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Abstract

We present a revised version of a polynomial system modelling current distribution in a superconducting power cable. We show that
by using the eigenvalue theorem in Algebraic Geometry, a numerical method can be developed to design a superconducting cable sat-
isfying a predetermined current distribution.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

There is a widespread belief that superconductivity is
going to be a vital 21st century technology, not just in
the power applications field but also in electronics. It is
reflected on the extensive literature reporting on modelling,
simulation and testing of superconducting devices. In
particular, for electric power applications see the review
in [7].

The interest in applying superconductivity to electric
power and energy storage applications, is directly related
to expectations for improved performance and efficiency
advantages over conventional devices. In the case of
superconducting cables, attractive is the larger amount of
current and energy that can be transferred using supercon-
ductors compared to copper cables, and the energy savings
that can be obtained with the superconductor. The super-
conducting cable is the object of study in this work.

Let us describe the device. A high temperature supercon-
ductor (HTS) power transmission cable is usually made of
several layers of helically wound superconductor tapes. The
current distribution among the conductor tapes is con-
trolled mainly by pitches and winding directions of the lay-
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ers, because the inductance of the layer is determined by
the pitch and the winding direction.

As quoted in [9], One of the most serious problems of this

multi-layer alignment is non-uniform current distribution

among the layers. If the layers do not share the current

evenly, current capacity of the whole cable is much less than
expected by critical currents of the conductors and the num-

ber of conductors. Thus, the point of research, is to find effi-
cient configurations, pitches and winding directions of the
layers in order to satisfy the homogenous current condi-
tion. A relevant step in that direction is to propose and
analyze mathematical models associated to the problem.

In [6], a generalized equation of the current distribution
under the external field is introduced, and consequently the
current distribution equation under a self-field only is
derived. Therein all physical aspects are fully explained,
we shall focus on the mathematical and numerical aspects
of the model.

For a cable of m layers the following system is obtained:
rkþ1 � rk
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The parameters are:

• Ii: current in layer i.
• ri: radius of layer i.
• ei: winding direction in layer i. ei = � 1, +1 depending

on the twist direction in the layer, Z or S.
• Li: twist pitch in layer i.

A cable configuration is a set of values for ei, Li. If a con-
figuration and the radii are given, we can determine the
current distribution in the cable combining the total cur-
rent condition as follows:

Xm

i¼1

I i ¼ IT: ð2Þ

For a desired total transport current IT, we have a linear
system for currents Ii. To obtain physical solutions, para-
meters are to be chosen appropriately.

The problem of homogeneous current distribution can
be formulated as follows: Assume that a cable of m

layers is to be built with known radii ri, i = 1,2, . . . ,m.
Find configurations satisfying (1) with Ii = IT/m, i =
1,2, . . . ,m.

Hence the interest is to solve the system
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for ei, Li, i = 1,2, . . . ,m.
We see that system (3) is quadratic on the variables ei/Li.

Also, it is known that in actual cables the number of layers
is small, four or six are the most common. Thus, symbolic
algorithms for solving polynomial systems are suitable for
solutions. Some of these algorithms are based on tech-
niques from Algebraic Geometry. In this work, we use
the eigenvalue theorem in this theory to develop a hybrid
algorithm, symbolic-numeric, to design a superconducting
cable satisfying a predetermined current distribution. The
algorithm rests on the theory of Gröbner bases. The con-
tent is as follows.

In Section 2 we present a slight modification of system
(3) for modeling current distribution. A general algorithm
for solving polynomial systems is sketched in Section 3.
Also, the algorithm to solve the system of current distribu-
tion is presented. In Section 4 we provide some numerical
examples of the applicability of the algorithm. More
importantly, we report on actual cables whose current dis-
tributions correspond to the ones predicted by the algo-
rithm. In Section 5 we comment on our work and future
research.
2. Current distribution in superconducting cables

Instead of uniform current distribution we consider a
more general situation. In normalized form, Eq. (2) reads

Xm

i¼1

I i ¼ 1: ð4Þ

In actual situations perfect efficiency is seldomly
attained. Thus we introduce the efficiency equation

Xm

i¼1

Ei ¼ E; ð5Þ

where 0 < E 6 1. Here Ei denotes the efficiency in layer i,
0 < Ei 6 1/m.

System (3) becomes
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Observe that in (6) the winding direction ei, and twist pitch
Li appear in the form ei/Li. Letting li = ei/Li we obtain a
quadratic system of m � 1 equations with the m unknowns
l1, l2, . . . , lm. Namely
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In the sections that follow, we shall present an algorithm
to solve this system.

Remarks

(i) There are classical numerical techniques available to
solve this polynomial system, but as quoted in [11],
there are no good, general solvers for solving systems
of multivariate polynomial equations. For systems of
moderate size, symbolic algorithms ought to be con-
sidered. These algorithms reduce the problem to com-
pute roots of a univariate problem, or to solve
eigenvalue problems.

(ii) There is a great deal of experimental work on HTS
cables. In [2] a report is presented on cables of 4, 8,
and 10 layers which were built and tested. In [10],
experiments were carried out in cables of 2, 4 and
10 layers also. In both cases current distribution is
not uniform. The condition of (almost) homogeneous
distribution is satisfied in cables reported in [12] (four
layers) and [8] (six layers).
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3. Solving equations via eigenvalues

The solution of the system (7) will be reduced to eigen-
value problems. The method is based on a well known the-
orem in Algebraic Geometry. A leisure introduction is
presented in [1].
3.1. The eigenvalue theorem

Let us introduce the basics to state the result. Let
C½x1; x2; . . . ; xn� be the ring of polynomials in n variables
with complex coefficients. Let fi 2 C½x1; x2; . . . xn�, i = 1,
2, . . . , s. Consider the system of equations

f1 ¼ 0;

..

.

fs ¼ 0:

ð8Þ

Let I = hf1, . . . , fsi be the ideal generated by f1, . . . , fs, and
let U be the quotient ring C½x1; x2; . . . ; xn�=I . U is a vector
space. Below an appropriate basis for U, denoted by B,
is constructed. Also, given g 2 C½x1; x2; . . . ; xn�, we shall de-
fine the multiplication map mg from U in itself.

We have the following remarkable result.
3.1.1. Eigenvalue theorem
Assume that the set of solutions of system (8) is finite.

Then, for each i, i = 1,2, . . . ,n, the eigenvalues of mxi are
the xi � coordinates of the solutions of system (8).

This theorem does not tell us how to match up the var-
ious coordinates. One can do this by a variety of methods,
for our application a brute force approach will suffice.
3.2. An algorithm for solving polynomial systems

The algorithm is based on the theory of Gröbner bases
for ideals of polynomials. The basic steps are:

1. Compute a Gröbner basis G = {g1, . . . ,gt} for the ideal
I = hf1, . . . , fsi.

2. Compute the basis B of the vector space U.
3. Find the generalized companion matrices Mxi associated

to mxi .
4. Compute the corresponding eigenvalues and apply the

test given in the eigenvalue theorem to find the solutions
of the system.
Remarks

(i) The algorithm is implemented in Maple. For steps
1–3 apparently there is not much to do, Maple provides
routines to compute G, B, Mxi . In practice, what we
compute in step 1 is a Reduced Gröbner Basis.
(ii) We observe that steps 1–3 use symbolic algorithms,
whereas in step 4 the algorithm is numerical. Thus,
special care is needed in the implementation.

(iii) The algorithm applies only if the set of solutions is
finite. We have implemented an algorithm based on
the Radical Theorem to test for this condition.
3.3. Algorithm for control of current distribution

Here we provide details on the actual implementation of
the Algorithm.

Step 1. The polynomial system

Recall the system
rkþ1 � rk
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The system is underdetermined, there are m � 1
equations and m unknowns. For some layer, say
i0, we assume that ei0 and Li0 are known. Thus,
we append the equation
li0 �
eio

Li0

¼ 0: ð10Þ
Providing ei0 and Li0 is not so restrictive, in most
algorithms an initial guess is required.

Step 2. Preconditioning to find a Gröbner basis

There are many algorithms to find Gröbner bases.
Most, if not all, are based on the Buchberger’s
Algorithm. Roughly speaking, two main ingredi-
ents of this algorithm are: (i) a generalized version
of the division algorithm for polynomials and (ii)
Gaussian elimination like operations. Even for
small systems, computation of a Gröbner basis is
lengthy and costly. Moreover, a naive application
of the algorithm above may lead to ill posedness.
The latter is a more serious problem. To correct
it we precondition the original system (6) by means
of the change of variables
li ¼
pr2

i

Li
: ð11Þ
Consequently, we compute a reduced Gröbner
basis associated to the system� �
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li0 �
pr2

i0

Li0

¼ 0:
The algorithm to compute the Gröbner basis is
symbolic and works with rational numbers. The
float point numbers representing our real data
are converted to (symbolic) rationals.

Step 3. Companion matrices
This part is entirely symbolic. The base B of
C½x1; x2; . . . ; xn�=I is computed, as well as the gener-
alized companion matrices.

Step 4. Solutions

The coordinates of the companion matrices are
converted to floating point numbers. Then eigen-
values are found. Finally, we select those solutions
so that the twist pitches are within a desired range.
Fig. 1. Twist pitches of second, third and fourth layers as a function of
that of the first layer for homogeneous current distribution in case of
alternative twist directions. Radii as in Table 1.
3.3.1. Global strategies

This algorithm may be regarded as local, a layer i0 is
selected and an educated initial guess for ei0 and Li0 is pro-
vided. For people working in the manufacturing process
this might be enough. Fortunately, it is straightforward
to develop global strategies for improvement. For instance,
in step 1 we may prescribe all twist directions and carry out
the algorithm for Li0 in a desired range. More generally, an
outer loop may run over (all possible) sets of twist direc-
tions. In the former case we may try the following two
combinations, see [12]:

(i) All layers are twisted in one direction (so called ‘‘one
direction twist’’ or ODT).

(ii) Part of layers (usually one half) is twisted in one
direction and the rest in another one. The twist direc-
tion is changed only once. It is so called ‘‘two direc-
tion twist’’ or TDT.
4. Numerical and physical validation

In Table 1 we list the radii of the layers of a cable con-
sidered in [6].

Let us consider the TDT and sweep L1 in the interval
[50, 1000]. In Fig. 1 we plot the relation between the first
layer twist pitch and the others for the homogeneous cur-
rent distribution. This is exactly Fig. 5b in [6].

This example illustrates that not all twist pitches are
practical, or even constructible. Indeed, it is observed that
the second, the third and the fourth layer pitches are extre-
mely short compared with the first layer. The pitch for the
first layer is about 1000 mm whereas the others are in the
range of 15–45 mm. As noted in [6], this fact makes the fab-
rication of the cable difficult because of its large bending
oaxial layers

1 2 3 4

mm) 10.0 10.5 11.0 11.5
strain. Also, if the pitch of a layer is too large, which is
the case of the first layer, it will be hard to assemble.

In applications an appropriate range for pitches is
between 150 mm and 900 mm. Also, for real data, radii
are between the range of 10 mm and 30 mm. Except for
the last example, we shall provide examples within these
ranges.
4.1. Numerical examples

Let us consider the ODT in the example above. In Fig. 2
we reproduce easily Fig. 4c in [6].

For a four layer cable the original system can be reduced
to quadratic equations. Although not advisable, radical
expressions are possible for the solutions. For five and six
Fig. 2. Twist pitches of other layers as a function of that of the first layer
for homogeneous current distribution in the ODT case. Radii as in Table 1.



Table 4
Pitches for homogeneous current distribution, L1 = 320.00 mm given

Layer 1 2 3 4 5 6

Radius r (mm) 21.28 21.46 21.64 21.82 22.00 22.18
Twist direction 1 1 1 1 1 1
Pitch L (mm) 320.00 319.72 314.09 303.83 289.89 273.31
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layers we have non-trivial applications of our hybrid algo-
rithm. To illustrate, we show examples of constructible
cables with homogenous current distributions.

In Table 2 we list the radii of a five layers cable in [6]. In
Fig. 3 therein, it is shown that the superconductor with
same pitch (320 mm) and ODT has imbalanced current dis-
tribution. With these radii and one direction twist, our
algorithm yields the pitches in Fig. 3 for homogeneous cur-
rent distribution. Let us choose a cable with a pitch of
320 mm in layer 1, the full configuration is listed in Table
3. Compare with Table 1 in [6].

Let us add a sixth layer. In Table 4 we show a potential
cable with homogeneous current distribution and the full
results are shown in Fig. 4.

4.2. Physical validation

At CIDEC (CONDUMEX Group, Mexico), a cryo-
genic laboratory has been built to manufacture and test
HTS cables. In particular, the four and six layer cables
reported in [12,8]. The radii and direction twist of these
cables are listed in Tables 5 and 6.
Table 2
Radii of coaxial layers

Layer 1 2 3 4 5

Radius r (mm) 21.28 21.46 21.64 21.82 22.00

Fig. 3. Twist pitches of other layers as a function of that of the first layer
for homogeneous current distribution in the ODT case. Radii as in Table 3.

Table 3
Pitches for homogeneous current distribution, L1 = 320.00 mm given

Layer 1 2 3 4 5

Radius r (mm) 21.28 21.46 21.64 21.82 22.00
Twist direction 1 1 1 1 1
Pitch L (mm) 320.00 318.55 310.75 297.66 280.61

Fig. 4. Twist pitches of other layers as a function of that of the first layer
for homogeneous current distribution in the ODT case. Radii as in Table 4.

Table 5
Configuration of cable

Layer 1 2 3 4

Radius r (mm) 25.55 25.84 26.18 26.54
Twist direction 1 1 �1 �1

Table 6
Configuration of cable

Layer 1 2 3 4 5 6

Radius r (mm) 27.53 27.71 28.1 28.56 28.8 29.1
Twist direction 1 1 1 �1 �1 �1
Pitches for homogeneous current distribution are shown
in Figs. 5 and 6.

The ultimate test of a numerical model is its capability
to reproduce laboratory results. The first author worked
as a consultant for CIDEC on a project to design supercon-
ducting cables. Our access to undisclosed data shows that
the pitches predicted by the numerical solution correspond
remarkably well with the cables built at CIDEC.

5. Final comments

System (3) is by no means the only model for numerical
simulation of current distribution in superconducting
cables. A finite element approach is presented in [5]. In
[2,3] the cable is modeled as a nonlinear parallel circuit, a



Fig. 5. Twist pitches of other layers as a function of that of the first layer
for homogeneous current distribution in the TDT case. Radii as in Table 5.

Fig. 6. Twist pitches of other layers as a function of that of the first layer
for homogeneous current distribution in the TDT case. Radii as in Table 6.
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system of nonlinear ODE is obtained. We have used the
simpler model of Hamajima et al. [6]. Therein, an argument
is given to illustrate that the algebraic system arises from
the circuit model.

In some cases it is not possible to find configurations sat-
isfying the homogeneous current condition. Since layers
saturate from the outermost layer, we may reduce the effi-
ciency in the inner layers to find a suitable design. Hence
we believe it is more appropriate to pose the problem as
the solution of system (6).

Our experimental investigations suggest that the alge-
braic model is a convenient starting point for design. Then
it may be complemented with more sophisticated models
involving the physical properties of the tapes. In any case,
the effectivity of such a simple mathematical model is sur-
prising. Experts can attest to the complexity of the manu-
facturing process.

Also, we have used the simplest tools from Algebraic
Geometry. We are interested in exploring other possibili-
ties, see [4].
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