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bstract

In this paper, we present a method for the study of synchronization patterns measured from EEG scalp potentials in psychophysiological
xperiments. This method is based on various techniques: a time–frequency decomposition using sinusoidal filters which improve phase accuracy
or low frequencies, a Bayesian approach for the estimation of significant synchrony changes, and a time–frequency-topography visualization
echnique which allows for easy exploration and provides detailed insights of a particular experiment. Particularly, we focus on in-phase synchrony
sing an instantaneous phase-lock measure. We also discuss some of the most common methods in the literature, focusing on their relevance to

ong-range synchrony analysis; this discussion includes a comparison among various synchrony measures. Finally, we present the analysis of a
gure categorization experiment to illustrate our method.
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. Introduction

In recent years, there has been an increasing interest in EEG
elated to patterns of synchronization and desynchronization that
re observed in the electrophysiological activity of the brain. In-
erest in these phenomena has developed as a result of the view
hat they might provide a window on the dynamics of cell assem-
ly formation, by which spatially distributed brain areas become
inked together in dynamic networks involved in sensory inte-
ration, object representation, and memory encoding or retrieval
Kirschfeld, 2005; Bastiaansen and Hagoort, 2003).

Oscillations in the EEG indicate periodic activity of large
opulations of synchronized neurons which are usually called
euronal assemblies, a term coined by Hebb (1949). The for-
ation of such assemblies is observed in various sensory, be-
avioral or cognitive states. Several kinds of events, the most
otably being sensory stimuli, produce two different types of
EG changes: “evoked” activities which are exactly time-locked
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nd phase-locked to the stimulus, and “induced” activities which
re changes in the EEG that are only approximately time-locked,
ut not phase-locked (Pfurtscheller and Lopes da Silva, 1999),
nd thus cannot be extracted by a simple linear method such as
veraging, but may be detected by frequency analysis. Induced
ctivity is thought to reflect functional changes in the parame-
ers controlling dynamic interactions within and between brain
tructures. This means that these induced-related phenomena
epresent frequency specific changes of the ongoing EEG ac-
ivity, and may consist, in general terms, either on increases or
ecreases of power in specific regions of the time–frequency
TF) plane. This may be considered to be due to an increase
r a decrease in synchrony of the underlying neuronal popu-
ations, respectively (Pfurtscheller, 1977, 1992), and thus are
ccordingly called “event-related synchronization” (ERS) and
event-related desynchronization” (ERD). These events may be
haracterized by specific activation patterns, which are located
n particular regions of the TF plane, and which may be asso-
iated with specific cognitive sub-processes (Marroquin et al.,

004; Harmony et al., 2001).

There is, however, another important characteristic of these
vents, which cannot be measured directly by relative power
hanges: the formation of dynamic global assemblies, which

mailto:falbac@cimat.mx
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ccording to the definition by Varela et al. (2001), are “dis-
ributed local networks of neurons transiently linked by recipro-
al dynamic (possibly long range) connections”. It is generally
ccepted that these connections are correlated with the synchro-
ization of the corresponding EEG signals in particular regions
f the TF plane (Varela et al., 2001; Lopes da Silva, 1991; Singer,
993). Also, simulations performed with neural mass models
how that a bidirectional coupling of two remote cortical areas
s reflected as phase synchronization of MEG/EEG oscillations
David and Friston, 2003), which supports the idea that EEG syn-
hrony is highly related to physiological connectivity in the cor-
ex and thus can be used as a measure for long-range interaction.

For these reasons, there have been a number of studies of long
ange synchronization of EEG signals (Bressler, 1995; Friston
t al., 1997; Lachaux et al., 1999, 2000; Rodriguez et al., 1999).
ost of these studies, however, have some limitations: on one

and, the high dimensionality of the synchrony data implies a
isualization problem. Most works on the field avoid this prob-
em by averaging across a large time window (Quian Quiroga
t al., 2002; David et al., 2004; Mizuhara et al., 2005) and/or
y limiting the analysis to specific frequency bands (Lachaux et
l., 1999; Rodriguez et al., 1999). This is far from ideal since
any synchronization patterns appear only in small regions of

he TF plane and one cannot obtain, from these results, a com-
lete overall picture of the synchronization dynamics across
ifferent frequencies, which may correspond to specific cog-
itive sub-processes. Another problem is related to the way in
hich significant synchronization changes are detected. These

ignificant changes must be characterized by a persistent rela-
ive phase-locking (or phase scattering) between the signals that
orrespond to each pair of electrode locations; in other words, to
stimate the degree of EEG synchronization one must determine
he significance of a phase-locking measure and its consistency
cross a given time window. The most widely used synchrony
easures, such as coherence and the single trial phase-locking

tatistic (STPLS) (Lachaux et al., 2000), attempt to measure
his indirectly by computing the synchrony values over a given
ime interval. The problem with this approach is that, as will be
hown later, these measures are strongly affected by local phase
ispersion changes occurring in either one of the two signals,
hich may interfere with the detection of true synchronization
r de-synchronization events.

In 2004, Marroquin et al. introduced an exploratory method
or the study of ERS and ERD events (power changes), based
n time–frequency-topography (TFT) displays which provided
detailed view of the topographical distributions of EEG dy-

amic power changes with respect to the pre-stimulus, across
he full post-stimulus time segment, and at the same time, across
ll frequencies. The purpose of this work is to extend the TFT
xploratory analysis in order to study long-range interactions
sing various synchrony measures, such as coherence and mea-
ures based on the phase difference of the signals. We improve
he accuracy of the analysis in terms of the time–frequency de-

omposition by using sinusoidal quadrature filters (Guerrero et
l., 2005) instead of the more popular Gabor filters, and focus on
phase-locking measure which is instantaneous and thus is not
ominated by local phase dispersion. Time-persistence is then

1
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andled via Bayesian estimation of a hidden Markov random
eld (MRF) that models a label field in TF space that classi-
es the interactions between signal pairs as significantly higher,

ower or equal to the corresponding pre-stimulus average value.
e also present a TFT visualization method that permits one to

btain a full detailed overview of the dynamic synchronization
atterns (SP’s), which may be correlated with concurrent cogni-
ive processes whose expression is multiplexed at different fre-
uencies. A comparison between different synchrony measures
rom an interpretative point of view is also presented. Finally, the
ffectiveness of these techniques is illustrated with the analysis
f SP’s associated with a figure classification task.

. Materials and methods

Throughout this presentation we illustrate our procedure us-
ng data from a figure classification experiment (Harmony et
l., 2001) where white-line figures on a black background were
resented to each subject. The subjects were instructed to press
button if the figure corresponded to an animal whose name

tarted with a consonant, and another button if the figure did
ot correspond to an animal and the name of the figure started
ith a consonant. If the name started with a vowel, the subject
as instructed not to respond. The subjects were 18 normal chil-
ren (8–10 years old, 9 females), all right handed with normal
eurological examination. EEG was recorded with reference to
inked ears from Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7,
8, T3, T4, T5, T6, Fz, Cz, Pz, and Oz of the 10/20 system.
OG was recorded from a supraorbital electrode and from an
lectrode on the external canthus of the right eye. The amplifier
andwidth was set between 0.5 and 30 Hz. EEG was sampled
very 5 ms using a MEDICID 3E system and stored on a hard
isk for further analysis. Sampling was done every 5 ms during
time segment from 1280 ms before the stimulus to 1500 ms

fter its onset. Each trial was visually edited and only those
orresponding to correct responses and with no artifacts were
nalyzed. Subjects were seated in a comfortable chair in front of
he videomonitor. Stimuli were delivered by a MINDTRACER
ystem synchronized to the MEDICID 3E acquisition system.

We have also tested our method with other various experi-
ents: a word categorization experiment (Harmony et al., 2001)

imilar to the Figures experiment (with words presented in-
tead of figures), a working-memory task based on the Sternberg
aradigm (Harmony et al., 2004), and a Go/NoGo experiment to
tudy the inhibition of the motor response. The analysis of these
xperiments essentially confirms the main results described in
his paper; however, for reasons of space we do not include such
tudies here. Details of these results can be found in (Alba et al.,
006).

.1. Methodology
Our procedure consists of the following steps:

. Run the EEG signals through a bank of bandpass quadrature
filters and extract phase information (TF phase analysis).
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. Calculate a synchrony measure from the filtered signals.

. Estimate the likelihoods and prior distributions for the MRF
model using the synchronization values.

. Use Bayesian estimation to find significant synchronization
patterns that are persistent.

. Display synchronization patterns as multitoposcopic graphs
and time–frequency-topography (TFT) maps.

.2. Time–frequency phase analysis

To obtain the phase information of the EEG signals, one may
ass each signal through a bandpass filter at the frequency of in-
erest. As in a previous work (Marroquin et al., 2004), we have
hosen to use a bank of quadrature filters centered at each Hz
nd with a fixed bandwidth (about 1.76 Hz within 3 db of at-
enuation) to facilitate interpretation. One common choice for
lters are the Gabor filters (Gabor, 1946), which provide the
est balance between time and frequency localization in terms
f the Heisenberg product. However, because of their Gaus-
ian frequency response, at lower tuning frequencies Gabor fil-
ers may have a significant response to negative frequencies and
ose their quadrature property, which results in distorted phase
stimates (see Fig. 1a). In particular, if a unit-gain Gabor filter
uned at a frequency of h Hz has gain equal to α (with α < 1) for
he corresponding negative frequency −h, the argument of the
omplex filter output at time t corresponding to an input signal
(t) = cos(2πht + φ), where φ is a constant phase, will be

ˆ (t) = ρ(�(t)) = arctan

(
1 − α

1 + α
tan �(t)

)
, (1)

here �(t) = 2πht + φ is the argument of the ideal output ei�(t)

obtained with α = 0). The distortion signal d(t) = �(t) − �̂(t)
ill be zero when tan �(t) equals 0 or ±∞, i.e., for t = k/4h −
/2πh, with k = 0, 1, . . ., and will change its sign between these
alues, which means that it will oscillate at twice the tuning
requency h.

If s(t) has a more complex structure (i.e., if it is a sum of
inusoids with different frequencies, amplitudes, and phases),
his distortion cannot be characterized in an easy way, but it will
ave a significant effect on the measured phase.

This problem may be avoided if one uses filters that are forced
o have zero gain for negative frequencies. In particular, one may
se a bank of sinusoidal quadrature filters (SQF’s) (Guerrero et
l., 2005) which have the following frequency response:

ωk,h(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

[
1 + sin

(
(hk+2(ω−ωk))π

2hk

)]
, if ω ∈ [ωk − hk

1
2

[
1 + sin

(
(h+2(ω−ωk))π

2h

)]
, if ω ∈ [ωk, ωk +

0 otherwise,

here ωk is the center frequency for the kth filter, h is the band-
idth, and hk = min{h, ωk}. The convolution kernel gωk,h of

he SQF’s is found as the inverse Fourier transform of Gω ,h.

k

hese filters have a response that is almost identical to Gabor
lters at tuning frequencies higher than 6 Hz; however at lower

uning frequencies, the asymmetrical response of the sinusoidal
uadrature filters yields a correct phase, as shown in Fig. 1a.

e

R
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,

, (2)

To analyze the effect of this distortion on the estimated syn-
hrony between two signals, we make the following considera-
ions: the filtered signals Fj,ω,e, from which one can extract the
nstantaneous amplitude Aj,ω,e(t) and the instantaneous argu-

ent �j,ω,e(t), are obtained by convolution with a filter kernel
ω,h:

j,ω,e(t) = (kω,h × Vj,e)(t) = Aj,ω,e(t) exp[i�j,ω,e(t)]. (3)

f the actual argument � of the component with frequency ω is
(t) = ωt + φj,ω,e(t), then the estimated argument �̂ may be

xpressed as a function ρ of the actual argument, where ρ is
iven by Eq. (1).

As one can see in Fig. 1a, for SQF’s ρ is linear, while for
abor filters it is clearly not. Since most phase-synchrony mea-

ures depend on the phase difference ��̂(t) = �̂1(t) − �̂2(t) =
(ωt + φ1(t)) − ρ(ωt + φ2(t)), it is clear that a non-linear ρ will
ot cancel the terms involving ωt, and will instead introduce an
scillation in ��̂, even if the true phase difference φ1 − φ2 is
eld constant.

We have performed a series of tests in order to demonstrate
he improvement of SQF’s over Gabor filters for synchrony esti-

ation. For these tests we applied the average magnitude of the
hase difference (MPD) as synchrony measure and the Bayesian
nalysis described below. Using Gabor filters, the sensitivity of
he synchrony measure shows a cyclic dependence on the time
, which corresponds to the distortions in the phase observed in
ig. 1a.

The simulated data used for the tests is obtained from a very
imple model which consists of a 2 Hz sinusoidal plus noise.
he signals are given by:

j,e = cos(2πf0t + φj,e) + Rj,e(r, t), φj,e ∼ N(0, σ), (4)

here j is the trial number, e the electrode index, f0 = 2 Hz
s the frequency of the sinusoidal, and σ is the standard devi-
tion of the distribution of the phases, which controls the de-
ree of synchrony between the signals (lower values of σ imply
igher synchrony). The noise function Rj,e(r, t) depends on the
noise level” r. For our tests, we used two electrodes (e = 1, 2),
pre = π/10 (pre-stimulus σ), and σpost = π/20 (post-stimulus
). Since σpre > σpost, we are thus modeling an increase of syn-
hrony in the full post-stimulus segment. We have generated 20
atasets with 50 trials each. For each dataset we perform the
rocedure described below in order to obtain a class label field

ω,e1,e2 (t) which indicates if synchrony between e1 and e2 at
frequency ω is significantly higher (c = 1), lower (c = −1),

r equal (c = 0) with respect to the pre-stimulus average. The

xpected class is c(t) = 1 for all t in the post-stimulus segment.

For the first test we used Gaussian noise given by

j,e(r, t) ∼ N(0, r). (5)
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ig. 1. Comparison between Gabor filters and SQF’s. “(a) True phase and estim
ignal.” (b–e) Comparison using simulated data with Gaussian noise for (b an
verage class c̄(t) computed across 20 datasets, whereas (c and e) show the prop

ith a noise level r = 0.5, the average class c̄(t) across all
atasets is shown in Fig. 1b. The blue line represents the results
btained using Gabor filters, whereas the red line corresponds to
inusoidal quadrature filters. The oscillating distortion is clearly
resent with the Gabor filters, and it corresponds to a frequency
f 4 Hz (twice the tuning frequency, as shown above). Fig. 1c
hows the proportion of detected couplings (i.e., with c(t) = 1)
n the post-stimulus segment with respect to the noise level r
averaged across the 20 datasets). The proportion should re-
ain close to 1; however, Gabor filters clearly start to fail with
> 0.3.

The second test uses a sum of interfering sine waves as noise
unction:

Rj,e(r, t) =
∑

f !=f0

af

f
cos(2πft + φf ),

af ∼ U(0, r), φf ∼ U(0, 2π). (6)
he sum is taken across frequencies from 1 to 50 Hz, except
he frequency of interest f0, and the components are attenu-
ted according to their frequency. As in the previous test, we

o
w
p
n

hase (using Gabor and sinusoidal quadrature filters) for a 1 Hz sinusoidal input
and with interference of sinusoidals for (d and e). Graphs (b and d) show the
n of detected couplings with respect to the noise level.

alculated the average class c̄(t) and the proportion of detected
ouplings with respect to the noise level. The results, presented
n Fig. 1d and e, show the same differences as in the previous
xample.

It is worth mentioning that using real EEG datasets (such as
he Figures experiment signals), there are clear differences be-
ween the results obtained with SQF’s and those obtained from
abor filters in the first 6 Hz. The tests with simulated data in-
icate that the results with Gabor filters may not be reliable in
he delta and theta bands.

.3. Synchrony measures

In this section, we discuss the most commonly used syn-
hrony measures in the literature (e.g. coherence and circular
ariance of the phase difference), and propose two phase-based
easures that focus on in-phase (phase difference equal to zero)
r anti-phase (phase difference equal to π) synchrony. Later,
e will perform a statistical comparison of all the measures
resented here, and highlight some of their strengths and weak-
esses.
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.4. Magnitude of phase difference (MPD)

According to David and Friston’s neural mass model, the
EG/MEG signals from two distant cortical areas will show a
hase difference of 0 or π when there is a bidirectional coupling
etween the two areas (David and Friston, 2003). This is sup-
orted by other works such as Friston et al. (1997) and Rodriguez
t al. (1999), where the distribution of the phase differences con-
entrates around zero during episodes of high synchrony. More-
ver, according to David and Friston (2003), and Varela et al.
2001), the proportion of reciprocal connections in the brain is
ery high. Therefore, it makes sense to consider as synchrony
riterion the following: two signals with instantaneous phases
1(t) and φ2(t) are in synchrony when φ1(t) ≈ φ2(t) for all t in
given time interval. A straightforward instantaneous measure
ould be the magnitude of the phase difference |φ1(t) − φ2(t)|
hich can be wrapped between −π and π. This makes it easy

o obtain a normalized measure based on the phase difference:

j,ω,e1,e2 (t) = 1 − 1

π
|wrap(φj,ω,e1 (t) − φj,ω,e2 (t))|, (7)

here wrap(φ) returns the angle φ wrapped to the interval
−π, π).

.5. Cumulative probability of phase difference (CPPD)

An alternative to the MPD measure consists on estimating
he probability of the phase difference being smaller (in absolute
alue) than some ε > 0. This probability can be estimated across
ll trials for each t, ω, e1, and e2 as follows:

ω,e1,e2 (t) = 1

Nr

Nr∑
j=1

I(|wrap(φj,ω,e1 (t) − φj,ω,e2 (t))| < ε).

(8)

here I(P) equals 1 if P is true, and zero otherwise.
This measure allows a quantification of the degree of syn-

hrony (by means of ε), regardless of any further transformation
pplied to the measure (such as the significance analysis we
erform). We have used ε = π/5 rad for our tests (equivalent to
0 ms at 10 Hz).

One can modify this measure to detect anti-phase synchrony
couplings which show a phase difference of π). A simple ex-
mple is given by:

ω,e1,e2 (t) = 1

Nr

Nr∑
j=1

I(|wrap(φj,ω,e1 (t)−φj,ω,e2 (t) − π)| < ε).

(9)

owever, one must be careful not to confuse a decrease in syn-

hrony with anti-phase couplings. This can be done either by
sing small values for ε, or by comparing both phase and anti-
hase measures. Our tests show that only a very small number
f detected couplings correspond to anti-phase synchrony.

R

f
1
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.6. Phase-locking statistic (PLS)

Lachaux et al. proposed as synchrony measure one minus
he circular variance (see Fisher, 1995) of phase differences
cross trials at instant t and called it phase-locking statistic (PLS)
Lachaux et al., 1999):

ω,e1,e2 (t) =
∣∣∣∣∣∣

1

Nr

Nr∑
j=1

exp[i(φj,ω,e1 (t) − φj,ω,e2 (t))]

∣∣∣∣∣∣ , (10)

here Nr is the number of trials in the EEG experiment.

.7. Single-trial phase-locking statistic (STPLS)

In order to obtain a phase-locking measure for single trials,
achaux et al. (2000) proposed a new measure based on the
ariance of the phase difference across a time window centered
t time t, for each trial j:

j,ω,e1,e2 (t) =
∣∣∣∣∣∣

1

2w + 1

t+w∑
t′=t−w

exp[i(φj,ω,e1 (t′) − φj,ω,e2 (t′))]

∣∣∣∣∣∣ ,

(11)

his measure will be maximal when φ1(t) − φ2(t) is approxi-
ately constant for all t in a given time window. According to
arela et al. (2001), most cognitive events have a typical dura-

ion of a few hundreds of milliseconds; therefore, in all our tests
e have used w = 10 which is equivalent to a window size of
05 ms (the window size is 2w + 1 samples).

.8. Coherence

Statistical coherence is a measure of how closely two time
eries are related by a linear transformation (Gardner, 1992) and
t is widely used as a measure of EEG synchrony (Bressler et al.,
993; Bressler, 1995; Nunez, 1995; Nunez et al., 1997; Gross
t al., 2001). In order to estimate a coherence measure for a set
f filtered EEG signals Fj,ω,e we first subtract their mean across
he whole time segment:

′
j,ω,e(t) = Fj,ω,e(t) −

Nt∑
t′=1

Fj,ω,e(t′). (12)

hen for each trial j we take the zero-lag coherence on a time
indow around time t which is given by

j,ω,e1,e2 (t) = |Rj,ω,e1,e2 (t)|
|Rj,ω,e1,e1 (t)Rj,ω,e2,e2 (t)|1/2 (13)

here

1 t+w∑ ′ ′ ′ ′ ∗

j,ω,e1,e2 (t) =

2w + 1
t′=t−w

Fj,ω,e1
(t )(Fj,ω,e2

(t )) , (14)

or each time t and electrode pair (e1, e2). A window size of
05 ms was also used for coherence measures.
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.9. Bayesian estimation of significant synchrony

Since we are interested in event-related activity, we must
etermine how significant are the changes of synchrony with
espect to the pre-stimulus segment. To do this, we subtract the
verage synchrony in the pre-stimulus segment in order to obtain
he relative synchrony Xj,ω,e1,e2 :

j,ω,e1,e2 (t) = μj,ω,e1,e2 (t) − 1

Ts

Ts∑
t′=1

μj,ω,e1,e2 (t′), (15)

here Ts is the length of the pre-stimulus segment. Finally, we
ake the mean relative synchrony Yω,e1,e2 across all trials:

ω,e1,e2 (t) = 1

Nr

Nr∑
j=1

Xj,ω,e1,e2 (t). (16)

In order to estimate the significance of the Y-values, it is
ommon to compute the p-value of each Y with respect to a
ull distribution and apply a threshold to them. In our case, the
ull distribution comes from the pre-stimulus segment (for each
requency and electrode pair), which by construction is centered
t zero. Y-values which are “too positive” with respect to the
ull distribution correspond to significant synchrony increases,
nd similarly, “too negative” Y-values correspond to significant
ynchrony decreases.

To simplify interpretation and visualization, we would like
o classify each Y-value in one of three classes: significantly
igher (class c = 1), significantly lower (class c = −1), or equal
c = 0) to the pre-stimulus average. One possibility would be to
imply apply a threshold to the p-values as mentioned above;
owever, we have chosen instead to use a more sophisticated
lassification method that permits one to impose additional con-
traints to control the granularity of the results. In particular,
ne would like that only those synchronous episodes with a du-
ation greater than a minimum (physiologically motivated) value
hould be considered significant. According to studies related,
or example, with the formation of short term memory (Jensen
t al., 1996; Burle and Bonnet, 2000), this minimum value is in
he order of one gamma oscillation, that is, around 20–50 ms.

It is worth noting that our final implementation of the clas-
ification method is relatively simple and efficient, as will be
hown later.

A common technique for classification problems consists of
ayesian estimation with a prior Markov random field (MRF)
odel (Marroquin et al., 1987, 2001, 2004). With this method,

ne can model the class field cω,e1,e2,t as a random field with a
rior Gibbs distribution of the form

MRF(c) = 1

Z
exp

[
−λ

∑
C

VC(c)

]
, (17)

here Z is a normalizing constant and VC is a potential function
hat depends only on the values of the sites belonging to the

lique C (a clique is either a single site, or any group of sites all
f which are mutual neighbors, see Marroquin et al., 1987, 2001
or more details). For a classification problem, a popular model
s the Ising model which enforces c to be piece-wise constant. If

m
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e consider a first-order neighborhood system, whose cliques
re single sites and nearest neighbor pairs, the Ising potentials
re given by:

t,t′ (c) =
{

−1, if cω,e1,e2,t = cω,e1,e2,t
′

1, if cω,e1,e2,t �= cω,e1,e2,t
′

, (18)

here t and t′ are adjacent sites in the time dimension. At this
oint, we are only interested in modeling persistence in time,
nd thus one can estimate the time-series ct = cω,e1,e2,t in a de-
oupled manner for each frequency ω and electrode pair 〈e1, e2〉.
owever, it is also possible (although computationally expen-

ive) to add constraints to model the consistency of c across
ifferent frequencies and/or across the spatial dimensions, in
rder, for example, to perform an automated segmentation of
he TFT space.

Given prior probabilities αk = P(ct = k), the posterior dis-
ribution of c given Y can be calculated as

(c|Y ) = 1

Z′ exp

⎡
⎣∑

t

log ht(ct) − λ
∑
〈t,t′〉

Vt,t′ (c)

⎤
⎦ , (19)

here Z′ is a normalization constant and ht(k) = P(Yt | ct =
)αk.

The optimal estimator ĉ can be found by maximizing the pos-
erior marginal distribution πt(ĉt) = ∑

c:ct=ĉt
P(c | Y ) for each

. This Maximizer of Posterior Marginals (MPM) estimator is
sually approximated using stochastic Markov-chain methods
uch as Metropolis or the Gibbs sampler. These algorithms, how-
ver, are computationally expensive and require an unknown
umber of iterations, which makes them less than adequate for
ur multidimensional data set. A better solution consists on ap-
roximating the posterior marginal distributions with the empir-
cal marginals pt(k) (Marroquin et al., 2001) which also form a

RF with the same neighborhood system as c and can be found
y minimizing the energy function U(p) given by:

(p) =
∑

t

|pt − p̂t|2 + λ′ ∑
〈t,t′〉

|pt − pt′ |2, (20)

ith p̂t(k) = ht(k)/
∑

k′ ht(k′).
Since each pt(k) is continuous, U(p) can be minimized by

olving the linear system obtained from equating the partial
erivatives of U with respect to pt(k) to zero. Noting, however,
hat the optimal time-series p(k) is a smoothed version of p̂(k),
ne can achieve a similar result by simply low-pass filtering each

ˆ (k) with a Gaussian kernel (for more details see Marroquin and
igueroa, 1997). The width of the Gaussian kernel will replace

he model parameter λ′ and will control the granularity of the
esults. In our case, we set this parameter so that blocks with
onstant c-values of length less than 25 ms occur less than 5%
f the time (see Alba et al., 2006 for details).
Once we have p we can obtain the approximated MPM esti-
ator as

t = argmaxk{pt(k)}. (21)
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.10. Estimation of prior distributions and likelihoods

In order to calculate ht(k) (and thus pt(k)) we need the prior
robabilities αk and likelihoods P(Yt | c = k). These can be esti-
ated from the data if we consider that the complete distribution
Y (Yt) can be expressed as:

Y (Yt) =
1∑

k=−1

αkP(Yt | c = k), (22)

nd also consider the following assumptions:

P(Yt | c = 0) may be estimated empirically from the pre-
stimulus data.
P(Yt | c = 1) = 0 for Y ≤ 0.
P(Yt | c = −1) = 0 for Y ≥ 0.

With these assumptions, we can obtain P(c = 0) from Eq.
22) as follows:

0 = PY (0)

P(0 | c = 0)
(23)

nd also

t(0) = α0P(Yt | c = 0) (24)

t(1) =
{

PY (Yt) − ht(0), Yt > 0

0, Yt ≤ 0
(25)

t(−1) =
{

PY (Yt) − ht(0), Yt < 0

0, Yt ≥ 0
(26)

Y (Yt) and P(Yt | c = 0) can be estimated from the data Y using
on-parametric kernel estimation: the distribution pY is esti-
ated from the sample {Yt} as the sum of superimposed kernel

unctions kh centered at each Yt . In other words,

Y (y) = 1

Z

Nt∑
i=1

kh(y − Yt), (27)

here Z is a normalization constant chosen so that pY integrates
o 1. The parameter h specifies the width of the kernel and de-
ermines the smoothness of pY . Adequate choice of h depends
n the sample data; however, for automated applications, a rule
f thumb for a Gaussian kernel (which we use) is provided by
Silverman, 1986):

opt = 1.06σn−1/5,

here σ is the standard deviation of X (estimated from the sam-
le). Note that PY (Yt) is estimated using the full time segment,
hereas P(Yt | c = 0) is estimated by considering only the pre-

timulus segment.
The actual classification procedure for significative syn-

hrony changes is performed (for each frequency ω and elec-
rode pair 〈e1, e2〉) as follows:
. Estimate the pre-stimulus distribution P0(Y ) and the full dis-
tribution PY (Y ) using kernel density estimation with band-
width given by Silverman’s rule of thumb.

c

ce Methods 161 (2007) 166–182

. Estimate α0 = P(c = 0) = P0(0)/PY (0).

. For each t, calculate ht(k) for k = −1, 0, 1 as given by Eqs.
(24)–(26).

. Normalize ht to obtain p̂t for all t.

. Obtain p(k) by convolving p̂(k) with a Gaussian kernel g.
The width σ of the filter controls the granularity of the c
field.

. Approximate the MPM estimator by ct = argmaxkpt(k) for
all t.

This procedure yields results that are roughly similar to those
btained by directly thresholding the p-values (with a threshold
etween 0.01 and 0.1); however, the value of the threshold (criti-
al p-value) that yields the desired granularity (e.g. synchronous
pisodes which last at least 25 ms) varies for different data sets,
nd has to be set in an empirical way for each particular case.

It should also be noted that the parameter σ, which controls
he granularity in the Bayesian method is not critical: one obtains
ery similar classifications for a wide range of values of this
arameter, whereas classification based on z-scores or p-values
s in general more sensitive to the precise value of the threshold.

.11. Visualization

For a fixed time t and frequency ω it is possible to show the
istribution of the synchrony pattern (SP) given by the class
alues cω,e1,e2,t in a multitoposcopic display, in which for each
lectrode e1 one displays a head diagram (also called “topo-
cope”) – within a bigger head – that shows the distribution of
across all sites e2 (an example of this display can be seen in
ig. 2a).

A problem arises when one deals with high electrode den-
ity recordings since only so many toposcopes can be displayed
ithin the bigger head. One can use interpolation techniques to
isplay high-density data in a single toposcope (in particular,
e use a Voronoi partition Aurenhammer, 1991, obtained by

ssigning each pixel in the toposcope the class corresponding to
he nearest electrode), but the number of toposcopes may have to
e reduced. One possibility consists in grouping the electrodes
n Ng cortical areas {G1, . . . , GNg}, using again a Voronoi par-
ition whose centers are, for example, the sites Fp1, Fp2, F3,
4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz,
nd Pz of the 10/20 system. One can then plot a toposcope for
ach group Gk computing, for each high-resolution electrode,
he “most representative” synchrony class between this electrode
nd the electrodes in Gk. This most representative class may be
omputed in several ways; for example, the average class c̄ of
lectrode e to group Gk which is computed as:

¯ω,k,e,t = 1

|Gk|
∑

e′∈Gk

cω,e′,e,t (28)

r the class mode ĉ, which is computed as:
ˆω,k,e,t = argmaxq∈{−1,0,1}

⎧⎨
⎩

∑
e′∈Gk

δ(cω,e,e′,t − q)

⎫⎬
⎭ , (29)
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Fig. 2. Multitoposcopic displays for a 120-channel dataset using the MPD measure: (a) uses only channels Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3,
T4, T5, T6, Fz, Cz, and Pz from the 10/20 system: red regions represent electrode pairs that show a significant increase in synchrony (c = 1), while green regions
correspond to significant synchrony decreases (c = −1). Graphs (b and c) use the 120 channels grouped in 19 cortical areas corresponding to the Voronoi partition
whose centers are the electrodes used in (a). For each area, one can plot a toposcope representing a statistic of the synchrony classes between each of the 120
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lectrodes and the electrodes within the area: (b) uses the average class c̄ (which
he three multitoposcopes represent the SP obtained at t = 515 ms and f = 11
orrespond to the Figures experiment described in the text.

here δ is the Kronecker delta function. An example of multi-
oposcopes corresponding to c̄ and ĉ are shown in Fig. 2b and c.

ore sophisticated methods could involve electrode clustering
r TFT regularization; however, they are beyond the scope of
his paper.

Multitoposcopic displays are useful to show a detailed con-
ectivity pattern for a fixed time and frequency; however, it is
mportant to visualize larger regions of the time–frequency plane
n order to localize zones of interest where the synchrony pattern
emains almost constant and might be related to specific cogni-
ive processes. For this purpose, we can use a time–frequency-
opography (TFT, Marroquin et al., 2004) display to present the
ata by reducing only one spatial dimension. We do this by
ounting, for each site e, the number of sites whose synchrony
ith e has significantly increased (or decreased). In other words,
e can build a synchrony increase histogram (SIH) given by

+
ω,e(t) =

Ne∑
e′=1

I(cω,e,e′,t = 1), (30)

here I(P) = 1 only if P is true. H+
ω,e(t) is the number of sig-

ificantly stronger couplings (with respect to the pre-stimulus
egment) for site e at time t and frequency ω. Similarly, we can
efine a synchrony decrease histogram (SDH) as

−
ω,e(t) =

Ne∑
e′=1

I(cω,e,e′,t = −1), (31)

hese histograms can be presented in a TFT display as shown
n Figs. 3 and 4.

Another option is to divide the TF plane in regions, and dis-
lay a representative SP for each region (for example, the aver-

ge SP, or the SP that corresponds to the center of the region).
n example of this type of display is presented in Fig. 5, where

he TF plane has been partitioned by frequency bands and at
egular 300 ms intervals.

s
s
t
O

be between −1 and 1), whereas (c) uses the class mode ĉ (see text for details).
uring a Go/NoGo experiment; the rest of the examples presented in this paper

.12. Comparison between synchrony measures

Fig. 6 show the SIH’s for the MPD, CPPD, PLS, STPLS, and
oherence measures. It is clear that CPPD and PLS give very
imilar results to the MPD measure. On the other hand, STPLS
nd coherence yield similar results themselves but different from
PD. The estimated correlation between each pair of measures

Fig. 7, left) confirms what we see. It is worth noting that similar
orrelation results were also obtained with five different experi-
ents besides the Figures experiment presented here (see Alba

t al., 2006 for details).
Seemingly, we have two groups of synchrony measures; thus

t is important to understand what kind of similarities between
ignals are being quantified by each group, and how measures
rom the same group are related to each other. One thing to note
s that STPLS and coherence are defined across a time window,
hile the other measures are “instantaneous”. Because of this,
TPLS and coherence may be less sensitive to trial-to-trial

atency jitter, which characterizes induced responses (i.e., those
hat are not phase-locked to the stimulus). Typically, induced
ctivity is revealed by performing a time–frequency decomposi-
ion of each trial, and averaging a positive definite function of the
lters’ output (e.g., the power) across all trials, whereas evoked
ctivity is obtained by first averaging the raw signals across
rials, and then applying a positive definite function (power anal-
sis) to the average signals (David et al., 2006). The difference
s that in the former case (induced responses) there will be no
ancellations during averaging, whereas in the latter (evoked)
ase, there may be cancellations due to differences in sign
cross trials. It is clear then, that the methodology presented in
he previous sections is basically an induced response analysis,
here the positive definite function is the synchrony measure

we may call it “induced synchrony”), instead of the power;
his function is averaged across trials and then the baseline is

ubtracted. This suggests that our procedure, with any of the
ynchrony measures presented here, should be at least as sensi-
ive to induced responses as the typical average-power analysis.
f course, because of additional averaging across time, STPLS
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ig. 3. Synchrony increase histogram for the Figures experiment. The color sc
ncrement in synchrony (class c = 1) with e. There are 20 recording sites in the
ites.

nd coherence may be more robust to larger amounts of latency
itter.

A problem with the coherence and STPLS measures is that
hey may decrease their value (i.e., they may signal a spurious
ecoupling) if the local phase dispersion of either one of the
wo electrodes under consideration increases and vice versa. In
articular, if the phase of one electrode in the STPLS measure
Eq. (11)) remains relatively constant across the time window,
hen this measure will be related to the dispersion of the other
hase. To see how much this variance influences the STPLS,
e estimated a local phase constancy (LPC) measure for each

lectrode, which equals one minus the local phase dispersion
cross a time window:

1
∣∣∣∣ t+w∑ ′

∣∣∣∣
PCj,ω,e(t) =
2w + 1 ∣∣t′=t−w

exp[iφj,ω,e(t )]∣∣ . (32)

Fig. 6 (bottom-right graph) shows the TFT map of significant
PC changes: red and green spots indicate significant increases

o

t
a

presents, for each recording site e, the number of sites that show a significant
es experiment, thus each site may increase its synchrony with at most 19 other

nd decreases, respectively, in the phase constancy across time.
ote that red regions in the LPC map correspond to increases in
TPLS and coherence. The green region in the alpha band in the
PC map also corresponds to a decrease in synchrony observed

n the STPLS and coherence SDH’s (not shown).
We estimated the correlation between the LPC changes and

he average synchrony changes at each electrode for all the mea-
ures (Fig. 7, right). Effectively, both STPLS and coherence
how high correlation with LPC, as well as a slightly higher cor-
elation with amplitude changes (Marroquin et al., 2004) (which
akes sense for coherence, since it uses both the magnitude and

hase of the signals). This suggests that measures such as MPD
nd CPPD may be more specific for the detection of in-phase
ynchronous episodes, since they are less influenced by the tem-
oral phase dispersion that may occur on one of the electrodes

f the pair under study.

By looking at Eq. (10) one can see that PLS actually measures
he consistency of the phase difference across all trials. We have
lso shown that the MPD and PLS measures are highly corre-
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ig. 4. Synchrony decrease histogram for the Figures experiment. The color sc
ecrease in synchrony (class c = −1) with e.

ated. This suggests that the processes that result in high syn-
hronization (as measured by MPD) are fairly consistent across
rials and subjects, and thus may be related to the task.

Furthermore, the CPPD measure is also highly correlated to
he MPD, suggesting that synchronization effectively happens
ith near-zero phase difference. This is in accordance with the
eural mass model proposed by David and Friston (2003) and
ther works (Friston et al., 1997; Rodriguez et al., 1999) which
ave also found zero-centered phase difference distributions dur-
ng synchronous episodes between two electrodes.

Another important issue which directly affects the detection
f EEG synchrony is the volume conduction (Nunez, 1995): the
onductive properties of the cortex, skull, and scalp produce a
mearing of the potentials across the surface, which may result in
purious correlations between EEG signals, especially between
eighboring sites.
Nunez (1995, 2000), Nunez et al. (1997) have developed an
xtensive work on the effect of volume conduction in EEG co-
erence. Using simulated data from a three concentric spheres
odel, they estimated correlation coefficients for pairs of un-

N
p
d
a

presents, for each recording site e, the number of sites that show a significant

orrelated cortical sources using different EEG references (Cz,
eck, linked ears, and average reference), cortical imaging, and
urface Laplacians (SL, (Perrin et al., 1989, 1990; Law et al.,
993). In all cases, except SL, spurious high correlations were
bserved for short inter-electrode distances (4–8 cm) (Nunez et
l., 1997). However, since the potentials are relatively smooth
cross the surface (partly because of volume conductor effects),
he SL, which is the second spatial derivative of the potentials,

ay have a relatively small magnitude, and thus may be more
ulnerable to noise than the scalp potentials (Junghöfer et al.,
999). It is also worth stressing that accurate SL estimation re-
uires high spatial sampling density (64–128 channels) (Law et
l., 1993; Nunez, 1995; Junghöfer et al., 1999).

Since the SL acts as a bandpass filter on the raw potentials,
rue coherence with low spatial frequency (i.e., relatively smooth
cross the surface) may be underestimated. Because of this,

unez suggests to use the SL to complement, rather than re-
lace, the raw EEG potentials: correlations may be observed at
ifferent spatial scales (Nunez et al., 1997; Nunez, 2000) (just
s correlations between customs of people from two different
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ig. 5. Subdivided synchrony map for the Figures experiment. The TF plane is
orresponds to the center point of the region.

ities may differ from correlations between two families, one
rom each city). Therefore, raw potential, Surface Laplacian,

nd cortical image coherency may, in general, represent corre-
ations at different spatial scales of cortical dynamics.

Although these studies by Nunez focus only on coherence,
t is reasonable to think that the volume conductor also has a

e
t
s
c

ioned by frequency bands and at each 300 ms. The displayed SP in each region

ignificative influence on other synchrony measures. One may
hink that a synchronization measure that favors phase differ-

nces equal to zero (e.g. MPD or CPPD) might be more sensi-
ive to volume conduction. However, this is not necessarily true,
ince if several sources influence two different sites via volume
onduction, their net influence on the resulting electrode signals
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Fig. 6. Synchrony increase histograms for the Figures experiment using the five synchrony measures: MPD, CPPD, PLS, STPLS, and coherence. The bottom-right
graph corresponds to the TFT map of significant changes in the LPC measure (red represents significant increases, whereas green corresponds to significant decreases),
see text for details.

Fig. 7. Correlation between pairs of synchronization measures (left), and between synchronization measures and local phase constancy or amplitude (power) changes
(right). There are clearly two groups of measures: those similar to the MPD, and those similar to the STPLS. The latter group is characterized by a high correlation
with LPC and a slightly higher correlation with power changes.
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ill correspond to different linear combinations of these source
ignals (with coefficients given by the corresponding attenua-
ions), thus producing different phases (Lachaux et al., 1999;
ee also the discussion below on apparent phase). Furthermore,
he MPD and CPPD measures are highly correlated to Lachaux’s
LS measure, which measures synchrony with a constant phase

ag (not necessarily zero), suggesting that at least these three
easures are similarly affected by volume conduction. Lachaux

lso suggests that one may be able to identify conduction syn-
hrony by looking at the neighboring sites of the two electrodes
nder analysis: if conduction synchrony is observed between
wo electrodes, then one should also observe high synchrony
etween their neighbors. To test this, we have estimated a cross-
eighbor synchrony measure Z+ given by:

+
ω,e1,e2,t

=
∑

k∈N1,j∈N2
I(cω,ek,ej,t = 1)

|N1‖N2| · I(cω,e1,e2,t = 1)

(33)

here I(P) equals 1 if P is true and zero otherwise, and Ni

s the set of neighboring sites for ei (we have chosen a neigh-
orhood radius such that each ei has at least one neighbor). In
ther words, Z+

ω,e1,e2,t represents the proportion of neighbor-
airs which show a significant increase of synchrony when e1
nd e2 increase their synchrony. The c-values used to estimate
+ were obtained from thresholded p-values (α = 0.01) to avoid

ny bias that may be introduced by the regularization constraints
f the Bayesian method. One can then estimate the average Z+
cross all electrode pairs which show a significant increase of
ynchrony. Interestingly, STPLS and coherence produced the
ighest average values (around 0.16), while CPPD and PLS cor-
esponded to the lowest (between 0.06 and 0.1). According to
hese tests, one therefore cannot conclude that a MPD or CPPD
re more sensitive to conduction synchrony than the other mea-
ures.

All these findings lead us to believe that MPD and CPPD are
uitable measures for long-range synchronization.

. Discussion

A full analysis of the Figures experiment using the MPD
easure is presented here as an example of the methodology. The

ull segmented MPD map is presented in Fig. 5 along with the
orresponding SIH and SDH maps (Figs. 3 and 4, respectively).
he TFT map of significant changes in amplitude is also shown

n Fig. 8.
Recall that we are measuring the changes in synchrony during

particular state in relation to a previous condition that we may
onsider as neutral. It is possible to observe changes in phase-
ock at all frequencies. Synchrony increases in the delta band in
he anterior regions between 450 and 600 ms. After this time,
he synchrony increased mainly in the posterior regions (Fig.
). In the first 150 ms in the delta and theta bands there was a

ecrease in synchrony in occipital regions (Fig. 4). This may be
ue to the activation of the visual areas produced by the stimuli.
n the theta range (4–7 Hz), the most generalized change in syn-
hronization in the EEG after 300 ms is the phase-lock increase

2

ce Methods 161 (2007) 166–182

etween posterior and anterior regions, which can be observed
n the partitioned map (Fig. 5). This pattern may be related to
ctivation of working memory (WM), which is the process of
ctively maintaining a representation of information for a brief
eriod of time so that it is available for use. Attention, decod-
ng, perception and maintenance in memory are processes that
nvolve the activation of WM. Visual working memory involves
he concerted activity of a distributed neural system, including
osterior areas in visual cortex and anterior areas in prefrontal
ortex (Ungerleider et al., 1998).

The increase in theta power in frontal regions has been related
o activation of WM (Gevins et al., 1997; Rhom et al., 2001).
nterior regions are also involved in encoding (Klimesch et al.,
004) and maintaining the information in memory (Barde and
hompson-Schill, 2002). An increase in coherence in the theta

ange was found by Sarnthein et al. (1998) between prefrontal
nd posterior electrodes during retention of a string of characters.

In the alpha range, simultaneously with the increase in syn-
hrony in the occipital regions, there was a decrease in synchrony
etween all regions except the occipital leads and the frontal
egions on which synchrony increases. This increase may be
ndicating the projection loops between attentional control sys-
em in prefrontal cortex and activated meaning representations
n semantic memory in posterior regions. The decrease in syn-
hrony in the alpha band between 100 and 1500 ms coincides
ith the phenomena described in the 1930s by Adrian and Math-

ws of amplitude decrease or “desynchronization” and it has
een related to attention (Gevins et al., 1997; Rhom et al., 2001;
limesch, 1999).
Other change that was observed is the increase of synchrony

n occipital regions in the beta band. In humans, in intracranial
ecordings that limited regions of extrastriate visual areas, sep-
rated by several centimeters, EEG activity in the beta range
15–25 Hz) became synchronized in an oscillatory mode during
he rehearsal of an object in visual short-term memory. Accord-
ng to Tallon-Baudry et al. (2001) these findings confirm exper-
mentally the hypothesis of a functional role of synchronized
scillatory activity in the coordination of distributed neural ac-
ivity in humans, and support Hebb’s (1949)popular concept of
hort-term memory maintenance by reentrant activity within the
ctivated network.

In the gamma band an increase of synchrony in the interval
00–300 ms was observed. This increase in synchrony in the
amma band has been related to visual search and perception
Tallon-Baudry et al., 1997). The increase in synchronization
uring the interval of 600–800 ms in the gamma band might be
elated to preparation of the motor response.

From the analysis of these and other experimental data (see
lba et al., 2006 for details), one observes certain phenomena

hat may appear counter-intuitive; for example:

. Synchronous episodes occur with near-zero phase lag, re-
gardless of the distance between leads.
. It is possible to have two (or more) electrodes increasing their
synchrony with a third one (which acts as a nodal point), and
at the same time, observe a decrease of synchronization be-
tween the non-nodal leads (see, for example, the SP associ-
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ig. 8. Map of significant amplitude changes for the Figures experiment: sites
ed (dark gray in the printed version) while those with significantly lower ampl

ated to the alpha band in Fig. 5, where occipital leads increase
their synchrony with most of the other leads, while fronto-
parietal leads show a decrease of synchrony among them).
This phenomenon can also been observed in other studies,
such as Rodriguez et al. (1999) and David et al. (2003).

. When a single electrode e increases its synchrony with many
sites, there is a high probability of a power decrease at e.

These phenomena may be explained by the following consid-

rations: a scalp electrode provides estimates of synaptic action
veraged over tissue masses containing between 107 and 109

eurons (Nunez, 1995). Moreover, there is evidence (obtained,
or example, using retrogradely transported fluorescent dyes

l
(
t
s

e amplitude is significantly higher than the pre-stimulus average are shown in
are shown in green (light gray in the printed version).

orecraft et al., 1993, and single-cell recordings Quintana and
uster, 1999) of extensively intermingled populations of neu-
ons connected with different areas (e.g., frontal eye fields and
osterior parietal cortex). Moreover, when performing a com-
utational task, neurons may quickly associate into a functional
roup while disassociating from concurrently activated groups
Haalman and Vaadia, 1998).

All these facts suggest that the signal recorded by a scalp
lectrode may in fact result from a sum of macroscopic oscil-

ations produced by functionally different neural populations
which may be histologically intermingled). Since each one of
hese sub-populations must be synchronized so that a macro-
copic oscillation develops, a reasonable model for a complex
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and-pass EEG signal (i.e., the output of a narrow band-pass
uadrature filter tuned at frequency ω) is:

(t, ω) =
∑

k

αkei(ωt+φk), (34)

here the positive coefficients αk depend on the amplitude and
elative proportion of subpopulation k and φk is the correspond-
ng phase.

The apparent amplitude A(t, ω) and phase angle φ(t, ω) (ob-
ained by subtracting ωt from the argument of the complex sig-
al S) will be given by the resultant of the sum (on the complex
lane) of the vectors αkeiφk :

(t, ω) exp[iφ(t, ω)] =
∑

k

αk(t) exp[iφk]. (35)

This explains why the apparent phase difference between two
ynchronized distant regions is zero, in spite of the fact that
here may be a significant transmission delay: with two sub-
opulations one can model a unidirectional coupling between
wo distant cortical areas, in the sense that a sub-population in
ne area drives a sub-population in the other area with a certain
hase lag δ. For a bidirectional coupling we just add a reciprocal
onnection, with the same phase lag. Fig. 9 shows a schematic of
wo populations in bidirectional coupling. It can be shown that
f all sub-populations have approximately the same size (i.e.
k = 0.5, k = 1, 2), then the apparent amplitude and phase for
ach electrode would be given by

∗
1 exp[iφ∗

1] = 2 cos

(
φ1 − φ2

2

)
exp

[
i
φ1 + φ2

2

]
, (36)

∗
2 exp[iφ∗

2]=2 cos

(
φ1 − φ2 − 2δ

2

)
exp

[
i
φ1 + φ2

2

]
. (37)

So that φ∗
1 − φ∗

2 ≈ 0, except in the case where

φ1 − φ2 + 3π

2
< δ <

φ1 − φ2 + π

2
,

n which case φ∗
1 − φ∗

2 ≈ π, which is in accordance with (David
nd Friston, 2003).

This model for the apparent phase also explains the fact,
hich we have observed in all the experiments we have ana-

yzed, that when a given site is synchronized with several other
ites, in most cases there is also an amplitude decrease with re-
pect to the baseline. These sites act as characteristic nodes of
particular network, hence we call them nodal points. To study

his in detail, we define a site e as k-nodal at time t and frequency
if it shows significant increase in synchronization with at least
different sites. Let Nk be the number of k-nodal points in the
FT space and A−

k the number of k-nodal points that also show
power decrease; then the conditional probability of significant
ower decrease given that a site is k-nodal can be estimated by
−
k = A−

k /Nk. One may similarly estimate the conditional prob-
bility of power increment P+

k . These probabilities are shown

n Fig. 10 for the Figures experiment, where it is clear that P−

k

ncreases with the number of couplings k. The same behavior
an be observed with three other experiments, all of which are
resented in (Alba et al., 2006).

o
r
n
f

ig. 10. Conditional probabilities of amplitude increment (red/dark gray) and
ecrease (green/light gray) in k-nodal points for the Figures experiment.

This behavior may be also be explained from Eq. (35): sup-
ose the population covered by the nodal electrode is divided
nto various sub-populations, each one of which increases its
ynchrony (with respect to the baseline) with a different site.
he relative dispersion of the non-nodal phases may not be dif-

erent from that of the baseline, so that these sites may not ex-
ibit any significant synchrony change among themselves; the
pparent phase of the nodal point, however, will show increased
ynchrony with all these sites, and due to the non-nodal phase
ispersion, the nodal point will show a significant apparent am-
litude decrease as well. A more detailed analysis of this situ-
tion, including some simulations, is presented in (Alba et al.,
006).

. Conclusion

Brain electroencephalographic activity changes as a function

f state. During the performance of different tasks, several neu-
onal assemblies become active simultaneously. These neuronal
etworks are not necessarily contiguous and may occupy dif-
erent cortical areas producing complex spatiotemporal patterns
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f synchronization or desynchronization in relation to a previ-
us state. Zero phase measurements between leads indicate that
he EEG recorded in such leads became highly synchronized and
ay be integrating a network related to a particular psychophysi-

logical process. Thus, phase relationships between regions may
ive important information about the dynamics of different cell
ssemblies.

The detection of these phase relationships must be performed
ith care. First, the time–frequency decomposition method

hould not introduce artifacts in the phase estimations. In this
ense, sinusoidal quadrature filters have proven to be reliable.
econd, there are two important aspects of synchrony estima-

ion: the significance of the phase-lock measure, and its consis-
ency across time. We believe that separating these two aspects
rovides better results, and we do this by means of an instan-
aneous phase-lock measure, and the inclusion of granularity
onstraints in the estimation of significance. On the other hand,
hase-lock measures that are estimated across a time window
ay be contaminated by the effect of local phase dispersion.
olume conduction seems to have a similar effect on all the
easures presented here; therefore, a more accurate assessment

f synchrony may be obtained by complementing the analysis
f raw potentials with Surface Laplacian estimates from high-
ensity recordings, as suggested by Nunez (1995, 2000), Nunez
t al. (1997). Unfortunately, most of our test datasets contain
nly 19 or 20 channels, which are not enough to compute an ac-
urate SL. However, the methodological contributions presented
n this paper remain valid for synchrony estimation if SL, cur-
ent sources, or MEG signals are used instead of the raw scalp
otentials. Finally, TFT visualization techniques have proven to
e very useful for the analysis of cognitive tasks as they allow
or a quick and interactive exploration of the TF plane while still
roviding spatial detail. The new insights in the Figures experi-
ent and the nodal sites are examples of the usefulness of these

ools.
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