

Available online at www.sciencedirect.com

Topology and its Applications

Topology and its Applications 154 (2007) 1206-1215

www.elsevier.com/locate/topol

The elliptic genus on non-spin even 4-manifolds [☆]

Rafael Herrera*

Centro de Investigación en Matemáticas, AP 402, Guanajuato, Gto., CP 36000, Mexico Received 3 March 2006; received in revised form 5 December 2006; accepted 5 December 2006

Abstract

We prove the rigidity under circle actions of the elliptic genus on oriented non-spin closed smooth 4-manifolds with even intersection form.

© 2006 Elsevier B.V. All rights reserved.

MSC: 58J26; 58G10; 57R91; 57N13; 57R15

Keywords: Elliptic genus; Rigidity theorem; Circle action; Even 4-manifold; Signature operator; Fixed point formula

0. Introduction

The elliptic genus was introduced by S. Ochanine [11] as a topological genus and E. Witten conjectured its rigidity under circle actions on spin manifolds [13]. Witten's rigidity theorem was proved by Taubes [12], Bott and Taubes [5], etc. The aim of this note is to show that the elliptic genus is also rigid under circle actions on oriented *non-spin* 4-manifolds with even intersection form (see Theorem 1.1), and the proof is carried out along the lines of that of [5] for spin manifolds. Working in dimension 4, grants us several simplifying features on the fixed point sets and the opportunity to make certain calculations more explicit.

In Section 1 we recall some preliminaries concerning even 4-manifolds and the elliptic genus. In Section 2 we prove the Rigidity Theorem 1.1 for non-spin even 4-manifolds. In Section 3 we give an alternative proof of the vanishing of the signature and the \widehat{A} -genus on smooth even 4-manifolds with circle actions.

1. Preliminaries

1.1. Rigidity of the index of an elliptic operator

Let $D: \Gamma(E) \to \Gamma(F)$ be an elliptic operator acting on sections of the vector bundles E and F over a compact, connected, oriented, smooth manifold M. The index of D, ind(D), is the virtual dimension of the virtual vector space

^{*} Tel.: +52 (473) 7350800; fax: +52 (473) 7325749.

E-mail address: rherrera@cimat.mx.

0166-8641/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2006.12.004

^{*} Partially supported by a Fellowship of the Japanese Society for the Promotion of Science, NSF Grant DMS-0204002, PSC-CUNY Grant #67300-00-36, Convenio Concyteg 05-02-K117-112, and Apoyo CONACyT J48320-F.

 $\operatorname{Ind}(D) = \ker(D) - \operatorname{coker}(D).$

If *M* admits a circle action preserving *D*, i.e. such that S^1 acts on *E* and *F*, and commutes with *D*, the virtual vector space Ind(*D*) admits a (finite) Fourier decomposition into complex 1-dimensional irreducible representations of S^1

$$\ker(D) - \operatorname{coker}(D) = \sum a_m L^m,$$

where $a_m \in \mathbb{Z}$ and L^m is the representation of S^1 on \mathbb{C} given by $\lambda \mapsto \lambda^m$. The elliptic operator D is called *rigid* for the given action if $a_m = 0$ for all $m \neq 0$, i.e. if Ind(D) consists of the trivial representation with multiplicity a_0 . The elliptic operator D is called *universally rigid* if it is rigid under any S^1 action on M by isometries.

Note that this rigidity can be equivalently reflected by the trace of the action of $\lambda \in S^1$ on the corresponding spaces, i.e. by considering the equivariant index of *D*

$$\operatorname{ind}(D)_{S^1}(\lambda) = \operatorname{tr}_{\lambda} \left(\operatorname{ker}(D) - \operatorname{coker}(D) \right) = \sum_m a_m \lambda^m$$

which is a (finite) Laurent polynomial on λ . The relevant feature of this expression is that it can be considered as the restriction to $S^1 \subset \mathbb{C}$ of a Laurent polynomial on $\lambda \in \mathbb{C}$ whose poles can only occur at 0 and ∞ , a fact that will be used repeatedly later.

1.2. Elliptic genus

Let \bigwedge_{c}^{\pm} be the even and odd complex differential forms on the oriented, compact, smooth 4-manifold *M* under the Hodge *-operator, respectively. The signature operator

$$d_s^M = d - *d * \colon \bigwedge_c^+ \to \bigwedge_c^-$$

is elliptic and the virtual dimension of its index equals the signature of M, sign(M). If W is a complex vector bundle on M endowed with a connection, we can *twist* the signature operator to forms with values in W

$$d_s^M \otimes W : \bigwedge_c^+ (W) \to \bigwedge_c^- (W).$$

This operator is also elliptic and the virtual dimension of its index is denoted by sign(M, W).

Definition 1.1. Let $T = TM \otimes \mathbb{C}$ denote the complexified tangent bundle of *M* and let R_i be the sequence of bundles defined by the formal series

$$R(q,T) = \sum_{i=0}^{\infty} R_i q^i = \bigotimes_{i=1}^{\infty} \bigwedge_{q^i} T \otimes \bigotimes_{j=1}^{\infty} S_{q^j} T,$$

where $S_t T = \sum_{k=0}^{\infty} S^k T t^k$, $\bigwedge_t T = \sum_{k=0}^{\infty} \bigwedge^k T t^k$, and $S^k T$, $\bigwedge^k T$ denote the *k*th symmetric and exterior tensor powers of *T*, respectively. The *elliptic genus* of *M* is defined as

$$\Phi(M) = \operatorname{ind}(d_s^M \otimes R(q, T)) = \sum_{i=0}^{\infty} \operatorname{sign}(M, R_i) \cdot q^i.$$
(1)

Note that the first few terms of the sequence R(q, T) are $R_0 = 1$, $R_1 = 2T$, $R_2 = 2(T^{\otimes 2} + T)$. In particular, the constant term of $\Phi(M)$ is sign(M).

The equivariant elliptic genus with respect to the S^1 action is

$$\Phi(M)_{S^1}(\lambda) = \sum_{i=0}^{\infty} \operatorname{sign}(M, R_i)_{S^1}(\lambda) \cdot q^i.$$
⁽²⁾

The main theorem of this article is the following.

Theorem 1.1. Let *M* be an oriented, compact, connected, non-spin, even, smooth 4-manifold admitting smooth S^1 actions. Then, each of the operators $d_s \otimes R_i$ is universally rigid.

1.3. The complex projective plane

In order to become acquainted with the rigidity property, let us examine the elliptic genus on the complex projective plane \mathbb{CP}^2 .

It is well known that the signature operator d_s is rigid on any oriented smooth manifold admitting (isometric) circle actions, including non-spin manifolds such as \mathbb{CP}^2 . However, the twisted signature operator $d_s \otimes T$ (the so-called Rarita–Schwinger operator) fails to be universally rigid on \mathbb{CP}^2 (see [9,7]) as we shall see next. We denote by $T\mathbb{CP}_c^2 = T\mathbb{CP}^2 \otimes \mathbb{C}$ the complexified tangent bundle of \mathbb{CP}^2 . Since \mathbb{CP}^2 is a homogeneous space for the Lie group SU(3) we can describe the relevant spaces as SU(3) representations.

Let $F(\lambda_1, \lambda_2, \lambda_3)$ denote the complex irreducible representation of SU(3) with dominant weight $(\lambda_1, \lambda_2, \lambda_3)$, where the coordinates are such that $F(1, 0, 0) = \mathbb{C}^3$ and $F(1, 1, 0) = \mathfrak{su}(3)$ are the standard and adjoint representations of SU(3) respectively.

As shown in [7], the SU(3)-representation corresponding to sign (\mathbb{CP}^2) is the one-dimensional trivial representation

$$\operatorname{Ind}\left(d_{s}^{\mathbb{CP}^{2}}\right) = F(0,0,0),$$

so that

 $\operatorname{sign}(\mathbb{CP}^2) = 1.$

The representation corresponding to sign(\mathbb{CP}^2 , $T\mathbb{CP}^2_c$) is the 16-dimensional SU(3)-representation

$$\operatorname{Ind}(d_s^{\mathbb{CP}^2} \otimes T\mathbb{CP}_c^2) = 2F(0,0,0) \oplus F(1,0,1) \oplus F(1,0,0) \oplus F(0,0,-1),$$

where dim F(0, 0, 0) = 1, dim F(1, 0, 1) = 8, dim F(1, 0, 0) = 3, dim F(0, 0, -1) = 3, so that

 $\operatorname{sign}(\mathbb{CP}^2, T\mathbb{CP}^2_c) = 16.$

Let g be a projective involution of \mathbb{CP}^2 with fixed point set a projective line and a point. By the Weyl character formula, the trace of g on each one of them is

$$sign(\mathbb{CP}^{2})^{S^{1}}(g) = tr_{g}(F(0,0,0)) = 1,$$

$$sign(\mathbb{CP}^{2}, T\mathbb{CP}_{c}^{2})^{S^{1}}(g) = tr_{g}(2F(0,0,0) \oplus F(1,0,1) \oplus F(1,0,0,) \oplus F(0,0,-1))$$

$$= 2 + 0 + (-1) + (-1) = 0,$$

thus showing the non-rigidity of the operator $d_s \otimes T \mathbb{CP}^2_c$.

1.4. Even intersection form

The intersection form of a closed oriented 4-manifold M is an unimodular symmetric bilinear form over the integers. Donaldson [6] proved that among all the *definite* bilinear forms, only the diagonalizable ones can be the intersections forms of smooth closed 4-manifolds. An indefinite bilinear form is called *odd* if there exists x such that Q(x, x) is odd, and it is called *even* otherwise. The indefinite forms Q which are odd are diagonalizable, so that we are left to consider indefinite even unimodular bilinear forms. Let E_8 be the unique irreducible negative definite quadratic form of rank eight and let H be the hyperbolic quadratic form. It is known that any indefinite even bilinear form Q is of the form $aE_8 \oplus bH$, $a, b \in \mathbb{Z}$. A smooth 4-manifold is called *even* if its intersection form is even. It is a well-known fact that all spin manifolds are even, but the converse is not true [1].

Now, we give some interesting properties of S^1 actions on smooth even 4-manifolds. Assume M is endowed with a (non-trivial) smooth S^1 -action. Let M^{S^1} denote the fixed point set of the circle action. At each point $p \in M^{S^1}$, the tangent space of M splits as a sum of S^1 representations

$$T_p M = L^{m_1(p)} \oplus L^{m_2(p)},$$

where L^m denotes the S^1 representation on which $\lambda \in S^1$ acts by multiplication by λ^m . The numbers $m_1(p), m_2(p)$ are called the *exponents* (or *weights*) of the S^1 -action at the point p. The exponents of an action are not canonical and their sign can be changed in pairs. The space $T_p M^{S^1}$ is a trivial representation of S^1 , i.e. in dimension 4 at most one exponent can equal 0.

Consider the sum of the exponents $\sigma(p) = m_1(p) + m_2(p)$. The number $\sigma(p)$ is constant along connected components of M^{S^1} , but may vary for different connected components. Note that in this dimension, the connected components P of M^{S^1} are oriented totally geodesic submanifolds of even codimension, i.e. oriented surfaces or isolated fixed points.

Definition 1.2. A circle action on an oriented 4-dimensional manifold *M* with non-empty fixed point set will be called either

- even if $\sigma(p) \equiv 0 \pmod{2}$ for all $p \in M^{S^1}$, or
- odd if $\sigma(p) \equiv 1 \pmod{2}$ for all $p \in M^{S^1}$.

Lemma 1.1. Let M be an oriented, connected, compact even smooth 4-manifold. Assume M admits a effective smooth S^1 action. Then

$$\sigma(p_1) \equiv \sigma(p_2) \pmod{2}$$

for all $p_1, p_2 \in M^{S^1}$. In particular, the S^1 -action is either even or odd.

Proof. First note that by the effectiveness assumption the fixed point set M_k of the finite subgroup \mathbb{Z}_k of S^1 has codimension greater than or equal to 2. Thus, consider a path joining p_1 and p_2 whose interior points are different from p_1 and p_2 , and which is also disjoint from submanifolds with finite isotropy. Let *S* be the sphere generated by letting S^1 act on the path. Then $TM|_S$ is an even dimensional, real, oriented, equivariant bundle on the sphere *S*, and, by [5, Lemma 9.2], $TM|_S$ can be considered as a complex equivariant vector bundle on *S*. Furthermore, by [5, Lemma 9.1],

$$\langle c_1(TM|_S), [S] \rangle = \sigma(p_1) - \sigma(p_2).$$

On the other hand,

$$TM|_S = TS \oplus \nu$$
,

where v is the normal bundle of S in M and $c_1(TM|_S) = c_1(S) + c_1(v)$. Thus

$$\langle c_1(TM|_S), [S] \rangle = \langle c_1(TS), [S] \rangle + \langle c_1(\nu), [S] \rangle = 2 + S \cdot S \equiv 0 \pmod{2}$$

by the assumption on the intersection form, where $S \cdot S$ denotes the self-intersection number of S. \Box

From this we see the following.

Lemma 1.2. Let M be an oriented, connected, compact even smooth 4-manifold admitting an effective smooth S^1 action.

- If M^{S^1} contains a surface, then the action is necessarily odd.
- If the action is even, the M^{S^1} consists of isolated fixed points only.

2. Rigidity of the elliptic genus

Proof of Theorem 1.1. Let us assume that the S^1 action is effective. By the Atiyah–Segal *G*-signature theorem [4], the equivariant elliptic genus can be expressed as

$$\Phi(M)_{S^1}(\lambda) = \sum_{P \subset M^{S^1}} \mu_P(\lambda), \tag{3}$$

where the sum runs over the connected components P of the fixed point set M^{S^1} of the S^1 action.

Remark. The rigidity theorem is equivalent to showing that $\Phi(M)_{S^1}(\lambda)$ does not depend on λ .

Given (3), let us examine the contributions $\mu_P(\lambda)$. In this dimension, the connected components P of M^{S^1} are oriented totally geodesic submanifolds of even codimension, i.e. oriented surfaces or isolated fixed points. The tangent bundle of M restricted to P splits as

$$TM|_P = L^{m_1} \oplus L^{m_2},$$

where L^{m_i} denotes the complex line bundle L^{m_i} on which S^1 acts by λ^{m_i} , $m_i = m_i(P) \in \mathbb{Z}$. We have two possibilities

• dim P = 0: $m_1, m_2 \neq 0$, and they must be coprime since the circle action is effective

$$\mu_P(\lambda) = \frac{(1+\lambda^{m_1})}{(1-\lambda^{m_1})} \prod_{k=1}^{\infty} \frac{(1+q^k \lambda^{m_1})(1+q^k \lambda^{-m_1})}{(1-q^k \lambda^{m_1})(1-q^k \lambda^{-m_1})} \\ \times \frac{(1+\lambda^{m_2})}{(1-\lambda^{m_2})} \prod_{k=1}^{\infty} \frac{(1+q^k \lambda^{m_2})(1+q^k \lambda^{-m_2})}{(1-q^k \lambda^{m_2})(1-q^k \lambda^{-m_2})},$$
(4)

• dim P = 2: L^{m_1} is a trivial representation ($m_1 = 0$). Note that $L^{m_2} = v$ the normal bundle to P in M and that we can take $m_2 = 1$, since the circle action is effective. Thus,

$$\mu_{P}(\lambda) = \left\langle x_{1} \frac{(1+e^{-x_{1}})}{(1-e^{-x_{1}})} \prod_{k=1}^{\infty} \frac{(1+q^{k}e^{-x_{1}})(1+q^{k}e^{x_{1}})}{(1-q^{k}e^{-x_{1}})(1-q^{k}e^{x_{1}})} \times \frac{(1+\lambda e^{-x_{2}})}{(1-\lambda e^{-x_{2}})} \prod_{k=1}^{\infty} \frac{(1+q^{k}\lambda e^{-x_{2}})(1+q^{k}\lambda^{-1}e^{x_{2}})}{(1-q^{k}\lambda e^{-x_{2}})(1-q^{k}\lambda^{-1}e^{x_{2}})}, [P] \right\rangle,$$
(5)

where $x_1 = c_1(P)$ and $x_2 = c_1(L^{m_2})$.

Claim 1. The contributions $\mu_P(\lambda)$ are meromorphic functions of $\lambda \in \mathbb{T}_{q^2}$, where \mathbb{T}_{q^2} denotes the 2-dimensional torus \mathbb{C}^*/q^2 , the quotient of $\mathbb{C}^* = \mathbb{C} - \{0\}$ by the multiplicative subgroup generated by the element $q^2 \neq 0$.

Let p denote an isolated S^1 -fixed point and consider one of the factors of its contribution (4), say

$$\frac{(1+\lambda^{m_1})}{(1-\lambda^{m_1})} \prod_{k=1}^{\infty} \frac{(1+q^k \lambda^{m_1})(1+q^k \lambda^{-m_1})}{(1-q^k \lambda^{m_1})(1-q^k \lambda^{-m_1})},$$

and substitute λ by $q\lambda$ so that

$$\frac{(1+q^{m_1}\lambda^{m_1})}{(1-q^{m_1}\lambda^{m_1})}\prod_{k=1}^{\infty}\frac{(1+q^kq^{m_1}\lambda^{m_1})(1+q^kq^{-m_1}\lambda^{-m_1})}{(1-q^kq^{m_1}\lambda^{m_1})(1-q^kq^{-m_1}\lambda^{-m_1})} = (-1)^{m_1}\frac{(1+\lambda^{m_1})}{(1-\lambda^{m_1})}\prod_{k=1}^{\infty}\frac{(1+q^k\lambda^{m_1})(1+q^k\lambda^{-m_1})}{(1-q^k\lambda^{m_1})(1-q^k\lambda^{-m_1})} = (-1)^{m_1}\frac{(1+\lambda^{m_1})}{(1-\lambda^{m_1})}\prod_{k=1}^{\infty}\frac{(1+q^k\lambda^{m_1})(1+q^k\lambda^{-m_1})}{(1-q^k\lambda^{m_1})(1-q^k\lambda^{-m_1})} = (-1)^{m_1}\frac{(1+\lambda^{m_1})}{(1-\lambda^{m_1})}\prod_{k=1}^{\infty}\frac{(1+q^k\lambda^{m_1})(1+q^k\lambda^{-m_1})}{(1-q^k\lambda^{-m_1})(1-q^k\lambda^{-m_1})} = (-1)^{m_1}\frac{(1+\lambda^{m_1})}{(1-\lambda^{m_1})}\prod_{k=1}^{\infty}\frac{(1+q^k\lambda^{m_1})(1+q^k\lambda^{-m_1})}{(1-q^k\lambda^{-m_1})(1-q^k\lambda^{-m_1})} = (-1)^{m_1}\frac{(1+\lambda^{m_1})}{(1-\lambda^{m_1})}\prod_{k=1}^{\infty}\frac{(1+q^k\lambda^{m_1})(1+q^k\lambda^{-m_1})}{(1-q^k\lambda^{-m_1})(1-q^k\lambda^{-m_1})} = (-1)^{m_1}\frac{(1+\lambda^{m_1})}{(1-\lambda^{m_1})}\prod_{k=1}^{\infty}\frac{(1+q^k\lambda^{m_1})(1+q^k\lambda^{-m_1})}{(1-q^k\lambda^{-m_1})(1-q^k\lambda^{-m_1})}$$

so that

$$\mu_p(q\lambda) = (-1)^{m_1 + m_2} \mu_p(\lambda)$$

which shows that $\mu_p(\lambda)$ is the pullback of a meromorphic function on the torus \mathbb{T}_{q^2} since $\mu_p(q^2\lambda) = \mu_p(\lambda)$. Secondly, let *P* denote an *S*¹-fixed surface and consider its contribution (5). Substitute λ by $q\lambda$

$$\mu_{P}(q\lambda) = \left\langle x_{1} \frac{(1+e^{-x_{1}})}{(1-e^{-x_{1}})} \prod_{k=1}^{\infty} \frac{(1+q^{k}e^{-x_{1}})(1+q^{k}e^{x_{1}})}{(1-q^{k}e^{-x_{1}})(1-q^{k}e^{x_{1}})} \right. \\ \left. \times \frac{(1+q\lambda e^{-x_{2}})}{(1-q\lambda e^{-x_{2}})} \prod_{k=1}^{\infty} \frac{(1+q^{k}q\lambda e^{-x_{2}})(1+q^{k}q^{-1}\lambda^{-1}e^{x_{2}})}{(1-q^{k}q\lambda e^{-x_{2}})(1-q^{k}q^{-1}\lambda^{-1}e^{x_{2}})}, [P] \right\rangle$$

$$= -\left\langle x_1 \frac{(1+e^{-x_1})}{(1-e^{-x_1})} \prod_{k=1}^{\infty} \frac{(1+q^k e^{-x_1})(1+q^k e^{x_1})}{(1-q^k e^{-x_1})(1-q^k e^{x_1})} \\ \times \frac{(1+\lambda e^{-x_2})}{(1-\lambda e^{-x_2})} \prod_{k=1}^{\infty} \frac{(1+q^k \lambda e^{-x_2})(1+q^k \lambda^{-1} e^{x_2})}{(1-q^k \lambda e^{-x_2})(1-q^k \lambda^{-1} e^{x_2})}, [P] \right\rangle$$
$$= -\mu_P(\lambda),$$

so that $\mu_P(q^2\lambda) = \mu_P(\lambda)$, which means that $\mu_P(\lambda)$ is the pullback of a meromorphic function on the torus \mathbb{T}_{q^2} .

Claim 2. The meromorphic function $\Phi(M)_{S^1}(\lambda)$ has no poles at all on \mathbb{T}_{q^2} , i.e. it is holomorphic on a compact surface and, hence, constant on the variable λ .

By looking at

$$\frac{(1+\lambda^{m_1})}{(1-\lambda^{m_1})} \prod_{k=1}^{\infty} \frac{(1+q^k \lambda^{m_1})(1+q^k \lambda^{-m_1})}{(1-q^k \lambda^{m_1})(1-q^k \lambda^{-m_1})},$$

we notice that poles may occur at the values of λ where the denominators vanish, i.e. we have the equations

$$1 - \lambda^{m_1} = 0,$$
 $1 - q^k \lambda^{m_1} = 0,$ $1 - q^k \lambda^{-m_1} = 0,$

which means the poles may occur at

$$\lambda = 1^{1/m_1}, \qquad \lambda = q^{-k/m_1}, \qquad \lambda = q^{k/m_1}$$

Secondly, by expanding $\mu_P(\lambda)$ up to dimension 2 we get the following expression

$$\mu_P(\lambda) \equiv 2 \left\langle \prod_{k=1}^{\infty} \left[\left(\frac{1+q^k}{1-q^k} - \frac{2q^k x_1}{(1-q^k)^2} \right) \left(\frac{1+q^k}{1-q^k} + \frac{2q^k x_1}{(1-q^k)^2} \right) \right] \\ \times \left(\frac{1+\lambda}{1-\lambda} - \frac{2\lambda x_2}{(1-\lambda)^2} \right) \prod_{k=1}^{\infty} \left[\left(\frac{1+q^k \lambda}{1-q^k \lambda} - \frac{2q^k \lambda x_2}{(1-q^k \lambda)^2} \right) \left(\frac{\lambda+q^k}{\lambda-q^k} + \frac{2q^k \lambda x_2}{(\lambda-q^k)^2} \right) \right], [P] \right\rangle$$

which shows that its poles could occur only if

$$1 - \lambda = 0,$$
 $1 - q^k \lambda = 0,$ $1 - q^k \lambda^{-1} = 0,$

i.e.

$$\lambda = 1, \qquad \lambda = q^{-k}, \qquad \lambda = q^k.$$

Since we are now working on the torus \mathbb{T}_{q^2} and $q^2 \equiv 1 \pmod{q^2}$, we need to check for poles at 1 and q.

• No poles at roots of unity $\lambda^m = 1$.

Observe that the coefficient of q^i in (2), for all *i*, is the equivariant index of a twisted signature operator $\operatorname{ind}(d_s^M \otimes W)_{S^1}(\lambda)$, where *W* is some finite rank (virtual) vector bundle and, therefore, it is a finite Laurent polynomial on λ with poles only at $\lambda = 0, \infty$. Moreover, it has no pole on the unit circle $|\lambda| = 1$. This property is shared by (3) so that $\Phi(M)_{S^1}(\lambda)$ has no pole on the circle $|\lambda| = 1$.

• No pole at q.

There could be a pole at q whenever an S¹-fixed point has one exponent $m_i = 1$.

Now, $\Phi(M)_{S^1}(\lambda)$ has a pole at $\lambda = q$ if and only if $\Psi(\lambda) = \Phi(M)_{S^1}(q\lambda)$ has a pole at 1. We have seen that the contributions behave as follows

$$\mu_p(q\lambda) = (-1)^{m_1 + m_2} \mu_p(\lambda),$$

for an isolated S^1 -fixed point, and

$$\mu_P(q\lambda) = -\mu_P(\lambda)$$

for an S^1 -fixed surface.

By Lemma 1.2, if there is an S^1 -fixed surface, then the action is odd, and $(-1)^{m_1(p)+m_2(p)} = -1$ for every fixed point p. This means that $\Psi(\lambda) = -\Phi(M)_{S^1}(\lambda)$ has no pole at 1.

On the other hand, if M^{S^1} consists of isolated fixed points only, then

$$m_1(p) + m_2(p) \equiv m_1(p') + m_2(p') \pmod{2}$$

by Lemma 1.1, for any fixed points $p, p' \in M^{S^1}$, so that $\Psi(\lambda) = \pm \Phi(M)_{S^1}(\lambda)$ has no pole at 1.

• No pole at $q^{k_0/m}$.

In order to prove that $\Phi(M)_{S^1}(\lambda)$ is holomorphic on \mathbb{T}_{q^2} , we must show that it has no poles on the points

$$\lambda = q^{-k/m}, \qquad \lambda = q^{k/m},$$

for all k, and all m belonging to the collection of exponents of all the isolated fixed points. The pole $q^{k/m}$ will appear in $\mu_p(\lambda)$ if and only if $m = m_1(p)$ or $m = m_2(p)$ for some p.

Let k_0 denote a fixed integer. Notice that if a point p has an exponent $m_1(p) = m > 0$ then there is a submanifold S_p of \mathbb{Z}_m -fixed points containing p. The submanifold S_p is necessarily an S^1 -invariant 2-sphere with two isolated S^1 -fixed points: p and another point p'. Since the exponents of the tangent space to the sphere at the two points p and p' differ only by sign, let us assume that $m_1(p) = -m_1(p') = m$. Let $m_2 = m_2(p)$ and $m'_2 = m_2(p')$. Thus, the contributions of p and p' add up to

$$\begin{split} \mu_{p}(\lambda) + \mu_{p'}(\lambda) &= \left(\frac{(1+\lambda^{m})}{(1-\lambda^{m})} \prod_{k=1}^{\infty} \frac{(1+q^{k}\lambda^{m})(1+q^{k}\lambda^{-m})}{(1-q^{k}\lambda^{m})(1-q^{k}\lambda^{-m})}\right) \\ &\times \left[\frac{(1+\lambda^{m_{2}})}{(1-\lambda^{m_{2}})} \prod_{k=1}^{\infty} \frac{(1+q^{k}\lambda^{m_{2}})(1+q^{k}\lambda^{-m_{2}})}{(1-q^{k}\lambda^{-m_{2}})} - \frac{(1+\lambda^{m_{2}'})}{(1-\lambda^{m_{2}'})} \prod_{k=1}^{\infty} \frac{(1+q^{k}\lambda^{m_{2}'})(1+q^{k}\lambda^{-m_{2}'})}{(1-q^{k}\lambda^{-m_{2}'})}\right]. \end{split}$$

Now, $\mu_p(\lambda) + \mu_{p'}(\lambda)$ will have a pole at $q^{k_0/m}$ if and only if

$$\mu_{k_0/m}(\lambda) = \mu_p \left(q^{k_0/m} \lambda \right) + \mu_{p'} \left(q^{k_0/m} \lambda \right) \tag{6}$$

has a pole at 1. Let us examine (6)

$$\begin{split} \mu_{p}(q^{k_{0}/m}\lambda) &+ \mu_{p'}(q^{k_{0}/m}\lambda) \\ &= \left(\frac{(1+q^{mk_{0}/m}\lambda^{m})}{(1-q^{mk_{0}/m}\lambda^{m})} \prod_{k=1}^{\infty} \frac{(1+q^{k}q^{mk_{0}/m}\lambda^{m})(1+q^{k}q^{-mk_{0}/m}\lambda^{-m})}{(1-q^{k}q^{mk_{0}/m}\lambda^{m})(1-q^{k}q^{-mk_{0}/m}\lambda^{-m})} \right) \\ &\times \left[\frac{(1+q^{m2k_{0}/m}\lambda^{m2})}{(1-q^{m2k_{0}/m}\lambda^{m2})} \prod_{k=1}^{\infty} \frac{(1+q^{k}q^{m2k_{0}/m}\lambda^{m2})(1+q^{k}q^{-m2k_{0}/m}\lambda^{-m2})}{(1-q^{k}q^{m2k_{0}/m}\lambda^{m2})(1-q^{k}q^{-m2k_{0}/m}\lambda^{-m2})} \right. \\ &\left. - \frac{(1+q^{m'_{2}k_{0}/m}\lambda^{m'_{2}})}{(1-q^{m'_{2}k_{0}/m}\lambda^{m'_{2}})} \prod_{k=1}^{\infty} \frac{(1+q^{k}q^{m'_{2}k_{0}/m}\lambda^{m'_{2}})(1+q^{k}q^{-m'_{2}k_{0}/m}\lambda^{-m'_{2}})}{(1-q^{k}q^{m'_{2}k_{0}/m}\lambda^{m'_{2}})(1-q^{k}q^{-m'_{2}k_{0}/m}\lambda^{-m'_{2}})} \right] \\ &= \left(\frac{(1+q^{k_{0}}\lambda^{m})}{(1-q^{k_{0}}\lambda^{m})} \prod_{k=1}^{\infty} \frac{(1+q^{k}q^{k_{0}}\lambda^{m})(1+q^{k}q^{-k_{0}}\lambda^{-m})}{(1-q^{k}q^{-k_{0}}\lambda^{-m})} \right) \\ &\times \left[\frac{(1+q^{[m_{2}k_{0}/m]}q^{w(p)/m}\lambda^{m_{2}})}{(1-q^{[m_{2}k_{0}/m]}q^{w(p)/m}\lambda^{m_{2}})} \prod_{k=1}^{\infty} \frac{(1+q^{k}q^{[m_{2}k_{0}/m]}q^{w(p)/m}\lambda^{m_{2}})(1-q^{k}q^{-[m_{2}k_{0}/m]}q^{-w(p)/m}\lambda^{-m_{2}})}{(1-q^{k}q^{-[m_{2}k_{0}/m]}q^{w(p)/m}\lambda^{-m_{2}})} \right] \end{split}$$

$$-\frac{(1+q^{[m'_{2}k_{0}/m]}q^{w(p')/m}\lambda^{m'_{2}})}{(1-q^{[m'_{2}k_{0}/m]}q^{w(p')/m}\lambda^{m'_{2}})}\prod_{k=1}^{\infty}\frac{(1+q^{k}q^{[m'_{2}k_{0}/m]}q^{w'/m}\lambda^{m'_{2}})(1+q^{k}q^{-[m'_{2}k_{0}/m]}q^{-w(p')/m}\lambda^{-m'_{2}})}{(1-q^{k}q^{[m'_{2}k_{0}/m]}q^{w(p')/m}\lambda^{m'_{2}})(1-q^{k}q^{-[m'_{2}k_{0}/m]}q^{-w(p')/m}\lambda^{-m'_{2}})}\right]$$

$$=(-1)^{k_{0}}\left(\frac{(1+\lambda^{m})}{(1-\lambda^{m})}\prod_{k=1}^{\infty}\frac{(1+q^{k}\lambda^{m})(1+q^{k}\lambda^{-m})}{(1-q^{k}\lambda^{m})(1-q^{k}\lambda^{-m})}\right)$$

$$\times\left[(-1)^{[m_{2}k_{0}/m]}\frac{(1+q^{w(p)/m}\lambda^{m_{2}})}{(1-q^{w(p)/m}\lambda^{m_{2}})}\prod_{k=1}^{\infty}\frac{(1+q^{k}q^{w(p)/m}\lambda^{m_{2}})(1+q^{k}q^{-w(p)/m}\lambda^{-m_{2}})}{(1-q^{k}q^{w(p)/m}\lambda^{m_{2}})(1-q^{k}q^{-w(p')/m}\lambda^{-m_{2}})}\right]$$

$$-(-1)^{[m'_{2}k_{0}/m]}\frac{(1+q^{w(p')/m}\lambda^{m'_{2}})}{(1-q^{w(p')/m}\lambda^{m'_{2}})}\prod_{k=1}^{\infty}\frac{(1+q^{k}q^{w(p')/m}\lambda^{m'_{2}})(1+q^{k}q^{-w(p')/m}\lambda^{-m'_{2}})}{(1-q^{k}q^{-w(p')/m}\lambda^{m'_{2}})(1-q^{k}q^{-w(p')/m}\lambda^{-m'_{2}})}\right],$$

$$(7)$$

where [x] denotes the largest integer less than or equal x and $w(p) = k_0 m_2(p) - [k_0 m_2/m]m$ is the residue modulo *m* of $k_0 m_2$.

In order to continue manipulating (7), we need the following lemma.

Lemma 2.1.

$$w(p) = w(p'),$$

and

 $[m_2k_0/m] \equiv [m'_2k_0/m] \pmod{2}.$

Proof. On the one hand, by Lemma 1.1

 $m + m_2 \equiv m + m'_2 \pmod{2},$

so that

 $m_2 \equiv m'_2 \pmod{2}$,

On the other hand, since S_p is \mathbb{Z}_m -fixed, the infinitesimal action on ν must satisfy

$$m_2 \equiv m'_2 \pmod{m},$$
$$m_2 - m'_2 = 2bm,$$

for some $b \in \mathbb{Z}$. This implies

$$k_0 m_2 = l_p m + w(p) \equiv k_0 m'_2 = l_{p'} m + w(p') \pmod{m},$$

where $l_p = [k_0 m_2/m]$ and $l_{p'} = [k_0 m'_2/m]$. Since

$$w(p) \equiv w(p') \pmod{m}$$
 and $0 \leq w(p), w(p') < m$

the two residues must be equal

$$w(p) = w(p'),$$

so that

$$l_p m - l_{p'} m \equiv 0 \pmod{m},$$

 $l_p m - l_{p'} m = k_0 (m_2 - m'_2) = 2bmk_0,$

and

$$l_p - l_{p'} = 2bk_0. \qquad \Box$$

Thus, (7) becomes

$$\begin{split} \mu_{p}(q^{k_{0}/m}\lambda) &+ \mu_{p'}(q^{k_{0}/m}\lambda) \\ &= (-1)^{k_{0}+[m_{2}(p)k_{0}/m]} \left(\frac{(1+\lambda^{m})}{(1-\lambda^{m})} \prod_{k=1}^{\infty} \frac{(1+q^{k}\lambda^{m})(1+q^{k}\lambda^{-m})}{(1-q^{k}\lambda^{m})(1-q^{k}\lambda^{-m})} \right) \\ &\times \left[\frac{(1+q^{w(p)/m}\lambda^{m_{2}})}{(1-q^{w(p)/m}\lambda^{m_{2}})} \prod_{k=1}^{\infty} \frac{(1+q^{k}q^{w(p)/m}\lambda^{m_{2}})(1+q^{k}q^{-w(p)/m}\lambda^{-m_{2}})}{(1-q^{k}q^{w(p)/m}\lambda^{m_{2}})(1-q^{k}q^{-w(p)/m}\lambda^{-m_{2}})} \right. \\ &- \frac{(1+q^{w(p)/m}\lambda^{m_{2}'})}{(1-q^{w(p)/m}\lambda^{m_{2}'})} \prod_{k=1}^{\infty} \frac{(1+q^{k}q^{w(p)/m}\lambda^{m_{2}'})(1+q^{k}q^{-w(p)/m}\lambda^{-m_{2}'})}{(1-q^{k}q^{w(p)/m}\lambda^{m_{2}'})(1-q^{k}q^{-w(p)/m}\lambda^{-m_{2}'})} \right] \\ &= \pm \left(\frac{(1+\lambda^{m})}{(1-\lambda^{m})} \prod_{k=1}^{\infty} \frac{(1+q^{k}\lambda^{m})(1+q^{k}\lambda^{-m})}{(1-q^{k}\lambda^{m})(1-q^{k}\lambda^{-m})} \right) \right) \\ &\times \left[\frac{(1+\alpha\lambda^{m_{2}})}{(1-\alpha\lambda^{m_{2}})} \prod_{k=1}^{\infty} \frac{(1+q^{k}\alpha\lambda^{m_{2}})(1+q^{k}\alpha^{-1}\lambda^{-m_{2}})}{(1-q^{k}\alpha\lambda^{m_{2}})(1-q^{k}\alpha^{-1}\lambda^{-m_{2}})} \right] \end{split} \tag{8}$$

where $\alpha = q^{w(p)/m}$. At this point, we recall Bott–Taubes' observation by which (8) is the equivariant version of the index

$$\pm \operatorname{ind} \left(d_s^{S_p} \otimes R(q, (TS_p)_c) \otimes \left(\frac{\bigwedge_{\alpha} \nu}{\bigwedge_{-\alpha} \nu} \otimes \bigotimes_{k=1}^{\infty} \frac{\bigwedge_{\alpha q^k} \nu}{\bigwedge_{-\alpha q^k} \nu} \otimes \frac{\bigwedge_{\alpha^{-1} q^k} \nu^*}{\bigwedge_{-\alpha^{-1} q^k} \nu^*} \right) \right) \\ = \pm \left\langle x_1 \frac{(1+e^{-x_1})}{(1-e^{-x_1})} \prod_{k=1}^{\infty} \frac{(1+q^k e^{-x_1})(1+q^k e^{x_1})}{(1-q^k e^{-x_1})(1-q^k e^{x_1})} \cdot \frac{(1+\alpha e^{-x_2})}{(1-\alpha e^{-x_2})} \prod_{k=1}^{\infty} \frac{(1+\alpha q^k e^{-x_2})(1+\alpha^{-1} q^k e^{x_2})}{(1-\alpha q^k e^{-x_2})(1-\alpha^{-1} q^k e^{x_2})}, [S_p] \right\rangle,$$

where $x_1 = c_1(S_p)$, $v = v(S_p)$ denotes the normal bundle to S_p in M (which can be considered as a complex line bundle [5, Lemma 9.2]) and $x_2 = c_1(v)$.

Observe that the coefficient of q^i , for all *i*, is an equivariant index $\operatorname{ind}(d_s^{S_p} \otimes W)(\lambda)$ for some finite rank (virtual) vector bundle *W* and therefore a finite Laurent polynomial on λ with poles only at 0 and ∞ , and no pole at 1. Thus (6) has no pole at 1, i.e. $\Phi(M)_{S^1}(\lambda)$ has no pole at $q^{k_0/m}$. \Box

3. Vanishing of the signature

As a consequence, we obtain a new proof of the following vanishing result [10], which generalizes the Atiyah–Hirzebruch vanishing theorem of the \widehat{A} -genus on spin manifolds [3].

Corollary 3.1. Let *M* be an even 4-manifold admitting smooth circle actions, and let $Q = aE_8 \oplus bH$ denote its intersection form. Then the signature of *M* vanishes, sign(*M*) = 0, i.e., the intersection form is Q = bH.

Proof. Since in dimension 4 we have that $sign(M) = -8\widehat{A}(M)$, we shall prove Corollary 3.1 by proving the vanishing of $\widehat{A}(M)$. Since we are also considering the case when M may be non-spin, $\widehat{A}(M)$ may only be defined as a characteristic number and may not represent the index of an elliptic operator. Thus, $\widehat{A}(M)$ may, in principle, be a rational number.

According to Theorem 1.1, the value of $\Phi(M)_{S^1}(\lambda)$ does not depend on λ . Applying the Atiyah–Bott fixed point theorem [2], $\Phi(M)_{S^1}(\lambda)$ can be expressed in terms of the fixed point set of $\lambda \in S^1$ and the action of λ on its normal bundle of in M. In particular, let $\lambda = -1 \in S^1$ be the orientation preserving involution in $\mathbb{Z}_2 \subset S^1$, and let M_2 denote its fixed point set. We denote the transversal self-intersection of M_2 by $M_2 \circ M_2$. In [9, p. 315], Hirzebruch and Slodowy showed that

$$\Phi(M)_{S^1}(-1) = \Phi(M_2 \circ M_2).$$

On the other hand, applying Theorem 1.1

$$\Phi(M) = \Phi(M)_{S^1}(\lambda) = \Phi(M)_{S^1}(-1) = \Phi(M_2 \circ M_2).$$
(9)

The codimension of M_2 is positive and even, so that the elliptic genus $\Phi(M)$ can now be computed from the elliptic genera of submanifolds of M of codimension at least 4, i.e. isolated points.

Now, recall the expansion of $\Phi(M)$ at the other cusp [8]

$$\tilde{\Phi}(M) = \frac{1}{q^{\dim(M)/8}} \sum_{j=0}^{\infty} \widehat{A}(M, R'_j) \cdot q^j,$$

where R'_{i} is the sequence of virtual tensor bundles given by

$$R'(q,T) = \bigotimes_{k=2m+1} \bigwedge_{-q^k} T \otimes \bigotimes_{k=2m+2} S_{q^k} T,$$

and the $\widehat{A}(M, R'_j) = \langle \widehat{A}(M) \cdot ch(R'_j), [M] \rangle$ may only defined be as characteristic numbers. The first few terms of the sequence are $R'_0 = 1$, $R'_1 = -T$, $R'_2 = \bigwedge^2 T + T$, etc. This expansion is obtained by considering $q = e^{\pi i t}$ and changing the *t* coordinate in (1) by $t \to -1/t$, and then by $t \to 2t$ (cf. [8]). This expansion has, a priori, a pole of order 1/2 in the variable *q*. On the other hand, by (9) we also have

$$\tilde{\Phi}(M) = \tilde{\Phi}(M_2 \circ M_2),\tag{10}$$

whose right-hand side has a pole of order at most 0 on the variable q, since the dimension of any connected component of $M_2 \circ M_2$ is at most 0. Therefore (10) implies that the first coefficient on the left-hand side vanishes,

$$\widehat{A}(M) = 0. \qquad \Box$$

Acknowledgements

The author wishes to thank Tian-Jun Li and Marcel Nicolau for stimulating conversations, as well as the Centre de Recerca Matemàtica (Barcelona) and the Mathematical Sciences Research Institute (Berkeley) for their hospitality and support.

References

- [1] D. Acosta, T. Lawson, Even non-spin manifolds, spin^c structures, and duality, Enseign. Math. (2) 43 (1–2) (1997) 27–32.
- [2] M.F. Atiyah, R. Bott, The Lefschetz fixed point theorem for elliptic complexes. II, Appl. Ann. Math. 88 (1968) 451-491.
- [3] M.F. Atiyah, F. Hirzebruch, Spin manifolds and group actions, in: Essays in Topology and Related Subjects, Springer, Berlin, 1970, pp. 18–28.
- [4] M.F. Atiyah, G. Segal, The index of elliptic operators II, Ann. of Math. 86 (1968) 531–545.
- [5] R. Bott, T. Taubes, On the rigidity theorems of Witten, J. AMS 2 (1) (1989) 137-186.
- [6] S.K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (2) (1983) 279-315.
- [7] H. Herrera, R. Herrera, Generalized elliptic genus and cobordism class of nonspin real Grassmannians, Ann. Global Anal. Geom. 24 (4) (2003) 323–335.
- [8] F. Hirzebruch, T. Berger, R. Jung, Manifolds and Modular Forms. Aspects of Mathematics, Vieweg, 1992.
- [9] F. Hirzebruch, P. Slodowy, Elliptic genera, involutions, and homogeneous spin manifolds, Geometriae Dedicata 35 (1990) 309-343.
- [10] W. Huck, V. Puppe, Circle actions on 4-manifolds. II, Arch. Math. (Basel) 71 (6) (1998) 493-500.
- [11] S. Ochanine, Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology 26 (1987) 143-151.
- [12] C.H. Taubes, S¹ actions and elliptic genera, Comm. Math. Phys. 122 (3) (1989) 455–526.
- [13] E. Witten, The index of the Dirac operator on loop space, in: P.S. Landweber (Ed.), Elliptic Curves and Modular Forms in Algebraic Topology, in: Lecture Notes Math., vol. 1326, Springer, Berlin, 1988, pp. 161–181.