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Abstract

Recently, a semi-implicit one-dimensional CE–SE (conservation element–solution element) method for the calculation of the
unsteady flow of one and several chemical species tracking in engine ducts has been developed in Arnau et al. [J.M. Arnau, S. Jerez,
L. Jódar, J.V. Romero, A semi-implicit conservation element–solution element method for chemical species transport simulation
to tapered ducts of internal combustion engine, Math. Comput. Simul. 73 (1/4) (2006) 28–37]. This new scheme improves the
accuracy of the original CE–SE with a similar computational cost. In this paper, we modify the semi-implicit CE–SE method taking
a nonuniform discretization of the space–time domain. The mesh is constructed by considering the geometrical characteristics of
the tapered ducts, which are composed of constant and conical sections. The goal is to reduce the computational cost and to increase
the accuracy of the approximated solution. Numerical results of the semi-implicit CE–SE for uniform and nonuniform meshes are
compared with experimental data.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The numerical simulation of wave dynamics represents an essential tool in the design and optimization of new
internal combustion engines. Lately, the use of one-dimensional gas dynamic models in the automotive industry has
notably increased since great part of the experimental tests of the validation stage is reduced. The behavior of an
unsteady one-dimensional flow of a perfect gas in a tapered duct with friction and heat transfer is modelled by the
following nonlinear hyperbolic system of partial differential equations [5]{

Wt + Fx(W) + S(W) = 0, x ∈ [b1, b2] ⊂ R, 0 < t ≤ T < +∞
W(x, 0) = W0(x), W(b1, t) = H(t), W(b2, t) = G(t)

(1)

where W is the vector of variables (density, momentum and total energy), F (W) the flux vector and S(W) represents
the terms concerning to the variation of section of the duct, friction and heat transfer.

In spite of the fact that some works have been published relating to the analytical solution of the governing equation
system (1), usually it can only be solved by means of numerical methods. This fact has given rise to search of new and
better numerical methods in terms of reliability, accuracy, robustness and computational cost.
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Comparative studies of computational cost and accuracy of numerical methods modelling the behavior of unsteady
flows are presented in [6]. In these studies, the CE–SE method is an accurate algorithm with low computational cost
for problems involving discontinuities, such as shock waves, contact surfaces and their mutual interactions [4] in
ducts with constant cross section. The CE–SE scheme uses the integral and differential forms of the system in the
space–time domain for calculating the numerical solution [2] and it’s free of any artificial stabilization mechanism.
When the flux flows through ducts of variable section, this explicit method generates a fictional value in mass flow
[5].

Recently, we have developed a semi-implicit CE–SE method with the main goal to improve the numerical results of
the original CE–SE in ducts with variable cross section area [5]. This scheme gives a better discretization of the source
term. Besides, our semi-implicit method has been adapted to the calculation of chemical species tracking, obtaining
highly accurate numerical solutions [1].

In this paper, we modify our semi-implicit CE–SE method to make use of nonuniform discretizations of the
space–time domain. The goal is to reduce the computational cost and to improve the accuracy of the numerical
solution of the semi-explicit CE–SE scheme. Also, we present an example under real conditions. In this example, the
ducts are composed of constant and conical sections, which implies the presence of nonsmooth changes of the deriva-
tive of the area. The mesh is constructed by decreasing spatial step in the duct parts with variable area and increasing
spatial step in the constant sections. We compare the numerical results of the mass flow and pressure variables of the
semi-implicit CE–SE scheme for uniform and nonuniform meshes.

2. Semi-implicit CE–SE method for nonuniform meshes

In this section, the semi-implicit CE–SE method [5] is adapted to a nonuniform spatial mesh. In each step of time, n,
we take a fixed temporal step, (�t)n, and we calculate the lesser spatial step, (�x)min, verifying the necessary condition
for the stability of the CE–SE method [3], the CFL condition, [maxx ∈ [b1,b2](|u| + |a|)](�t)n/(�x)min ≤ 1, where u is
the flux velocity and a is the sound speed.

The semi-implicit CE–SE method [5] divides the space–time domain into solution elements (SE), nonoverlapping
regular rhombus given by dashed lines, where the numerical approximation is a simple linear function of space and
time evaluated in the center of the rhombus, and conservation elements (CE), nonoverlapping rectangles given by solid
lines where the integral form of the system (1) is required.

In a nonuniform discretization, two types of nodes are considered, see Fig. 1. The grid points, xj , represented
by {•}, are generated as xj = xj−1/2 + (�x)j , with (�x)j ≥ (�x)min. The solution points, x′

j , represented by {◦},
are calculated as x′

j = (xj−1/2 + xj+1/2)/2 in the internal points and x′
j = xj in the boundary nodes. The grid

points describe the division of the domain in rectangles and the numerical solution is calculated in the solution
points.

Fig. 1. Spatial nonuniform mesh.
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In each solution element, SE(j, n), each component of the solution W(x, t) = [w1, w2, w3] is approximated by
means of first order Taylor expansion in (x′

j, t
n),

ω̃k(x, t; j, n) = (σk)nj + (αk)nj (x − x′
j) + (βk)nj (t − tn), k = 1, 2, 3. (2)

We denote the approximation of F and S by F̃ and S̃. F̃ is the first order Taylor expansion of F (W̃) and S̃(x, t; j, n) =
S(W̃(x′

j, t
n+1/2; j, n)). With this approximation, the solution is described by (σk)nj , (αk)nj , (βk)nj . If the coefficients in

the step n are known, we are going to compute them in the step n + 1/2. In each CE, we calculate (σk)n+1/2
j using the

integral form of (1),∫∫
CE(j,n+1/2)

(
∂ω̃k

∂t
+ ∂f̃k

∂x

)
dx dt +

∫∫
CE(j,n+1/2)

s̃k dx dt = 0, k = 1, 2, 3. (3)

Applying the Green’s Theorem to the first integral of (3), and decomposing the second integral as the sum of three
integrals defined in each rhombus SE into of the rectangle CE(j; n + 1/2), we obtain

(σk)n+1/2
j (�x) + (�x)(�t)

4
(s̃k)n+1/2

j = (�x)+
(

(σk)nj+1/2 − �t

4
(s̃k)nj+1/2

)

+ (�x)−
(

(σk)nj−1/2 − �t

4
(s̃k)nj−1/2

)
+ (αk)nj−1/2

(
(xj − x′

j−1/2)2

2
− (xj−1/2 − x′

j−1/2)2

2

)

+ (αk)nj+1/2

(
(xj+1/2 − x′

j+1/2)2

2
− (xj − x′

j+1/2)2

2

)

− [gk(x, t; j + 1/2, n) − gk(x, t; j − 1/2, n)], (4)

where gk(x, t; ·, ·), (s̃k)··:=s̃k(·, ·), k = 1, 2, 3, are defined in [5] and �x = xj+1/2 − xj−1/2, (�x)+ = xj+1/2 − xj ,

(�x)− = xj − xj−1/2. Note that if the solution point is notx′
j = (xj−1/2 + xj+1/2)/2, it would appear the term (αk)n+1/2

j

in (4) and it would have more unknowns than equations.
System (4) can be solved obtaining the second order equation with module

fr(�t)

2Dj

(σ2)n+1/2
j |(σ2)n+1/2

j | +
(

E1 + (�t)δj

4
E2

)
(σ2)n+1/2

j = E1E2, (5)

where the friction, fr, is approximated as in [1] and Ek are obtained from (4) and do not depend on (σk)n+1/2· . Eq. (5)
has real solution if

4

∣∣∣∣fr(�t)

2Dj

E1E2

∣∣∣∣ ≤
(

E1 + �t

4
δjE2

)2

. (6)

Inequality (6) is true when E1E2fr = 0. In other case, �t is chosen fulfilling

−
(

�t

4
δj

)2

− (�t)E2E1δj

2
+ 2

∣∣∣∣fr(�t)

Dj

E1E2

∣∣∣∣ ≤ E2
1. (7)

Solving (6), we obtain up to four possible solutions. We choose one of them with the algorithm proposed in [5].
Once σ2 is obtained, it is easy to calculate σ1 and σ3. Coefficients (αk)n+1/2

j and (βk)n+1/2
j are calculated as in [5].

3. Numerical results

Some numerical tests have been carried out in order to evaluate the accuracy and the computational cost of the
new method. An impulse test rig has been used to obtain the experimental data. In the upstream boundary condition,
a pressure impulse has been imposed by means of the characteristics [6]. In the downstream boundary condition, an
anechoic edge has been used. The geometrical characteristics of the duct are shown in Fig. 2.

Numerical results are shown in Figs. 3 and 4. We compare a uniform mesh with �x = 0.02 m and three nonuniform
meshes. The nonuniform meshes are constructed considering the characteristics of the ducts. In the constant parts, �x
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Fig. 2. Geometrical characteristics.

Fig. 3. Error AMF front MAMF for several Dx:=(�x)con and �t = 0.0003.

Fig. 4. Pressure profile after conical zone for (�x)con = 0.0115 and �t = 0.0003.
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is increased using �x = 0.025 m and in the conical duct, we use (�x)con = {0.015, 0.013, 0.0115} m. Fig. 3 represents
the relative error of the air mass flow (AMF), it is, the difference between the AMF and the mean air mass flow (MAMF)
[6]. We can see that the error decreases when we use nonuniform meshes with smaller (�x)con, since the mesh is refined
in the conical zone.

In Fig. 4, we analyze the behavior of the pressure with an uniform mesh with �x = 0.02 m and a nonuniform mesh
with (�x)con = 0.0115 m in the conical zone. We compare the numerical results with experimental data. The results
improve using the nonuniform mesh. Moreover, the computational cost is reduced approximately in a 25%, since we
increase �x in the constant zones.
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