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ABSTRACT

Aim Techniques that predict species potential distributions by combining

observed occurrence records with environmental variables show much potential

for application across a range of biogeographical analyses. Some of the most

promising applications relate to species for which occurrence records are scarce,

due to cryptic habits, locally restricted distributions or low sampling effort.

However, the minimum sample sizes required to yield useful predictions remain

difficult to determine. Here we developed and tested a novel jackknife validation

approach to assess the ability to predict species occurrence when fewer than

25 occurrence records are available.

Location Madagascar.

Methods Models were developed and evaluated for 13 species of secretive leaf-

tailed geckos (Uroplatus spp.) that are endemic to Madagascar, for which

available sample sizes range from 4 to 23 occurrence localities (at 1 km2 grid

resolution). Predictions were based on 20 environmental data layers and were

generated using two modelling approaches: a method based on the principle of

maximum entropy (Maxent) and a genetic algorithm (GARP).

Results We found high success rates and statistical significance in jackknife tests

with sample sizes as low as five when the Maxent model was applied. Results for

GARP at very low sample sizes (less than c. 10) were less good. When sample sizes

were experimentally reduced for those species with the most records, variability

among predictions using different combinations of localities demonstrated that

models were greatly influenced by exactly which observations were included.

Main conclusions We emphasize that models developed using this approach

with small sample sizes should be interpreted as identifying regions that have

similar environmental conditions to where the species is known to occur, and not

as predicting actual limits to the range of a species. The jackknife validation

approach proposed here enables assessment of the predictive ability of models

built using very small sample sizes, although use of this test with larger sample

sizes may lead to overoptimistic estimates of predictive power. Our analyses

demonstrate that geographical predictions developed from small numbers of

occurrence records may be of great value, for example in targeting field surveys to

accelerate the discovery of unknown populations and species.
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INTRODUCTION

Techniques that characterize the geographical distributions of

species abiotic niches by relating observed occurrence localities

to environmental data have been widely applied across a range

of biogeographical analyses (Guisan & Thuiller, 2005).

Applications have included guiding field surveys to accelerate

detection of unknown distributional areas and undiscovered

species (Raxworthy et al., 2003; Bourg et al., 2005), projecting

potential impacts of climate change (e.g. Iverson & Prasad,

1998; Thomas et al., 2004; Thuiller et al., 2005a), testing

evolutionary hypotheses (e.g. Peterson et al., 1999; Graham

et al., 2004b), predicting species invasions (e.g. Peterson, 2003;

Thuiller et al., 2005b) and supporting conservation planning

(e.g. Araújo & Williams, 2000; Ferrier et al., 2002). Some of the

most promising applications of these models relate to poorly

known tropical landscapes where biogeographical data are

scarce (Raxworthy et al., 2003). In such regions, distributional

data for some difficult-to-detect species are often limited to

small samples of observed localities (e.g. < 25) due to limited

recent survey effort and the lack of precise locality data

associated with some museum specimens (Graham et al.,

2004a; Soberón & Peterson, 2004). The potential for very

limited samples of locality records to yield useful predictions of

species occurrences thus warrants detailed analysis.

The modelling approach that we use aims to define the

environmental conditions within which a species can persist by

associating known distributional information with suites of

environmental variables. Geographical regions presenting

similar environments to where the species has been observed

can thus be identified. The central premise of this approach is

that the observed distribution of a species provides useful

information as to its environmental requirements (Pearson &

Dawson, 2003). The degree to which these models describe

fully the range of conditions within which a species can persist

(the fundamental niche, sensu Hutchinson, 1957) depends on

the degree to which the environmental dimensions examined

actually define the species’ distributional limits. In reality,

additional factors not considered in the modelling (including

biotic interactions, geographic barriers and history) mean that

species rarely occupy all areas with suitable environments

(Anderson et al., 2002; Svenning & Skov, 2004; Araújo &

Pearson, 2005). The output from niche-based distribution

models must therefore be interpreted carefully (for discussion

see Pearson & Dawson, 2003; Soberón & Peterson, 2005;

Phillips et al., 2006). Despite these caveats, distribution models

have been shown to yield highly informative biogeographical

information (e.g. Fleishman et al., 2002; Bourg et al., 2005).

Herein, we test our ability to model species potential

distributions when fewer than 25 occurrence records are

available. A number of previous studies have used distribution

models with low numbers of records (e.g. Loiselle et al., 2003,

minimum sample size of four; Anderson & Martı́nez-Meyer,

2004, sample sizes of seven and 12; Ortega-Huerta & Peterson,

2004, minimum sample size of two) yet assessment of

predictive performance has been dependent on the availability

of observed absence data (e.g. Loiselle et al., 2003), which as

negative data can be problematic (see later), or on the

partitioning of data into training and test data sets, which can

become very small (e.g. Anderson et al., 2002; Anderson &

Martı́nez-Meyer, 2004). In some cases, the lack of occurrence

records has meant that no independent test of model quality

was carried out (e.g. Ortega-Huerta & Peterson, 2004). Whilst

some studies have demonstrated deterioration in predictive

performance as sample sizes are decreased (Stockwell &

Peterson, 2002; Reese et al., 2005), we are not aware of any

studies that have developed and applied a suitable test statistic

for investigating predictive performance with very low sample

sizes.

We describe a novel jackknife approach for testing distri-

bution models that enables an assessment of predictive ability

to be made when few observed locality records are available.

Two modelling techniques are employed: the Maximum

Entropy method (Maxent; Phillips et al., 2006) and the

Genetic Algorithm for Rule-Set Prediction (GARP; Stockwell

& Peters, 1999). Since reliable absence data are rarely available

for species that are difficult to detect in surveys, or from

regions that have been poorly surveyed, the modelling

techniques and validation approach that we apply use presence

data only. We evaluate models based on the localities of

13 species of leaf-tailed Uroplatus geckos of Madagascar, a

generally difficult-to-detect group of nocturnal lizards endemic

to one of the most species-rich and threatened regions of the

world (Myers et al., 2000; Ricketts et al., 2005).

MODEL TESTING WITH SMALL SAMPLE SIZES

Assessing the predictive performance of niche-based distribu-

tion models requires careful selection of (1) an approach for

generating independent test data and (2) an appropriate test

statistic. Problems associated with each of these choices are

exacerbated when few observed locality points are available.

A legitimate measure of predictive success should make use

of independent data not used to develop the model. We refer

to this as ‘test’ data (sometimes termed ‘evaluation’ data),

whilst data used to build the model can be called ‘training’ data

(sometimes termed ‘calibration’ data; Fielding & Bell, 1997;

Hastie et al., 2001). Ideally, test data would be collected

independently after the model has been developed. In practice,

however, available data are often split into test and training

sets using a partitioning method such as bootstrapping,

randomization or k-fold partitioning (Fielding & Bell, 1997;

Araújo et al., 2005). Perhaps the simplest and most common

approach is to split the available data into training and test

sets, using either a random (e.g. Pearson et al., 2002) or

spatially stratified (e.g. Peterson & Shaw, 2003) partition.

However, such approaches are not appropriate when available

data are limited, since both training and test data sets become

very small.

Several test statistics (or ‘discrimination indexes’) have been

proposed and applied to test model performance (Fielding &

Bell, 1997; Pearce & Ferrier, 2000). Statistics are often derived
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from a 2 · 2 confusion matrix, which describes the frequency

with which known presences and absences are correctly and

incorrectly predicted. When only presence data are available,

tests are limited to those that do not require absence data (use

of ‘observed’ absences can only be justified when a site has

been surveyed extensively, or when species can be confidently

detected by a single survey; Anderson et al., 2003). Commonly

applied indexes, including kappa and the area under the

receiver operating characteristic curve (AUC), are thus

unsuitable for evaluation in poorly sampled regions for which

absence data are not available (Boyce et al., 2002; but see

Phillips et al., 2006). We also argue that observed absence data

should be excluded from validations on theoretical grounds:

when a model is used to identify potential suitable habitat, it is

not correct to judge false-positive predictions as failures since

absence at a given locality may be caused by factors not

included in the model (e.g. historical contingency, dispersal

limitation and biotic interactions; Anderson et al., 2003;

Pearson & Dawson, 2003; Soberón & Peterson, 2005).

To provide informative predictions, it is necessary for a

model to successfully predict a high proportion of test

localities (i.e. have a low omission rate) whilst not predicting

as suitable such a large proportion of the study area as to make

the model statistically indistinguishable from a random

prediction (Anderson et al., 2002). When test data have been

partitioned from the full data set, statistical significance can be

assessed using a chi-square test or, for small sample sizes, an

exact upper-tailed binomial probability (e.g. ten test localities;

Anderson et al., 2002). This approach tests whether test points

fall into areas predicted present more often than expected at

random, given the overall proportion of the study area

predicted to be present (Anderson et al., 2002). However, an

alternative significance test is required for the jackknife

validation approach described below, because multiple models

are generated, each with a different proportion of the study

region predicted present.

Model testing using a statistic based on a jackknife

technique

Because of the importance of model assessment, and the reality

of small numbers of observed localities for many species, we

implemented a jackknife (or ‘leave-one-out’) procedure. Each

observed locality was removed once from the set of data and a

model built using the remaining n – 1 localities. Hence, for a

species with n observed localities, n separate models were built

for testing. Predictive performance was then assessed based on

the ability of each model to predict the single locality excluded

from the training data set.

The test of significance that we implemented is as follows.

We denote by n the number of observations. As already stated,

a given prediction method (e.g. Maxent, GARP) is applied

successively to sets of n – 1 localities, by leaving out one

observation at a time. Let pi be the proportion of the study area

predicted present when having deleted the ith point. Further-

more, let Xi be a success–failure variable to indicate if the ith

point is included in the ith predicted area or not (Xi takes on

the value 1 if such point is included in the prediction and 0

otherwise).

Let H denote the assumption of a completely random

assignment. Under H, Xi is essentially a random trial with

probability of success Pi. It is thus of interest to examine if

observed successes constitute evidence against H, in the

direction of ‘better than at random’. This is accomplished by

a P value, based on a suitable test criterion and a probability

distribution under H (see Sprott, 2000, Chapter 6). The test

criterion (or test statistic) adopted here, D, is simply

D ¼
X

Xið1� PiÞ:

Note that this amounts to weighting the successes (and not the

failures); a success (Xi ¼ 1) carrying greater weight (1 – Pi) if it

has occurred under a small assumed probability. This D

effectively ranks possible values of Xs according to the evidence

they provide against H. If d denotes the observed experimental

value of D, the corresponding P value is computed as the

probability under H that D ‡ d. Since D is dependent on the

proportional areas predicted in the n runs, a universal table of

P values cannot be created and the probability calculation must

be achieved by exhaustive case-by-case summation. Examine

all possible ways in which the array of n values of Xs can occur,

and sum probabilities under H for all of these arrays that

satisfy D ‡ d. The individual probability of a given array is the

product of corresponding Pis and (1 – Pi)s. For example, if

n ¼ 4 and the array under consideration is (1, 0, 1, 0), its

individual probability is P1(1 – P2)P3(1 – P4). We have made

available a program for calculating this P value (Supplement-

ary Appendix S1).

We note that there is an implicit technical assumption

behind the previous calculation: that the jackknife trials are

independent. In a strict sense, this assumption is not true

because each jackknife trial is sharing some of the data.

However, when sample sizes are small each locality is expected

to have a large influence on the model projection, giving

varying results from different combinations of available

localities. We further address this issue in the Discussion,

and contend that for small sample sizes the P value thus

described is at least approximately correct, and therefore

provides a useful measure of predictive ability.

Spatially autocorrelated localities

Species observations and collecting events tend, inevitably, to

be clustered around field camps and settlements. This gives rise

to the possibility of inflating validation statistics by including

localities that are not spatially independent (Hampe, 2004;

Luoto et al., 2005). To lessen this effect, for each jackknife

model run we conservatively removed from the training data

set all localities situated within 10 km of the test locality. Based

on the substantial local variation in topography and climatic

conditions that exists in Madagascar (as shown in our

environmental layers), we consider localities separated by at
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least 10 km to exhibit sufficient potential variation as to be

considered spatially independent.

DATA AND MODEL BUILDING

Study region and species sampling

The island of Madagascar (the fourth largest island in the

world) has a surface area of 587,000 km2, and exhibits

substantial environmental gradients, with diverse climates

and complex topography. The interior of the island forms a

high plateau above 1000-m elevation, with four complex

massif systems exceeding 1900 m, and summits up to 2876 m.

The steep eastern escarpment of the high plateau results in

much of the rainfall from the Indian Ocean trade winds falling

on the eastern side of the island, and consequently creates a

western rain-shadow. Recorded mean annual rainfall ranges

from 350 to 3753 mm, and the island is heavily influenced by

cyclones during the rainy season between January and April

(Donque, 1972). Recorded mean annual temperatures range

from 13.9 to 27.4�C, with increasing seasonality in tempera-

tures in the south, resulting from the latitudinal range of the

island (12–25�) that straddles the Tropic of Capricorn.

The biota of Madagascar has long been recognized as one

of the world’s most threatened, due to both the high levels of

diversity and endemism on the island, and the decline of

natural habitats (e.g. Myers et al., 2000; Ricketts et al., 2005).

The Gondwanan origin and long isolation (88 Myr bp) of

Madagascar (Storey et al., 1995; Raxworthy et al., 2002) has

resulted, for many biological groups, in the evolution of

species-rich clades that exhibit species-level regional ende-

mism. One such group is the Uroplatus leaf-tailed geckos

(Gekkonidae, Reptilia). These are endemic to Madagascar, and

are distributed throughout all regions of the island (except, so

far as we know, the extreme south). No species is cosmopolitan

across the island; each is associated with a specific primary

vegetation type and elevational range.

Current Uroplatus taxonomy recognizes 11 species

(Raxworthy, 2003), but we here also consider three other

species that are in the process of being formally described

(C. J. Raxworthy & R. A. Nussbaum, in preparation), and we

treat the two subspecies of Uroplatus sikorae (Uroplatus sikorae

sikorae and Uroplatus sikorae sameiti) as good species based on

the diagnostic features of each taxon (Böhme & Ibish, 1990;

C. J. Raxworthy & R. A. Nussbaum, in preparation). Until

recently, Uroplatus geckos had been rarely collected, and there

were relatively few specimens held in museum collections (see

Bauer & Russell, 1989). This situation presumably developed

because all Uroplatus species are arboreal and only active at

night, and diurnal collecting is extremely difficult due to their

cryptic habits of either retreating to arboreal refugia (e.g.

under bark or within palm axils) or else blending onto the

surface of tree trunks using skin fringes on the head, body,

limbs and tail (Raxworthy, personal observation). However,

since 1985, extensive new collections of Uroplatus have been

made as a result of herpetological surveys led by R. A.

Nussbaum and one of us (CJR) throughout most regions of

Madagascar (see Andriamialisoa & Langrand, 2003).

For this study, we selected Uroplatus to serve as a test case

for distribution modelling for the following reasons: (1) the

availability of accurate georeferenced locality data associated

with specimen vouchers, (2) the unambiguous taxonomy (in

reference to our revision of this group), (3) the species locality

samples sizes available to us were typically small, ranging from

2 to 23 localities, (4) the group exhibits regional endemism in

most areas of Madagascar, thus making this group a useful test

case for the island, and (5) the pressing conservation and

evolutionary applications for validated distribution models for

this genus. The locality data sets were compiled based on

voucher specimens held at the American Museum of Natural

History (AMNH) and the University of Michigan Museum of

Zoology (UMMZ), and supplemented with other museum

records that could be georeferenced (Bauer & Russell, 1989;

Böhme & Ibish, 1990; Raselimanana, 1998, 1999; Andreone

et al., 2001; Rakotomalala et al., 2001; Rakotomalala, 2002;

Böhme & Schönecker, 2003). Because of the resolution of the

environmental layers (1 km2), where specimens had been

collected in close proximity to each other, only one occurrence

record per grid cell was included in this analysis.

Environmental coverages

We assembled 20 environmental coverages relating to three

principal traits: temperature, precipitation and topography

(Supplementary Appendix S2). All environmental variables

were resampled to an oblique Mercator projection at 1 km2

resolution. Eleven temperature-derived variables were extrac-

ted from the WorldClim data base (Hijmans et al., 2005;

http://www.worldclim.org/), which is a set of global climate

layers generated through interpolation of climate data from

weather stations on a 30¢¢ grid (c. 1 km2 resolution). Weather

station data for Madagascar covered the period 1930–90, and

included temperature records from approximately 117 stations

(R. Hijmans, personal communication).

Four precipitation variables were derived from NOAA’s

Famine Early Warning System (FEWS) data archive (http://

www.cpc.ncep.noaa.gov/products/fews/data.html). FEWS pre-

cipitation estimates are generated at 0.1� resolution using a

method that incorporates multiple data sources: numerical

model analyses, satellite imaging and recorded surface data

(Herman et al., 1997; updated technical description at http://

www.cpc.ncep.noaa.gov/products/fews/RFE2.0_tech.pdf). Pre-

cipitation variables were calculated from 10-day estimates for

the period January 1996–December 2004. Mean monthly

values for February and August were included as individual

variables so as to represent wet and dry periods, respectively.

FEWS precipitation data were considered advantageous over

estimates derived by interpolation from weather station

records (e.g. Hijmans et al., 2005), since merging data from

multiple sources has been shown to reduce bias and random

error significantly compared to individual precipitation data

sources (Xie & Arkin, 1996). We expect that the advantages of
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incorporating satellite and modelled data in precipitation

estimates will be of particular value in Madagascar, where

weather stations are at low density and interpolation of

precipitation between localities is thus particularly uncertain.

Topographical variables were taken from the US Geological

Survey’s Hydro1k data base (http://edcdaac.usgs.gov/gtopo30/

hydro/index.asp). Hydro1k provides data layers derived from a

30¢¢ global digital elevation model. To avoid problems with

continuity of radially distributed variables, aspect was conver-

ted into two linear variables describing ‘northness’ and

‘eastness’ (Supplementary Appendix S1).

Modelling algorithms

Several alternative methods have been used to model ecological

niches and predict the geographical distributions of species. In

many cases, methods requiring both presence and absence

records are used (e.g. classification and regression trees; Bourg

et al., 2005), but reliable absence data are rarely available in

poorly sampled regions, or for species that are easily missed

during surveys. To model based on presence records only,

methods requiring both presence and absence records have

been applied by sampling ‘pseudo-absences’ from the study

area in place of real absence data (Ferrier et al., 2002; Engler

et al., 2004). Another approach is to use background environ-

mental data for the entire study area (Hirzel et al., 2002).

Other methods rely solely on presence records by assessing

similarity with observed occurrences in environmental space

(e.g. Nix, 1986; Carpenter et al., 1993).

Studies have identified considerable differences between

predictions obtained from different modelling algorithms,

emphasizing the importance of careful selection of appropriate

methods and the need to assess results from more than one

approach (Thuiller et al., 2004; Pearson et al., 2006). Here, we

apply the Maxent (Phillips et al., 2006) and GARP (Stockwell

& Peters, 1999) approaches, both of which have characteristics

that make them appropriate for our application, and for our

presence-only occurrence data.

Maxent

Maxent is a general-purpose method for characterizing

probability distributions from incomplete information, and

has recently been applied to modelling species distributions

(Phillips et al., 2006). For a concise mathematical definition of

Maxent, discussion of its application to species distribution

modelling and initial testing of the approach see Phillips et al.

(2006). In estimating the unknown probability distribution

defining a species’ distribution across a study area, Maxent

formalizes the principle that the estimated distribution must

agree with everything that is known (or inferred from the

environmental conditions at the occurrence localities) but

should avoid placing any unfounded constraints. The

approach is thus to find the probability distribution of

maximum entropy – that which is closest to uniform – subject

to constraints imposed by the information available regarding

the observed distribution of the species and environmental

conditions across the study area. Maxent computes a probab-

ility distribution based on environmental variables spread over

the entire study area; an approach to dealing with lack of

absence data most similar to that of Hirzel et al. (2002).

However, since our study region contains a very large number

of pixels (approaching 600,000) the implementation that we

used took a random sample of 100,000 ‘background’ pixels to

represent the environmental conditions present in the region.

We implemented Maxent using version 1.8.2 of the software

developed by S. Phillips and colleagues (for free download

see: http://www.cs.princeton.edu/�schapire/maxent/). Recom-

mended default values were used for the convergence threshold

(10)5) and maximum number of iterations (500). Suitable

regularization values, included to reduce overfitting, were

selected automatically by the program. Selection of ‘features’

(environmental variables or functions thereof) was also carried

out automatically, following default rules dependent on the

number of presence records. Maxent assigns a probability of

occurrence to each cell in the study area. Because these

probabilities must sum to 1, each cell’s probability is usually

extremely small, making model output difficult to interpret.

We therefore present model predictions as cumulative prob-

abilities, wherein the value of a given grid cell is the sum of that

cell and all other cells with equal or lower probability,

multiplied by 100 to give a percentage (Phillips et al., 2006).

The Maxent output is thus a continuous variable ranging from

0 to 100, indicating relative suitability (not probability of

occurrence). Maxent is a promising new method for modelling

species potential distributions and has been shown to perform

well in comparison with alternative approaches (Elith et al.,

2006).

GARP

GARP has been tested and applied more widely (e.g. Peterson

et al., 1999; Martı́nez-Meyer et al., 2004; Roura-Pascual et al.,

2004). GARP is a machine-learning approach that develops a

set of conditional rules to relate observed occurrences to

environmental variables (Stockwell & Peters, 1999). Predicted

presences are defined by envelope (i.e. upper and lower bounds

for each environmental variable), atomic (i.e. specific values or

categories for each variable), and logistic regression (logit)

rules. The set of rules is developed using a genetic algorithm,

which refines the solution in an evolutionary manner by

testing and selecting rules on random subsets of available data.

The algorithm requires absence samples for rule development,

but is implemented to deal with presence-only data by

selecting 1250 pseudo-absence localities at random from the

study area (Stockwell & Peters, 1999).

We used the Desktop GARP application (version 1.1.6;

http://www.lifemapper.org/desktopgarp/) and followed com-

mon procedure for implementation. For each model run, we

used 50% of the localities for training, with a convergence limit

of 0.01 and maximum number of iterations of 1000. Given the

heuristic nature of GARP processing each run provides a
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different binary solution, so we applied a modification of the

‘best subsets’ procedure described by Anderson et al. (2003).

For each species, we ran 100 GARP models (each time

randomly selecting a new 50% of localities for training, to

ensure all data were used across the set of models) and selected

the 20 models that omitted fewest of the remaining 50% of

localities (i.e. an extrinsic test; Anderson et al., 2003); of these

models, we selected the 10 closest to the median predicted area.

This approach favours predictions with low omission error

whilst removing models that are overfit or that present unduly

large predicted areas. The final GARP prediction was produced

by summing the 10 selected models, giving a prediction that

ranges from 0 to 10, and increases in increments of 1.

Decision thresholds

To aid model validation and interpretation, it is usually

desirable to distinguish ‘suitable’ from ‘unsuitable’ areas by

setting a decision threshold above which model output is

considered to be a prediction of presence (Pearson et al.,

2004). Although validation statistics are available that are

independent of a threshold (e.g. AUC), these are unsuitable

when only presence data are available (Boyce et al., 2002;

but see Phillips et al., 2006). The jackknife validation

approach that we use here requires application of a

threshold.

Many different approaches have been employed for setting

thresholds (Liu et al., 2005), yet most techniques depend on

balancing false-positive and false-negative predictions, making

them applicable only to cases in which absence data are

available. For the presence-only case, we considered here two

alternative thresholds. First, we chose the lowest predicted

value associated with any one of the observed presence records;

we term this the ‘lowest presence threshold’ (LPT). This

approach can be interpreted ecologically as identifying pixels

predicted as being at least as suitable as those where a species’

presence has been recorded; it is thus conservative, identifying

the minimum predicted area possible whilst maintaining zero

omission error in the training data set.

The second approach is intended to be more liberal by

incorporating a larger predicted area. We thus applied fixed

thresholds that rejected only the lowest 10% of possible

predicted values: for Maxent we used a threshold of 10 (T10),

and for GARP a threshold of 1 (T1). These thresholds were

chosen following initial tests that gave LPT values higher than

the selected fixed thresholds. Whilst somewhat arbitrary, the

fixed thresholds provide an alternative against which the LPT

can be compared. It is notable that fixing the GARP

threshold at 1 is equivalent to the ‘any model predicts’

criterion used for the best subsets models by Raxworthy et al.

(2003).

Jackknife model testing

The jackknife approach described earlier was implemented to

test predictive performance. Thus, multiple predictions were

made per species, with one of the observed localities excluded

in each case. For each prediction, a decision threshold was

applied (based on the training localities) and the ability to

predict the excluded locality was tested. A P value was then

calculated for each species across the set of jackknife predic-

tions using the program made available as Supplementary

Appendix S2.

Testing the impacts of varying sample size

To explore the effects of low sampling effort, we studied

changes in model performance as sample size was reduced

artificially. Here we used Maxent and analysed the two

species with the largest numbers of localities: Uroplatus

sikorae (23 localities) and Uroplatus sameiti (16 localities).

For each species, localities were removed in random order,

one at a time, from the training data set and a model

developed at each sample size. Changes in predictive

performance were examined by calculating the proportion

of cells predicted as present both by the model trained on all

available localities and the model trained on a reduced set of

localities. Five different random sequences of locality removal

were run for each species. This experimental approach also

enabled the relationship between sample size and LPT to be

investigated.

RESULTS

Models were developed for 13 Uroplatus species. Two

described species, Uroplatus alluaudi and Uroplatus pietsch-

manni, which could not be modelled here, have just three and

two localities, respectively. These were too few spatially

independent localities to enable model testing, even using

our jackknife approach, and thus these species were not

considered suitable for modelling.

Sample size influences on model projections and test

performance

Projected potential distributions for six example species using

Maxent (T10) are presented in Fig. 1. In each case, the model

was trained using all available localities. Figure 1(a)–(c) shows

models for species with sample sizes ‡ 15; in each instance, the

principal distributional areas are identified and high success

rates (i.e. low omission rates) and statistical significance were

obtained during testing (Table 1). The projections presented in

Fig. 1(d) and (e) were trained using six localities and show

high, and significant, success rates in jackknife tests. In

contrast, the model for Uroplatus malahelo (Fig. 1f) was

trained using only four localities and, although the projection

appears to identify a distinct area that could be interpreted as

being the main area of distribution, inspection of the test

statistics reveals that its predictive power was poor (two of four

excluded localities predicted).

Jackknife test results show high success rates and statistical

significance using Maxent (T10) for sample sizes ‡ 5 (Table 1).
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Figure 1 Modelled distributions for six

example species, using Maxent and applying a

threshold of 10: (a) U. fimbriatus,

(b) U. phantasticus, (c) U. sikorae, (d) U.sp. A,

(e) U. malama, (f) U. malahelo. Predicted

areas are shaded, and observed localities are

shown as black stars. The circled area in (d) is

an example of a disjunct area of ‘overpredic-

tion’.

Table 1 Jackknife tests of distribution models for 13 species of leaf-tailed gecko (Uroplatus spp.)

Species Locality sample size

Maxent, LPT Maxent, T10 GARP, LPT GARP, T1

Successes P value Successes P value Successes P value Successes P value

U. malahelo 4 0 1.0 2 0.0481 0 1.0 0 1.0

U. sp. C 5 2 5.27e–05 5 4.72e–09 1 0.0092 2 1.00e–04

U. sp. A 6 2 0.005 5 2.53e–05 2 1.0 2 0.0092

U. malama 6 2 0.0067 6 2.71e–05 1 1.0 1 0.0227

U. guentheri 7 5 2.26e–04 7 2.04e–05 2 0.0803 2 0.0099

U. lineatus 10 8 1.45e–04 10 1.32e–06 1 0.1273 6 9.79e–07

U. ebenaui 11 7 1.06e–06 10 1.57e–08 9 1.33e–09 11 1.02e–07

U. henkeli 13 10 3.33e–04 10* 1.76e–04 4 0.0361 9 1.50e–04

U. sp. B 13 10 1.68e–07 10* 1.97e–06 5 1.24e–05 9* 8.25e–09

U. fimbriatus 15 13 2.75e–08 13 2.09e–07 7 4.16e–05 11 2.11e–07

U. phantasticus 15 12 4.59e–10 13 5.31e–09 11 8.26e–11 12 1.28e–08

U. sameiti 16 15 3.84e–10 15* 8.57e–10 10 3.03e–07 13 4.28e–08

U. sikorae 23 20 2.73e–10 21 1.45e–10 11 3.45e–04 18 1.05e–06

LPT, lowest presence threshold; T10, fixed threshold of 10; T1, fixed threshold of 1.

*Denotes cases where the fixed threshold was greater than the LPT, thus leading to the omission of one or more localities in the projection based on all

localities.
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Test results showed that a statistically significant model was

built with as few as four localities (Maxent, T10; P < 0.05), but

the success rate at such a low sample size was poor (50%),

suggesting that this was not a good model. Results for Maxent

(LPT) and GARP (LPT and T1) were less good, particularly at

sample sizes of less than about 10, although jackknife success

rates generally increased with sample size.

A closer look at jackknife models

Example results from jackknife tests are presented for Uropl-

atus ebenaui in Fig. 2. The example demonstrates the exclusion

from model building of one of two localities owing to close

proximity to the test point (Fig. 2a) and the unsuccessful

prediction of an excluded locality despite it being geograph-

ically close to the predicted area (Fig. 2b). The disjunct locality

excluded in Fig. 2(c) and (d) was not successfully predicted in

either case, yet it is notable that when the decision threshold

was reduced to a fixed value of 10, the model identified a

suitable area that is disjunct from other predicted regions and

very close to the excluded locality (Fig. 2d).

Influence of decision threshold on model projections

and test performance

Using a fixed decision threshold below the LPT generally

increased the success rate in jackknife tests (Table 1). Although

using a lower threshold results in a higher proportion of the

study area being predicted as present, models that were

statistically significant using the LPT remained significant with

the fixed threshold. For example, Fig. 3 presents models using

each threshold approach with both modelling algorithms for

Uroplatus lineatus. For each modelling method, lowering the

threshold identified additional regions of suitable conditions,

notably extending south of the observed localities on the

eastern escarpment. Reducing the decision threshold can thus

uncover potentially informative distributional areas, as noted

above in Fig. 2(c) and (d).

Figure 2 Example jackknife tests for

U. ebenaui using Maxent. In each case the

circled localities were excluded from model

training. Lowest presence thresholds based

on the training localities were applied in (a),

(b) and (c), and a fixed threshold of 10 was

applied in (d). Two points were excluded in

(a) since a second point was located < 10 km

from the test point. Both points were suc-

cessfully predicted by the model. The

excluded point in (b) was not successfully

predicted, yet is located in close proximity to

the predicted area. The excluded point in (c)

and (d) was not successfully predicted in

either case, but if the threshold is reduced

from a lowest presence value of 46 (c) to a

fixed value of 10 (d), it is apparent that the

model predicts suitable area in close

proximity to the excluded point.
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In some jackknife tests, application of the LPT with GARP

resulted in successes but P values equal to 1 since the entire

region was predicted to be suitable. This was the case with two

excluded localities for Uroplatus sp. A and for one excluded

locality for Uroplatus malama (see Table 1). In these instances,

all best-subset GARP models excluded one of the training

localities, resulting in a LPT of zero. Application of a fixed

threshold of 1 resulted in non-zero omission in the training

data set, but yielded statistically significant models. Similarly,

for one species (Uroplatus sp. B) the GARP prediction based

Figure 3 Modelled distributions for

U. lineatus using two algorithms (Maxent

and GARP) and alternative decision

thresholds: lowest presence threshold (LPT)

and fixed thresholds of 10 for Maxent (T10)

and 1 for GARP (T1). Predicted areas are

shaded, and observed locality points are

shown as black stars.
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on all observed localities had a LPT of zero, thus requiring

application of a fixed threshold of 1 in order to give a

meaningful prediction.

LPT values varied broadly with both Maxent (Fig. 4a) and

GARP (Fig. 4b). In the case of Maxent, LPT generally

increased as sample size decreased. A similar trend with

Maxent was apparent when we experimentally reduced the

sample size of the training data set for the two species with the

largest sample sizes (Fig. 4c,d).

Comparison of modelling algorithms

Performance of the Maxent and GARP algorithms in the

jackknife tests was different, with Maxent achieving higher

success rates for almost all species (Table 1). Differences were

especially marked at very low sample sizes (£ 10), with Maxent

(T10) achieving higher, and more significant, success rates.

Whilst identifying broadly similar patterns of distribution,

the Maxent and GARP projections differed in a number of

respects. Taking the example of Uroplatus lineatus (Fig. 3),

each algorithm predicted suitable areas restricted to the north-

east of the country, and extending south of the observed

localities when the decision threshold was reduced. However,

the Maxent models predicted a generally broader area of

suitable conditions, extending further west in the north of the

country and into more coastal regions in the east. Although the

GARP models visually appeared to fit the observed localities

more closely, the ability to predict excluded localities was

considerably higher in Maxent projections (Table 1).

Across all species modelled, the proportion of the study area

predicted as present was significantly different between algo-

rithms when the LPT was applied (paired t-test: for LPT

P ¼ 0.034; for fixed thresholds P ¼ 0.061). In general, Maxent

predicted a larger proportion of the study area as present

compared to GARP (Supplementary Appendix S3).

Effects of reducing sample size on model performance

As expected, artificially reducing sample sizes by removing

localities from the training data set had a negative impact on

model performance (Fig. 5). Model performance reduced

especially dramatically at very small sample sizes (< c. 5). Of

note was a great deal of variability between results obtained

when using different random sequences for the removal of

localities, demonstrating the sensitivity of model output to

individual localities when sample sizes are very low. It is also

notable that models with a fixed threshold of 10 tended to

maintain a higher proportion of presences correctly predicted

as sample size was reduced (i.e. the proportion of cells

predicted as present both by the model trained on all localities

and by models trained on a reduced set of localities tended to

be higher for T10 rather than LPT models).

DISCUSSION

Modelling with small numbers of localities

To provide useful biogeographical information, niche-based

distribution models use environmental data to yield results

that cannot be derived solely from the original occurrence

data. For example, the area circled in Fig. 1(d) does not

include observed localities, yet the model indicated that

environmental conditions there are similar to where the

species is known to occur. We have demonstrated elsewhere
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Figure 4 Relationship between lowest pres-

ence threshold (LPT) and number of training

localities. (a) and (b) show results for all

species using Maxent (a) and GARP (b)

models trained on all observed localities.

(c) and (d) show changes to LPT with

Maxent for U. sikorae and U. sameiti,

respectively, as localities are sequentially

removed in random order (five different

random sequences presented).
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(Raxworthy et al., 2003) that such regions of model ‘overpre-

diction’ have the potential to identify unknown distributional

areas and unknown species. The ability to provide biogeo-

graphical information of this kind is a strength of this

modelling approach, and predictive ability at low sample sizes

should be judged in this context.

Based on our jackknife tests, we have demonstrated

significant predictive ability for Maxent (T10) models with

as few as five observed localities. In an application of GARP

with bird data for Mexico, Stockwell & Peterson (2002) found

good predictive performance with as few as 10 localities [the

success rate at predicting presence and (assumed) absence of a

species based on 10 records was commonly 90% of that

achievable with over 200 records]. Our application of the

jackknife test with Madagascan geckos suggests that sample

sizes may be reduced below 10 if Maxent is used. Reducing the

minimum number of sample localities required to build useful

distribution models can greatly increase the proportion of

species that can be studied using these techniques. For

example, Stockwell & Peterson (2002) noted that ‡ 50

localities are available for 20% of bird species in Mexico,

‡ 20 localities for 39% of species, and ‡ 10 localities for 65%

of species. Reducing the requirement to ‡ 5 localities, we find

that 88% of species in the Mexican bird atlas (Peterson et al.,

1998) could be studied using these techniques.

However, variability between predictions obtained when

artificially removing localities using different random se-

quences demonstrated that models were greatly influenced by

exactly which observations are included when sample sizes are

small. This variability illustrates the inherent uncertainty in

model predictions constructed from few occurrence records.

Addition of new records from future field surveys has the

potential to greatly impact model predictions. The importance

of each record will depend on whether that locality represents a

unique environment not represented by the other sample

points. For some species, a few sample localities may be

sufficient to characterize the environmental niche, whereas in

other cases the same number of samples may be inadequate to

represent the range of conditions under which the species

exists. Careful analysis of model output using the methods we

have described can help to identify cases wherein useful

information can be obtained from a few localities.

Choice of a decision threshold

Applications of GARP that apply the best-subsets approach

have tended to apply two alternative decision thresholds: ‘any

model predicts’ and/or ‘all models predict’ (e.g. Rice et al.,

2003; Roura-Pascual et al., 2004). For Maxent, Phillips et al.

(2006) have emphasized the need to investigate rules for

setting thresholds further, since no such precedents exist. Our

analyses support application of a threshold below that of the

LPT, since jackknife success rates were higher in these cases.

Furthermore, Maxent models with a fixed threshold of 10

tended to maintain a higher proportion of presences correctly

predicted as sample size was artificially reduced. Also, LPT

values were found to decrease as sample sizes became larger.

These results support relaxation of the decision threshold

below the LPT when small numbers of presence-only data are

available.
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on model performance for U. sikorae (left) and

U. sameiti (right). Localities were removed

sequentially (one by one) in random order and

a model trained with the remaining data. The

proportion of presences correctly predicted

was calculated for each model, where ‘correct’
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and (d) Maxent models using a fixed threshold
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Adjusting the decision threshold changes the proportion of

the study area predicted to be present and affects proportions

of observed records that are successfully predicted. For model

applications in well-sampled regions with large numbers of

locality records, it is common to set a balance between false-

positive and false-negative predictions (Thuiller et al., 2003;

Pearson et al., 2004). However, in cases where locality records

are few, and there is high confidence that species identifica-

tions are accurate and localities are correctly georeferenced, it

is appropriate to ensure there are no false-negative predictions

(i.e. enforce a zero omission rate since failure to predict any of

the observed localities is a clear error). This is achieved with

the LPT, which provides the lowest predicted proportional

area whilst maintaining zero training omission, but our

jackknife tests demonstrate improved predictive ability if the

LPT is reduced.

Choice of a decision threshold should be influenced by the

proposed application of the model. We have demonstrated the

possibility of uncovering potentially important distributional

areas (areas of ‘overprediction’) by setting thresholds relatively

low. A threshold below the LPT is thus appropriate for

applications that aim to guide fieldwork toward identification

of unknown distributional areas and undiscovered species.

However, Loiselle et al. (2003) have argued that reducing false-

positive predictions (i.e. minimizing the proportion of the

study area predicted as present) is of principal concern in

conservation applications because overestimating species

occurrences may misdirect conservation action.

Use of the LPT may therefore be appropriate in cases where

a more conservative prediction is desired. A notable advantage

of the LPT is that it has a straightforward ecological

interpretation, in identifying sites that are at least as suitable

as those where a species’ presence has been recorded. In

contrast, applying a more liberal threshold requires that a

subjective decision be made as to how much the LPT should be

lowered.

Choice between alternative algorithms

Choice of an appropriate modelling algorithm is important

since it is well known that different methods can give very

different predictions (Segurado & Araújo, 2004; Thuiller et al.,

2004; Elith et al., 2006; Pearson et al., 2006). Our analyses

support the use of Maxent when sample sizes are very small

since success rates in jackknife tests were higher than with

GARP. Maxent also generally predicted a larger proportion of

the study area as being present, thus making the approach

suited to the identification of new distributional areas in

poorly known regions.

Whilst GARP has the advantage of having already under-

gone extensive testing and application, the concise mathemat-

ical definition of Maxent means that the approach and

assumptions are transparent; furthermore, the algorithm is

deterministic. Maxent thus offers excellent potential for

extracting useful biogeographical information from small

samples of locality records.

Statistical assumptions

Analytical study of the degree of independence of jackknife

trials is intractable, because of the very complex nature of

most algorithmic modelling techniques used for niche

prediction. (A technical report, by E. Dı́az-Francés and

M. Nakamura addressing the potential effect of varying

degrees of correlation on the efficacy of the test statistic, is

forthcoming.) We here argue that possible strong correlations

tend to appear in this problem when the samples are large,

and therefore that when the sample sizes are small, the

proposed P value is approximately correct. Examining the

leave-one-out predictions for a species with a small sample

size typically shows that each prediction is very different. In

contrast, when the sample size is larger, many of the

jackknifed predictions are alike. This is because groups or

clusters of observations in sufficient numbers tend to jointly

determine a predicted niche, so that strong dependence is

induced in jackknife trials.

The striking (and cautionary) effect of this lack of

independence can be illustrated by taking an example of a

larger sample size and testing predictive performance using the

alternative approach of randomly splitting data into two

disjunct sets (test and training) and calculating a binomial

probability. For U. sikorae, this approach gives a P value

different by several orders of magnitude (five random splits,

30% training, Maxent LPT, results in P values from 0.0001 to

0.0129) compared with the P value reported in Table 1

(2.73 · 10)10). The dependence between trials is evident in

this example when viewing the individual jackknife models, as

many of the predictions are very similar. If this caveat for

larger samples is not properly understood, our P value can

wrongly be interpreted as providing more optimistic evidence

of predictive power than is warranted.

CONCLUSIONS

The approach that we have presented for testing distribution

models when locality records are scarce has demonstrated the

predictive ability of these models, yet the predictions should be

interpreted with care. It would be inappropriate to interpret

modelled distributions as representing actual limits to the

range of a species. Rather, the models identify regions that have

similar environmental conditions to where the species cur-

rently maintains populations. These data can provide valuable

biogeographical information, for example in targeting surveys

to accelerate the discovery of unknown populations and

species (Raxworthy et al., 2003; Bourg et al., 2005).

We have presented a methodological approach that shows

much potential for extracting useful biogeographical informa-

tion from small samples of observed presence localities. The

approach can form part of an iterative procedure for

generating new biogeographical data: (1) models that show

significant predictive ability in jackknife tests are used to guide

field surveys, (2) field surveys provide new locality records that

provide an independent test of the models, and can be used to
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generate improved model projections for guiding future

surveys.

Further research is required to investigate the impacts of

factors including sampling bias (Zaniewski et al., 2002; Reddy

& Davalos, 2003), spatial autocorrelation (Luoto et al., 2005)

and data resolution (Karl et al., 2000). However, our analyses

support the careful application of these techniques in poorly

known regions, such as Madagascar, where modelled biogeo-

graphical data can provide valuable information for evolu-

tionary and ecological study, and for informing conservation

priorities.
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Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T. & Prentice,

I.C. (2005a) Climate change threats to plant diversity in

Europe. Proceedings of the National Academy of Sciences

USA, 102, 8245–8250.

Thuiller, W., Richardson, D.M., Pysek, P., Midgley, G.F.,

Hughes, G.O. & Rouget, M. (2005b) Niche-based modelling

as a tool for predicting the global risk of alien plant

invasions at a global scale. Global Change Biology, 11, 2234–

2250.

Xie, P. & Arkin, P.A. (1996) Analysis of global monthly

precipitation using gauge observations, satellite estimates,

and numerical model prediction. Journal of Climate, 9, 840–

858.

Zaniewski, A.E., Lahmann, A. & Overton, J.M. (2002) Pre-

dicting species spatial distributions using presence-only

data: a case study of native New Zealand ferns. Ecological

Modelling, 157, 261–280.

SUPPLEMENTARY MATERIAL

The following supplementary material is available for this

article:

Appendix S1. Executable program (pValueCompute.exe),

with Help file (help.txt), for calculating the P value described

in this paper.

Appendix S2. A list of environmental variables used in the

modelling.

Appendix S3. Table showing the proportion of the study

area predicted as present by each modelling approach for all

species.

This material is available as part of the online article from:

http://www.blackwell-synergy.com/doi/abs/(This link will take

you to the article abstract.)

Please note: Blackwell Publishing are not responsible for the

content or functionality of any supplementary materials

supplied by the authors. Any queries (other than missing

material) should be directed to the corresponding author for

the article.

R. G. Pearson et al.

116 Journal of Biogeography 34, 102–117
ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publishing Ltd



-BIOSKETCHES

Richard Pearson is a researcher at the American Museum of Natural History (AMNH) where he is associated with both the Center

for Biodiversity and Conservation and the Department of Herpetology. Richard’s research falls principally within the fields of

biogeography and spatial ecology.

Chris Raxworthy is associate curator in the Department of Herpetology at the AMNH and has studied the amphibians and reptiles

of Madagascar since 1985.

Miguel Nakamura is based at the Centro de Investigacion en Matematicas (CIMAT), Mexico, where his research focuses on the

application of statistics in biodiversity studies.

Town Peterson is professor and curator of ornithology at the University of Kansas and has worked extensively on the geography

and ecology of species distributions.

Editor: Jon Sadler

Predicting species distributions with low sample sizes

Journal of Biogeography 34, 102–117 117
ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publishing Ltd


