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Introduction

Systems of coupled partial differential equations (PDEs) and stochastic partial differential

equations (SPDEs) can be used as models to describe the distribution of heat in mixtures of

components that can burn, turbulence phenomenon, population dynamics, neurophysiology,

reaction-diffusion processes, branching diffusions, hydrodynamic limit of particles, among

others (see E. Pardoux [37]).

Some of the classical problems arising from the study of PDEs and SPDEs include existence

and uniqueness of solutions. Consequently, a natural question to ask is whether a solution

exists globally in time or it explodes (or blows up) at some finite time. The study of globability

and blowup in finite time of systems of PDEs and SPDEs has been intensively studied during

the last decades, starting with the pioneering works of S. Kaplan [28] and H. Fujita [20] (see

H. A. Levine [31], K. Deng and H. A. Levine [12], V. A. Galaktionov et al. [21], V. A.

Galaktionov [22] and P. Quittner and Ph. Souplet [42] for reviews).

One of the earliest studies of explosion in finite time is due to H. Fujita [20], who considered

the parabolic equation

∂u

∂t
= ∆u+ u1+β, t > 0, x ∈ D, (1)

u(0, x) = a(x), x ∈ D,

u(t, x) = 0, x ∈ ∂D,

where D ⊆ Rd is a domain with smooth boundary ∂D, β > 0 and a : D̄ → [0,∞) is a

given bounded and uniformly continuous function. Solutions of this equation are considered

in the mild sense. As is mentioned in [20], in the hole space (D = Rd) the dimension plays

an important role in determining the existence of explosive or global positive solutions: if

0 < dβ < 2 and a(x0) > 0 for some x0 ∈ R, then every nontrivial positive solution of (1)

blows up in finite time; if dβ > 2, then (1) admits a global solution for sufficiently small initial

value, which means that 0 ≤ a(x) ≤ δe−κ|x|2 for some constants δ, κ > 0.

When D is bounded, in [20] it is considered the smallest eigenvalue λ > 0 of −∆, with
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corresponding eigenfunction φ > 0 in D, namely

−∆φ(x) = λφ(x), x ∈ D, (2)

φ(x) = 0, x ∈ ∂D.

Since φ ∈ L2(D), φ can be normalized as
∫
D φ(x)dx = 1. In this setting, any positive solution

of (1) blows up in finite time if ∫
D
a(x)φ(x)dx ≥ λ1/β.

In contrast to this result, if we replaced the nonlinear term u1+β in equation (1) by any

continuous function f : R → R such that |f(r)| ≤ λ|r| and |a(x)| ≤ Mφ(x), for some

constants λ,M > 0, but φ normalized as maxx∈D φ(x) = 1, then any solution of (1) is global.

Now consider the coupled system of PDEs

∂u

∂t
= ∆u+ vp, t > 0, x ∈ Rd,

∂v

∂t
= ∆v + uq, t > 0, x ∈ Rd, (3)

u(0, x) = u0(x), x ∈ Rd,

v(0, x) = v0(x), x ∈ Rd,

where p, q > 0, d ∈ N and u0, v0 are nonnegative, continuous and bounded functions. M.

Escobedo and M. Herrero [18] showed that if 0 < pq ≤ 1, then every solution of (3) is global.

Note that this criterion for globability does not depend on the dimension d. However, in

the case pq > 1 several behaviours can appear. For instance, if pq > 1, max{p,q}+1
pq−1 < d

2 ,

u0 ∈ L∞(Rd) ∩ Lα1(Rd) and v0 ∈ L∞(Rd) ∩ Lα2(Rd) with α1 = (d/2)((pq − 1)/(q + 1)),

α2 = (d/2)((pq−1)/(p+1)), then there exists ε > 0 such that if ‖u0‖Lα1 (Rd) +‖v0‖Lα2 (Rd) ≤ ε,

then every solution of (3) is global. In contrast, if pq > 1, max{p,q}+1
pq−1 < d

2 and u0(x) ≥ Ce−k|x|2

for some constants C > 0 and k > 0 (or similarly v0(x) ≥ Ce−k|x|2 for some constants C > 0

and k > 0), then the solution of (3) blows up in finite time.

Conditions on existence of explosive solutions of (3) change significantly when we restrict the

system (3) to a bounded domain D ⊆ Rd, with Dirichlet condition on the boundary. This

case was considered by K. Deng [11] and L. Wang [49].

In the case of a bounded domain D ⊆ Rd, if 0 < pq ≤ 1 then every solution of (3) remains

global for any bounded initial conditions (as in the case D = Rd), but if pq > 1 and for some
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δ ∈ (0, 1), ∆u0 + (1− δ)vp0 ≥ 0 and ∆v0 + (1− δ)uq0 ≥ 0, then every solution of (3) blows up

in finite time.

Consider a random perturbation in a PDE, driven by a real-valued standard Brownian motion

{Wt; t ≥ 0}, defined in some probability space (Ω,F ,P). For instance, consider the nonlinear

SPDE

du(t, x) =
(

∆u+ u1+β(t, x)
)
dt+ κu(t, x)dWt, t > 0, x ∈ D, (4)

u(0, x) = f(x) ≥ 0, x ∈ D,

u(t, x) = 0, t ≥ 0, x ∈ ∂D,

which is Fujita’s equation but with a linear multiplicative noise. We assume that D ⊆ Rd

is a bounded domain, β > 0, κ ∈ R and f : D → R+ is a C2(D) function not identically

zero. Blowup in finite time for that kind of equations was proved by M. Dozzi and J. A.

López-Mimbela [15]. They proved the probabilistic counterpart of Fujita’s result: if τ is the

explosion time of (4), then there exist random times τ∗ and τ∗ such that τ∗ ≤ τ ≤ τ∗ and,

moreover

τ∗ = inf

{
t ≥ 0 :

∫ t

0
eκβWr−β(λ+κ2/2)rdr ≥

(
βLβ ‖φ‖β∞

)−1
}
,

τ∗ = inf

t ≥ 0 :

∫ t

0
eκβWr−β(λ+κ2/2)rdr ≥

(
βLβ

(∫
D
φ2(x)dx

)β)−1
 ,

where φ and λ are as in (2) and the initial condition is taken of the form f = Lφ, for some

constant L > 0. Note that these bounds allow to determine a nontrivial interval for the

probability of explosion in finite time of system (4). As it is shown in [15],

P(τ∗ <∞) = P

(∫ ∞
0

eκβWr−β(λ+κ2/2)rdr ≥ β−1κ−β
(∫

D
φ2(x)dx

)−β)
and

P(τ∗ <∞) = P
(∫ ∞

0
eκβWr−β(λ+κ2/2)rdr ≥ β−1κ−β ‖φ‖−β∞

)
,

and therefore P(τ <∞) ∈ [P(τ∗ <∞),P(τ∗ <∞)]. A random variable of the form

Z =

∫ ∞
0

eσWr+µrdr,

where σ, µ ∈ R, is called a Dufresne’s functional, and the distribution of such a random quan-

tity was explicitly obtained by D. Dufresne [16]. He showed by means of weak convergence of

random walks that if µ ≥ 0 then Z =∞ a.s., and if µ < 0 then Z−1 d
= Γ(−2µ/σ2, σ2/2), where
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Γ(a,m) is a Gamma-distributed variable with density function f(x) = Γ(a)−1m−axa−1e−
x
m ,

for x > 0, and a,m > 0.

Now consider the coupled system of nonlinear SPDEs

du1(t, x) = [(∆ + V1)u1 (t, x) + up2 (t, x)] dt+ κ1u1 (t, x) dWt, t > 0, x ∈ D,

du2(t, x) = [(∆ + V2)u2 (t, x) + uq1 (t, x)] dt+ κ2u2 (t, x) dWt, t > 0, x ∈ D, (5)

ui(0, x) = fi(x) ≥ 0, x ∈ D,

ui(t, x) = 0, t ≥ 0, x ∈ ∂D, i = 1, 2,

where Vi = λ + κ2
i /2, i = 1, 2, λ > 0 is the first eigenvalue of the Laplacian on a smooth

bounded domain D ⊆ Rd and p ≥ q > 1. This kind of systems were studied by M. Dozzi, E.

T. Kolkovska and J. A. López-Mimbela [14]. Considering subsolutions and supersolutions of a

related system of PDEs, in [14] it is shown that the blowup time τ of the above system is lower

and upper bounded by random times %∗∗ and %∗∗, respectively, which depend respectively on

functionals of the form∫ t

0
(eaWr ∨ ebWr)dr and

∫ t

0
(eaWr ∧ ebWr)dr, (6)

for some positive constants a, b. In this case, using the Feynamn-Kac approach given in M.

Jeanblanc, J. Pitman and M. Yor [26], in [14] a lower bound for P (τ ≥ θk) is obtained, where

θk is an exponential random variable, independent of {Wt; t ≥ 0}, with positive parameter k.

As we can see, there are several conditions for explosion in finite time of different systems of

PDEs and SPDEs, and these form the subject of this dissertation. Throughout the present

work we consider systems of PDEs and systems of SPDEs, and the main results we present

are focused on existence of mild solutions, as well as on finding lower and upper bounds for

the explosion times of these systems. We start in Chapter 1 with a brief review of background

results that we need to develop this work. Proofs are omitted, but we provide references

where they can be found.

The first system of PDEs is analysed in Chapter 2. We consider the semilinear system of

partial differential equations

∂u1(t, x)

∂t
=

1

2

∂2u1 (t, x)

∂x2
+
ϕ′1 (x)

ϕ1 (x)

∂u1 (t, x)

∂x
+ u1+β1

2 (t, x) , t > 0, x ∈ R,

∂u2(t, x)

∂t
=

1

2

∂2u2 (t, x)

∂x2
+
ϕ′2 (x)

ϕ2 (x)

∂u2 (t, x)

∂x
+ u1+β2

1 (t, x) , t > 0, x ∈ R, (7)
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with initial values of the form ui (0, x) = hi (x)/ϕi (x), where

0 < ϕi ∈ L2 (R, dx) ∩ C2 (R) ,

and 0 ≤ hi ∈ L2 (R, dx), βi > 0 for i = 1, 2. As is mentioned in Section 2.1, operators of the

form

Lϕ =
1

2

d2

dx2
+
ϕ′(x)

ϕ(x)

d

dx
, x ∈ R,

are infinitesimal generators of one-dimensional recurrent diffusion processes with invariant

measure µ(dx) = ϕ2(x)dx.

The main result on existence and uniqueness of local mild solutions of system (7) is Theorem

2.2.1. To prove an existence and uniqueness theorem we use the classical Banach fixed-point

theorem. A criterion for explosion in finite time for that kind of systems is given in Theorem

2.3.1, which we consider is the main result of Chapter 2. We distinguish two cases: if β1 = β2,

then any non-trivial positive mild solution explodes in finite time, and we give an upper bound

T ∗ for the explosion time. In the case of β1 > β2, we found a condition on the sizes of the

initial conditions that ensures explosion in finite time of positive nontrivial solutions. In the

later case, we were also able to find and upper bound T ∗ for the blowup time of that system

which depends both on the initial values f1, f2 and the measures µi(dx) = ϕ2
i (x) dx, i = 1, 2.

Chapter 2 corresponds to the accepted paper [24].

Chapter 3 focuses on the study of existence of positive mild solutions and the explosion in

finite time of systems of SPDEs of the form

du1(t, x) =
[
∆αu1 (t, x) + u1+β1

2 (t, x)
]
dt+ κ1u1 (t, x) dWt, t > 0, x ∈ D,

du2(t, x) =
[
∆αu2 (t, x) + u1+β2

1 (t, x)
]
dt+ κ2u2 (t, x) dWt, t > 0, x ∈ D, (8)

ui(0, x) = fi(x) ≥ 0, x ∈ D,

ui(t, x) = 0, t ≥ 0, x ∈ Rd \D, i = 1, 2,

where ∆α is the fractional Laplacian and β1 ≥ β2 > 0. We extend the results given in

[30] on existence of solution of system (5), for the case Vi = 0 and α ∈ (0, 2). A criterion

for existence of explosive solutions is also given. We start by establishing the equivalence

between weak solutions of system (8) and weak solutions of a related system of random PDEs

(see Section 1.3, expression (1.6)). This result is based on the Doss-Sussman transformation,

which basically works for SPDEs with linear multiplicative noise. We use results due to J.

M. Ball [1] and M. Juzyniec [27] on equivalence of weak and mild solutions for the system of
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random PDEs obtained by means of Doss-Sussman transformation (see Theorem 1.3.3).

Assuming the existence of a weak solution of the related system of PDEs, the first difficulty is

to find an appropriate explosive subsolution whose explosion time can be explicitly computed.

We were able to solve a non-homogeneous random Bernoulli equation by means of a change

of variables, and the subsolution we found is given in Theorem 3.3.1, which is one of the main

results of Chapter 3. We again distinguish two cases: if β1 = β2 we find an upper bound τ∗

for the explosion time τ of the system (8); if β1 > β2 we find an upper bound τ∗∗ for τ . Both

random times τ∗ and τ∗∗ depend on functionals of the form∫ t

0
(eaWr ∧ ebWr)e−µrdr, (9)

for some positive constants a, b and µ. Note that functionals of the form (6) are special cases

of the functionals in (9). In this sense, our results can be considered as an extension of those

results given in [30]. The second challenge is to obtain information on the distribution of

the functionals in (9), and on the explosion times of (8) in Theorem 3.3.1 we find random

times τ ′ and τ ′′ for the cases β1 = β2 and β1 > β2, respectively, satisfying τ ≤ τ∗ ≤ τ ′ and

τ ≤ τ∗∗ ≤ τ ′′. The new random times τ ′ and τ ′′ depend on integral functionals of the form∫ t

0
e−(σWs−µs)1{σWs−µs≥0}ds, (10)

where σ > 0 and µ > 0 are constants. The distribution of the perpetual version of (10) is

found by a direct computation of the potential measure of the Brownian motion with drift,

{σWt − µt; t ≥ 0}, leading to an integral equation for the function

H(x, z) := E
[
exp

(
−z
∫ ∞

0
e−(σWs−µs+x)1{σWs−µs+x≥0}ds

)]
, x ≥ 0 z ∈ C,

which is solved by Banach fixed-point iterations, (see expressions (3.21) and (3.22)). Using

analytic continuation we finally find the Laplace transform of the functional (10). We invert

this Laplace transform using a result due to A. Erdélyi [19]. Our findings are included in

Theorem 3.2.6.

To show the existence of a mild solution of the related system of random PDEs (1.6), we use

the iterated Galerkin method in Theorem 3.3.3 which allows us to construct a supersolution

for this system. This supersolution explodes at a random time τ∗, which is a lower bound

for τ . It is not easy to manipulate this bound because it depends on the semigroup of the

α-stable process killed in Dc, but if we take the initial values as fi = Liψ, i = 1, 2, where

ψ is the first eigenvalue of −∆α on D, then we can find another lower bound τ∗∗ such that
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τ∗∗ ≤ τ∗. The random time τ∗∗ depends on functionals of the form∫ t

0
(eaWr ∨ ebWr)e−µrdr, (11)

where a, b and µ are positive constants. Even though we were unable to obtain explicitly the

distribution of the functional in (11), we found another random time τ′′ which depends upon

Dufresne’s functional. In summary, we found an interval for [τ′′, τ
′′] for τ . Finally, taking

the initial conditions of the form fi = Liψ, i = 1, 2, we construct in Section 3.4 the interval

[P (τ ′′ <∞) ,P (τ′′ <∞)] for P (τ <∞). Chapter 3 corresponds to the accepted paper [25].

In the final Chapter 4 we consider a system of SPDEs of the form

du1(t, x) =
[
∆α1u1 (t, x) + u1+β1

2 (t, x)
]
dt+ κ1u1 (t, x) dWt, t > 0, x ∈ D,

du2(t, x) =
[
∆α2u2 (t, x) + u1+β2

1 (t, x)
]
dt+ κ2u2 (t, x) dWt, t > 0, x ∈ D, (12)

ui(0, x) = fi(x) ≥ 0, x ∈ D,

ui(t, x) = 0, t ≥ 0, x ∈ Rd \D, i = 1, 2,

where α1, α2 ∈ (0, 2] and, in general, α1 6= α2. As before, D is a bounded domain. We

introduce a different notion of blowup of an SPDE, namely, explosion in the Lp(D)-norm, for

p ∈ [1,∞).

This notion of explosion has been investigated recently by several authors, including [8], [9]

and [32], initially for a single equation and with a space-time noise. In the special case of

α1 = α2 we give a condition on the initial values of (12) that ensures finite-time blowup in

the Lp(D)-norm of any positive solutions of (12), as well as an explicit upper bound for the

explosion time in the Lp(D)-norm sense (see Theorem 4.3.1).

Next, we deal with the more general case of α1 6= α2. Here we have to assume that D is a

ball of radius r > 0, centred at 0. This assumption allow us to use nice estimates of the first

eigenfunction ψ of −∆α on D due to T. Kulczycki (see Bogdan et al. [4]). Such estimates are

based on the intrinsic ultracontractive property of ∆α, and are of the form

C1(r2 − |x|2)α/2 ≤ ψ(x) ≤ C2(r2 − |x|2)α/2, (13)

where Ci, i = 1, 2, is a positive constant depending on the radius r and the fractional power

α ∈ (0, 2]. Using (13) we obtain condition implying finite-time blowup of system (12), as well

as an upper bound for the explosion time in the Lp(D)-norm sense, for any p ∈ [1,∞).
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Chapter 1

Preliminaries

This chapter presents some background results on different aspects treated throughout the

thesis.

Since we consider SPDEs involving the fractional Laplacian ∆α (see Chapter 3 and 4), in

Section 1.1 we show some properties of this operator. In particular we give the classical result

about the spectrum of ∆α.

The main tools from stochastic calculus are presented in Section 1.2. In particular we focused

on Itô’s formula, integration by parts formula and Polarization’s identity. These tools will be

needed in Section 1.3.

As it was mentioned in the Introduction, we use a change of variable inspired in the Doss

transformation, to go from a system of SPDEs to a system of random PDEs. The results

concerning equivalence of mild and weak solutions for the system of random PDEs are shown

in Section 1.3.

Finally, in Section 1.4 we present some know formulae for the Laplace transform of some

integral functionals of Brownian motion.

We do not give proofs of the quoted results, but we provide references where they can be

found.

1.1 The fractional Laplacian

Let {Yt; t ≥ 0} be a spherically symmetric α-stable Lévy process on Rd, d ∈ N, where

α ∈ (0, 2]. This is a process with independent and stationary increments and characteris-

tic function E0

[
eiu·Yt

]
= e−t|u|

α
, u ∈ Rd, t ≥ 0. We will use Ex and Px to denote respectively

the expectation and probability of this process starting at x ∈ Rd. By {Pt; t ≥ 0} we denote
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the semigroup of the process {Yt; t ≥ 0}; that is, for all f ∈ L2(Rd),

Ptf(x) = Ex [f(Yt)] , t ≥ 0, x ∈ Rd.

The proof of the following result can be found in [7, Theorem 2.1]

Theorem 1.1.1. The semigroup {Pt; t ≥ 0} admits an integral kernel {p(α)(t, x, y), t >

0, x, y ∈ Rd} satisfying the following properties:

1. {p(α)(t, x, y), t > 0, x, y ∈ Rd} is strictly positive on (0,∞)× Rd × Rd;

2. {p(α)(t, x, y), t > 0, x, y ∈ Rd} is jointly continuous on (0,∞)× Rd × Rd;

3. for any t > 0 and x, y ∈ Rd,

p(α)(t, x, y) = p(α)(t, y, x) = p(α)(t, 0, x− y);

4. for any t > 0 and for any x, y ∈ Rd,

p(α)(t, x, y) = t−d/αp(α)(1, t−1/αx, t−1/αy).

When α = 2 the process {Yt; t ≥ 0} is just the Brownian motion in Rd with variance 2 and

p(2)(t, x, y) =
1

(4πt)d/2
e
−|x−y|2

4t , t > 0, x, y ∈ Rd.

When α = 1, the process {Yt; t ≥ 0} is the Cauchy process in Rd whose transition densities

are given by

p(α)(t, x, y) =
cdt

(t2 + |x− y|2)(d+1)/2
t > 0, x, y ∈ Rd,

where

cd = Γ((d+ 1)/2)/π(d+1)/2.

In what follows D ⊆ Rd is a domain. Let τD := inf {t > 0 : Yt /∈ D} the first hitting time of

Dc and consider the killed process
{
Y D
t , t ≥ 0

}
given by

Y D
t =

Yt if t < τD

∂ if t ≥ τD,

where ∂ is a cemetery point. By {PDt ; t ≥ 0} we denote the semigroup associated to the killed

process {Y D
t ; t ≥ 0}. That is, for any f ∈ L2(D)

PDt f(x) = Ex
[
f(Yt)1{t<τD}

]
t ≥ 0, x ∈ D. (1.1)

2



The following result is [7, Theorem 2.3]. We denote by Cnb (D) the space of bounded functions

with continuous derivatives up to order n ∈ N. For simplicity we write C0
b (D) := Cb(D).

Theorem 1.1.2. For any domain D ⊆ Rd we have PDt f ∈ Cb(D) for t > 0 and f ∈ L∞(D).

For t > 0 and x, y ∈ Rd, let

rD(t, x, y) = Ex
[
p(α)(t− τD, YτD , y)1{t>τD}

]
and

pD(t, x, y) = p(α)(t, x, y)− rD(t, x, y), t ≥ 0, x, y ∈ Rd.

Note that by the right continuity of the sample paths of {Yt; t ≥ 0}, we have pD(t, x, y) = 0

for all x ∈ Rd \D. The following result gives the main properties of the family {pD(t, x, y); t ≥

0 and x, y ∈ Rd} (see [7, Theorem 2.4]).

Theorem 1.1.3. For any t > 0, x ∈ Rd and all nonnegative Borel measurable functions f

on Rd,

PDt f(x) =

∫
Rd
pD(t, x, y)f(y)dy.

The function pD(t, ·, ·) is symmetric on Rd×Rd and strictly positive on D×D. As a function

of (t, x, y), pD is continuous on (0,∞)×(Rd\∂D)×(Rd\∂D). For any t, s > 0 and x, y ∈ Rd,

we have the semigroup property

pD(t+ s, x, y) =

∫
Rd
pD(t, x, z)pD(s, z, y)dz.

Theorem 1.1.4. For each p ∈ [1,∞), {PDt ; t ≥ 0} forms a strongly continuous semigroup

in Lp(D). If, in addition, D is bounded, then for each t > 0, Pt is a linear bounded operator

from Lp(D) to Lq(D) for any p, q ∈ [1,∞).

If D ⊆ Rd is a bounded domain, then there exists a constant cα,d > 0 depending only on α

and d such that the kernel {pD(t, x, y); t ≥ 0, x, y ∈ Rd} satisfies the relation

pD(t, x, y) ≤ p(t, x, y) ≤ cα,dt−d/α, t > 0, x, y ∈ D,

(see [4, Chapter 4]). It follows that∫
D

∫
D

(pD(t, x, y))2dxdy <∞, t ≥ 0.

Therefore {PDt ; t ≥ 0} is a family of Hilbert-Schmidt linear operators. Hence for any t > 0,

PDt is a compact operator and we have the result in [7, Theorem 2.4]:
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Theorem 1.1.5. Let D ⊆ Rd be a bounded domain. Then for any t > 0, PDt has the same

eigenvalues {e−λnt}n∈N in Lp(D), for all p ∈ [1,∞), where

0 < λ1 < λ2 ≤ λ3 ≤ · · ·

with limn→∞ λn =∞. In particular there is a sequence {ψn}n∈N in L2(D) and corresponding

eigenvalues {e−λnt}n∈N such that

PDt ψn(x) = e−λntψn(x), t > 0, x ∈ D. (1.2)

Moreover {ψn}n∈N is an orthonormal basis for L2(D), the eigenfunctions ψn are continuous

and bounded in D and ψn = 0 on Dc, n ∈ N. In addition, λ1 has multiplicity 1 and its

corresponding eigenfunction ψ1 is strictly positive on D (see [4, Chapter 4]).

Now we formulate the above properties in terms of infinitesimal generators. The infinitesimal

generator of {Yt; t ≥ 0} is the fractional Laplacian defined by

∆αu(x) := A(d, α)P.V.

∫
Rd

u(x+ y)− u(x)

|y|d+α
dy, u ∈ C2

b (Rd),

where A(d, α) is a positive constant depending only on d and α. Recall that a point x0 ∈ ∂D

is called regular for {Yt; t ≥ 0} if Px0(τD = 0) = 1. We say that D is regular for {Yt; t ≥ 0} if

every point x ∈ ∂D is regular for {Yt; t ≥ 0}. It follows that if D ⊆ Rd is a bounded regular

domain for {Yt; t ≥ 0}, then ∆α satisfies the eigenvalue problem with Dirichlet condition in

Dc:

∆αψn(x) = −λnψn(x), x ∈ D,

ψn(x) = 0, x ∈ Dc. (1.3)

For example when D = (0, π) and α = 2, then ψn(x) =
√

2/π sin(nx) and λn = n2. However,

for α ∈ (0, 2) and a general bounded domain D ⊆ Rd, ∆α is a pseudodifferential nonlocal

operator and it is very difficult to obtain properties of the eigenvalues and eigenfunctions

using (1.3) only.

1.2 Some tools from stochastic calculus

This section is devoted to a change of variables formula for stochastic integrals, which makes

them easy to handle and thus leads to some explicit computations; in particular, those com-

putations are shown in Chapter 3. The main reference for this section is D. Revuz and M.

Yor [43]. We first present the Proposition 3.1 in [43].
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Theorem 1.2.1 (Integration by parts formula). If X := {Xt; t ≥ 0} and Y := {Yt; t ≥ 0}

are two real-valued continuous semimartingales, then

XtYt = [X,Y ](t) +X0Y0 +

∫ t

0
XsdYs +

∫ t

0
YsdXs,

where [X,Y ](t) is the covariation process between X and Y .

As we will see in Section 1.3, one of the main tools to transform a system of SPDEs to a

system of random PDEs is based on Itô’s formula. Let Cn(R) the space of the continuous

functions with continuous derivatives up to order n ∈ N.

Theorem 1.2.2 (Itô’s formula). Let F : R → R be in C2(R) and let {Xt; t ≥ 0} be a

real-valued continuous semimartingale. Then {F (Xt); t ≥ 0} is a semimartingale such that

F (Xt) = F (X0) +

∫ t

0
F ′(Xs)dXs +

1

2

∫
F ′′(Xs)d[X,X](s).

A useful multivariate version of Itô’s formula for two processes is proved in [29, Theorem

4.17].

Theorem 1.2.3. Let F : R×R→ R be a function twice differentiable in each component. If

{Xt; t ≥ 0} and {Yt; t ≥ 0} are two real-valued continuous semimartingales, then

F (Xt, Yt)

= F (X0, Y0) +

∫ t

0

∂F

∂x
(Xs, Ys)dXs +

∫ t

0

∂F

∂y
(Xs, Ys)dYs +

1

2

∫ t

0

∂2F

∂x2
(Xs, Ys)d[X,X](s)

+
1

2

∫ t

0

∂2F

∂y2
(Xs, Ys)d[Y, Y ](s) +

∫ t

0

∂2F

∂x∂y
(Xs, Ys)d[X,Y ](s).

Finally, we recall the Polarization’s identity (see [43, Theorem 1.9]).

Theorem 1.2.4 (Polarization’s identity). If {Xt; t ≥ 0} and {Yt; t ≥ 0} are two real-valued

continuous semimartingales, then

[X,Y ](t) =
1

4
([X + Y,X + Y ] (t)− [X − Y,X − Y ] (t)) .
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1.3 Weak and mild solutions and a change of variables

In this section we present the main theorems concerning existence of weak solutions of systems

of the form

du1(t, x) = [∆αu1 (t, x) +G1(u2(t, x))] dt+ κ1u1 (t, x) dWt,

du2(t, x) = [∆αu2 (t, x) +G2(u1(t, x))] dt+ κ2u2 (t, x) dWt, (1.4)

ui(0, x) = fi(x) ≥ 0, x ∈ D,

ui(t, x) = 0, t ≥ 0, x ∈ Rd \D, i = 1, 2.

Here, ∆α is the fractional power of the Laplacian, α ∈ (0, 2], Gi : R→ R+ is a locally Lipschitz

function, fi is a bounded measurable function on D, i = 1, 2, {Wt; t ≥ 0} is a standard

Brownian motion in R, defined in some filtered probability space (Ω,F , {Ft; t ≥ 0},P), and

βi > 0 and κi ∈ R are constants, i = 1, 2. We start by recalling the definition of weak solution.

Definition 1.3.1. Let τ ∈ [0,∞] be a stopping time. An Ft-adapted process

{ui (t, x) : t ≥ 0, x ∈ D} ,

is a weak solution of (1.4) on [0, τ) if for all φ ∈ C2
b (Rd) vanishing on Dc, t ∈ [0, τ) and

i = 1, 2,∫
D
ui (t, x)φ (x) dx =

∫
D
fi (x)φ (x) dx+

∫ t

0

∫
D

(ui (s, x) ∆αφ (x) +Gi(u3−i (s, x))φ (x)) dxds

+ κi

∫ t

0

∫
D
ui (s, x)φ(x)dxdWs, P-a.s. (1.5)

Let {ui (t, x) : t ≥ 0, x ∈ D} be a weak solution of (1.4) on [0, τ). Consider the change of

variables

vi (t, x) := exp {−κiWt}ui (t, x) , t ∈ [0, τ), x ∈ D, i = 1, 2.

This change of variables, inspired in the Doss transformation [13] is useful to transform

an SPDE with linear multiplicative noise, into a random PDE , i.e., a family of PDEs

parametrized by ω ∈ Ω. Proceeding as in [14] one can see that the function (v1 (t, x) , v2 (t, x))
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is a weak solution of the system of random parabolic PDEs

∂

∂t
v1 (t, x) =

(
∆αv1 (t, x)− κ2

1

2
v1 (t, x)

)
+ e−κ1WtG1(eκ2Wtv2 (t, x)),

∂

∂t
v2 (t, x) =

(
∆αv2 (t, x)− κ2

2

2
v2 (t, x)

)
+ e−κ2WtG2(eκ1Wtv1 (t, x)), (1.6)

vi (0, x) = fi (x) ≥ 0, x ∈ D,

vi (t, x) = 0, t ≥ 0, x ∈ Rd \D, i = 1, 2,

with the same assumptions as in (1.4), i.e., if τ is a stopping time, then for all φ ∈ C2
b (Rd)

vanishing on Dc, t ∈ [0, τ) and i = 1, 2,∫
D
vi (t, x)φ (x) dx =

∫
D
fi (x)φ (x) dx+

∫ t

0

∫
D
vi (s, x)

(
∆αφ (x)− κ2

i

2
φ (x)

)
dxds

+

∫ t

0

∫
D
e−κiWsGi

(
eκ3−iWsv3−i (s, x)

)
φ(x)dxds, P-a.s.

In fact, let {ui (t, x) : t ≥ 0, x ∈ D} be a weak solution of (1.4) on [0, τ). Then, expression (1.5)

for a fixed φ ∈ C2
b (Rd) vanishing on Dc, says that the process {

∫
D ui (t, x)φ (x) dx, t ∈ [0, τ)}

is an Ft-semimartingale. Since x 7→ e−κx, x ∈ R, is twice continuously differentiable, by Itô’s

formula we get

e−κWt = 1− κ
∫ t

0
e−κWsdWs +

κ2

2

∫ t

0
e−κWsds.

Recall that the integration by parts formula establishes that

YtZt = [Y, Z] (t) + Y0Z0 +

∫ t

0
YsdZs +

∫ t

0
ZsdYs,

for any two semimartingales {Yt; t ≥ 0} and {Zt; t ≥ 0}. Therefore, taking Yt,i = e−κiWt and

Zt,i =
∫
D ui (t, x)φ (x) dx,∫

D
vi (t, x)φ (x) dx =

[
e−κiW ,

∫
D
ui (·, x)φ (x) dx

]
(t) +

∫
D
fi (x)φ (x) dx

+

∫ t

0
e−κiWsd

[∫
D
ui (s, x)φ (x) dx

]
+

∫ t

0

∫
D
ui (s, x)φ (x) dx

[
−κie−κiWsdWs +

κ2
i

2
e−κiWsds

]
=

[
e−κiW ,

∫
D
ui (·, x)φ (x) dx

]
(t) +

∫
D
fi (x)φ (x) dx

+

∫ t

0
e−κiWs

[∫
D
ui (s, x) ∆αφ (x) dx+

∫
D
Gi(u3−i (s, x))φ (x) dx

]
ds

+
κ2
i

2

∫ t

0

∫
D
e−κiWsui (s, x)φ (x) dxds.
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By Polarization’s identity we see that[
e−κiW ,

∫
D
ui (·, x)φ (x) dx

]
(t) = −κ2

i

∫ t

0

∫
D
e−κiWsui (s, x)φ (x) dxds.

Therefore∫
D
vi (t, x)φ (x) dx =

∫
D
fi (x)φ (x) dx+

∫ t

0

∫
D
vi (s, x) ∆αφ (x) dxds

− κ2
i

2

∫ t

0

∫
D
vi (s, x)φ (x) dxds

+

∫ t

0

∫
D
e−κiWsGi(e

κ3−iWsv3−i (s, x))φ (x) dxds, t ∈ [0, τ),

i.e., (v1(t, x), v2(t, x)) is a weak solution of (1.6) in [0, τ).

Definition 1.3.2. Let τ ∈ [0,∞] be a stopping time. The vector (v1 (t, x) , v2 (t, x)) is a mild

solution of (1.6) on [0, τ) if for all t ∈ [0, τ), P-c.s. and i = 1, 2,

vi (t, x) = e−
k2
i
2
tPDt fi (x) +

∫ t

0
e−

k2
i
2

(t−s)−κiWsPDt−sGi(e
κ3−iWsv3−i (s, x))ds,

where {PDt ; t ≥ 0} is the semigroup defined in (1.1).

We have the following theorem due to [27, Theorems 4 and 5] and [1, Theorem page 371]:

Theorem 1.3.3. The vector (v1 (t, x) , v2 (t, x)) is a weak solution of system (1.6) on [0, τ) if

and only if (v1 (t, x) , v2 (t, x)) is a mild solution of (1.6) on [0, τ).

Definition 1.3.4. A stopping time τ ∈ [0,∞] is an explosion time of the system (1.4) if

lim
t↑τ

sup
x∈D
|u1 (t, x)| =∞, P-c.s., or lim

t↑τ
sup
x∈D
|u2 (t, x)| =∞, P-c.s.

The explosion time is defined as the infimum of such τ ’s being explosion times of system (1.4).

As we will see in Theorem 3.3.3, we can construct a mild solution of (1.6) in some interval

[0, τ), where τ is the explosion time of a suitable supersolution of (1.6).

1.4 A brief review of some exponential functionals of Brown-

ian motion

In this section we give a brief review of some results of M. Yor [50], P. Salminen and M.

Yor [44] and A. N. Borodin and P. Salminen [5]. Consider the geometric Brownian motion
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{eWt+µt; t ≥ 0}, where {Wt; t ≥ 0} is a standard Brownian motion in R, defined in some

filtered probability space (Ω,F , {Ft; t ≥ 0},P), and µ ∈ R is a constant. The quadratic

variation of this geometric Brownian motion is given by

At :=

∫ t

0
e2(Ws+µs)ds, t ≥ 0.

The functional At is called Dufresne’s functional and the distribution of its perpetuity, i.e.,

the distribution of

A∞ :=

∫ ∞
0

e2(Ws+µs)ds,

was obtained by D. Dufresne [16]. He showed that for µ < 0, A∞
d
= 1/(2Z−µ), where Z−µ is

a Gamma random variable with parameter −µ. This identity has been recovered in paper no.

1 in M. Yor [50], where a relationship with Getoor’s studies of last passage times for Bessel

processes (see [23]) is used. Basically, M Yor. in paper no. 1 of [50] uses the Lamperti’s time

change relationship given by

eWt+µt = R
(µ)∫ t
0 e

2(Ws+µs)ds
, (1.7)

where R(µ) = {R(µ)
t ; t ≥ 0} is a Bessel process with index µ (or dimension d = 2(1 + µ)), i.e.,

R(µ) is a diffusion on R+ having infinitesimal generator

1

2

d2

dx2
+

1 + 2µ

2x

d

dx
, x ∈ R.

Note that if µ < 0, we have that eWt+µt → 0, a.s. as t→∞, and it follows from (1.7) that

A∞
d
= inf{u > 0 : R

(µ)
t = 0}.

At this point M. Yor uses Getoor’s result to finally get that inf{u > 0 : R
(µ)
t = 0} d

= 1/(2Z−µ).

On the other hand, P. Salminen and M. Yor [44] considered, among other cases, functionals

of the form ∫ ∞
0

e2a(Ws+µs)1{Ws+µs<0}ds, a > 0, µ > 0, (1.8)

which are called Dufresne’s reflected perpetuities. Using again Lamperti’s time change to-

gether with some results about hitting times, in [44] it is obtained the Laplace transform of

the perpetuity. Specifically there holds (see [44, Proposition 3.1, Part (e)]):

Theorem 1.4.1. If a, µ > 0 then,∫ ∞
0

e2a(Ws+µs)1{Ws+µs<0}ds
d
=

∫ ∞
0

1{R(µ/a)
s <1/a}ds, (1.9)

where R
(µ/a)
0 = 1/a.
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An important observation is that in A. N. Borodin and P. Salminen [5, Formula 4.1.5.3(1)],

it is established that

Ex
[
e
−γ
∫∞
0 1

{R(ν)
s <1/a}

ds
]

=


2νx−νIν(x

√
2γ)√

2γr1−νIν−1(r
√

2γ)
, 0 ≤ x ≤ r,

1− x−2νIν+1(r
√

2γ)
r−2νIν−1(r

√
2γ)
, 0 ≤ r ≤ x.

(1.10)

Therefore, using the scaling property of {Wt; t ≥ 0} and expressions (1.9) and (1.10), it can

be shown that for σ, µ > 0 and z > 0,

E
[
exp

(
−z
∫ ∞

0
e−(σWt−µt)1{σWt−µt≥0}dt

)]
=

4µI 2µ

σ2

(√
8z
σ

)
σ
√

8zI 2µ

σ2−1

(√
8z
σ

) ,
(see expression (3.24)). As we can note, expression (1.10) can be recovered by the arguments

used in Section 3.2 of the present work, which are based on the explicit computation of the

potential measure of the process {σWt − µt; t ≥ 0}, where σ, µ > 0, and explicitly solving an

integral equation for the Laplace transform of
∫∞

0 e−(σWt−µt)1{σWt−µt≥0}dt.
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Chapter 2

Blowup in finite time of a system of PDEs

2.1 Introduction

In this chapter we present conditions for explosion in finite time of a system of PDEs. To

achieve this, we start by considering the semilinear partial differential equation

∂u(t, x)

∂t
=

1

2

∂2u(t, x)

∂x2
+
ϕ′ (x)

ϕ (x)

∂u(t, x)

∂x
+ u1+β (t, x) , t > 0, x ∈ R, (2.1)

where β > 0, ϕ ∈ C2(R) is a square-integrable, strictly positive function, and the initial value

is of the form u(0, x) = h(x)/ϕ(x) with h ∈ L2(R, dx). Setting ϕ(x) = e−x
2/2 in (2.1) it

becomes
∂u(t, x)

∂t
= Lϕu(t, x) + u1+β (t, x) , t > 0, x ∈ R,

where Lϕ := 1
2
∂2

∂x2 − x ∂
∂x is the infinitesimal generator of the Ornstein-Uhlenbeck semigroup

{Tt; t ≥ 0}.

Using essentially Jensen’s inequality and the fact that the measure µ(dx) = ϕ2(x) dx is in-

variant for {Tt; t ≥ 0}, in [34] it was shown that equation (2.1) exhibits blowup in finite time

for any nontrivial initial value of the form u(0, x) = h(x)/ϕ(x), x ∈ R.

Motivated by this example, in this chapter we provide a criterion for explosion in finite time

of positive mild solutions of the 1-dimensional semilinear system

∂u1(t, x)

∂t
=

1

2

∂2u1(t, x)

∂x2
+
ϕ′1 (x)

ϕ1 (x)

∂u1(t, x)

∂x
+ u1+β1

2 (t, x) , t > 0, x ∈ R,

∂u2(t, x)

∂t
=

1

2

∂2u2(t, x)

∂x2
+
ϕ′2 (x)

ϕ2 (x)

∂u2(t, x)

∂x
+ u1+β2

1 (t, x) , t > 0, x ∈ R, (2.2)

ui(0, x) = fi(x), x ∈ R, i = 1, 2,

where β1, β2 > 0 are constants, f1, f2 are nonnegative functions and ϕ1, ϕ2 ∈ C2(R)∩L2(R, dx)

are strictly positive. Semilinear systems of this type have been investigated intensively in last
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years, starting with the pioneering work of V.A. Galaktionov, S.P. Kurdyumov and A.A.

Samarskii [21] (see also [22, 18, 35, 14, 33] and the review papers [31, 12]). This kind of

systems arise as simplified models of the process of diffusion of heat and burning in a two-

component continuous media, where u1 and u2 represent the temperatures of the two reactant

components.

Recall that a pair (u1, u2) of measurable functions is termed mild solution of system (2.2) if

it solves the system of integral equations

ui(t, x) = T it (fi(x)) +

∫ t

0
T it−s

(
u1+βi

3−i (s, x)
)
ds, t ≥ 0, x ∈ R, (2.3)

where i = 1, 2 and {T it ; t ≥ 0} is the semigroup of continuous linear operators on L∞(R, dx)

having infinitesimal generator

Lϕi =
1

2

∂2

∂x2
+
ϕ′i
ϕi

∂

∂x
; i = 1, 2. (2.4)

If there exists T ∈ (0,∞) such that ‖u1 (t, ·)‖L∞(R,dx) = ∞ or ‖u2 (t, ·)‖L∞(R,dx) = ∞ for all

t ≥ T , then it is said that (u1, u2) blows up (or explodes) in finite time, and in this case the

infimum of such T ’s is called the blowup time (or the explosion time) of (u1, u2).

Notice that for any g ∈ L∞(R, dx) and i = 1, 2,

T it (g(x)) = E
[
g
(
Xx,i
t

)]
, t ≥ 0, x ∈ R,

where {Xx,i
t ; t ≥ 0} is the unique strong solution of the stochastic differential equation

Yt = x+Wt +

∫ t

0

ϕ′i
ϕi

(Ys) ds, t ≥ 0, x ∈ R;

here {Wt; t ≥ 0} is a standard 1-dimensional Brownian motion. It turns out that under

our assumptions both processes {Xx,i
t ; t ≥ 0}, i = 1, 2, are recurrent and, moreover, possess

corresponding invariant measures

µi(dx) = ϕ2
i (x) dx, i = 1, 2. (2.5)

The intuitive explanation of the blowup phenomenon in non-linear heat equations of the type

∂u

∂t
= Au+ u1+β; u(0) = f ≥ 0,

where β > 0 and A is the generator of a strong Markov process on a locally compact space,

is that if the initial value f is ”small” then the tendency of the solution to blowup (which it
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would do if u1+β were the only term in the left-hand side of the equation) can be inhibited

by the dissipative effect of the migration with generator A; see e.g. [31], [35] or [36]. In

view of the ergodicity of the processes {Xx,i
t ; t ≥ 0}, i = 1, 2, the mild solution of (2.2) should

therefore blowup in finite time, at least for certain non-trivial positive initial values fi, i = 1, 2.

We are going to give conditions which imply blowup in finite time of system (2.2) under the

assumption that ϕ1/ϕ2 is a strictly positive bounded function such that

inf
x∈R
{ϕ1 (x) /ϕ2 (x)} > 0,

and the initial values are of the form fi = hi/ϕi, where hi ∈ L2 (R, dx), i = 1, 2. We

distinguish two cases: if β1 = β2 we show that any non-trivial positive mild solution of (2.2)

blows up in finite time. If β1 6= β2 we prove that a condition on the ”sizes” of f1 and f2 and

on the measures µ1, µ2 of the form∫
f1 dµ1 +

∫
f2 dµ2 > c0,

(where the constant c0 > 0 is determined by the system parameters) already implies finite

time explosion of (2.2); see Theorem 2.3.1 below. Moreover, we find an upper bound T ∗

for the blowup time of system (2.2) which depends both on the initial values f1, f2, and the

invariant measures in (2.5). Our setting allows us to consider a wide range of choices for ϕ1

and ϕ2, for instance

ϕ1 (x) = (sin (x) + 2)ϕ2 (x) with ϕ2 (x) = e−x
2/2,

or else

ϕ1 (x) =
(
e−x

2/2 + 1
)
ϕ2 (x) with ϕ2 (x) = 1/(1 + x2).

In these two cases the functions hi, i = 1, 2, can be chosen of the form

hi (x) = Pi (|x|)/Qi (|x|),

where Pi, Qi are polynomial functions with non-negative coefficients such that their degrees

satisfy 2 ≤ deg (Qi)− deg (Pi), and Qi (0) > 0.

Another interesting generator of the form (2.4) arises setting ϕ(x) = xν+ 1
2 , where ν > 0

is a constant. In this case Lϕ := 1
2
∂2

∂x2 +
(
ν + 1

2

)
1
x
∂
∂x is the infinitesimal generator of a

process {Rt; t ≥ 0} starting at 1, which is a Bessel process in R of dimension 2 + 2ν. This

13



kind of infinitesimal generators given by Lϕ arise naturally in the problems involving the

determination of the distribution of functionals of the form

Aeλ :=

∫ eλ

0
e2(Ws+νs)ds,

where {Wt; t ≥ 0} is a standard Brownian motion in R and eλ is an exponential random

variable with parameter λ > 0, independent of {Wt; t ≥ 0}. It can be show (see [50]) that

P (Aeλ > u) = Eλ
[

1

ψ(Ru)

]
, u > 0,

where ψ solves the ordinary differential equation

Lϕψ(x) =
λψ(x)

x2
, ψ(1) = 1,

and is such that {ψ(Rt)e
−λ
∫ t
0
ds

R2
s ; t ≥ 0} is a martingale with respect to Rt := σ{Ru :

u ≤ t}, t ≥ 0, and Eλ stands for the expected value with respect to the measure Pλ
∣∣
Rt =

ψ(Rt)e
−λ
∫ t
0
ds

R2
s P
∣∣
Rt .

In the next section we prove existence and uniqueness of local mild solutions of (2.2) using

the clasical fixed-point argument, adapted to our context. Our main result in this chapter,

Theorem 2.3.1, is stated and proved in Section 2.3.

2.2 Local existence and uniqueness of mild solutions

Our proof of existence, uniqueness and positiveness of mild solutions of system (2.2) is based

on [47, Theorem 2.1], (see also [41, Theorem 2.1], [48, Theorem 3], [33, Theorem 2] and [38,

Theorem 1]).

For each τ ∈ (0,∞) we define the set

Eτ := {(u1, u2) |u1, u2 : [0, τ ]→ L∞ (R, dx) , |||(u1, u2)||| <∞} ,

where

|||(u1, u2)||| := sup
t∈[0,τ ]

{
‖u1 (t, ·)‖L∞(R,dx) + ‖u2 (t, ·)‖L∞(R,dx)

}
.

Then (Eτ , |||·|||) is a Banach space and the sets

Pτ := {(u1, u2) ∈ Eτ : u1 ≥ 0, u2 ≥ 0} and BR := {(u1, u2) ∈ Eτ : |||(u1, u2)||| ≤ R}

are closed subsets of Eτ for any R ∈ (0,∞). Therefore (Pτ ∩BR, |||·|||) is a Banach space for

all τ,R ∈ (0,∞).

14



Theorem 2.2.1. There exist τ,R ∈ (0,∞) such that system (2.2) has a unique positive mild

solution in Pτ ∩BR.

Proof. We will prove that the operator Ψ : Pτ ∩BR → Pτ ∩BR defined by

Ψ ((u1 (t, x) , u2 (t, x)))

=

(
T 1
t (f1 (x)) +

∫ t

0
T 1
t−s

(
u1+β1

2 (s, x)
)
ds, T 2

t (f2 (x)) +

∫ t

0
T 2
t−s

(
u1+β2

1 (s, x)
)
ds

)
,

is a contraction for certain τ,R ∈ (0,∞). We start by verifying that Ψ is in fact an operator

from Pτ ∩ BR onto Pτ ∩ BR for suitably chosen τ,R ∈ (0,∞). Let τ0, R0 ∈ (0,∞) be such

that

R0 >
(
‖f1‖L∞(R,dx) + ‖f2‖L∞(R,dx)

)
and τ0 ≤

R0 −
(
‖f1‖L∞(R,dx) + ‖f2‖L∞(R,dx)

)
R1+β1

0 +R1+β2
0

.

If (u1, u2) ∈ Pτ0 ∩ BR0 then Ψ ((u1, u2)) has positive components due to the definition of Ψ

and the fact that u1, u2 ≥ 0. Hence

|||Ψ ((u1, u2))||| = sup
t∈[0,τ0]

{∥∥∥∥T 1
t (f1 (·)) +

∫ t

0
T 1
t−s

(
u1+β1

2 (s, ·)
)
ds

∥∥∥∥
L∞(R,dx)

+

∥∥∥∥T 2
t (f2 (·)) +

∫ t

0
T 2
t−s

(
u1+β2

1 (s, ·)
)
ds

∥∥∥∥
L∞(R,dx)

}
≤ ‖f1‖L∞(R,dx) + ‖f2‖L∞(R,dx) + τ0

(
R1+β1

0 +R1+β2
0

)
,

where we have used the contraction property of the operators T it , i = 1, 2, to obtain the last

inequality. It follows that |||Ψ ((u1, u2))||| ≤ R0, i.e., Ψ is an operator from Pτ0 ∩ BR0 onto

itself.

In order to prove the contraction property of Ψ we choose τ0 as above in such a way that

max
i=1,2

{
(1 + βi)R

βi
0

}
τ0 ∈ (0, 1) . (2.6)

Let (u1, u2) , (û1, û2) ∈ Pτ0 ∩ BR0 . Using again the contraction property of the operators T it ,

i = 1, 2, and the well-known inequality |ap − bp| ≤ p (a ∨ b)p−1 |a− b|, which holds for all
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a, b > 0 and p ≥ 1, we obtain

|||Ψ ((u1, u2))−Ψ ((û1, û2))|||

= sup
t∈[0,τ0]

{∥∥∥∥∫ t

0
T 1
t−s

(
u1+β1

2 (s, ·)− û1+β1
2 (s, ·)

)
ds

∥∥∥∥
L∞(R,dx)

+

∥∥∥∥∫ t

0
T 2
t−s

(
u1+β2

1 (s, ·)− û1+β2
1 (s, ·)

)
ds

∥∥∥∥
L∞(R,dx)

}

≤ sup
t∈[0,τ0]

∫ t

0

∥∥∥u1+β1
2 (s, ·)− û1+β1

2 (s, ·)
∥∥∥
L∞(R,dx)

ds

+ sup
t∈[0,τ0]

∫ t

0

∥∥∥u1+β2
1 (s, ·)− û1+β2

1 (s, ·)
∥∥∥
L∞(R,dx)

ds

≤ (1 + β1)Rβ1
0

∫ τ0

0
‖u2 (s, ·)− û2 (s, ·)‖L∞(R,dx) ds

+ (1 + β2)Rβ2
0

∫ τ0

0
‖u1 (s, ·)− û1 (s, ·)‖L∞(R,dx) ds

≤ max
i=1,2

{
(1 + βi)R

βi
0

}
τ0 |||(u1, u2)− (û1, û2)||| .

From the last inequality we conclude, due to (2.6), that Ψ is a contraction in Pτ0 ∩ BR0 . It

follows from the Banach fixed-point theorem that Ψ has a unique fixed point in Pτ0 ∩ BR0 ,

which is the unique mild solution of system (2.2).

2.3 A condition for blowup in finite time

Our main result is the following

Theorem 2.3.1. Let ϕi ∈ L2 (R, dx)∩C2 (R) be a strictly positive function and assume that

the initial value fi admits the representation

fi (x) :=
hi (x)

ϕi (x)
≥ 0, x ∈ R, (2.7)

for some positive nontrivial hi ∈ L2 (R, dx), i = 1, 2. Suppose in addition that there exist

strictly positive constants k1, k2 such that

k1 ≤
ϕ1 (x)

ϕ2 (x)
≤ k2, x ∈ R. (2.8)

1. Assume that β1 = β2. Then any non-trivial positive mild solution (u1, u2) of system

(2.2) blows up in finite time.
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2. Assume that β1 > β2. Let A0 :=
(

1+β2

1+β1

) 1+β2
β1−β2 β1−β2

1+β1
and suppose that∫

R
f1 (x)µ1 (dx) +

∫
R
f2 (x)µ2 (dx) > 2

β2
1+β2A

1
1+β2
0 . (2.9)

Then any mild solution (u1, u2) of system (2.2) blows up in finite time.

Proof. Let (u1, u2) be a mild solution of system (2.2). We denote

wi (t, x) := ϕi (x)ui (t, x) , t ≥ 0, x ∈ R.

Multiplying both sides of (2.3) by ϕi yields

wi (t, x) = ϕi (x)T it

(
hi
ϕi

(x)

)
+

∫ t

0
ϕi (x)T it−s

(
w1+βi

3−i (s, x)ϕ
−(1+βi)
3−i (x)

)
ds. (2.10)

Since the function gi (x) := ϕ2
i (x) satisfies the differential equation

1

2

∂2

∂x2
gi (x)− ∂

∂x

(
gi (x)

ϕ′i (x)

ϕi (x)

)
= 0, x ∈ R,

it follows that µi (dx) = ϕ2
i (x) dx is invariant for the semigroup

{
T it , t ≥ 0

}
. Let us write

Ei [f ] :=
∫
R f (x)ϕi (x) dx. Due to (2.10) this implies that

Ei [wi (t, ·)] = Ei [hi (·)] +

∫ t

0
Ei
[
w1+βi

3−i (s, ·)ϕi (·)ϕ−(1+βi)
3−i (·)

]
ds. (2.11)

Define a := min
{
k2

1, k
−2
2

}
. From assumption (2.8) we get ϕ2

i (x) /ϕ2
3−i (x) ≥ a for all x ∈ R

and i = 1, 2. Therefore

Ei
[
w1+βi

3−i (s, ·)ϕi (·)ϕ−(1+βi)
3−i (·)

]
=

∫
R

(
w3−i (s, x)

ϕ3−i (x)

)1+βi

ϕ2
i (x) dx

≥ a ‖ϕ3−i‖2L2(R,dx)

∫
R

(
w3−i (s, x)

ϕ3−i (x)

)1+βi ϕ2
3−i (x)

‖ϕ3−i‖2L2(R,dx)

dx

≥ a
‖ϕ3−i‖2L2(R,dx)

‖ϕ3−i‖2+2βi
L2(R,dx)

(∫
R

w3−i (s, x)

ϕ3−i (x)
ϕ2

3−i (x) dx

)1+βi

= a ‖ϕ3−i‖−2βi
L2(R,dx)

(
E3−i [w3−i (s, ·)]

)1+βi , (2.12)

where we have used Jensen’s inequality to obtain the last inequality. Plugging (2.12) into

(2.11) renders

Ei [wi (t, ·)] ≥ Ei [hi (·)] + a ‖ϕ3−i‖−2βi
L2(R,dx)

∫ t

0

(
E3−i [w3−i (s, ·)]

)1+βi ds. (2.13)
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Let yi (t) be the solution of the system

y′i (t) = a ‖ϕ3−i‖−2βi
L2(R,dx)

y1+βi
3−i (t) , t > 0,

yi (0) = Ei [hi (·)] , i = 1, 2.

Putting b := amin
{
‖ϕ1‖−2β2

L2(R,dx)
, ‖ϕ2‖−2β1

L2(R,dx)

}
we get the system of differential inequalities

y′i (t) ≥ by1+βi
3−i (t) , t > 0,

yi (0) = Ei [hi (·)] , i = 1, 2.

Let (z1 (t) , z2 (t)) be the solution of the system of ordinary differential equations

z′i (t) = bz1+βi
3−i (t) , t > 0,

zi (0) = Ei [hi (·)] , i = 1, 2.

By the Picard-Lindelöf theorem, this system with (z1 (0) , z2 (0)) = (0, 0) has a unique local

solution (w1 (t) , w2 (t)) ≡ (0, 0) for all t ∈ [0, τ), for some τ ∈ (0,∞]. In our case Ei [hi (·)] ≥ 0.

Therefore by a classical comparison theorem, z1 (t) , z2 (t) ≥ 0 for all t ∈ [0, τ).

Consider the new function

E (t) := z1 (t) + z2 (t) , t ≥ 0.

We deal separately with the two cases in the statement of the theorem:

1. Case β1 = β2. Using the fact that

x1+β1 + y1+β1 ≥ 2−β1 (x+ y)1+β1 , x ≥ 0, y ≥ 0, (2.14)

we get

E′ (t) = z′1 (t) + z′2 (t) = b
(
z1+β1

1 (t) + z1+β1
2 (t)

)
≥ 2−β1bE1+β1 (t) , t > 0,

E (0) = E1 [h1 (·)] + E2 [h2 (·)] .

Let I (t) be the solution of the ordinary differential equation

I ′ (t) = 2−β1bI1+β1 (t) , t > 0,

I (0) = E1 [h1 (·)] + E2 [h2 (·)] .

Since I is a subsolution of E (see [46, Lemma 1.2]) and I explodes at time

T ∗ =
2β1

bβ1 (E1 [h1 (·)] + E2 [h2 (·)])β1
∈ (0,∞) ,
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it follows that E explodes at some time tE ≤ T ∗, and therefore, by a classical comparison

theorem we get that

E1 [w1 (t, ·)] = ‖u1 (t, ·)‖L1(R,µ1) =∞ or E2 [w2 (t, ·)] = ‖u2 (t, ·)‖L1(R,µ2) =∞

for all t ≥ T ∗. Since ‖ui (t, ·)‖L1(R,µi) ≤ ‖ui (t, ·)‖L∞(R,dx) ‖ϕi‖
2
L2(R,dx) for all t ∈ [0,∞),

i = 1, 2, we conclude that the mild solution (u1, u2) of system (2.2) blows up in finite

time.

2. Case β1 > β2. Recall that for all x, y ≥ 0, δ > 0 and p, q ∈ (1,∞) such that p−1+q−1 = 1

we have Young’s inequality

xy ≤ δ−pxp

p
+
δqyq

q
. (2.15)

From the definition of A0 it follows that

z1+β1
2 (t) ≥ z1+β2

2 (t)−A0, for all t ≥ 0.

In fact, it suffices to choose in (2.15)

x = 1, y = z1+β2
2 (t) , δ =

(
1 + β1

1 + β2

) 1+β2
1+β1

and q =
1 + β1

1 + β2
.

Therefore we have

E′ (t) ≥ b
(
z1+β2

1 (t) + z1+β2
2 (t)−A0

)
.

Using again inequality (2.14) we conclude that

z1+β2
1 (t) + z1+β2

2 (t) ≥ 2−β2E1+β2 (t) ,

hence

E′ (t) ≥ b
(

2−β2E1+β2 (t)−A0

)
.

Let I (t) solve the ordinary differential equation

I ′ (t) = b
(

2−β2I1+β2 (t)−A0

)
, t > 0,

I (0) = E1 [h1 (·)] + E2 [h2 (·)] .

It follows from the same comparison theorem as above that I is a subsolution of E.

Using separation of variables we get, for t ∈ (0,∞),

t =

∫ I(t)

E(0)

dx

b (2−β2x1+β2 −A0)
≤
∫ ∞
E(0)

dx

b (2−β2x1+β2 −A0)
=: T ∗. (2.16)
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But the hypothesis (2.9) implies that T ∗ <∞. Hence (2.16) cannot hold for sufficiently

large t, which yields that I explodes at a finite time T ∗∗ ∈ (0, T ∗]. Therefore E explodes

no latter than T ∗ as well. From here we proceed as in the case β1 = β2 to conclude that

the mild solution (u1, u2) of system (2.2) blows up in finite time also in this case.

The following result is an immediate consequence of the previous theorem. Recall that E (0) =∫
R f1 dµ1 +

∫
R f2 dµ2 and

A0 =

(
1 + β2

1 + β1

) 1+β2
β1−β2 β1 − β2

1 + β1
, b = min

{
k2

1,
1

k2
2

}
min
i1,2

{
‖ϕi‖−2βi

L2(R,dx)

}
.

Corollary 2.3.2. Under the assumptions of Theorem 2.3.1, if β1 = β2 then the explosion

time of any non-trivial positive solution of (2.2) is bounded above by

T ∗ =
2β1

bβ1 (E (0))β1
.

If β1 > β2 and (2.9) holds, then the time of explosion of (2.2) is bounded above by

T ∗ =

∫ ∞
E(0)

dx

b (2−β2x1+β2 −A0)
.

Remark 2.3.3. Theorem 2.3.1 and Corollary 2.3.2 remain valid when β2 > β1, with the obvious

changes in the correspondent statements.
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Chapter 3

Blowup in finite time of a system of SPDEs

3.1 Introduction

Let D ⊆ Rd be a bounded smooth domain, and let κ1, κ2 ∈ R, be given constants. Denote by

{Wt; t ≥ 0} a one-dimensional standard Brownian motion defined in some probability space

(Ω,F ,P), and let f1, f2 ∈ C2(D) be two positive functions. In [14] lower and upper bounds

for the explosion time of positive solutions of the semilinear system of SPDEs

du1(t, x) = [(∆ + V1)u1 (t, x) + up2 (t, x)] dt+ κ1u1 (t, x) dWt,

du2(t, x) = [(∆ + V2)u2 (t, x) + uq1 (t, x)] dt+ κ2u2 (t, x) dWt, (3.1)

ui(0, x) = fi(x) ≥ 0, x ∈ D,

ui(t, x) = 0, t ≥ 0, x ∈ ∂D, i = 1, 2,

were obtained in the case Vi = λ1 + κ2
i /2, i = 1, 2, where λ1 > 0 is the first eigenvalue of the

Laplacian on D and p ≥ q > 1. It was shown that there exist random times %∗∗, %
∗∗ such that

%∗∗ ≤ % ≤ %∗∗, where % is the explosion time of (3.1) and the laws of %∗∗ and %∗∗ are given,

respectively, in terms of exponential functionals of the form∫ t

0

(
eaWr ∧ ebWr

)
dr and

∫ t

0

(
eaWr ∨ ebWr

)
dr, t ≥ 0, (3.2)

for certain real constants a, b. Our aim in this chapter is to obtain lower and upper bounds

for the explosion time of positive solutions of the system of SPDEs

du1(t, x) = [∆αu1 (t, x) +G1(u2(t, x))] dt+ κ1u1 (t, x) dWt,

du2(t, x) = [∆αu2 (t, x) +G2 (u1(t, x))] dt+ κ2u2 (t, x) dWt, (3.3)

ui(0, x) = fi(x) ≥ 0, x ∈ D,

ui(t, x) = 0, t ≥ 0, x ∈ Rd \D, i = 1, 2.
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Here, ∆α is the fractional power −(−∆)α/2 of the Laplacian, Gi is a locally Lipschitz positive

function such that

Gi(z) ≥ z1+βi , z ≥ 0, (3.4)

with βi > 0, i = 1, 2. We assume (3.4) in Section 3.3.1 only; it is replaced by (3.39) in Section

3.3.2. We refer to Chapter 1 for definitions of blowup times, and for types of solutions of

SPDEs. Equations and systems of the above kind arise as mathematical models describing

processes of diffusion of heat and burning in two-component continuous media, where the

functions u1, u2 are treated as temperatures of interacting components in a combustible mix-

ture. Hence, it is natural and relevant to investigate properties of positive solutions of such

equations. Since we do not assume Gi to be Lipschitz, i = 1, 2, blowup of the solution of (3.3)

in finite time cannot be left out. One of the main contributions in this chapter is to show that

there are random times τ∗∗ and τ∗∗ such that τ∗∗ ≤ τ ≤ τ∗∗, where τ is the explosion time

of (3.3). In this case, the distributions of the random times τ∗∗ and τ∗∗ are given in terms of

functionals of the form∫ t

0

(
eaWs ∧ ebWs

)
e−Msdr and

∫ t

0

(
eaWs ∨ ebWs

)
e−µsds (3.5)

for some positive constants a, b, M and µ, which depend on the parameters of the system

(3.3). Notice that the functionals (3.2) are a special case of (3.5), hence the present work

can be considered as a generalization and an extension of [14]. Although the laws of the

functionals (3.5) are not given explicitly in this work, we find random times τ′′ and τ ′′ such

that τ′′ ≤ τ∗∗ and τ∗∗ ≤ τ ′′. The random times τ ′′ and τ′′ are given in terms of random

functionals of the form

F1(t) =

∫ t

0
e−(σWs−µs)1{σWs−µs≥0}dr and F2(t) =

∫ t

0
eσWs−µsds, t ≥ 0,

respectively, where σ and µ are certain constants. The function F2 is known as Dufresne’s

functional and the distribution of its perpetual version F2(∞) was computed in [16] for µ > 0.

The density function of F2(t) for 0 ≤ t <∞ was obtained by M. Yor using techniques based on

hitting times of Bessel processes; see [50], [5] and [44]. The function F1 is known as one-sided

Dufresne’s functional. We believe that the law of its perpetual version could be obtained by

the method of hitting times of Bessel processes as in the case of F2, or else using the method

of Pintoux and Privault [40]. In the present work we calculate the probability density function

of F1(∞) by a straight analytical approach based on the explicit computation of the potential

measure of the process Xt = σWt − µt, t ≥ 0. This allows us to obtain a related integral
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equation for the function

H (x, z) = E
[
exp

(
−z
∫ ∞

0
e−(Xs+x)1{Xs+x≥0}ds

)]
, x ≥ 0, z > 0,

(which gives as a special case the Laplace transform of F1(∞)), and upon solving it we

obtain an explicit expression for H. By inverting the transform H we get the distribution

of the perpetual functional F1(∞) which is needed further to obtain a lower bound for the

probability of explosion in finite time. This is the subject of Section 3.2. With the aim of

getting suitable sub- and supersolutions of (3.3) –from which we will obtain upper and lower

bounds for τ–, in Section 3.3 we transform system (3.3) into a related system of random partial

differential equations. This procedure is similar to the one performed in [14] and is inspired

in a classical result of Doss [13] (see also Section 1.3). In Section 3.3 we also obtain upper

and lower bounds for the explosion time τ . In Section 3.4 we give explicit non-trivial bounds

for the probability of explosion in finite time of positive solutions of system (3.3), under the

assumptions that β1 = β2 and the initial values are of the form fi(x) = Liψ(x), x ∈ D, with

Li > 0, i = 1, 2, where ψ is the eigenfunction corresponding to the first eigenvalue of ∆α on

D. Such bounds depend on the functionals we found in Section 3.3.

3.2 An exponential functional of Brownian motion

Let {Wt; t ≥ 0} be a one-dimensional standard Brownian motion. Let σ and µ be positive con-

stants. It is well known (see e.g. [16] and Section 1.4) that Dufresne’s functional
∫∞

0 eσWs−µsds

has the following distribution for all c ≥ 0 :

P
(∫ ∞

0
eσWs−µsds > c

)
=
γ
(

2µ
σ2 ,

2
σ2c

)
Γ
(

2µ
σ2

) , (3.6)

where γ (a, x) =
∫ x

0 e
−ssa−1ds and Γ (a) = γ (a,∞) for all a > 0 and x ≥ 0.

Let Xt = σWt−µt, t ≥ 0. The motivation of this section is to study, from an analytical point

of view, some distributional properties of the exponential functional∫ ∞
0

e−(Xt+x)1{Xt+x≥0}dt, x ≥ 0.

This kind of functionals, also named one-sided variants of Dufresne’s functional, emerges for

instance in the problem of explosion in finite time of systems of SPDEs. In particular we
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calculate explicitly its Laplace transform and its distribution at x = 0. Recall (see [3]) that

the potential measure of the process {Xt; t ≥ 0} is the Borel measure U defined by

U (B) =

∫ ∞
0

P (Xt ∈ B) dt, B ∈ B (R) ,

where B (R) stands for the Borel σ-algebra in R = (−∞,∞).

Lemma 3.2.1. The measure U is absolutely continuous with respect to the Lebesgue measure,

and the density function of U is given by

u (x) =
1

µ
1(−∞,0) (x) +

1

µ
e−

2µ

σ2 x1[0,∞) (x) , x ∈ R. (3.7)

Proof. First note that the transition probability of {Xt; t ≥ 0} is given by

p (t, x) =
1√

2πσ2t
exp

[
−(x+ µt)2

2σ2t

]
, x ∈ R, t > 0.

From [45, page 242] we know that

u (x) =

∫ ∞
0

p (t, x) dt

=

√
2

πσ2µ

∫ ∞
0

exp

[
−
(√

µ

2σ2

x

s
+

√
µ

2σ2
s

)2
]
ds, x ∈ R,

where we have used the change of variables s =
√
µt to obtain the second equality. Now we

note that for all s > 0,√
2

πσ2µ
e
−
(√

µ

2σ2
x
s

+
√

µ

2σ2 s
)2

=
e−

µ

σ2 (|x|+x)

2µ

[
− 2√

π
e
−
(√

µ

2σ2
|x|
s
−
√

µ

2σ2 s
)2 (
−
√

µ

2σ2

|x|
s2
−
√

µ

2σ2

)

+e
2µ

σ2 |x| 2√
π
e
−
(√

µ

2σ2
|x|
s

+
√

µ

2σ2 s
)2 (
−
√

µ

2σ2

|x|
s2

+

√
µ

2σ2

)]
. (3.8)

Integrating both sides of (3.8) with respect to s, we get for all x ∈ R,

u (x) =
e−

µ

σ2 (|x|+x)

2µ

[
− 2√

π

∫ ∞
0

e
−
(√

µ

2σ2
|x|
s
−
√

µ

2σ2 s
)2 (
−
√

µ

2σ2

|x|
s2
−
√

µ

2σ2

)
ds

+e
2µ

σ2 |x| 2√
π

∫ ∞
0

e
−
(√

µ

2σ2
|x|
s

+
√

µ

2σ2 s
)2 (
−
√

µ

2σ2

|x|
s2

+

√
µ

2σ2

)
ds

]
.

Performing the change of variables

t =

√
µ

2σ2

|x|
s
−
√

µ

2σ2
s and t =

√
µ

2σ2

|x|
s

+

√
µ

2σ2
s
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in the integrals of the right hand side renders

u (x) =
e−

µ

σ2 (|x|+x)

2µ

[
−erf

(√
µ

2σ2

|x|
s
−
√

µ

2σ2
s

)
+ e

2µ

σ2 |x|erf

(√
µ

2σ2

|x|
s

+

√
µ

2σ2
s

)]∣∣∣∣∞
0

,

where

erf (z) =
2√
π

∫ z

0
e−s

2
ds, z ∈ R,

is the error function. Since erf (∞) = 1 and erf (−∞) = −1, it follows that

u (x) =
e−

2µ

σ2 x

2µ

[
−erf (−∞) + e

2µ

σ2 xerf (∞) + erf (∞)− e
2µ

σ2 xerf (∞)
]

=
1

µ
e−

2µ

σ2 x,

for all x ≥ 0. Similarly, if x < 0 we conclude that u (x) = 1/µ and the result follows.

Define

H (x, z) = E
[
exp

(
−z
∫ ∞

0
e−(Xs+x)1{Xs+x≥0} ds

)]
for all x ≥ 0, z ∈ C.

Lemma 3.2.2. For all x ≥ 0 and z ∈ C, H (x, z) satisfies the integral equation

H (x, z) = 1− µ−1ze
2µ

σ2 x
∫ ∞
x

e
−
(

1+ 2µ

σ2

)
u
H (u, z) du− µ−1z

∫ x

0
e−uH (u, z) du. (3.9)

Proof. For simplicity of notation, for any fixed z ∈ C, let fz(x) = −ze−x1{x≥0}, x ∈ R. Define

the function

vt (x, z) = E
[
exp

(∫ t

0
fz(Xs + x)ds

)]
, t ≥ 0, x ≥ 0.

Using that∫ t

0
exp

(∫ t

s
fz(Xu + x)du

)
fz(Xs + x)ds

= −
∫ t

0

d

ds

[
exp

(∫ t

s
fz(Xu + x)du

)]
ds = exp

(∫ t

0
fz(Xu + x)du

)
− 1,

from the Dominated Convergence Theorem we get

vt(x, z) = 1 + E
[∫ t

0
exp

(∫ t

s
fz(Xu + x)du

)
fz(Xs + x)ds

]
= 1 +

∫ t

0
E
[
exp

(∫ t

s
fz(Xu + x)du

)
fz(Xs + x)

]
ds. (3.10)

Since fz(Xs + x) is measurable with respect to σ(Xr, 0 ≤ r ≤ s), 0 ≤ s ≤ t, then

E
[
exp

(∫ t

s
fz(Xu + x)du

)
fz(Xs + x)

]
= E

[
fz(Xs + x)E

[
exp

(∫ t

s
fz(Xu + x)du

)∣∣∣∣σ(Xr, 0 ≤ r ≤ s)
]]
. (3.11)
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Due to the independence of increments property of {Xt; t ≥ 0} we get

E
[

exp

(∫ t

s
fz(Xu + x)du

)∣∣∣∣σ(Xr, 0 ≤ r ≤ s)
]

= E
[

exp

(∫ t

s
fz(Xu −Xs +Xs + x)du

)∣∣∣∣σ(Xr, 0 ≤ r ≤ s)
]

= h(Xs + x), (3.12)

where the function h is defined by

h(y) = E
[
exp

(∫ t

s
fz(Xu −Xs + y)du

)]
.

Due to stationarity of increments of {Xt; t ≥ 0}, we obtain that

h(y) = E
[
exp

(∫ t−s

0
fz(Xu + y)du

)]
= vt−s(y, z). (3.13)

Plugging (3.11), (3.12) and (3.13) into (3.10) we finally get

vt(x, z)

= 1 +

∫ t

0
E [fz(Xs + x)vt−s(Xs + x, z)] ds = 1 + E

[∫ t

0
fz(Xs + x)vt−s(Xs + x, z)ds

]
= 1− z

∫
R
e−(x+y)1[0,∞) (x+ y)

(∫ t

0
vt−s (x+ y, z)P (Xs ∈ dy) ds

)
.

Since the improper integral
∫∞

0 e−(Xs+x)1{Xs+x≥0} ds is a.s. finite due to [17, Theorem 1.4],

using dominated convergence we get

vt (x, z)→ H (x, z) as t→∞.

The fact that

0 ≤
∣∣vt−s (x+ y, z)1[0,t] (s)

∣∣ ≤ 1

for all s ≥ 0 implies, for all x ≥ 0,∣∣∣∣∫
R
e−(x+y)1[0,∞) (x+ y)

(∫ ∞
0

vt−s (x+ y, z)1[0,t] (s)P (Xs ∈ dy) ds

)∣∣∣∣
≤
∫
R
e−(x+y)1[0,∞) (x+ y)U (dy) =

1− e−x

µ
+

σ2e−x

µσ2 + 2µ2
≤ 1

µ
+

σ2

µσ2 + 2µ2
.

Using again dominated convergence we get that for every z ∈ C and every x ≥ 0 the function

H(·, z) satisfies the integral equation

H (x, z) = 1− z
∫
R
e−(x+y)1[0,∞) (x+ y)H (x+ y, z)U (dy) . (3.14)
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From (3.7) and (3.14) it follows that for every z ∈ C and every x ≥ 0

H (x, z) = 1− z
∫
R
e−(x+y)1[0,∞) (x+ y)H (x+ y, z)µ−11(−∞,0) (y) dy

− z
∫
R
e−(x+y)1[0,∞) (x+ y)H (x+ y, z)µ−1e−

2µ

σ2 y1[0,∞) (y) dy

= 1− µ−1z

∫ 0

−x
e−(x+y)H (x+ y, z) dy − µ−1z

∫ ∞
0

e−(x+y)H (x+ y, z) e−
2µ

σ2 ydy

= 1− µ−1ze
2µ

σ2 x
∫ ∞
x

e
−
(

1+ 2µ

σ2

)
u
H (u, z) du− µ−1z

∫ x

0
e−uH (u, z) du.

Theorem 3.2.3. Let θ ∈ C be such that |θ| < 1, and let

I (x, u) = e
2µ

σ2 xe
−
(

1+ 2µ

σ2

)
u
1[x,∞) (u) + e−u1[0,x) (u) , x ≥ 0, u ≥ 0.

Then, the integral equation

g (x) = 1− θ
∫ ∞

0
I (x, u) g (u) du (3.15)

possesses a unique solution

g (x) =
∑
n≥0

(−θ)n ψn (x) ∈ Cb
(
R+
)
,

where

ψ0 (x) = 1, ψn+1 (x) =

∫ ∞
0

I (x, u)ψn (u) du, n ≥ 0, x ≥ 0.

Proof. Consider the Banach space (Cb (R+) , ‖·‖∞). We have that∫ ∞
0

I (x, u) du = 1− 2µ

σ2 + 2µ
e−x,

which implies that the function

h (x) := 1− θ
∫ ∞

0
I (x, u) g (u) du, x ∈ R+,

satisfies h ∈ Cb (R+) for all g ∈ Cb (R+). Now we prove that the operator T : Cb (R+) →

Cb (R+), defined by T (g) = h, is a contraction mapping. In fact, for g1, g2 ∈ Cb (R+),

‖T (g1)− T (g2)‖∞ = |θ|
∥∥∥∥∫ ∞

0
I (·, u) g1 (u) du−

∫ ∞
0

I (·, u) g2 (u) du

∥∥∥∥
∞

≤ |θ|
∥∥∥∥∫ ∞

0
I (·, u) du

∥∥∥∥
∞
‖g1 − g2‖∞ = |θ| ‖g1 − g2‖∞ ,
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i.e., T is a contraction mapping. From the Banach fixed point theorem it follows that (3.15) has

a unique solution. To prove the power series representation of g first we note that ‖ψn‖∞ ≤ 1

for all n ≥ 0, which can be easily proved by induction. Then, under the assumption |θ| ∈ [0, 1),

the series ∑
n≥0

(−θ)n ψn

is absolutely and uniformly convergent. By Fubini’s theorem we finally get that

1− θ
∫ ∞

0
I (x, u)

∑
n≥0

(−θ)n ψn (u) du = 1 +
∑
n≥0

(−θ)n+1
∫ ∞

0
I (x, u)ψn (u) du

= 1 +
∑
n≥0

(−θ)n+1 ψn+1 (x) =
∑
n≥0

(−θ)n ψn (x) .

Therefore

g (x) =
∑
n≥0

(−θ)n ψn (x)

for all x ≥ 0.

From Lemma 3.2.2 and Theorem 3.2.3 we deduce one of the main results of this section.

Theorem 3.2.4. For all x ≥ 0 and all z ∈ C such that |z|µ−1 < 1, the function H (x, z) is

the unique solution of the integral equation

F (x, z) = 1− µ−1ze
2µ

σ2 x
∫ ∞
x

e
−
(

1+ 2µ

σ2

)
u
F (u, z) du− µ−1z

∫ x

0
e−uF (u, z) du. (3.16)

In order to get a closed expression for H, we proceed by induction over n ≥ 0 to prove that

ψn+1 (x) =
n∑
k=1

Bkψn+1−k (x) +Bn+1

(
1−

2µ
σ2

n+ 1 + 2µ
σ2

e−(n+1)x

)
, (3.17)

where

Bk :=
(−1)k−1 Γ

(
2µ
σ2

)(
2µ
σ2

)k
k!Γ

(
k + 2µ

σ2

) , k ∈ N.

For n = 0, under the convention
∑0

k=1 ≡ 0 and the fact that B1 = 1, we get

ψ1 (x) =

∫ ∞
0

(
e

2µ

σ2 xe
−
(

1+ 2µ

σ2

)
u
1[x,∞) (u) + e−u1[0,x) (u)

)
du = 1−

2µ
σ2

1 + 2µ
σ2

e−x,
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which shows that (3.17) holds for n = 0. Assume that (3.17) is true for some n ≥ 0. Then

ψn+1 (x) =

∫ ∞
0

I (x, u)ψn (u) du

=

∫ ∞
0

I (x, u)

(
n−1∑
k=1

Bkψn−k (u) +Bn

(
1−

2µ
σ2

n+ 2µ
σ2

e−nu

))
du

=

n−1∑
k=1

Bk

∫ ∞
0

I (x, u)ψn−k (u) du

+Bn

(∫ ∞
0

I (x, u) du−
2µ
σ2

n+ 2µ
σ2

∫ ∞
0

I (x, u) e−nudu

)

=
n−1∑
k=1

Bkψn+1−k (x) +Bnψ1 (x)

−
2µ
σ2

n+ 2µ
σ2

Bn

 1

n+ 1
−

2µ
σ2

(n+ 1)
(
n+ 1 + 2µ

σ2

)e−(n+1)x


=

n∑
k=1

Bkψn+1−k (x) +Bn+1

(
1−

2µ
σ2

n+ 1 + 2µ
σ2

e−(n+1)x

)
,

where in the second equality we have used the induction hypothesis, the definition of ψn for

the fourth one and the fact that

Bn+1 = −
2µ
σ2

(n+ 1)
(
n+ 2µ

σ2

)Bn
for the last equality. This proves (3.17). Moreover, notice that∑

n≥1

(
−µ−1z

)n
ψn (x)

=
∑
n≥1

(
−µ−1z

)n(n−1∑
k=1

Bkψn−k (x) + Bn

(
1−

2µ
σ2

n+ 2µ
σ2

e−nx

))

=
∑
k≥1

Bk
∑

n≥k+1

(
−µ−1z

)n
ψn−k (x) +

∑
n≥1

(
−µ−1z

)n
Bn

(
1−

2µ
σ2

n+ 2µ
σ2

e−nx

)

=
∑
k≥1

Bk
∑
j≥1

(
−µ−1z

)j+k
ψj (x) +

∑
n≥1

(
−µ−1z

)n
Bn

(
1−

2µ
σ2

n+ 2µ
σ2

e−nx

)

=
∑
k≥1

Bk
(
−µ−1z

)k∑
j≥1

(
−µ−1z

)j
ψj (x) +

∑
n≥1

(
−µ−1z

)n
Bn

(
1−

2µ
σ2

n+ 2µ
σ2

e−nx

)
,
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from which we conclude that∑
n≥1

(
−µ−1z

)n
ψn (x)

=

∑
n≥1

(
−µ−1z

)n
Bn

(
1−

2µ

σ2

n+ 2µ

σ2

e−nx
)

1−
∑

n≥1 (−µ−1z)nBn
,

and therefore we get

H (x, z) =

1−
∑

n≥1

(
−µ−1z

)n
Bn

(
2µ

σ2

n+ 2µ

σ2

)
e−nx

1−
∑

n≥1 (−µ−1z)nBn
. (3.18)

From the definition of Bn,

∑
n≥1

(
−µ−1z

)n
Bn

(
2µ
σ2

n+ 2µ
σ2

)
e−nx =

∑
n≥1

(
−µ−1ze−x

)n (−1)n−1 Γ
(

2µ
σ2

)(
2µ
σ2

)n
n!Γ

(
n+ 2µ

σ2

) (
2µ
σ2

n+ 2µ
σ2

)

= 1− 2µ

σ2
Γ

(
2µ

σ2

)∑
n≥0

(
2z
σ2 e
−x)n

n!Γ
(
n+ 1 + 2µ

σ2

)

= 1− 2µ

σ2

(
2z

σ2
e−x
)− µ

σ2

Γ

(
2µ

σ2

)∑
n≥0

(
2
(

2z
σ2 e
−x
)1/2

2

)2n+ 2µ

σ2

n!Γ
(
n+ 1 + 2µ

σ2

)
= 1− 2µ

σ2

(
2z

σ2
e−x
)− µ

σ2

Γ

(
2µ

σ2

)
I 2µ

σ2

(
2

(
2z

σ2
e−x
)1/2

)
, (3.19)

where

Iν (z) :=
∑
k≥0

(
z
2

)2k+ν

k!Γ (k + 1 + ν)
, z ∈ C,

is the modified Bessel function of the first kind of order ν ∈ R. Similarly, it can be shown

that ∑
n≥1

(
−µ−1z

)n
Bn = 1− Γ

(
2µ

σ2

)(
2z

σ2

) 1
2
− µ

σ2

I 2µ

σ2−1

(
2

(
2z

σ2

)1/2
)
. (3.20)

Plugging (3.19) and (3.20) into (3.18) we get

H (x, z) = 2µσ−1 (2z)−1/2 e
µ

σ2 x
I 2µ

σ2

(
2σ−1 (2z)1/2 e−

x
2

)
I 2µ

σ2−1

(
2σ−1 (2z)1/2

) , (3.21)

for all x ≥ 0 and z ∈ C such that |z|µ−1 < 1. In particular we obtain
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Theorem 3.2.5. The equality

E
[
exp

(
−z
∫ ∞

0
e−Xt1{Xt≥0}dt

)]
=

4µI 2µ

σ2

(√
8z
σ

)
σ
√

8zI 2µ

σ2−1

(√
8z
σ

) (3.22)

holds for every z ∈ C such that |z|µ−1 < 1.

Let F be the distribution function of the random variable∫ ∞
0

e−Xt1{Xt≥0} dt.

Let
{
j 2µ

σ2−1,n

}
n≥1

be the increasing sequence of all positive zeros of the Bessel function of the

first kind of order 2µ
σ2 − 1 > −1, and let

J 2µ

σ2−1 (z) :=
∑
m≥0

(−1)m
(
z
2

)2m+ 2µ

σ2−1

m!Γ
(
m+ 2µ

σ2

) , z ∈ C.

From the fact that

J 2µ

σ2
(z)

J 2µ

σ2−1 (z)
= −2z

∑
n≥1

(
z2 − j2

2µ

σ2−1,n

)−1

, z ∈ C \
{
±j 2µ

σ2−1,n

}
n≥1

,

(see [19, formula 7.9(3)]) and the relation Jν (zi) = iνIν (z), which holds for all ν, z ∈ R, it

follows that

z−1/2
I 2µ

σ2

(
z1/2

)
I 2µ

σ2−1

(
z1/2

) = 2
∑
n≥1

1

z + j2
2µ

σ2−1,n

, z ∈ C \
{
−j2

2µ

σ2−1,n

}
n≥1

. (3.23)

Notice that the function

z 7→ z−1/2
I2µ/σ2(z1/2)

I2µ/σ2−1(z1/2)
, z ∈ C,

has no poles in the region

{w ∈ C : Re w > 0, |w| < µ} .

Using an analytic continuation argument we conclude that

E
[
exp

(
−z
∫ ∞

0
e−Xt1{Xt≥0}dt

)]
=

4µI 2µ

σ2

(√
8z
σ

)
σ
√

8zI 2µ

σ2−1

(√
8z
σ

) , (3.24)

for all z ∈ {w ∈ C : Re w > 0}. In particular we get that the Laplace transform of the random

variable ∫ ∞
0

e−Xt1{Xt≥0}dt
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is given, for all z ≥ 0, by

E
[
exp

(
−z
∫ ∞

0
e−Xt1{Xt≥0}dt

)]
=

8µ

σ2

∑
n≥1

1
8z
σ2 + j2

2µ

σ2−1,n

=
8µ

σ2

∑
n≥1

∫ ∞
0

e−zy

σ2

8
e
−
(
σ2

8
j22µ
σ2−1,n

)
y

 dy
=

∫ ∞
0

e−zy

µ∑
n≥1

e
−
(
σ2

8
j22µ
σ2−1,n

)
y

 dy,
where we used the fact that ∑

n≥1

1

j2
ν,n

=
1

4(ν + 1)

for any ν > −1 (see [10, formula (32)]). In this way we have proved the following result.

Theorem 3.2.6. F is absolutely continuous with respect to the Lebesgue measure. Further-

more, if y ≥ 0 then

F (dy) = µ

∑
n≥1

exp

{
−
(
σ2

8
j2

2µ

σ2−1,n

)
y

} dy. (3.25)

3.3 Bounds for the explosion time

In this section we obtain upper and lower bounds for the explosion time of the semilinear

system (3.3). For this, we first construct a suitable subsolution of (3.3) by means of the

change of variables

vi (t, x) := exp {−κiWt}ui (t, x) , t ≥ 0, x ∈ D, i = 1, 2,

which transforms a weak solution (u1, u2) of (3.3) into a weak solution of a system of random

parabolic PDEs.

As it was shown in Section 1.3 one can see that the vector (v1 (t, x) , v2 (t, x)) is a weak solution
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of the system of RPDEs

∂

∂t
v1 (t, x) =

(
∆αv1 (t, x)− κ2

1

2
v1 (t, x)

)
+ e−κ1WtG1

(
eκ2Wtv2 (t, x)

)
,

∂

∂t
v2 (t, x) =

(
∆αv2 (t, x)− κ2

2

2
v2 (t, x)

)
+ e−κ2WtG2

(
eκ1Wtv1 (t, x)

)
, (3.26)

vi (0, x) = fi (x) ≥ 0, x ∈ D,

vi (t, x) = 0, t ≥ 0, x ∈ Rd \D, i = 1, 2,

with the same assumptions as in (3.3). Notice that vi(t, ·) is non-negative on D for each t ≥ 0

and i = 1, 2, which follows from the Feynman-Kac representation of (3.26); see e.g. [2]. Hence

ui(t, ·) = exp{κiWt}vi(t, ·)

is also non-negative on D for each t ≥ 0 and i = 1, 2. Moreover, it is clear that if τ is the

blowup time of system (3.3), then τ is also the blowup time of system (3.26). Let λ and ψ

be, respectively, the first eigenvalue and eigenfunction of ∆α in D, with ψ normalized so that∫
D ψ (x) dx = 1.

3.3.1 An upper bound for the explosion time

In order to get an upper bound for the explosion time τ , we first show that the function

t 7→
∫
D
v (t, x)ψ (x) dx, t > 0,

satisfies the integral inequality inequality∫
D
vi (t, x)ψ (x) dx ≥

∫
D
fi (x)ψ (x) dx−

(
λ+

κ2
i

2

)∫ t

0

∫
D
vi (s, x)ψ (x) dxds

+

∫ t

0
e((1+βi)κ3−i−κi)Ws

(∫
D
v3−i (s, x)ψ (x) dx

)1+βi

ds, (3.27)

for i = 1, 2 and t > 0. In fact, since vi (t, x) is a weak solution of (3.26) and

Gi(z) ≥ z1+βi , z ≥ 0,

then in particular we have∫
D
vi (t, x)ψ (x) dx ≥

∫
D
fi (x)ψ (x) dx+

∫ t

0

∫
D
vi (s, x) ∆αψ (x) dx ds

− κ2
i

2

∫ t

0

∫
D
vi (s, x)ψ (x) dx ds (3.28)

+

∫ t

0

∫
D
e((1+βi)κ3−i−κi)Wsv1+βi

3−i (s, x)ψ (x) dx ds.
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Since vi and ψ are non-negative in D, by Hölder’s inequality we get that∫
D
v3−i (s, x)ψ (x) dx =

∫
D
v3−i (s, x)ψ

1
1+βi (x)ψ

βi
1+βi (x) dx

≤
(∫

D
v1+βi

3−i (s, x)ψ (x) dx

) 1
1+βi

. (3.29)

Using the fact that

∆αψ (x) = −λψ (x) on D,

we finally obtain expression (3.27). Using now a comparison theorem (see e.g. [46, Lemma

1.2]) and (3.27), we deduce that the function hi determined by the equation

d

dt
hi (t) = −

(
λ+

κ2
i

2

)
hi (t) + e((1+βi)κ3−i−κi)Wth1+βi

3−i (t) ,

hi (0) =

∫
D
fi (x)ψ (x) dx,

is a subsolution of vi, i = 1, 2. We define

m = λ+ max
i=1,2

{
κ2
i

2

}
and Mt = min

i=1,2

{
e((1+βi)κ3−i−κi)Wt

}
, t ≥ 0,

and consider the system of random Ordinary Differential Equations (random ODEs)

d

dt
zi (t) = −mzi (t) +Mtz

1+βi
3−i (t) , zi (0) = hi (0) , i = 1, 2.

Using the transformation

yi (t) := emtzi (t) , t ≥ 0, i = 1, 2,

it follows that

d

dt
yi (t) = e−mβitMty

1+βi
3−i (t) , yi (0) = hi (0) , i = 1, 2. (3.30)

Using again a comparison argument it follows that

hi (t) ≥ zi (t) , t ≥ 0, i = 1, 2.

For t ≥ 0 we define

E (t) = y1 (t) + y2 (t) with E (0) =
2∑
i=1

∫
D
fi (x)ψ (x) dx.

We present the main result of this section, where

A := min
i=1,2

{(1 + βi)κ3−i − κi} .
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Theorem 3.3.1. Assume that A > 0 and let τ be the blow-up time of system (3.3).

1. If β1 = β2, then τ ≤ τ ′, where

τ ′ = inf

{
t ≥ 0 :

∫ t

0
e−(AWs−mβ1s)1{AWs−mβ1s≥0}ds ≥ 2β1β−1

1 (E (0))−β1

}
. (3.31)

2. Suppose β1 > β2 > 0. Let

ε0 = min

1,

(
h2 (0)

A
1/(1+β2)
0

)β1−β2

,

(
2−(1+β2) (E (0))1+β2

A0

)β1−β2
1+β2

 ,

with

A0 =

(
1 + β1

1 + β2

)− 1+β2
β1−β2 β1 − β2

1 + β1
.

Assume that

2−β2ε0 (E (0))1+β2 − ε
1+β1
β1−β2
0 A0 > 0, (3.32)

and let

C0 = 2−β2ε0 −
ε

1+β1
β1−β2
0 A0

(E (0))1+β2
.

Then τ ≤ τ ′′, where

τ ′′ = inf

{
t ≥ 0 :

∫ t

0
e−(AWs−mβ2s)1{AWs−mβ2s≥0}ds ≥ C−1

0 β−1
2 (E (0))−β2

}
. (3.33)

Proof. Recall that

x1+β1 + y1+β1 ≥ 2−β1 (x+ y)1+β1

for all x, y ∈ [0,∞). Therefore, from (3.30) we get

d

dt
E (t) ≥ 2−β1e−mβ1tMtE

1+β1 (t) .

Using a comparison argument as before, it is clear that I is a subsolution of E, where

d

dt
I (t) = 2−β1e−mβ1tMtI

1+β1 (t) , I (0) = E (0) .

The solution of this equation is given by

I (t) =

(
I−β1 (0)− 2−β1β1

∫ t

0
e−mβ1sMsds

)− 1
β1

, t ∈ [0, τ∗) ,

with

τ∗ := inf

{
t ≥ 0 :

∫ t

0
e−mβ1sMsds ≥ 2β1β−1

1 I−β1 (0)

}
. (3.34)
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The inequality τ ≤ τ∗ is clear since I is a subsolution of v1 + v2. There remains to show the

inequality τ∗ ≤ τ ′, where τ ′ is defined in (3.31). This follows easily from the fact that

e−mβ1sMs ≥ e−mβ1seAWs1{Ws≥0}

and

{AWs −mβ1 ≥ 0} ⊆ {Ws ≥ 0}

for all s ≥ 0. We conclude that∫ t

0
e−mβ1sMsds ≥

∫ t

0
e−(AWs−mβ1s)1{AWs−mβ1s≥0}ds,

and the assertion follows. Therefore τ ≤ τ ′.

We now prove part (2) of the theorem. According to Young’s inequality,

xy ≤ δ−pxp

p
+
δqyq

q
(3.35)

for all x, y ∈ [0,∞), δ > 0 and p, q ∈ (1,∞) such that 1
p + 1

q = 1. Taking A0 as in the

statement and setting

x = ε, y = y1+β2
2 (t) , δ =

(
1 + β1

1 + β2

) 1+β2
1+β1

and q =
1 + β1

1 + β2

in (3.35), it follows that for all ε > 0,

y1+β1
2 (t) ≥ εy1+β2

2 (t)− ε
1+β1
β1−β2A0, t ≥ 0.

Using (3.30) we get

d

dt
E (t) ≥ e−mβ1tMt

(
y1+β2

1 (t) + εy1+β2
2 (t)− ε

1+β1
β1−β2A0

)
. (3.36)

Suppose ε ∈ (0, 1]. Using Jensen’s inequality we conclude that

y1+β2
1 (t) + εy1+β2

2 (t) ≥ 2−β2

[
y1 (t) + ε

1
1+β2 y2 (t)

]1+β2

≥ 2−β2ε [y1 (t) + y2 (t)]1+β2 = 2−β2εE1+β2 (t) ,

hence
d

dt
E (t) ≥ e−mβ1tMt

(
2−β2εE1+β2 (t)− ε

1+β1
β1−β2A0

)
.

Take ε0 as in the statement. We claim that

E (t) ≥ E (0) > 0 for all t ≥ 0.
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In fact, let J be the solution of the differential equation

J ′ (t) = e−mβ1tMtf (J (t)) , J (0) = E (0) ,

where

f (x) := 2−β2ε0x
1+β2 − ε

1+β1
β1−β2
0 A0, x ≥ 0.

By comparison E(t) ≥ J(t) for all t ≥ 0, and therefore it suffices to show that

J(t) ≥ E(0), t ≥ 0.

Notice that f is increasing and has only one zero at

x0 = (2β2ε
1+β2
β1−β2
0 A0)

1
1+β2 > 0,

with x0 < E(0) due to (3.32). Let

T = inf {t > 0 : J(t) < E(0)} .

Then T > 0 because J is strictly increasing around 0, and J(t) ≥ E(0) for all t ∈ (0, T ).

Suppose that T < ∞. Being J continuous on [0, T ] and differentiable on (0, T ), Rolle’s

theorem yields that J ′(c) = 0 for some c ∈ (0, T ). Hence J(c) = x0 which implies that

x0 ≥ E(0). This contradiction says that T =∞ and

E(t) ≥ E(0) for all t ≥ 0,

which proves the claim. Therefore,

d

dt
E (t) ≥ e−mβ1tMtE

1+β2 (t)

2−β2ε0 −
ε

1+β1
β1−β2
0 A0

(E (0))1+β2

 .
Let C0 be as in the statement and let I be the solution of the equation

d

dt
I (t) = e−mβ1tMtI

1+β2 (t)C0, t ∈ [0, τ∗∗) ; I (0) = E (0) ,

where τ∗∗ will be defined below. Then I(t) ≤ E(t). The expression for I is given in this case

by

I (t) =

(
I−β2 (0)− C0β2

∫ t

0
e−mβ1sMsds

)− 1
β2

,

for all t ∈ [0, τ∗∗), with τ∗∗ given by

τ∗∗ = inf

{
t ≥ 0 :

∫ t

0
e−mβ1sMsds ≥ C−1

0 β−1
2 I−β2 (0)

}
. (3.37)

Taking τ ′′ as in (3.33) and proceeding as in the proof of Part 1, we get τ ≤ τ∗∗ ≤ τ ′′.
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Remark 3.3.2. When κ1 = κ2 = 0 and β1 = β2 > 0, from the inequality τ ≤ τ∗ it follows that

P (τ <∞) ≥ P
(

1

λ
> 2β1I−β1 (0)

)
≥ P

(
1

λ
>

(
min
i=1,2

{∫
D
fi (x)ψ (x) dx

})−β1
)

=


1 if λ

1
β1 < min

i=1,2

{∫
D
fi (x)ψ (x) dx

}
,

0 otherwise,

which is the deterministic result given in [33].

3.3.2 A lower bound for the explosion time

Suppose that {Yt; t ≥ 0} is a spherically symmetric α-stable process with infinitesimal gener-

ator ∆α. Let

τD := inf {t > 0 : Yt /∈ D}

and consider the killed process
{
Y D
t , t ≥ 0

}
given by

Y D
t =

Yt if t < τD

∂ if t ≥ τD,

where ∂ is a cemetery point. Let T ≥ 0 be a random time. Recall that a pair of Ft-adapted

random fields

(v1 (t, x) , v2 (t, x)) , x ∈ D, t ≥ 0,

is a mild solution of (3.26) in the interval [0, T ] if

vi (t, x) = e−
κ2
i
2
tPDt fi (x) +

∫ t

0
e−κiWre−

κ2
i
2

(t−r)PDt−r
[
Gi
(
eκ3−iWrv3−i (r, x)

)]
dr, (3.38)

P-a.s. for all t ∈ (0, T ], i = 1, 2, where
{
PDt , t ≥ 0

}
is the semigroup of the process{

Y D
t , t ≥ 0

}
. In what follows we will assume that Gi is a locally Lipschitz positive func-

tion such that

Gi(z) ≤ z1+βi , z ≥ 0, i = 1, 2. (3.39)

Moreover, we set

A = min
i=1,2

{(1 + βi)κ3−i − κi} and B = max
i=1,2

{(1 + βi)κ3−i − κi} .

Theorem 3.3.3. Let β = max
i=1,2

{βi} and

φ(t) = e−(κ1∧κ2)2t/2 max
i=1,2

{
sup
s∈[0,t]

∥∥PDs fi∥∥∞
}
, t ≥ 0.
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Assume that A > 0. Then there exists a mild solution (v1, v2) of (3.26) such that

vi(t, x) ≤ φ(t)B(t),

for all 0 ≤ t < τ∗, x ∈ D and i = 1, 2, where

B (t) =

(
1− β

∫ t

0

(
eAWr ∨ eBWr

)
max
i=1,2

{
φβi (r)

}
dr

)− 1
β

and

τ∗ = inf

{
t ≥ 0 :

∫ t

0

(
eAWr ∨ eBWr

)
max
i=1,2

{
φβi (r)

}
dr ≥ 1

β

}
. (3.40)

Proof. Notice that B (0) = 1 and

d

dt
B (t) =

(
eAWt ∨ eBWt

)
max
i=1,2

{
φβi (t)

}
B1+β (t) , t > 0,

hence

B (t) = 1 +

∫ t

0

(
eAWr ∨ eBWr

)
max
i=1,2

{
φβi (r)

}
B1+β (r) dr.

Now let V : [0,∞)×D → R be a non-negative continuous function such that

V (t, ·) ∈ C0 (D) , t ≥ 0,

and satisfying

V (t, x) ≤ φ(t)B (t) , t ∈ [0, τ∗) , x ∈ D. (3.41)

Define the operator Fi by

Fi (V (t, x)) := e−
κ2
i
2
tPDt fi (x) +

∫ t

0
e−κiWre−

κ2
i
2

(t−r)PDt−r
[
Gi
(
eκ3−iWrV (r, x)

)]
dr,

for i = 1, 2. Using (3.39) and that the semigroup
{
PDt , t ≥ 0

}
preserves positivity we get

Fi (V (t, x)) ≤ φ(t) +

∫ t

0
e((1+βi)κ3−i−κi)Wre−

(κ1∧κ2)2

2
(t−r)PDt−r

[
V 1+βi (r, x)

]
dr

≤ φ(t) +

∫ t

0
e((1+βi)κ3−i−κi)Wre−

(κ1∧κ2)2

2
(t−r)φ1+βi (r)B1+βi (r) dr,

where we have used (3.41) to obtain the last inequality. Notice that if t ∈ [0, τ∗) and r ∈ [0, t]

then

e−
(κ1∧κ2)2

2
(t−r)φ (r) ≤ φ(t),

and since B(t) ≥ 1,

B1+βi (r) ≤ B1+β(r), 0 ≤ r ≤ t.
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Therefore, for all t ∈ [0, τ∗) and x ∈ D,

Fi (V (t, x)) ≤ φ(t)

[
1 +

∫ t

0

(
eAWr ∨ eBWr

)
max
i=1,2

{
φβi (r)

}
B1+β (r) dr

]
= φ(t)B(t).

Now we will define increasing sequences which will converge to the mild solution of (3.26).

Let

v1,0 (t, x) = e−
κ2

1
2
tPDt f1 (x) , v2,0 (t, x) = e−

κ2
2
2
tPDt f2 (x) , (t, x) ∈ [0, τ∗)×D,

and for any n ≥ 0 define

v1,n+1 (t, x) = F1 (v2,n (t, x)) , v2,n+1 (t, x) = F2 (v1,n (t, x)) ,

for (t, x) ∈ [0, τ∗)×D. To prove that (v1,n (t, x))n≥0 and (v2,n (t, x))n≥0 are increasing for all

t ∈ [0, τ∗) and x ∈ D, note that

vi,0 (t, x) ≤ e−
κ2
i
2
tPDt fi (x) +

∫ t

0
e−κiWre−

κ2
i
2

(t−r)PDt−r
[
Gi
(
eκ3−iWrv3−i,0 (r, x)

)]
dr

= vi,1 (t, x) , i = 1, 2.

Suppose that, for some n ≥ 0,

vi,n ≥ vi,n−1, i = 1, 2.

Then

vi,n+1(t, x) = Fi (v3−i,n(t, x)) ≥ Fi (v3−i,n−1(t, x)) = vi,n(t, x)

for all (t, x) ∈ [0, τ∗)×D, where we have used the monotonicity of Fi, i = 1, 2. By induction,

this shows that both sequences (v1,n (t, x))n≥0 and (v2,n (t, x))n≥0 are increasing. Therefore

the limits

v1 (t, x) := lim
n→∞

v1,n (t, x) and v2 (t, x) := lim
n→∞

v2,n (t, x)

exist for all t ∈ [0, τ∗) and x ∈ D. From the Monotone Convergence Theorem we conclude

that

vi (t, x) = Fiv3−i (t, x) , i = 1, 2,

for all t ∈ [0, τ∗) and x ∈ D. Thus, (v1, v2) is a mild solution of (3.26). Moreover,

vi (t, x) ≤ φ(t)B(t), i = 1, 2,

for all t ∈ [0, τ∗) and x ∈ D, and the result follows.
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Corollary 3.3.4. Under the assumptions of Theorem 3.3.3, if

β

∫ ∞
0

(
eAWr ∨ eBWr

)
max
i=1,2

{
φβi (r)

}
dr < 1,

then the mild solution (v1, v2) of (3.26) obtained in Theorem 3.3.3 is global.

3.4 Bounds for the probability of explosion in finite time

Throughout this section we make the following assumptions:

1. β1 = β2 > 0,

2. the initial values in (3.3) are of the form

fi(x) = Liψ(x), x ∈ D, i = 1, 2,

where L1 and L2 are positive constants,

3. G(z) = z1+β1 , z ≥ 0.

As above we denote

A = min
i=1,2

{(1 + β1)κ3−i − κi} , B = max
i=1,2

{(1 + β1)κ3−i − κi} ,

and assume that A > 0. We also abbreviate Λ := (κ1∧κ2)2

2 .

3.4.1 An upper bound for the probability of blowup in finite time

Consider the random variable τ∗∗ defined by

τ∗∗ := inf

{
t ≥ 0 :

∫ t

0

(
eAWr ∨ eBWr

)
e−Λβ1rdr ≥ 1

β1 ‖ψ‖β1
∞

min
i=1,2

{
1

Lβ1
i

}}
. (3.42)

It is easy to see that τ∗∗ ≤ τ∗. Furthermore, noticing that∫ t

0

(
eAWr ∨ eBWr

)
e−Λβ1rdr

=

∫ t

0
eAWr−Λβ1r1{Wr<0}dr +

∫ t

0
eBWr−Λβ1r1{Wr≥0}dr

≤
∫ ∞

0
e−Λβ1rdr +

∫ t

0
eBWr−Λβ1rdr =

1

Λβ1
+

∫ t

0
eBWr−Λβ1rdr,
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it follows that

τ′′ := inf

{
t ≥ 0 :

1

Λβ1
+

∫ t

0
eBWr−Λβ1rdr ≥ 1

β1 ‖ψ‖β1
∞

min
i=1,2

{
1

Lβ1
i

}}
(3.43)

satisfies τ′′ ≤ τ∗∗ as long as A > 0.

Theorem 3.4.1. Assume that

‖ψ‖β1
∞

Λ
< min

i=1,2

{
1

Lβ1
i

}
.

Then

P (τ <∞) ≤

γ

2Λβ1

B2 ,
2

B2

(
1

β1‖ψ‖
β1∞

min
i=1,2

{
1

L
β1
i

}
− 1

Λβ1

)


Γ
(

2Λβ1

B2

) . (3.44)

Proof. From the relation τ′′ ≤ τ and the continuity of paths of Brownian motion, it follows

that

P (τ <∞) ≤ P (τ′′ <∞)

= 1− P

(∫ ∞
0

eBWr−Λβ1rdr ≤ 1

β1 ‖ψ‖β1
∞

min
i=1,2

{
1

Lβ1
i

}
− 1

Λβ1

)

= P

(∫ ∞
0

eBWr−Λβ1rdr >
1

β1 ‖ψ‖β1
∞

min
i=1,2

{
1

Lβ1
i

}
− 1

Λβ1

)
.

The result follows from (3.6).

Remark 3.4.2. Notice that P (τ <∞) < δ for any given δ > 0 provided that the positive

constants L1, L2 are sufficiently small, i.e., for sufficiently small initial conditions, the system

(3.3) explodes in finite time with small probability.

3.4.2 Lower bound for the probability of explosion in finite time

Theorem 3.4.3. If m = λ+ 1
2 (κ1 ∨ κ2)2 then

P (τ <∞) ≥ 8mβ1

A2

∑
n≥1

exp

{
− A22β1

8β1(L1+L2)β1‖ψ‖2β1
2

j2
2mβ1
A2 −1,n

}
j2

2mβ1
A2 −1,n

. (3.45)
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Proof. From the relation τ ≤ τ ′, the continuity of paths of Brownian motion and Theorem

3.2.6, it follows that

P (τ <∞) ≥ P
(
τ ′ <∞

)
= P

(∫ ∞
0

e−(AWs−mβ1s)1{AWs−mβ1s}ds ≥
2β1

β1 (L1 + L2)β1 ‖ψ‖2β1
2

)

=

∫ ∞
2β1

β1(L1+L2)β1‖ψ‖2β1
2

mβ1

∑
n≥1

exp

{
−
(
A2

8
j2

2mβ1
A2 −1,n

)
y

}
dy.

=
8mβ1

A2

∑
n≥1

exp

{
− A22β1

8β1(L1+L2)β1‖ψ‖2β1
2

j2
2mβ1
A2 −1,n

}
j2

2mβ1
A2 −1,n

,

where we used the Monotone Convergence Theorem to obtain the last equality.

Remark 3.4.4. Notice that for sufficiently large L1 and L2, the relation

8mβ1

A2

∑
n≥1

exp

{
− A22β1

8β1(L1+L2)β1‖ψ‖2β1
2

j2
2mβ1
A2 −1,n

}
j2

2mβ1
A2 −1,n

∼ 1−
√

8mβ
1/2
1 2β1/2

Aπ (L1 + L2)β1/2 ‖ψ‖β1
2

holds; see [10, formula (39)]. Therefore P (τ <∞) > 1− ε for any given ε > 0 provided that

the positive constants L1, L2 are sufficiently large, i.e., for sufficiently large initial conditions,

the solution of system (3.3) explodes in finite time with high probability.
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Chapter 4

Blowup in finite time in Lp(D)-norm of a sys-

tem of SPDEs

4.1 Introduction

This chapter addresses the problem of explosion in finite time in Lp(D)-norm, of the coupled

system of reaction-diffusion SPDEs

du1(t, x) =
(

∆α1u1 (t, x) + u1+β1
2 (t, x)

)
dt+ κ1u1 (t, x) dWt,

du2(t, x) =
(

∆α2u2 (t, x) + u1+β2
1 (t, x)

)
dt+ κ2u2 (t, x) dWt, t > 0, x ∈ D, (4.1)

ui(0, x) = fi(x) ≥ 0, x ∈ D,

ui(t, x) = 0, t ≥ 0, x ∈ Rd \D, i = 1, 2,

where D is an open domain in Rd, ∆αi is the fractional power of the Laplacian introduced in

Chapter 3, βi > 0, κi ∈ R and αi ∈ (0, 2) are constants, fi ∈ C2
b (D), i = 1, 2, and {Wt; t ≥ 0}

is a Brownian motion defined in some probability space (Ω,F ,P).

In this chapter we consider another notion of explosion which was treated in [8] (see also [9]

and [32]), where it is proved explosion in finite time in Lp (D)-norm of the positive solution

of a single SPDE of the form (4.1), with α = 2. We say that a function u : R+ ×Ω×D → R

explodes in Lp(D)-norm if there exists Tp ∈ (0,∞] such that

lim
t→T−p

E
[
‖u (t, ·)‖Lp(D)

]
=∞. (4.2)

When Tp <∞, we say that u explodes in finite time in Lp (D)-norm and the infimum of such

numbers Tp satisfying (4.2) is called the explosion time of u. We say that a solution of (4.1)

explodes in Lp (D)-norm if at least one of u1 or u2 explodes in the Lp (D)-norm. In this case

case, Tp := min
{
T 1
p , T

2
p

}
is called the explosion time of system (4.1), where T ip is the explosion
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time of ui, i = 1, 2. We say that a solution of (4.1) explodes in finite time in Lp (D)-norm if

at least one of u1 or u2 explodes in finite time in Lp (D)-norm.

This chapter is organized as follows. In Section 4.2 we recall the notions of weak and mild

solutions and we establish their equivalence under our assumptions. The concept of weak

solution for the system (4.1) was introduced in Definition 1.3.1 for the case α1 = α2. We need

a definition for the general case α1, α2 ∈ (0, 2], and hence to establish a theorem on existence

of weak (or mild) solutions. We make a suitable change of variables in system (4.1) in order

to obtain a related system of random PDEs given in (4.4). This change of variables allows to

prove, in particular, that there exists a positive weak solution of system (4.1), by proving the

existence of a weak solution of the related system (4.4). Moreover, following the results in

Section 1.3, we formulate a general result on existence of a local mild solution of the related

system (4.4) and we prove that this local mild solution is also a weak solution of the system

(4.4). Some of the results on equivalence of solutions of PDEs we use in Section 4.2 are based

on [1] and [27].

Further, we find conditions ensuring finite-time blowup of system (4.1) in Lp(D)-norm for all

p ∈ [1,∞). To achieve this, in Section 4.3.1 we adopt the methodology of Chapter 3 to prove

the existence of an explosive weak solution of (4.1). We first consider the case α1 = α2. In

Theorem 4.3.1 we provide conditions which imply explosion in finite time in Lp(D)-norm of

system (4.1), where we distinguish the cases β1 = β2 and β1 > β2.

The case of α1 > α2 is treated in Section 4.3.2. We follow the same approach as in the case

α1 = α2, but first we must obtain suitable upper and lower bounds of the first eigenfunction

ψi of −∆αi , i = 1, 2, with the aim of getting a useful explosive subsolution. The estimations

needed for this case are of the form

C1,iEx[τ
(i)
D ] ≤ ψi(x) ≤ C2,iEx[τ

(i)
D ], x ∈ D, i = 1, 2,

where C1,i, C2,i, i = 1, 2, are positive constants depending on the domain D and the fractional

power αi ∈ (0, 2], and τ
(i)
D is the exit time from D of a spherically symmetric αi-stable

process with infinitesimal generator ∆αi ; see [4, Theorem 4.4]. The expression Ex[τ
(i)
D ] can be

explicitly calculated when D is an open ball B(0, r) ⊆ Rd with centre at the origin and an

arbitrary radius r ∈ (0,∞). For the case of D = B(0, r), we give in Theorem 4.3.2 an upper

bound for the explosion time of (4.1). We consider the case α1 > α2, and we distinguish

two cases: β1 = β2 and β1 > β2. In both cases we must assume that β1 >
α1−α2
α2

and some
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restrictions on the initial conditions to ensure that the upper bound for the explosion time is

finite.

4.2 Weak and mild solutions

Let (Ω,F , {Ft; t ≥ 0},P) be a filtered probability space.

Definition 4.2.1. Let τ ∈ [0,∞] be a stopping time. A pair of Ft-adapted processes

{ui (t, x) : t ≥ 0, x ∈ D} , i = 1, 2,

is a weak solution of (4.1) on [0, τ) if for all φi ∈ C2
b (Rd) vanishing on Dc, t ∈ [0, τ) and

i = 1, 2, ∫
D
ui (t, x)φi (x) dx

=

∫
D
fi (x)φi (x) dx+

∫ t

0

∫
D

(
ui (s, x) ∆αiφi (x) + u1+βi

3−i (s, x)φi (x)
)
dxds

+ κi

∫ t

0

∫
D
ui (s, x)φi(x)dxdWs, P-a.s. (4.3)

Definition 4.2.2. Let τ ∈ [0,∞] be a stopping time. The vector (u1 (t, x) , u2 (t, x)) is a mild

solution of (4.1) on [0, τ) if for all t ∈ [0, τ), P-c.s. and i = 1, 2,

ui (t, x) = PDt,ifi (x) +

∫ t

0
PDt−r,i

(
u1+βi

3−i (r, x)
)
dr + κi

∫ t

0
PDt−r,i (ui(r, x)) dWr,

where {PDt,i; t ≥ 0} is the semigroup defined in (1.1), having infinitesimal generator ∆αi .

Proceeding as in Section 1.3, it is easy to show that {ui (t, x) : t ≥ 0, x ∈ D}, i = 1, 2, is a

weak solution of (4.1) on [0, τ) if and only if the vector (v1(t, x), v2(t, x)) given by

vi (t, x) := exp {−κiWt}ui (t, x) , t ∈ [0, τ), x ∈ D, i = 1, 2,

is a weak solution of the system of random parabolic PDEs

∂

∂t
v1 (t, x) =

(
∆α1v1 (t, x)− κ2

1

2
v1 (t, x)

)
+ e((1+β1)κ2−κ1)Wtv1+β1

2 (t, x) ,

∂

∂t
v2 (t, x) =

(
∆α2v2 (t, x)− κ2

2

2
v2 (t, x)

)
+ e((1+β2)κ1−κ2)Wtv1+β2

1 (t, x) , (4.4)

vi (0, x) = fi (x) ≥ 0, x ∈ D,

vi (t, x) = 0, t ≥ 0, x ∈ Rd \D, i = 1, 2,
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with the same assumptions as in (4.1), i.e., if τ is a stopping time, then for all φi ∈ C2
b (Rd)

vanishing on Dc, t ∈ [0, τ) and i = 1, 2,∫
D
vi (t, x)φi (x) dx =

∫
D
fi (x)φi (x) dx+

∫ t

0

∫
D
vi (s, x)

(
∆αiφi (x)− κ2

i

2
φi (x)

)
dxds

+

∫ t

0

∫
D
e((1+βi)κ3−i−κi)Wtv1+βi

3−i (t, x)φi(x)dxds, P-a.s.

The following theorem establishes the existence of a local mild solution of system (4.4). Its

proof is very similar to that of Theorem 3.3.3, and therefore it is omitted. As in Section

3.3.2, we let A = mini=1,2{(1 + βi)κ3−i − κi} and B = maxi=1,2{(1 + βi)κ3−i − κi}. The way

of choosing the functions φ(t) and B(t), t ≥ 0, in the following theorem, is inspired in the

preparation paper by M. J. Ceballos-Lira and A. Pérez [6].

Theorem 4.2.3. Let β = max
i=1,2

{βi}. Assume that A > 0 and let

φ(t) = e−(κ1∧κ2)2t/2 max
i=1,2

{
sup
s∈[0,t]

∥∥PDs,ifi∥∥∞
}
, t ≥ 0.

Then there exists a mild solution (v1(t, x), v2(t, x)) of system (4.4), such that

vi(t, x) ≤ φ(t)B(t),

for all 0 ≤ t < τ , x ∈ D and i = 1, 2, where

B (t) =

(
1− β

∫ t

0

(
eAWr ∨ eBWr

)
max
i=1,2

{
φβi (r)

}
dr

)− 1
β

,

and

τ = inf

{
t ≥ 0 :

∫ t

0

(
eAWr ∨ eBWr

)
max
i=1,2

{
φβi (r)

}
dr ≥ 1

β

}
.

Now we establish the equivalence between mild and weak solutions of system (4.4). The

proof is an adaptation of [27, Theorems 4 and 5]. First, we prove two auxiliary lemmas. For

simplicity of the notation, St,i := e−
κ2
i
2
tPDt,i is the semigroup of ∆αi−

κ2
i

2 , which acts on C2
b (D),

for i = 1, 2, and the dot product in L2(D) is denoted by

〈f, g〉 :=

∫
D
f(x)g(x)dx, f, g ∈ L2(D).

Lemma 4.2.4. For all t ≥ 0 and φ ∈ C2
b (D),

〈St,ifi, φ〉 = 〈fi, φ〉+

∫ t

0

〈
Sr,ifi,

(
∆αi −

κ2
i

2

)
φ

〉
dr, i = 1, 2.
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Proof. Let φ ∈ C2
b (D). Then for all h > 0 we have that

h−1 [〈St+h,ifi, φ〉 − 〈St,ifi, φ〉]

= h−1 [〈Sh,i (St,ifi) , φ〉 − 〈St,ifi, φ〉]

= h−1 [〈St,ifi, Sh,iφ− φ〉]→
〈
St,ifi,

(
∆αi −

κ2
i

2

)
φ

〉
, as h→ 0,

where the limit is taken in L2(D). Therefore for i = 1, 2

d

dt
〈St,ifi, φ〉 =

〈
St,ifi,

(
∆αi −

κ2
i

2

)
φ

〉
,

which implies that, for i = 1, 2,

〈St,ifi, φ〉 − 〈fi, φ〉 =

∫ t

0

〈
Sr,ifi,

(
∆αi −

κ2
i

2

)
φ

〉
dr.

Lemma 4.2.5. For all t ≥ 0 and φ ∈ C2
b (D),∫ t

0

〈
St−r,i

(
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·)
)
, φ
〉
dr

=

∫ t

0

〈
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·), φ
〉
dr

+

∫ t

0

∫ r

0

〈
Sr−s,i

(
e((1+βi)κ3−i−κi)Wsv1+βi

3−i (s, ·)
)
,

(
∆αi −

κ2
i

2

)
φ

〉
dsdr, i = 1, 2.

Proof. Let φ ∈ C2
b (D). Then for all h > 0 and i = 1, 2,

h−1

[∫ t+h

0

〈
St+h−r,i

(
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·)
)
, φ
〉
dr

−
∫ t

0

〈
St−r,i

(
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·)
)
, φ
〉
dr

]
= h−1

[∫ t+h

t

〈
St+h−r,i

(
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·)
)
, φ
〉
dr

+

∫ t

0

〈
St−r,i

(
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·)
)
, Sh,iφ

〉
dr

−
∫ t

0

〈
St−r,i

(
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·)
)
, φ
〉
dr

]
= h−1

∫ t+h

t

〈
St+h−r,i

(
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·)
)
, φ
〉
dr

+

∫ t

0

〈
St−r,i

(
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·)
)
, h−1 (Sh,iφ− φ)

〉
dr

→
〈
e((1+βi)κ3−i−κi)Wtv1+βi

3−i (t, ·), φ
〉

+

∫ t

0

〈
St−r,i

(
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·)
)
,

(
∆αi −

κ2
i

2

)
φ

〉
dr, as h→ 0,
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which implies that

d

dt

∫ t

0

〈
St−r,i

(
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·)
)
, φ
〉
dr

=
〈
e((1+βi)κ3−i−κi)Wtv1+βi

3−i (t, ·), φ
〉

+

∫ t

0

〈
St−r,i

(
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·)
)
,

(
∆αi −

κ2
i

2

)
φ

〉
dr, i = 1, 2,

and the result follows as in the proof of the previous lemma.

Theorem 4.2.6. If a vector (v1(t, x), v2(t, x)) is a mild solution of (4.4) in some interval

(0, τ), then (v1(t, x), v2(t, x)) is a weak solution of (4.4) in (0, τ).

Proof. Assume that (v1(t, x), v2(t, x)) is a mild solution on (0, τ). Then for all t ∈ (0, τ),

vi(t, x) = St,ifi(x) +

∫ t

0
St−r,i

(
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, x)
)
dr.

Let φi ∈ C2
b (D), i = 1, 2. Taking the dot product in L2(D) we obtain

〈vi(t, ·), φi〉 = 〈St,ifi, φi〉+

∫ t

0

〈
St−r,i

(
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·)
)
, φi

〉
dr,

and using Lemma 4.2.4 and Lemma 4.2.5 we obtain for all t ∈ (0, τ),

〈vi(t, ·), φi〉

= 〈fi, φi〉+

∫ t

0

〈
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·), φi
〉
dr +

∫ t

0

〈
Sr,ifi,

(
∆αi −

κ2
i

2

)
φi

〉
dr

+

∫ t

0

∫ r

0

〈
Sr−s,i

(
e((1+βi)κ3−i−κi)Wsv1+βi

3−i (s, ·)
)
,

(
∆αi −

κ2
i

2

)
φi

〉
dsdr

= 〈fi, φi〉+

∫ t

0

〈
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·), φi
〉
dr

+

∫ t

0

〈
Sr,ifi +

∫ r

0
Sr−s,i

(
e((1+βi)κ3−i−κi)Wsv1+βi

3−i (s, ·)
)
ds,

(
∆αi −

κ2
i

2

)
φi

〉
dr

= 〈fi, φi〉+

∫ t

0

〈
e((1+βi)κ3−i−κi)Wrv1+βi

3−i (r, ·), φi
〉
dr +

∫ t

0

〈
vi(r, ·),

(
∆αi −

κ2
i

2

)
φi

〉
dr,

which implies that (v1(t, x), v2(t, x)) is a weak solution on (0, τ).

4.3 Explosion in finite time

From Theorem 4.2.3 and Theorem 4.2.6 it follows that system (4.1) has a weak solution

{ui(t, x); t ≥ 0, x ∈ D}. In fact, a mild solution (v1(t, x), v2(t, x)) of system (4.4) can be
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constructed from Theorem 4.2.3, which is also a weak solution of (4.4) by Theorem 4.2.6.

Using now the change of variables

ui(t, x) = exp{κiWt}vi(t, x),

we obtain that {ui(t, x); t ≥ 0, x ∈ D} is a weak solution of system (4.1).

Let ui (t, φ) :=
∫
D ui (t, x)φ (x) dx, i = 1, 2. Then, for all φi ∈ C2

b (D) the weak solution of

system (4.1) can be written as

ui (t, φi) = ui (0, φi) +

∫ t

0
ui (s,∆αiφi) ds+

∫ t

0
u1+βi

3−i (s, φi) ds+

∫ t

0
κiui (s, φi) dWs. (4.5)

Let λi denote the first positive eigenvalue of −∆αi on D, with respective eigenfunction ψi,

i = 1, 2, normalized so that
∫
D ψi(x)dx = 1. We write µi(t) = E [ui(t, ψi)].

4.3.1 A criterion for explosion in finite time. Case α1 = α2.

In this case we write α := α1 = α2, λ := λ1 = λ2 and ψ := ψ1 = ψ2. From Jensen’s inequality

and (4.5) we get that, for all t ≥ 0 and i = 1, 2,

µi (t) = µi (0)− λ
∫ t

0
µi (s) ds+

∫ t

0
E
[
u1+βi

3−i (s, ψ)
]
ds

≥ µi (0)− λ
∫ t

0
µi (s) ds+

∫ t

0
µ1+βi

3−i (s)ds.

Now we consider the system of ODEs

d

dt
hi (t) = −λhi (t) + h1+βi

3−i (t) , t > 0,

hi (0) = µi (0) , i = 1, 2,

and define E (t) = h1 (t)+h2 (t), t ≥ 0. Let Tp = min{T 1
p , T

2
p } be the explosion time of system

(4.1), where T ip is the explosion time of ui, i = 1, 2. We have the following theorem.

Theorem 4.3.1. 1. Assume that β1 = β2 > 0 and E (0) > 2λ1/β1. Then Tp ≤ T ∗ for all

p ∈ [1,∞), where

T ∗ =

∫ ∞
E(0)

1

−λu+ 2−β1u1+β1
du <∞.

2. Let β1 > β2 > 0 and A0 =
(

1+β1

1+β2

)− 1+β2
β1−β2 β1−β2

1+β1
, and suppose that there exists ε0 ∈ (0, 1]

such that f0 := 2−β2ε0E
1+β2 (0)− ε

1+β2
β1−β2
0 A0 > λE (0). Then Tp ≤ T ∗ for all p ∈ [1,∞),

where

T ∗ =

∫ ∞
E(0)

1

−λu+ (f0/E1+β2(0))u1+β2
du <∞.
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Proof. 1. We have that

d

dt
E (t) = −λE (t) +

(
h1+β1

1 (t) + h1+β1
2 (t)

)
, t > 0.

Using Young’s inequality we obtain, as in the proof of Theorem (2.3.1), that

d

dt
E (t) ≥ −λE (t) + 2−β1E1+β1 (t) , t > 0. (4.6)

Let I (t) be the solution of

d

dt
I (t) = −λI (t) + 2−β1I1+β1 (t) , t > 0,

I (0) = E (0) .

Notice that I (0) > 2λ1/β1 implies I (t) ≥ I (0), for all t > 0. Hence, for all T > 0,

T =

∫ I(T )

I(0)

1

−λu+ 2−β1u1+β1
du

≤
∫ ∞
I(0)

1

−λu+ 2−β1u1+β1
du =: T ∗,

where T ∗ < ∞ under the assumption E (0) > 2λ1/β1 . Therefore the last inequality

cannot hold for all sufficiently large T . This means that I must explode in a finite time

TI ≤ T ∗. By a comparison argument we get that the explosion time TE of E satisfies

that TE ≤ TI . In a similar way we can prove that Tµi ≤ Thi , where Tµi and Thi are

the explosion times of µi and hi, respectively, i = 1, 2. Since TE = min {Th1 , Th2}, we

obtain that

min {Tµ1 , Tµ2} ≤ T ∗.

Using Hölder’s inequality we have, for each i = 1, 2 and p ∈ [1,∞),

µi (t) ≤ Cp,iE
[
‖ui (t, ·)‖Lp(D)

]
for some constant Cp,i > 0. Therefore, Tp ≤ T ∗.

2. Using again Young’s inequality we get

d

dt
E (t) ≥ −λE (t) + 2−β2ε0E

1+β2 (t)− ε
1+β1
β1−β2
0 A0. (4.7)

Now we prove that E(t) ≥ E(0), for all t ≥ 0. In fact, consider the function

f(x) = −λx+ 2−β2ε0x
1+β2 − ε

1+β1
β1−β2
0 A0, x ∈ R.
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Let J be the solution of the differential equation

J ′(t) = f(J(t)), t > 0,

J(0) = E(0).

By comparison E(t) ≥ J(t) for all t ≥ 0. Therefore it suffices to show that J(t) ≥ E(0),

for t ≥ 0. It is easy to see that f has only one zero at some point x0 < E(0). Let

T := inf{t > 0 : J(t) < E(0)}. Then T > 0 since J is strictly increasing around 0,

and J(t) ≥ E(0) for all t ∈ (0, T ). Being J continuous on [0, T ] and differentiable on

(0, T ), Rolle’s theorem yields that J ′(c) = 0 for some c ∈ (0, T ). Hence J(c) = x0 which

implies x0 ≥ E(0). This contradiction says that T =∞ and

E(t) ≥ E(0), t ≥ 0.

Therefore

d

dt
E (t) ≥ −λE (t) + E1+β2 (t)

2−β2ε0 −
ε

1+β2
β1−β2
0 A0

E1+β2 (0)

 = −λE (t) +
f0

(E1+β2(0)
E1+β2 (t) .

Solving the equation

d

dt
I (t) = −λI (t) +

f0

(E1+β2(0)
I1+β2 (t) , t > 0,

I (0) = E (0) ,

taking T ∗ :=
∫∞
I(0)

1

−λu+ (f0/E1+β2(0))u1+β2
du (which is finite under the assumption

over f0) and following the argument used in the case β1 = β2, we get the result.

4.3.2 A criterion for explosion in finite time. Case α1 > α2 and D = B(0, r).

From [4, Theorem 4.4] we know that there exist positive constants C1,i and C2,i, depending

on D and αi, i = 1, 2 such that

C1,iEx[τ
(i)
D ] ≤ ψi(x) ≤ C2,iEx[τ

(i)
D ], x ∈ D, (4.8)

where ψi is the first eigenfunction of ∆αi in D, normalized so that
∫
D ψi(x)dx = 1, and

τ
(i)
D is the exit time from D of an spherically symmetric αi-stable process with infinitesimal

generator ∆αi , i = 1, 2.
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In the case D = B(0, r), where B(0, r) is the open ball in Rd with centre at the origin and

radius r ∈ (0,∞), it is known that

Ex[τ
(i)
D ] = cαi,d

(
r2 − |x|2

)αi/2 ,
where cαi,d > 0 is a constant depending only on αi and d, i = 1, 2 (see [4, Theorem 4.4]).

Therefore, if D = B(0, r), then there exist positive constants C1,i := C1(r, αi, d) and C2,i :=

C2(r, αi, d) such that

C1,i

(
r2 − |x|2

)αi/2 ≤ ψi(x) ≤ C2,i

(
r2 − |x|2

)αi/2 . (4.9)

From Hölder’s inequality we get that

∫
D
u3−i(s, x)ψ3−i(x)dx ≤

(∫
D
u1+βi

3−i (s, x)ψi(x)dx

) 1
1+βi

(∫
D

(
ψ3−i(x)

ψi(x)

) 1
βi

ψ3−i(x)dx

) βi
1+βi

.

Due to (4.9) we have that

max
i=1,2


(∫

D

(
ψ3−i(x)

ψi(x)

) 1
βi

ψ3−i(x)dx

)βi
≤ max

i=1,2

{
C1+βi

2,3−i
C1,i

(∫
D

(
r2 − |x|2

)α3−i−αi
2

1
βi

+
α3−i

2 dx

)βi}
=: C−1,

and C−1 < ∞ provided that βi >
αi−α3−i
α3−i

for each i = 1, 2. Notice that if α1 > α2, then the

condition β1 >
α1−α2
α2

implies β2 >
α2−α1
α1

because β2 > 0. Similarly if α2 > α1, the condition

β2 >
α2−α1
α1

implies β1 >
α1−α2
α2

. Therefore we can suppose, without lost of generality, that

α1 > α2 and β1 >
α1−α2
α2

to ensure that C is positive and finite. Hence,(∫
D
u3−i(s, x)ψ3−i(x)dx

)1+βi

≤ C−1

∫
D
u1+βi

3−i (s, x)ψi(x)dx, s ∈ [0, t]. (4.10)

We write again µi (t) = E [ui (t, ψi)] and denote by λi,r the corresponding positive eigenvalue

of ψi in B(0, r), i = 1, 2. Using again Jensen’s inequality we get from (4.5) and (4.10) that

for all t ≥ 0,

µi (t) = µi (0)− λi,r
∫ t

0
µi (s) ds+

∫ t

0
E
[
u1+βi

3−i (s, ψi)
]
ds

≥ µi (0)− λi,r
∫ t

0
µi (s) ds+ C

∫ t

0
E
[
(u3−i (s, ψ3−i))

1+βi
]
ds

≥ µi (0)− λi,r
∫ t

0
µi (s) ds+ C

∫ t

0
(E [u3−i (s, ψ3−i)])

1+βi ds

= µi (0)− λi,r
∫ t

0
µi (s) ds+ C

∫ t

0
µ1+βi

3−i (s)ds.
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Now consider the system of ODEs

d

dt
hi (t) = −λrhi (t) + Ch1+βi

3−i (t) , t > 0,

hi (0) = µi (0) , i = 1, 2,

with λr = max{λ1,r, λ2,r}. The proof of the following result is similar to the proof of Theorem

4.3.1.

Theorem 4.3.2. Assume that D = B(0, r), α1 > α2, β1 >
α1−α2
α2

and C as in (4.10).

1. If β1 = β2 > 0 and E (0) > 2(λr/C)1/β1, then there exists T ∗ ∈ R+ such that for all

p ∈ [1,∞), Tp ≤ T ∗, where

T ∗ =

∫ ∞
E(0)

1

−λru+ 2−β1Cu1+β1
du.

2. Let β1 > β2 > 0 and let A0 =
(

1+β1

1+β2

)− 1+β2
β1−β2 β1−β2

1+β1
. Suppose that there exists ε0 ∈ (0, 1]

such that f0 := 2−β2Cε0E
1+β2 (0) − ε

1+β2
β1−β2
0 CA0 > λrE (0). Then there exists T ∗ ∈ R+

such that for all p ∈ [1,∞), Tp ≤ T ∗, where

T ∗ =

∫ ∞
E(0)

1

−λu+ (f0/E1+β2(0))u1+β2
du.

If α2 > α1, we must assume β2 > α2−α1
α1

in order to ensure C ∈ (0,∞), and in the case

α1 > α2, we must assume β1 >
α1−α2
α2

to ensure C ∈ (0,∞). In both cases α1 > α2 and

α2 > α1, Part 2. of Theorem 4.3.2 remains valid when β2 > β1, with the obvious changes in

the correspondent statements.

Remark 4.3.3. Conditions on ε0 and f0 in Part 2. of Theorem 4.3.1 and Theorem 4.3.2 can

be satisfied because functions of the form f(x) = ax1+β − bx− c, x ≥ 0, increases to infinity,

for all constants β, a, b, c > 0.
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