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Abstract

We classify the simply-connected Spinq manifolds admitting either a non-zero parallel or a non-zero real Killing spinor.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Among oriented Riemannian manifolds, Spin manifolds are distinguished by the existence of a double cover of their
orthonormal frame bundle PSO by a bundle PSpin with fiber a Spin group. The existence of such a bundle depends
on a topological condition, namely the vanishing of the second Stiefel–Whitney class. In such a case, the standard
representation of Spin(n) gives rise to the spinor vector bundle whose sections are called spinors. Various operators
can be defined, such as a covariant derivative and the Dirac operator. Such operators lead to natural spinorial equations
whose solutions are linked to the geometry of the manifold. We refer the reader to Hitchin’s seminal paper [5], which
prompted a great development of Spin and Spinc geometries.

There are many manifolds which do not admit Spin structures (such as the complex projective plane CP2) but
admit either Spinc or Spinq structures. Such structures are defined in a similar way to Spin structures with the Spin
group replaced by the Spinc and Spinq groups respectively. They also give rise to bundles of spinors and operators
whose properties are related to the manifold’s geometry. For instance, E. Witten used Spinc structures to define a new
gauge theory (Seiberg–Witten theory) which has yielded many powerful results in smooth 4-manifold theory [15,7].
Shortly after, Okonek and Teleman started to develop the analogous gauge theory for Spinq structures [11], which it
was hoped would be a bridge between Donaldson’s theory and Seiberg–Witten theory.

In [14], Wang classified the irreducible simply-connected Spin manifolds admitting non-zero parallel spinors,
which turn out to be Ricci-flat. In [8], Moroianu classified the simply-connected Spinc manifolds admitting non-zero
parallel spinors showing that such a manifold must be the product of a Ricci-flat Spin manifold and a Kähler manifold.
In this paper, we show that a Spinq manifold admitting a parallel quaternionic spinor must be the product of a Ricci-flat
Spin manifold and a Kähler manifold with its canonical Spinq structure.
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In [2], Bär classified the simply-connected Spin manifolds admitting real Killing spinors, and in [8], Moroianu
studied complete simply-connected Spinc manifolds admitting real Killing spinors. Here, we study complete simply-
connected Spinq manifolds admitting real Killing spinors.

The note is organized as follows. In Section 2 we recall preliminaries of Spinq structures. In Section 3 we study
Spinq manifolds admitting a non-zero parallel spinor. In Section 4 we study Spinq manifolds which admit a real
Killing spinor.

2. Preliminaries on structures of spin-type

Let SO(n) denote the special orthogonal group and Spin(n) its universal double-cover. By using the unit complex
numbers U (1) or the unit quaternions Sp(1), the Spin group can be “twisted” as follows

Spinc(n) = (Spin(n)× U (1))/{±(1, 1)} = Spin(n)×Z2 U (1),
Spinq(n) = (Spin(n)× Sp(1))/{±(1, 1)} = Spin(n)×Z2 Sp(1).

These give rise to the following short exact sequences

1 −→ Z2 −→ Spinc(n) −→ SO(n)× U (1) −→ 1,
1 −→ Z2 −→ Spinq(n) −→ SO(n)× SO(3) −→ 1,

respectively.

2.1. Spin structures on oriented Riemannian vector bundles

Let E be an oriented Riemannian vector bundle over a smooth manifold M , with r = rank(E) ≥ 3. Let PSO(E)
denote the orthonormal frame bundle of E . A Spin structure on E is a principal Spin(r)-bundle PSpin(E) together with
a 2 sheeted covering

ξ : PSpin(E) −→ PSO(E),

such that ξ(pg) = ξ(p)ξ0(g) for all p ∈ PSpin(E), and all g ∈ Spin(r), where ξ0 : Spin(r) −→ SO(r) denotes the
universal covering map.

The case when r = rank(E) = 2 has to be dealt with differently since the universal cover of SO(2) is non-compact.
In this case we set ξ0 : SO(2) −→ SO(2) to be the connected 2-fold covering of SO(2). When r = 1 a Spin structure
is only a 2-fold covering of the base manifold M .

Given a Spin structure PSpin(E) one can associate a spinor bundle

∆(E) = PSpin(E)×Spin(r)∆r ,

where ∆r denotes the standard complex representation of Spin(r).

2.2. Covariant derivatives on oriented Riemannian vector bundles and spin bundles

Let us recall the description of the covariant derivative on spin bundles from [6]. Let E be an oriented Riemannian
vector bundle over a manifold M . A covariant derivative on E is a linear map

∇ : Γ (E) −→ Γ (T ∗M ⊗ E)

such that

∇( f e) = d f ⊗ e + f ∇e

for all f ∈ C∞(M) and all e ∈ Γ (E). Furthermore, if {ei } is a local orthonormal basis of E and the covariant
derivative ∇ is induced from a connection on PSO(E), ∇ can be expressed by the rule

∇ei =

r∑
j=1

ω j i ⊗ e j , (1)
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for a collection of 1-forms ω j i . It is also compatible with the inner product, 〈·, ·〉 on E ,

X〈e, e′
〉 = 〈∇X e, e′

〉 + 〈e,∇X e′
〉,

for every X ∈ T M and e, e′
∈ Γ (E). The covariant derivative can be extended to

∇ : Γ (T ∗M ⊗ E) −→ Γ
(∧2

T ∗M ⊗ E
)

by the rule

∇(α ⊗ e) = dα ⊗ e − α ∧ ∇e,

and we set R = ∇ ◦ ∇. It follows that

∇(∇ei ) = ∇

(
r∑

j=1

ω j i ⊗ e j

)
=

r∑
j=1

Ω j i ⊗ e j ,

where

Ω j i = dω j i +

r∑
k=1

ω jk ∧ ωki .

For X, Y ∈ T M we get the curvature transformation

RX,Y e = (∇X∇Y − ∇Y ∇X − ∇[X,Y ])e =

r∑
j=1

e jΩ j i (X, Y ).

If E admits a spin structure, the connection on PSO(E) lifts to PSpin(E) and there is an induced covariant derivative
∇

s on any spinor bundle S(E) defined as follows,

∇
sσα =

1
2

∑
i< j

ω j i ⊗ ei e j · σα,

where {σα} is a local orthonormal frame of S(E), and the dot “·” means Clifford multiplication. For a general section
σ ∈ Γ (S(E)) we have that

∇
sσ = dσ +

1
2

∑
i< j

ω j i ⊗ ei e j · σ.

The curvature of this connection is

Rsσ =
1
2

∑
i< j

Ω j i ⊗ ei e j · σ.

In particular, for any tangent vectors X, Y ∈ Tx M ,

Rs
X,Y (σ ) =

1
2

∑
i< j

〈RX,Y (ei ), e j 〉ei e j · σ.

Remark. Even if the bundle E is not spin, these calculations are valid locally.

2.3. Spin-type structures on the tangent bundle

Let us now consider the tangent bundle T M of an oriented n-dimensional Riemannian manifold with a fixed metric,
which is an oriented Riemannian vector bundle. All the previous considerations apply, and we say that a manifold is
spin if w2(T M) = 0.
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If the manifold is not spin, it means that the spinor bundle ∆ is not globally defined due to a Z2 ambiguity. In
order to get around this problem and to be able to carry out certain aspects of geometric analysis as in the case of spin
manifolds, other spin-like structures have been defined. This is done by coupling the locally defined spin structure
with another locally defined spin structure of an auxiliary bundle so that they cancel each other’s Z2 ambiguities.

Definition 2.1. Let M be an oriented Riemannian manifold with a fixed metric and let PSO(n)(M) denote its bundle
of oriented orthonormal frames.

• M is called Spinc if it admits a Spinc structure consisting of a U (1)-principal bundle PU (1)(M), a principal Spinc(n)
bundle PSpinc(n)(M) and a Spinc equivariant projection

ξ : PSpinc(n)(M) −→ PSO(n)(M)× PU (1)(M)

• M is called Spinq if it admits a Spinq structure consisting of a SO(3)-principal bundle PSO(3)(M), a principal
Spinq(n) bundle PSpinq (n)(M) and a Spinq equivariant projection

ξ : PSpinq (n)(M) −→ PSO(n)(M)× PSO(3)(M).

Denote by ξ1 and ξ2 the compositions of ξ with the projection onto PSO(n)(M) and PSO(3)(M), respectively.

The existence of a Spinc structure is equivalent to the second Stiefel–Whitney class being the mod 2 reduction of
the first Chern class of PU (1)(M), w2(M) = c1(PU (1)(M)) (mod 2). On the other hand, M admits a Spinq structure
if and only if w2(M) = w2(PSO(3)(M)). We refer the reader to [6] for the theory of Spin and Spinc structures, and
to [9] for Spinq structures.

In terms of vector bundles, the auxiliary bundle PU (1) of a Spinc structure has an associated complex line bundle L .
Let ∆(M) denote the locally defined complex spinor bundle of M . Thus, the Spinc structure has an associated globally
defined vector bundle by the complex tensor product ∆c

= ∆(M)⊗L1/2, whose sections are called (complex) spinors.
Similarly, a Spinq structure has an associated globally defined (quaternionic) spinor bundle

∆q
= ∆(M)⊗ ∆(E)

where ∆(E) denotes the locally defined complex spinor bundle of the rank 3 oriented Riemannian vector bundle E
associated to the auxiliary bundle PSO(3) of the Spinq structure.

Example. Let us examine the standard Spin representation on a non-Spin quaternion-Kähler 12-manifold M with
non-zero scalar curvature. Recall that the complexified tangent bundle factors as

T Mc = E ⊗ H,

where E and H are only locally defined bundles corresponding to the standard complex representations of the
holonomy factors Sp(3) and Sp(1) respectively [12]. Notice that the bundle S2 H is non-trivial since the manifold
is non-Ricci-flat. Thus, the locally defined spin bundle splits as follows

∆12 =

∧3
0

E ⊕

∧2
0

E ⊗ H ⊕ E ⊗ S2 H ⊕ S3 H (2)

where
∧p

0 E denotes the (locally defined) bundle corresponding to the primitive subspace in
∧p E defined as the

Hermitian complement to ε ∧
∧p−2 E with ε a symplectic form invariant by Sp(3), and S p H denotes the p-th

symmetric power of H . If the manifold M is not Spin, the bundle H defines a non-trivial Spinq structure on M

∆12 ⊗ H =

(∧3
0

E ⊕

∧2
0

E ⊗ H ⊕ E ⊗ S2 H ⊕ S3 H
)

⊗ H

=

∧3
0

E ⊗ H ⊕

∧2
0

E ⊗ (S2 H + 1)⊕ E ⊗ (S3 H + H)⊕ (S4 H ⊕ S2 H)

since all of the bundles in the last line are now globally defined.

Remarks. 1. A Spin manifold admits trivial Spinc and Spinq structures
2. A Spinc manifold canonically admits a Spinq structure. If M is not spin, the Spinc bundle is ∆c

= ∆(M)⊗ L1/2.
Therefore, the direct sum bundle (∆ ⊗ L1/2)⊕ (∆ ⊗ L−1/2) defines a Spinq structure whose SO(3) bundle is the
underlying real vector bundle of S2(L1/2

⊕ L−1/2) = L +C+ L−1. We shall call this structure the canonical Spinq

structure of a Spinc manifold.
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3. A Spinc manifold is not necessarily Spin.
4. A Spinq manifold may be neither Spin nor Spinc.

Examples. The following manifolds show the various possibilities described in the previous remark.

1. The quaternionic projective space HP3 is Spin and also admits a non-trivial Spinq structure.
2. The complex Grassmannian Gr2(C5) is not Spin, but can be considered as a Kähler manifold and a quaternion-

Kähler manifold for the same metric. The canonical Spinc structure given by the canonical bundle (viewed as a
Kähler manifold) is different from the Spinq structure given by its quaternionic-Kähler structure (see the example
after Proposition 3.1).

3. The real Grassmannian Gr4(R7) admits neither Spin nor Spinc structures, while it naturally admits a Spinq structure
as a quaternion-Kähler manifold.

4. Any almost-quaternionic manifold admits a Spinq structure [9].

2.4. Connections on Spinq manifolds

Let M be an n-dimensional oriented Riemannian manifold admitting a Spinq structure PSpinq (n)(M). The Levi-
Civita connection ω on M together with a chosen fixed connection θ on PSO(3) define a connection on PSpinq (n)(M)
denoted by ∇

q . We shall denote by 〈·, ·〉 all the metrics involved since the arguments determine which metric is being
used.

Following definition (1) of a covariant derivative, the Levi-Civita connection induces the covariant derivative
∇ : Γ (T M) −→ Γ (T ∗M ⊗ T M). More precisely, let {v1, . . . , vn} denote a local orthonormal frame of T M , then
∇vi =

∑n
j=1 ω j i ⊗ v j , for the collection of 1-forms ω j i = 〈∇v j , vi 〉. The covariant derivative ∇ is compatible with

the inner product and if we let R = ∇ ◦ ∇, X, Y ∈ T M

RX,Y vi =

r∑
j=1

v jΩ j i (X, Y ),

where Ω j i = dω j i +
∑n

k=1 ω jk ∧ ωki .
Similarly, for the rank 3 oriented Riemannian auxiliary vector bundle E associated to PSO(3)(M), let {e1, e2, e3}

be a local orthonormal frame so that the covariant derivative induced by the connection θ is ∇
E

: Γ (E) −→

Γ (T ∗M ⊗ E), ∇E ei =
∑3

j=1 θ j i ⊗e j , form a collection of 1-forms θ j i . ∇E is also compatible with the corresponding
metric. Let RE

= ∇ ◦ ∇, X, Y ∈ T M , so that

RE
X,Y ei =

3∑
j=1

e jΘ j i (X, Y ),

where Θ j i = dθ j i +
∑3

k=1 θ jk ∧ θki .
Let ∆(M) and ∆(E) denote the locally defined spinor bundles of T M and E respectively, where ∆(Ex ) ∼= H ∼= C2

is isomorphic to the quaternions. The quaternionic spinor bundle ∆q(M) = ∆(M) ⊗ ∆(E) is globally defined and
inherits the following covariant derivative, let ψ ∈ Γ (∆q(M)) then

∇
qψ = dψ +

1
2

∑
i< j

ω j ivi · v j · ψ +
1
2

∑
k<l

θlkel · ek · ψ, (3)

which is compatible with the induced metric. Moreover

∇
q(∇qψ) =

1
2

∑
i< j

Ωi jvi · v j · ψ +
1
2

∑
k<l

Θklek · el · ψ.

Let us now recall that the complexified algebra generated by {e1, e2, e3} with the relations ek · el + el · ek = −2〈ek, el〉

is isomorphic to the quaternions so that (3) can be rewritten as

∇
qψ = dψ +

1
2

∑
i< j

ω j ivi · v j · ψ +
1
2
(iθ23 + jθ31 + kθ12) · ψ
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for ψ ∈ Γ (∆q(M)), and

∇
q(∇qψ) =

1
2

∑
i< j

Ωi jvi · v j · ψ +
1
2
(iΘ23 + jΘ31 + kΘ12) · ψ, (4)

where i, j, k now denote, according to the context, the standard basis of unit quaternions. Now if {ϕi
} is a frame dual

to {vi }, we can rewrite (4) as

∇
q(∇qψ) =

1
4

∑
i< j

(∑
k,l

Ri jklϕ
k
∧ ϕl

)
vi · v j · ψ +

1
2
(iΘ23 + jΘ31 + kΘ12) · ψ.

Remark. A Spinq structure on a simply-connected manifold M whose PSO(3) bundle is trivial with a flat connection
is canonically identified with a Spin structure and the covariant derivative ∇

q is the same as ∇ on spinor bundles.

Remark. Since ∆(Ex ) can be identified with the quaternions, we also have an action by the unit quaternions
Sp(1) ⊂ H as follows. If q ∈ Sp(1) and h ∈ ∆(Ex ), then h · q = hq−1, and ∇

q commutes with this action.

3. Parallel spinors

Let M be a Spinq manifold, X a vector field and ψ a quaternionic spinor. Following [3], define the form

Hq
ψ (X) =

n∑
α=1

vα · (∇q
∇

qψ)(X, vα).

Lemma 3.1.

Hq
ψ (X) = −

1
2

Ric(X) · ψ +
1
2
(XyΘ) · ψ,

where Θ = iΘ23 + jΘ31 + kΘ12.

The proof of the proposition on page 64 of [3] can be easily modified to our case. �

Definition 3.1. Let M be a simply-connected Riemannian Spinq manifold. A quaternionic spinor ψ ∈ Γ (∆q) is
parallel if

∇
q
Xψ = 0

for every vector field X .

Lemma 3.2. Let X be a vector field and ψ a non-zero parallel spinor. Then

Ric(X) · ψ = (XyΘ) · ψ, (5)

where Ric denotes the Ricci tensor as a type (1, 1) tensor.

Proof. This follows from the previous lemma since ∇
qψ = 0 implies Hq

ψ (X) = 0 for all X . �

Theorem 3.1. Let M be a simply-connected Riemannian Spinq manifold. Assume M admits a non-zero parallel spinor
ψ . Then, M is isometric to the Riemannian product of a Ricci-flat Spin manifold and a Kähler manifold.

Proof. Without loss of generality, we can assume that the manifold M is irreducible. More precisely, if the simply-
connected manifold M is a Riemannian product M1 × M2, then

H2(M,Z2) = H2(M1,Z2)⊕ H2(M2,Z2),

w2(M1) ≡ w2(PSO(3)|M1) and w2(M2) ≡ w2(PSO(3)|M2),
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so that both M1 and M2 admit Spinq structures, and also inherit connections. Restricting the bundle ∆(M) ⊗ ∆(E)
to M1 gives

(∆(M)⊗ ∆(E))|M1 = 2[dim(M2)/2]∆(M1)⊗ ∆(E)|M1 ,

and analogously for M2

(∆(M)⊗ ∆(E))|M2 = 2[dim(M1)/2]∆(M2)⊗ ∆(E)|M2 .

Since the Spin holonomy of the connection must have a fixed point (subspace) in the representation ∆(M) ⊗ ∆(E),
i.e. a trivial summand, the above restrictions must also have at least one trivial summand. Now, the Spin holonomy of
M1 is the same for each copy of ∆(M1)⊗∆(E)|M1 so that by Schur’s lemma ∆(M1)⊗∆(E)|M1 has a trivial summand
and therefore M1 endowed with this Spinq structure and connection admits a non-zero parallel spinor. Similarly for
M2.

Now, if ψ is a non-trivial parallel spinor, then X‖ψ‖
2

= 〈∇
q
Xψ,ψ〉+ 〈∇

q
Xψ,ψ〉 = 0, so it has constant length and

no zeroes. Furthermore, the tangent bundle T M can be considered as a sub-bundle of ∆q . Consider the isomorphism
Φ: T M −→ T M · ψ ⊂ ∆q(M), given by Φ(X) = X · ψ . If X · ψ = 0 then

X · X · ψ = −|X |
2ψ = 0,

which implies X = 0, so that Φ is an isomorphism.
Since ψ is parallel, the sub-bundle T M · ψ is a parallel sub-bundle. Indeed,

∇
q
Y (X · ψ) = (∇Y X) · ψ + X · ∇

q
Yψ = (∇Y X) · ψ,

for every vector field Y .

Step 1. Define the following distribution

D = Φ−1((T M · ψ) ∩ (iT M · ψ + jT M · ψ + kT M · ψ)),

whose fiber at x ∈ M

Dx = {X ∈ Tx M | ∃Y1, Y2, Y3 ∈ Tx M, X · ψ = iY1 · ψ + jY2 · ψ + kY3 · ψ}.

The distribution D and its orthogonal complement D⊥ are parallel as we show next. First notice

∇
q(iψ) = idψ + i

1
2

∑
i< j

ω j ivi · v j · ψ +
1
2
(iθ23 + jθ31 + kθ12)iψ

= idψ + i
1
2

∑
i< j

ω j ivi · v j · ψ + i
1
2
(iθ23 − jθ31 − kθ12)ψ

= i∇qψ + (−kθ31 + jθ12)ψ

= (−kθ31 + jθ12)ψ,

and similarly

∇
q( jψ) = (kθ23 − iθ12)ψ,

∇
q(kψ) = (− jθ23 + iθ31)ψ.

Let X ∈ Γ (D) and Z be a vector field. Thus

∇Z X · ψ = ∇Z X · ψ + X · ∇
q
Zψ

= ∇
q
Z (X · ψ)

= ∇
q
Z (Y1 · iψ + Y2 · jψ + Y3 · kψ)

= (i∇Z Y1 · ψ + Y1 · ∇
q
Z (iψ))+ ( j∇Z Y2 · ψ + Y2 · ∇

q
Z ( jψ))+ (k∇Z Y3 · ψ + Y3 · ∇

q
Z (kψ))

= i(∇Z Y1 − θ12(Z)Y2 + θ31(Z)Y3) · ψ + j (∇Z Y2 + θ12(Z)Y1 − θ23(Z)Y3) · ψ

+ k(∇Z Y3 − θ31(Z)Y1 + θ23(Z)Y2) · ψ,
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so ∇Z X ∈ Γ (D). On the other hand, if W ∈ Γ (D⊥), then 〈W, X〉 = 0 for all X ∈ Γ (D), and 〈∇Z W, X〉 =

Z〈W, X〉 − 〈W,∇Z X〉 = 0, for any vector field Z , so that ∇Z W ∈ Γ (D⊥).
Since M is irreducible, either D = T M or D⊥

= T M . If D⊥
= T M then by Lemma 3.2,

span{Ric(X)|X vector field} ⊂ D = {0},

so that Θ vanishes identically, the connection of PSO(3)(M) is flat, and M is Spin (classified in [14]).
If D = T M , we proceed as follows.

Step 2. Let us assume there exists a quaternion q0 = ai + bj + ck with a2
+ b2

+ c2
= 1, q2

0 = −1, such that the
following distribution is non-trivial

E = Φ−1((T M · ψ) ∩ (T M · ψ · q0)),

with fiber at x ∈ M

Ex = {X ∈ Tx M | ∃Y ∈ Tx M, X · ψ = Y · ψ · q0}.

The bundle E and its orthogonal complement E⊥ in T M are parallel. Namely, let X ∈ Γ (E) and Z be a vector field

(∇Z X) · ψ = (∇Z X) · ψ + X · (∇
q
Zψ) = ∇

q
Z (X · ψ)

= ((∇Z Y ) · ψ + Y · (∇
q
Zψ)) · q0 = (∇Z Y ) · ψ · q0,

so that ∇Y X ∈ Γ (E). Now, let Z ∈ Γ (E⊥) and Y be a vector field. By definition 〈Z , X〉 = 0 for all X ∈ Γ (E), and
〈∇Y Z , X〉 = Y 〈Z , X〉 − 〈Z ,∇Y X〉 = 0, for any vector field Y , so that ∇Y Z ∈ Γ (E⊥).

Since M is irreducible, either E = T M or E⊥
= T M . If E = T M , we can define a parallel complex structure on

M as follows. For any vector field X , define the almost complex structure J0 by the equation

X · ψ = J0(X) · ψ · q0, (6)

since by this definition, J0(J0(X)) = −X .
To see that it is orthogonal multiply (6) by X on the left

X · X · ψ = X · J0(X) · ψ · q0,

−|X |
2ψ = X · J0(X) · ψ · q0. (7)

Multiply (6) by J0(X) on the left

J0(X) · X · ψ = J0(X) · J0(X) · ψ · q0,

J0(X) · X · ψ = −|J0(X)|2ψ · q0.

Multiply the last equation by −q0 on the right

−|J0(X)|2ψ = −J0(X) · X · ψ · q0 = (X · J0(X)+ 2〈X, J0(X)〉) · ψ · q0. (8)

Subtract (8) from (7) to get

ψ((−|X |
2
+ |J0(X)|2)+ 2〈X, J0(X)〉q−1

0 ) = 0,

which is essentially multiplication by a “complex number”. Therefore,

(−|X |
2
+ |J0(X)|2)+ 2〈X, J0(X)〉q−1

0 = 0,

i.e.

|X | = |J0(X)| and 〈X, J0(X)〉 = 0.

Now, taking the covariant derivative of (6)

∇
q
Y (X · ψ) = (∇Y X) · ψ + X · (∇

q
Yψ) = (∇Y X) · ψ

= (∇Y (J0(X)) · ψ + J0(X) · (∇
q
Yψ)) · q0 = ∇Y (J0(X)) · ψ · q0

gives

(∇Y X) · ψ = ∇Y (J0(X)) · ψ · q0.



H. Herrera, R. Herrera / Journal of Geometry and Physics 57 (2007) 1525–1539 1533

Substitute ∇Y (X) for X in (6)

(∇Y X) · ψ = J0(∇Y X) · ψ · q0.

Subtracting the last two equations gives

(∇Y (J0(X))− J0(∇Y X)) · ψ · q0 = 0,

where ψ has no zeroes. As before, this implies

(∇ J0)(X, Y ) = ∇Y (J0(X))− J0(∇Y X) = 0.

Since X and Y are arbitrary, ∇ J0 = 0, which means M is Kähler.
If E⊥

= T M , we proceed as follows.
Step 3. By Step 2, the following intersections are trivial

T M · ψ ∩ T M · ψ · i = T M · ψ ∩ T M · ψ · j = T M · ψ ∩ T M · ψ · k = {0},

which imply

T M · ψ · i ∩ T M · ψ · j = T M · ψ · j ∩ T M · ψ · k = T M · ψ · i ∩ T M · ψ · k = {0}.

Thus, the bundle T M · ψ · i ⊕ T M · ψ · j ⊕ T M · ψ · k is a direct sum. Indeed, if

0 = X · ψ · i + Y · ψ · j + Z · ψ · k

for vectors X , Y and Z , then

0 = X · X · ψ · i + X · Y · ψ · j + X · Z · ψ · k,

0 = Y · X · ψ · i + Y · Y · ψ · j + Y · Z · ψ · k,

0 = Z · X · ψ · i + Z · Y · ψ · j + Z · Z · ψ · k,

which imply

ψ · q1 = 2X · Z · ψ · k,

ψ · q2 = 2Z · Y · ψ · j,

ψ · q3 = 2Y · X · ψ · i,

where

q1 = (2〈Y, Z〉 + (|X |
2
− |Y |

2
+ |Z |

2)i + 2〈X, Y 〉 j − 2〈X, Z〉k),

q2 = (2〈X, Y 〉 + 2〈X, Z〉i − 2〈Z , Y 〉 j + (−|X |
2
+ |Y |

2
+ |Z |

2)k),

q3 = (2〈X, Z〉 − 2〈X, Y 〉i + (|X |
2
+ |Y |

2
− |Z |

2)i + 2〈Y, Z〉k).

If q1 6= 0, then

X · ψ = (2|X |
2
|kq−1

1 |Z) · ψ ·
(−kq−1

1 )

|kq−1
1 |

,

which by assumption does not happen. Similarly for q2 and q3. Thus q1 = q2 = q3 = 0 and

|Y |
2

= |X |
2
+ |Z |

2,

|X |
2

= |Y |
2
+ |Z |

2,

|Z |
2

= |X |
2
+ |Y |

2,

so that |X | = |Y | = |Z | = 0.
Now, consider the distribution

F = Φ−1((T M · ψ) ∩ (T M · ψ · i ⊕ T M · ψ · j ⊕ T M · ψ · k)),

whose fiber at x ∈ M

Fx = {X ∈ Tx M | ∃Y1, Y2, Y3 ∈ Tx M, X · ψ = Y1 · ψ · i + Y2 · ψ · j + Y3 · ψ · k},
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i.e. for any vector field X ∈ Γ (F), X · ψ can be uniquely written as

X · ψ = Y1 · ψ · i + Y2 · ψ · j + Y3 · ψ · k.

The distribution F and its orthogonal complement F⊥ are parallel. Let X ∈ Γ (F) and Z be a vector field, then

∇Z X · ψ = ∇Z X · ψ + X · ∇
q
Zψ = ∇

q
Z (X · ψ)

= (∇Z Y1 · ψ + Y1 · ∇
q
Zψ) · i + (∇Z Y2 · ψ + Y2 · ∇

q
Zψ) · j + (∇Z Y3 · ψ + Y3 · ∇

q
Zψ) · k

= (∇Z Y1 · ψ) · i + (∇Z Y2 · ψ) · j + (∇Z Y3 · ψ) · k,

so ∇Z X ∈ Γ (F). On the other hand, if W ∈ Γ (F⊥), then 〈W, X〉 = 0 for all X ∈ Γ (F), and 〈∇Z W, X〉 =

Z〈W, X〉 − 〈W,∇Z X〉 = 0, for any vector field Z , so that ∇Z W ∈ Γ (F⊥).
Since M is irreducible, either F = T M or F⊥

= T M . If F = T M , set I (X) = Y1, J (X) = Y2, K (X) = Y3,

X · ψ = I (X) · ψ · i + J (X) · ψ · j + K (X) · ψ · k, (9)

which multiplied by i , j and k gives the following equations

I (X) · ψ = (−X) · ψ · i + (−K (X)) · ψ · j + J (X) · ψ · k,

J (X) · ψ = K (X) · ψ · i + (−X) · ψ · j + (−I (X)) · ψ · k,

K (X) · ψ = (−J (X)) · ψ · i + I (X) · ψ · j + (−X) · ψ · k.

Therefore I , J , K are three almost complex structures satisfying the quaternionic relations

I 2
= J 2

= K 2
= −1, I J = −J I = K , . . . .

Furtheremore, they are mutually orthogonal and of the same length. Indeed, after some manipulation, (9) leads to
equations such as

ψ · ((−|X |
2
+ |I (X)|2 − |J (X)|2 + |K (X)|2)− 2(〈J (X), K (X)〉 − 〈X, I (X)〉)i − 2(〈X, J (X)〉

+ 〈K (X), I (X)〉) j + 2(〈X, K (X)〉 + 〈I (X), J (X)〉)k) = 2(X · J (X)+ K (X) · I (X)) · ψ · j,

which eventually lead, by the previous case, to

|X | = |I (X)| = |J (X)| = |K (X)|

and

〈X, I (X)〉 = 〈X, J (X)〉 = 〈X, K (X)〉 = 〈I (X), J (X)〉 = 〈I (X), K (X)〉 = · · · = 0,

for all X .
By taking the covariant derivative of (9) yields

∇Z X · ψ = ∇Z (I (X)) · ψ · i + ∇Z (J (X)) · ψ · j + ∇Z (K (X)) · ψ · k, (10)

where Z is a vector field. Now, by substituting ∇Z X for X in (9)

∇Z X · ψ = I (∇Z X) · ψ · i + J (∇Z X) · ψ · j + K (∇Z X) · ψ · k, (11)

and subtracting (11) from (10), we get

0 = (∇Z (I (X))− I (∇Z X)) · ψ · i + (∇Z (J (X))− J (∇Z X)) · ψ · j + (∇Z (K (X))− K (∇Z X)) · ψ · k.

Since such a linear combination is unique

∇Z (I (X))− I (∇Z X) = 0,
∇Z (J (X))− J (∇Z X) = 0,
∇Z (K (X))− K (∇Z X) = 0,

and therefore the three almost complex structures are parallel ∇ I = ∇ J = ∇K = 0. Hence, the manifold M is
hyperkähler, Spin and RicM ≡ 0.



H. Herrera, R. Herrera / Journal of Geometry and Physics 57 (2007) 1525–1539 1535

If F⊥
= T M , at each x ∈ M

(Tx M · ψ) ∩ (Tx M · ψ · i ⊕ Tx M · ψ · j ⊕ Tx M · ψ · k) = {0}.

Thus

V = Tx M · ψ ⊕ Tx M · ψ · i ⊕ Tx M · ψ · j ⊕ Tx M · ψ · k

is a direct sum in ∆q
x (M). Therefore we can find the underlying real vector space V ⊂ V as the fixed point set of the

conjugation involution of ∆q
x , so that V is the “right quaternionification” of V , i.e.

V = V ⊗RH.

In this fashion,

Tx M · ψ + iTx M · ψ + jTx M · ψ + kTx M · ψ

is the “left quaternionification” of V , and must be a direct sum, i.e.

(T M · ψ) ∩ (iT M · ψ ⊕ jT M · ψ ⊕ kT M · ψ) = {0},

which contradicts our working assumption that D = T M . �

Let us examine the Spinc and Spinq structures of the Kähler piece of Theorem 3.1 in terms of representation theory.
For a Kähler manifold, let Λ0,1 denote the (0, 1) forms and κ ∼= Λm,0 the canonical line bundle. The standard Spin
representation branches under SU (m)× U (1) (see [13])

∆2m ∼=

(
m⊕

l=0

Λl,0

)
⊗ κ−1/2

=

(
m−1⊕
l=0

Λl,0
⊕ κ

)
⊗ κ−1/2.

The square root of the canonical bundle is globally defined only if the Kähler manifold is Spin. Note that in this case,
the restricted spin representation does not contain any trivial summands, unless the Kähler manifold is special Kähler.
In general, we can still tensor it with κ−1/2 to get the globally defined Spinc bundle

∆2m ⊗ κ−1/2
=

(
m−1⊕
l=0

Λl,0

)
⊗ κ−1

⊕ C.

This product contains a trivial subbundle of rank 1 corresponding to non-zero parallel spinorsψ of the canonical Spinc

structure of the Kähler manifold [8]. On the other hand, the canonical Spinq structure of a Spinc structure is given by
tensoring ∆2m with the (locally defined) rank 2 bundle κ1/2

⊕ κ−1/2

∆2m ⊗ (κ1/2
⊕ κ−1/2) =

(
C ⊕

m−1⊕
l=1

Λl,0
⊕ κ

)
⊗ (C ⊕ κ−1).

This decomposition contains two trivial summands corresponding to the existence of non-zero parallel spinors for the
canonical and anti-canonical Spinc structures.

The previous remark and [8, Prop. 3.1] prove the following.

Proposition 3.1. Let M be an n-dimensional simply-connected Riemannian Spinq manifold admitting a non-zero
parallel spinor. Then, the Spinq structure of the (non-Ricci-flat) piece N1 of M is the one associated to the canonical
(or anticanonical) Spinc structures of the Kähler metric. �

Example. Consider again the complex Grassmannian G = Gr2(C5). This manifold is not Spin, but admits both
a canonical Spinq structure as a Kähler manifold and a different Spinq structure as a quaternion-Kähler manifold.
While it admits non-zero parallel spinors for the first Spinq structure, it does not for the latter, since that would imply
the existence of a Kähler structure compatible with the quaternion-Kähler structure, which is not possible [1].

In order to clarify the last example, let us examine the standard Spin representation. The manifold G is (irreducible)
quaternion-Kähler, so that the complexified tangent bundle factors as

TGc = E ⊗ H,
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where E and H correspond to the standard complex representations of the holonomy factors Sp(3) and Sp(1)
respectively. Recall that G is a homogeneous space

G =
U (5)

U (3)× U (2)
=

SU (5)
S(U (3)× U (2))

,

and that its Kähler structure implies

TGc ∼= F ⊕ F∗,

where F ∼= C6 corresponds to the standard representation of U (6). Furthermore, the isotropy group U (3) × U (2)
determines the following factorization

F ∼= V ⊗ U∗,

where V ∼= C3 and U ∼= C2 denote the standard representations of U (3) and U (2) respectively. In particular, since

U (2) = SU (2)×Z2 U (1) = Sp(1)×Z2 U (1),
U = H ⊗ L ,

where

det(U ) =

∧2
U =

∧2
H ⊗ L2

= L2,

i.e.

L = (det(U ))1/2.

Hence,

TGc = V ⊗ U∗
⊕ V ∗

⊗ U

= [V ⊗ L∗
⊗ H ] ⊕ [V ∗

⊗ L ⊗ H ]

= ([V ⊗ L∗
] ⊕ [V ∗

⊗ L])⊗ H

so that

E = [V ⊗ L∗
] ⊕ [V ∗

⊗ L].

Let us examine the term
∧3

0 E in the decomposition (2). Indeed,∧3
E =

∧3
V ⊗ L−3

⊕

∧2
V ⊗ V ∗

⊗ L−1
⊕ V ⊗

∧2
V ∗

⊗ L ⊕

∧3
V ∗

⊗ L3

and ∧3
0

E =

∧3
V ⊗ L−3

⊕ S2V ∗
⊗ L−1

⊕ S2V ⊗ L ⊕

∧3
V ∗

⊗ L3.

Since κ−1
= (

∧3 V )2 ⊗ L−6, when we multiply
∧3

0 E by κ1/2
= (

∧3 V )−1
⊗ L−3 we get a trivial summand, as

expected for the Kähler Spinc structure. On the other hand, there is no trivial summand after tensoring ∆12 with H
and using the Clebsch–Gordan formula

∆12 ⊗ H =

∧3
0

E ⊗ H ⊕

∧2
0

E ⊗ (S2 H + 1)⊕ E ⊗ (S3 H + H)⊕ (S4 H ⊕ S2 H).

4. Real Killing spinors

In this section, we classify the simply-connected Spinq manifolds admitting a real Killing spinor ψ , i.e. a spinor
satisfying

∇
q
Xψ = λX · ψ,

for every vector field X and for some λ ∈ R. One can assume that λ = ±1/2 (by rescaling the metric).
First, recall that a Sasakian manifold is a Riemannian manifold (M, g) that has
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(a) a Killing vector field ζ of unit length;
(b) two tensors φ := −∇ζ and η := g(ζ, ·) satisfying φ2

= −I d + η ⊗ ζ ;
(c) for any vector fields X, Y , (∇Xφ)Y = g(X, Y )ζ − η(Y )X .

Theorem 4.1. A simply connected complete Spinq manifold M admits a real Killing spinor if and only if either
1. M is a simply-connected spin manifold (with flat auxiliary bundle) admitting real Killing spinors, or
2. M is a Sasakian manifold.

Let g denote the metric on M . As in [2,8], we consider the cone M = M ×r2 R2 over M with metric g = r2g+dr2.
Let ∂r denote the vertical unit vector field and ∇ the corresponding Levi-Civita connection. They satisfy the following
equations [10],

∇∂r ∂r = 0,

∇∂r X = ∇X∂r =
1
r

X,

∇X Y = ∇X Y − rg(X, Y )∂r ,

where X and Y denote both vector fields on M and their canonical extensions to M . Thus, the curvature tensor R
satisfies

R(X, ∂r )∂r = R(X, Y )∂r = R(X, ∂r )Y = 0,
R(X, Y )Z = R(X, Y )Z + g(X, Z)Y − g(Y, Z)X,

so that if M is flat, M is a space form. Also recall that if M is complete, then M is irreducible or flat [4, Prop. 3.1].
The main purpose in using the cone is to lift the Killing spinor ψ on M to a non-zero parallel spinor π∗ψ on M ,

where π : M −→ M is the canonical projection.

Proposition 4.1. Every Spinq structure on M with a chosen connection on PSO(3)(M) induces a canonical Spinq

structure on M with an induced connection on PSO(3)(M). If ψ is a spinor on M then π∗ψ is a spinor on M satisfying

∇
q
X (π

∗ψ) = π∗

(
∇

q
π∗ Xψ −

1
2
(π∗ X) · ψ

)
for any vector field X on M.

Proof. Since SO(n) ⊂ SO(n + 1), we can enlarge the structure groups of the double cover

ξ : PSpinq (n)(M) −→ PSO(n)(M)× PSO(3)(M)

to

ξ : PSpinq (n+1)(M) −→ PSO(n+1)(M)× PSO(3)(M).

It is not hard to check that pulling back by means of π gives a Spinq structure on M . That is, π∗ PSO(n+1)M ∼=

PSO(n+1)M , and the induced map π∗ξ : PSpinq (n+1)M −→ PSO(n+1)M × PSO(3) is Spinq(n + 1)-equivariant.
The Levi-Civita connection of M and the pull-back of the connection on PSO(3)M to PSO(3)M give a connection

on PSpinq (n+1)M .
Let’s consider Spin(n) inside the Clifford algebra Cln so that the Lie algebra spin(n) = span{ei · e j , 1 ≤ i < j ≤

n, } ⊂ Cln , where e1, . . . , en is a standard basis of Rn . In this way,

spin(n + 1) = spin(n)⊕ Rn
⊂ Cln .

Since the irreducible complex representation ρn : Spin(n) −→ U (∆n) is the restriction of a representation of the
complexified Clifford algebra Cln ⊗C, one can also restrict to Spin(n +1). There is an isomorphism Cln −→

∼= Cl0n+1,
by extending Rn

−→ Cl0n+1, v 7→ v · en+1, which gives the inclusion

i : Spin(n + 1) −→ Cln .
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If n is even, ρn|Spin(n+1) is the spinor representation of Spin(n+1); if n is odd, it is one of the half-spin representations.
Therefore we have the following identifications,

if n = 2k, π∗∆q
2k(M) ∼= ∆q

2k+1(M),

if n = 2k + 1, π∗∆q
2k+1(M) ∼= ∆q+

2k+2(M),

so that for any vector fields X and Y , and a spinor ψ

π∗(X · ψ) =
1
r

X · ∂r · π∗ψ, π∗(X · Y · ψ) =
1
r

X ·
1
r

Y · ∂r · π∗ψ.

We shall now compute ∇
q
X (π

∗ψ) in the vertical and horizontal directions separately. Since the computation is local,
let U ⊂ M be an open neighborhood. A spinor may be represented by ψ = [σ, β], where σ ∈ Γ (U, PSpinq (n)M),
β: U −→ ∆q

n is a Spinq equivariant function, ξ1(σ ) = (X1, . . . , Xn) ∈ Γ (U, PSO(n)M) is a local orthonormal frame

and ξ2(σ ) = s ∈ Γ (U, PSp(1)M). Then π∗ψ = [π∗σ, π∗β], ξ1(π
∗σ) =

(
1
r X1, . . . ,

1
r Xn, ∂r

)
∈ Γ (U , PSO(n+1)M)

and ξ2(σ ) = π∗s ∈ Γ (U , PSp(1)M).
Notice that ∇∂r

1
r X = −

1
r2 X +

1
r ∇∂r X = 0, for every vector field X on M extended canonically to M .

According to (3) applied to M

∇
q
∂r
π∗ψ = [π∗σ, ∂r (π

∗β)] +
1
2

∑
j<k

g
(

∇∂r

(
1
r

X j

)
,

1
r

Xk

)
1
r

X j ·
1
r

Xk · π∗ψ

+
1
2

∑
j

g
(

∇∂r

(
1
r

X j

)
, ∂r

)
1
r

X j · ∂r · π∗ψ +
1
2
π∗θ((π∗s)∗(∂r ))π

∗ψ

=
1
2
θ((s ◦ π)∗(∂r ))π

∗ψ = 0,

and for X a vector field of M extended to M

∇
q
Xπ

∗ψ = [π∗σ, X (π∗β)] +
1
2

∑
j<k

g
(

∇X

(
1
r

X j

)
,

1
r

Xk

)
1
r

X j ·
1
r

Xk · π∗ψ

+
1
2

∑
j

g
(

∇X

(
1
r

X j

)
, ∂r

)
1
r

X j · ∂r · π∗ψ +
1
2
π∗θ((π∗s)∗(X))π∗ψ

= π∗

(
∇

q
Xψ −

1
2

X · ψ

)
,

which proves the proposition. �

Proof of Theorem 4.1. From here we see that if M admits a real Killing Spinq spinor, the cone M admits a parallel
Spinq spinor. By Theorem 3.1, the simply-connected manifold M is either Spin and Ricci-flat or a Kähler manifold
with its canonical Spinq structure. This implies that either

• M is Spin with flat connection on PSO(3) admitting a real Killing spinor [2], or
• M is Sasakian, since this is equivalent to the cone M being Kähler [2]. �

Proposition 4.2. Let M2k+1 denote a Sasakian manifold, then

• M admits a canonical Spinq structure.
• If M is Einstein, the connection of the canonical bundle PSO(3)(M) is flat. If M is also simply-connected, then M

is Spin.

Proof. First note that the Sasakian manifolds are necessarily odd dimensional. Next, M is Sasakian if and only if its
cone M is Kähler. Thus, M has a canonical Spinq structure (induced by its canonical Spinc structure

∧k+1,0 M and
its canonical connection), which restricts to M .

If M is Einstein, M is Ricci-flat, so that its canonical Spinc structure
∧k+1,0 M is canonically flat, and so are the

canonical Spinq structure and its restriction to M . �
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Finally, observe that the non-Einstein Sasakian manifolds admit (up to a constant) only one real Killing Spinq

spinor.

Acknowledgements

The first named author wishes to thank the Instituto de Matemáticas of UNAM (Mexico) for its hospitality and
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