for all X,Y ∈ Mk.

Proof This is again quite straightforward, so let us just verify (iii). If X = (xi j) and

Y = (yi j), then (ϕ(X)Y )i j =

∑

k ϕ(xik)yk j . Therefore,

(ϕ(ϕ(X)Y ))i j = ϕ
(

∑

k

ϕ(xik)yk j

)

=

∑

k

ϕ(xik)ϕ(yk j ) = (ϕ(X)ϕ(Y ))i j

as desired.
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(iv) gives us a somewhat more usable description of the dialgebra operations in
Mk. And, since matrix multiplication is not commutative, this immediately shows

that the resulting Leibniz algebra structure in Mk is certainly non-abelian. Indeed, it
is not even a Lie algebra, because

[X,Y ] = Xϕ(Y ) − ϕ(Y )X 6= −(Yϕ(X) − ϕ(X)Y ) = −[Y,X].

Nevertheless we can repeat the constructions of the one-dimensional case:

Definition 3.2 Given X ∈ Mk we say that it has a pointer inverse relative to E if there

is a unique Y ∈ Mk such that Y ⊣ X = E, X ⊢ Y = E.

For simplicity we shall simply say that such an X is invertible. As in the example,
we have the following explicit characterization of inverses:

Lemma 3.3 X ∈ Mk is invertible if and only if ϕ(X) ∈ GL(k,R), and its inverse is
ϕ(X)−1E.

Proof By (iv) in Lemma 3.1 the condition for invertibility becomes Yϕ(X) = E and
ϕ(X)Y = E, and applying ϕ to these equalities we get ϕ(Y )ϕ(X) = ϕ(X)ϕ(Y ) = Id
as a necessary condition for X to be invertible. It follows in particular that ϕ(X) ∈
GL(k,R) and that we must choose Y to equal both ϕ(X)−1E, and Eϕ(X)−1. Both

quantities coincide however, because of (ii) in Lemma 3.1, and therefore, in the open
subset M×

k = ϕ−1(GL(k,R)) of Mk, pointer inversion is well defined.

Also, notice that Lemmas 3.1 and 3.3 imply that ϕ(X−1) = ϕ(X)−1.

Thus M×

k is a digroup, and again, M×

k acts on the dialgebra Mk by an adjoint
action:

(X,Y ) 7→ AdX Y = X ⊢ Y ⊣ X−1
= ϕ(X)Yϕ(X)−1, X ∈ M×

k ,Y ∈ Mk.

Lemma 3.4 The adjoint action defined above is a left ⊢ action, in the sense that

AdX(AdY Z) = AdX⊢Y Z = Adϕ(X)Y Z, X,Y ∈ M×

k ,Z ∈ Mk.

Proof It suffices to verify that (X ⊢ Y )−1
= Y−1 ⊣ X−1, which is rather clear from

the characterisation of inverses given in the previous lemma. But it also follows from
the dialgebra axioms and the properties of pointer inverses. On one side this is direct:

(X ⊢ Y ) ⊢ (Y−1 ⊣ X−1) = X ⊢ (Y ⊢ (Y−1 ⊢ X−1))

= X ⊢ ((Y ⊢ Y−1) ⊢ X−1)

= X ⊢ (E ⊢ X−1) = E,
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while on the other we need to use the first axiom for dialgebras once:

(Y−1 ⊣ X−1) ⊣ (X ⊢ Y ) = Y−1 ⊣ (X−1 ⊣ (X ⊢ Y ))

= Y−1 ⊣ (X−1 ⊣ (X ⊣ Y ))

= Y−1 ⊣ (E ⊣ Y )

= Y−1 ⊣ Y = E.

Now, since Mk is a finite dimensional space, we can directly compute derivatives
to see that

(X−1(t)) ′ = −ϕ(X(t))−1ϕ(X ′(t))Eϕ(X(t))−1.

(Recall from Lemma 3.1 that E commutes with scalar matrices.)
Thus, if Y ∈ Mk and X(t) is a curve in M×

k such that X(0) = E and X ′(0) =

A ∈ Mk, we have

d

dt
|t=0(X(t) ⊢ Y ⊣ X(t)−1) =

(

ϕ(X(t)) ′Yϕ(X−1(t)) + ϕ(X(t))Y (ϕ(X−1(t)) ′
)

|t=0

= ϕ(A)Yϕ(E) + ϕ(E)Yϕ
(

ϕ(E)ϕ(A)Eϕ(E)
)

= ϕ(A)Y − Yϕ(A)

= Y ⊣ A − A ⊢ Y = [Y,A].

This time the result of taking derivatives is certainly not trivial, and we have indeed
proved the following result.

Theorem 3.5 The tangent space to M×

k at the point E is endowed with the Leibniz
algebra structure induced from the dialgebra structure of Mk. Thus, the digroup M×

k is

a coquecigrue in the sense of Loday.

We shall sometimes call it a matrix ϕ-coquecigrue. Let us now analyze its geomet-

ric structure.
First, consider the set

GL(k,R) ⊗ {E} = {AE ; A ∈ GL(k,R)}.

It is actually a homomorphic copy of the Lie group GL(k,R) included in the coque-
cigrue. Obviously, ϕ restricted to this subset is a diffeomorphism onto GL(k,R). But
for A,B ∈ GL(k,R) an easy computation shows that

(AE) ⊣ (BE) = (AE) ⊢ (BE) = ABE,

so that ϕ restricted to this subset is also a group isomorphism, regardless of which

digroup operation we choose in the dialgebra.
Moreover, X−1

= Y−1 if and only if ϕ(X − Y ) = 0. Therefore, again we see
that the matrix ϕ-coquecigrue fibers over GL(k,R) ⊗ {E}, with fiber kerϕ ⊂ Mk.
Actually we can say more.
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ker ϕ

e

x

ϕ(x)e

VX

R

Figure 2: Fibering of M×

k
over GL(k,R).

Proposition 3.6 Mk has the structure of a trivial vector bundle over GL(k,R), with
fiber kerϕ.

Proof We have already shown that M×

k is a vector bundle, but actually we can ex-

plicitly set up a global diffeomorphism M×

k → GL(k,R) × kerϕ:

X 7→ (ϕ(X),X − ϕ(X)E),

which gives a global trivialization, since it is linear on the fibers.

This gives a rather neat description of the geometric structure of the coquecigrue,
illustrated in Figure 2 for the case k = 1.

But let us now have a closer look at the relationship to the algebraic structure of
the dialgebra. The key point here is that multiplication of X and X−1, in the “reverse”
order, gives a “transverse structure” to the fibered structure given in Proposition 3.6,

namely.

Lemma 3.7 Both X ⊣ X−1
= Xϕ(X)−1 and X−1 ⊢ X = ϕ(X)−1X belong to hl(Mk).

In particular, they are transverse to kerϕ.

Proof This is a quite straightforward computation, so let us just check one of the

conditions for X ⊣ X−1 to be a bar unit:

(X ⊣ X−1) ⊢ Y = (X ⊢ X−1) ⊢ Y = ϕ(Xϕ(X−1)Y = Id Y = Y,

by Lemma 3.1.
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Notice that in general X ⊣ X−1 6= X−1 ⊢ X. We could therefore choose any of
them to define the transverse structure (and the results will be essentially the same).

For reasons that will be clear soon, we choose the former. In any case, the important
consequence of the existence of this transverse structure is that M×

k should not be
viewed as vector bundle; rather, we have the following:

Proposition 3.8 The map RA(X) = X + ϕ(X)A, X ∈ M×

k , A ∈ kerϕ, is a right
action of kerϕ, as an abelian group, on M×

k , that turns it into a kerϕ-principal bundle

over GL(k,R).

Proof Notice that the projection is simply the map ϕ, so the action obviously pre-
serves the fibers.

To see that this is indeed a right action, we compute

RB(RA(X)) = X + ϕ(X)A + ϕ(X + ϕ(X)A)B

= X + ϕ(X)(A + B) + ϕ(ϕ(X)A)B

= X + ϕ(X)(A + B) = RA+B(X).

Finally, to check equivariance, we first notice that since A ∈ kerϕ, we have

(RA(X))−1
= X−1, and then modify the trivialization of Proposition 3.6, defining

ψ(X) = ϕ(X)−1X − E. Then, although ψ is no longer linear in X,

ψ(RA(X)) = ϕ((RA(X)−1)RA(X) − E

= ϕ(X)−1(X + ϕ(X)A) − E

= ϕ(X)−1X − E + A = ψ(X) + A,

proving the equivariance of the action in the global trivialization (ϕ(X), ψ(X)).

We now combine this proposition and the transverse structure of Lemma 3.7 to
obtain our main result:

Theorem 3.9 For each X ∈ M×

k consider the space HX = {XA,A ∈ Mat(k,R)},
regarded as a vector subspace of TXM×

k in the natural way. Then X 7→ HX defines an

equivariant horizontal distribution for the action R defined in Proposition 3.8, i.e., a
connection.

The horizontal component of a tangent vector Y ∈ TXM×

k is given by h(Y ) =

Xϕ(X)−1ϕ(Y ). Therefore, the associated kerϕ-valued connection 1-form is given by
ω = dX − Xϕ(X)−1ϕ(dX).

Before proving the theorem, it is perhaps convenient to clarify what we mean by

dX and ϕ(dX) in the last expression. At any given point Z ∈ Mk, by dXZ we simply
mean the Mk-valued linear form on TZMk that to a tangent vector Y ∈ TZMk

∼
= Mk

associates Y itself; ϕ(dX) is then the Mat(k,R)-valued form that associates to this
tangent vector the matrix ϕ(Y ) (recall that Mk is a Mat(k,R)-module).
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Proof of Theorem 3.9 The equivariance of the distribution H under the action R
means that RB∗HX = HRBX . Now, if XA ∈ HX , since RB is linear in X we have,

RB∗(XA) = (RBX)A. Thus, H is equivariant.
We still have to show that HX ⊕kerϕ ∼

= TXM×

k
∼
= Mk. But if Y ∈ Mk is any vector,

we obviously have

Y = (Xϕ(X)−1ϕ(Y )) + (Y − Xϕ(X)−1ϕ(Y )).

Now, by construction, the first summand on the right-hand side belongs to HX , while

the second satisfies

ϕ
(

Y − Xϕ(X)−1ϕ(Y )
)

= ϕ(Y ) − ϕ(X)ϕ(X)−1ϕ(Y ) = 0,

so it belongs to kerϕ.
Using Lemma 3.7, this proves the desired direct sum decomposition of TXM×

k ,
and also explicitly exhibits the horizontal part of a vector as h(Y ) = Xϕ(X)−1ϕ(Y ),

proving the second assertion.
The expression for the connection form is now almost immediate. Since kerϕ is

an abelian group, its Lie algebra is identified to itself. Therefore, from the definition
of dX and ϕ(dX)

ω(Y ) = Y − Xϕ(X)−1ϕ(Y ),

and so, from what has just been shown, ω takes its values on the Lie algebra of the
structure group of the principal bundle. Hence, all that would remain to be shown is

that HX = kerωX , which again is clear from the definitions of HX and ω.

Remark Theorem 3.9 shows that these matrix coquecigrues have a geometrical
structure reminiscent of, but not exactly identical to, the one discussed in [KW].

Also, the expression for h(Y ) given in the theorem shows exactly how Xϕ(X)−1

determines the transverse structure to the fibers.

And again, one has a nice picture of the connection in the case k = 1. The hori-
zontal subspace at a point X is the space complementary to kerϕ and passing through

X (see Figure 3).
Finally, we can also compute the curvature of ω.

Theorem 3.10 The connection ω of Theorem 3.9 is flat.

Proof By definition, the curvature of the connection ω is

Dω(Y,Z) = dω(h(Y ), h(Z)).

Now, since d(ϕ(X)−1) = −ϕ(X)−1dϕ(X)ϕ(X)−1
= −ϕ(X)−1ϕ(dX)ϕ(X)−1, we

have

dω = −dX ∧ ϕ(X)−1ϕ(dX) − Xd(ϕ(X)−1) ∧ ϕ(dX)

= −dX ∧ ϕ(X)−1ϕ(dX) + Xϕ(X)−1ϕ(dX)ϕ(X)−1 ∧ ϕ(dX).
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ker ϕ

e

x

ϕ(x)e

Hx

Figure 3: Horizontal space of the connection at a point X

Hence,

Dω(Y,Z) = −Xϕ(X)−1ϕ(X)ϕ(Y )ϕ(X)−1ϕ(X)ϕ(Z)

+ Xϕ(X)ϕ(Z)ϕ(X)−1ϕ(X)ϕ(X)−1ϕ(Y )

+ Xϕ(X)−1ϕ(X)ϕ(X)−1ϕ(Y )ϕ(X)−1ϕ(X)ϕ(X)−1ϕ(Z)

− Xϕ(X)−1ϕ(X)ϕ(X)−1ϕ(Z)ϕ(X)−1ϕ(X)ϕ(X)−1ϕ(Y )

= −Xϕ(X)−1ϕ(Y )ϕ(X)ϕ(Z) + Xϕ(X)−1ϕ(Z)ϕ(X)ϕ(Y )

+ Xϕ(X)−1ϕ(Y )ϕ(X)ϕ(Z) − Xϕ(X)−1ϕ(Z)ϕ(X)ϕ(Y )

= 0.

4 Some Final Remarks

Although I have considered here only matrix ϕ-dialgebras, this is mostly because of
the ease with which bar units and inverses can be handled, and it is clear that at least
some parts of the previous constructions can be generalized. For this purpose, it is

convenient to rewrite the relevant conditions in terms exclusively of the dialgebra
operations, as was done in proving Lemma 3.4.

Thus the action of kerϕ on M×

k is given by RAX = X + X ⊢ A. Similarly, the
horizontal projection of a vector is h(Y ) = (X ⊣ X−1) ⊣ Y , and hence the connection

form can be written as ω = dX − (X ⊣ X−1) ⊣ dX, etc.
Nevertheless, the results proved here do not in general carry over to the abstract

dialgebra context without some additional hypotheses that moreover usually depend
on the specific point at hand (e.g., Theorem 3.5, where it is necessary that the in-

vertible elements form an open subset). So this generalization is not straightforward.
The full extent of this possibility will be discussed in a forthcoming work.

On the other hand, the structure of these matrix coquecigrues raises the question
of constructing the algebraic operations of a dialgebra (or a digroup) starting from
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the geometric structure, namely: is some kind of converse of Theorem 3.9 true? As
already seen in the analysis done in [KW], this is probably not an easy matter either.
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