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Abstract

We prove the rigidity under circle actions of the elliptic genus on oriented non-spin closed smooth 4-manifolds with even
intersection form.
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0. Introduction

The elliptic genus was introduced by S. Ochanine [11] as a topological genus and E. Witten conjectured its rigidity
under circle actions on spin manifolds [13]. Witten’s rigidity theorem was proved by Taubes [12], Bott and Taubes
[5], etc. The aim of this note is to show that the elliptic genus is also rigid under circle actions on oriented non-spin
4-manifolds with even intersection form (see Theorem 1.1), and the proof is carried out along the lines of that of [5]
for spin manifolds. Working in dimension 4, grants us several simplifying features on the fixed point sets and the
opportunity to make certain calculations more explicit.

In Section 1 we recall some preliminaries concerning even 4-manifolds and the elliptic genus. In Section 2 we prove
the Rigidity Theorem 1.1 for non-spin even 4-manifolds. In Section 3 we give an alternative proof of the vanishing of
the signature and the Â-genus on smooth even 4-manifolds with circle actions.

1. Preliminaries

1.1. Rigidity of the index of an elliptic operator

Let D :Γ (E) → Γ (F) be an elliptic operator acting on sections of the vector bundles E and F over a compact,
connected, oriented, smooth manifold M . The index of D, ind(D), is the virtual dimension of the virtual vector space
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Ind(D) = ker(D) − coker(D).

If M admits a circle action preserving D, i.e. such that S1 acts on E and F , and commutes with D, the virtual vector
space Ind(D) admits a (finite) Fourier decomposition into complex 1-dimensional irreducible representations of S1

ker(D) − coker(D) =
∑

amLm,

where am ∈ Z and Lm is the representation of S1 on C given by λ �→ λm. The elliptic operator D is called rigid for
the given action if am = 0 for all m �= 0, i.e. if Ind(D) consists of the trivial representation with multiplicity a0. The
elliptic operator D is called universally rigid if it is rigid under any S1 action on M by isometries.

Note that this rigidity can be equivalently reflected by the trace of the action of λ ∈ S1 on the corresponding spaces,
i.e. by considering the equivariant index of D

ind(D)S1(λ) = trλ
(
ker(D) − coker(D)

) =
∑
m

amλm,

which is a (finite) Laurent polynomial on λ. The relevant feature of this expression is that it can be considered as the
restriction to S1 ⊂ C of a Laurent polynomial on λ ∈ C whose poles can only occur at 0 and ∞, a fact that will be
used repeatedly later.

1.2. Elliptic genus

Let
∧±

c be the even and odd complex differential forms on the oriented, compact, smooth 4-manifold M under the
Hodge ∗-operator, respectively. The signature operator

dM
s = d − ∗d∗ :

∧+
c → ∧−

c

is elliptic and the virtual dimension of its index equals the signature of M , sign(M). If W is a complex vector bundle
on M endowed with a connection, we can twist the signature operator to forms with values in W

dM
s ⊗ W :

∧+
c (W) → ∧−

c (W).

This operator is also elliptic and the virtual dimension of its index is denoted by sign(M,W).

Definition 1.1. Let T = T M ⊗ C denote the complexified tangent bundle of M and let Ri be the sequence of bundles
defined by the formal series

R(q,T ) =
∞∑
i=0

Riq
i =

∞⊗
i=1

∧
qi T ⊗

∞⊗
j=1

Sqj T ,

where StT = ∑∞
k=0 SkT tk ,

∧
t T = ∑∞

k=0
∧k

T tk , and SkT ,
∧k

T denote the kth symmetric and exterior tensor
powers of T , respectively. The elliptic genus of M is defined as

Φ(M) = ind
(
dM
s ⊗ R(q,T )

) =
∞∑
i=0

sign(M,Ri) · qi. (1)

Note that the first few terms of the sequence R(q,T ) are R0 = 1, R1 = 2T , R2 = 2(T ⊗2 + T ). In particular, the
constant term of Φ(M) is sign(M).

The equivariant elliptic genus with respect to the S1 action is

Φ(M)S1(λ) =
∞∑
i=0

sign(M,Ri)S1(λ) · qi. (2)

The main theorem of this article is the following.
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Theorem 1.1. Let M be an oriented, compact, connected, non-spin, even, smooth 4-manifold admitting smooth S1

actions. Then, each of the operators ds ⊗ Ri is universally rigid.

1.3. The complex projective plane

In order to become acquainted with the rigidity property, let us examine the elliptic genus on the complex projective
plane CP

2.
It is well known that the signature operator ds is rigid on any oriented smooth manifold admitting (isometric)

circle actions, including non-spin manifolds such as CP
2. However, the twisted signature operator ds ⊗ T (the so-

called Rarita–Schwinger operator) fails to be universally rigid on CP2 (see [9,7]) as we shall see next. We denote by
T CP

2
c = T CP

2 ⊗ C the complexified tangent bundle of CP
2. Since CP

2 is a homogeneous space for the Lie group
SU(3) we can describe the relevant spaces as SU(3) representations.

Let F(λ1, λ2, λ3) denote the complex irreducible representation of SU(3) with dominant weight (λ1, λ2, λ3), where
the coordinates are such that F(1,0,0) = C

3 and F(1,1,0) = su(3) are the standard and adjoint representations of
SU(3) respectively.

As shown in [7], the SU(3)-representation corresponding to sign(CP
2) is the one-dimensional trivial representation

Ind
(
dCP

2

s

) = F(0,0,0),

so that

sign
(
CP

2) = 1.

The representation corresponding to sign(CP
2, T CP

2
c) is the 16-dimensional SU(3)-representation

Ind
(
dCP

2

s ⊗ T CP
2
c

) = 2F(0,0,0) ⊕ F(1,0,1) ⊕ F(1,0,0) ⊕ F(0,0,−1),

where dimF(0,0,0) = 1, dimF(1,0,1) = 8, dimF(1,0,0) = 3, dimF(0,0,−1) = 3, so that

sign
(
CP

2, T CP
2
c

) = 16.

Let g be a projective involution of CP
2 with fixed point set a projective line and a point. By the Weyl character

formula, the trace of g on each one of them is

sign
(
CP

2)S1
(g) = trg

(
F(0,0,0)

) = 1,

sign
(
CP

2, T CP
2
c

)S1
(g) = trg

(
2F(0,0,0) ⊕ F(1,0,1) ⊕ F(1,0,0, ) ⊕ F(0,0,−1)

)
= 2 + 0 + (−1) + (−1) = 0,

thus showing the non-rigidity of the operator ds ⊗ T CP
2
c .

1.4. Even intersection form

The intersection form of a closed oriented 4-manifold M is an unimodular symmetric bilinear form over the in-
tegers. Donaldson [6] proved that among all the definite bilinear forms, only the diagonalizable ones can be the
intersections forms of smooth closed 4-manifolds. An indefinite bilinear form is called odd if there exists x such that
Q(x,x) is odd, and it is called even otherwise. The indefinite forms Q which are odd are diagonalizable, so that we are
left to consider indefinite even unimodular bilinear forms. Let E8 be the unique irreducible negative definite quadratic
form of rank eight and let H be the hyperbolic quadratic form. It is known that any indefinite even bilinear form Q is
of the form aE8 ⊕bH , a, b ∈ Z. A smooth 4-manifold is called even if its intersection form is even. It is a well-known
fact that all spin manifolds are even, but the converse is not true [1].

Now, we give some interesting properties of S1 actions on smooth even 4-manifolds. Assume M is endowed with
a (non-trivial) smooth S1-action. Let MS1

denote the fixed point set of the circle action. At each point p ∈ MS1
, the

tangent space of M splits as a sum of S1 representations

TpM = Lm1(p) ⊕ Lm2(p),
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where Lm denotes the S1 representation on which λ ∈ S1 acts by multiplication by λm. The numbers m1(p),m2(p)

are called the exponents (or weights) of the S1-action at the point p. The exponents of an action are not canonical and
their sign can be changed in pairs. The space TpMS1

is a trivial representation of S1, i.e. in dimension 4 at most one
exponent can equal 0.

Consider the sum of the exponents σ(p) = m1(p) + m2(p). The number σ(p) is constant along connected com-
ponents of MS1

, but may vary for different connected components. Note that in this dimension, the connected
components P of MS1

are oriented totally geodesic submanifolds of even codimension, i.e. oriented surfaces or
isolated fixed points.

Definition 1.2. A circle action on an oriented 4-dimensional manifold M with non-empty fixed point set will be called
either

• even if σ(p) ≡ 0 (mod 2) for all p ∈ MS1
, or

• odd if σ(p) ≡ 1 (mod 2) for all p ∈ MS1
.

Lemma 1.1. Let M be an oriented, connected, compact even smooth 4-manifold. Assume M admits a effective smooth
S1 action. Then

σ(p1) ≡ σ(p2) (mod 2)

for all p1,p2 ∈ MS1
. In particular, the S1-action is either even or odd.

Proof. First note that by the effectiveness assumption the fixed point set Mk of the finite subgroup Zk of S1 has
codimension greater than or equal to 2. Thus, consider a path joining p1 and p2 whose interior points are different
from p1 and p2, and which is also disjoint from submanifolds with finite isotropy. Let S be the sphere generated by
letting S1 act on the path. Then T M|S is an even dimensional, real, oriented, equivariant bundle on the sphere S,
and, by [5, Lemma 9.2], T M|S can be considered as a complex equivariant vector bundle on S. Furthermore, by [5,
Lemma 9.1],〈

c1(T M|S), [S]〉 = σ(p1) − σ(p2).

On the other hand,

T M|S = T S ⊕ ν,

where ν is the normal bundle of S in M and c1(T M|S) = c1(S) + c1(ν). Thus〈
c1(T M|S), [S]〉 = 〈

c1(T S), [S]〉 + 〈
c1(ν), [S]〉 = 2 + S · S ≡ 0 (mod 2)

by the assumption on the intersection form, where S · S denotes the self-intersection number of S. �
From this we see the following.

Lemma 1.2. Let M be an oriented, connected, compact even smooth 4-manifold admitting an effective smooth S1

action.

• If MS1
contains a surface, then the action is necessarily odd.

• If the action is even, the MS1
consists of isolated fixed points only.

2. Rigidity of the elliptic genus

Proof of Theorem 1.1. Let us assume that the S1 action is effective. By the Atiyah–Segal G-signature theorem [4],
the equivariant elliptic genus can be expressed as

Φ(M)S1(λ) =
∑

S1

μP (λ), (3)
P⊂M
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where the sum runs over the connected components P of the fixed point set MS1
of the S1 action.

Remark. The rigidity theorem is equivalent to showing that Φ(M)S1(λ) does not depend on λ.

Given (3), let us examine the contributions μP (λ). In this dimension, the connected components P of MS1
are

oriented totally geodesic submanifolds of even codimension, i.e. oriented surfaces or isolated fixed points. The tangent
bundle of M restricted to P splits as

T M|P = Lm1 ⊕ Lm2,

where Lmi denotes the complex line bundle Lmi on which S1 acts by λmi , mi = mi(P ) ∈ Z. We have two possibilities

• dimP = 0: m1,m2 �= 0, and they must be coprime since the circle action is effective

μP (λ) = (1 + λm1)

(1 − λm1)

∞∏
k=1

(1 + qkλm1)(1 + qkλ−m1)

(1 − qkλm1)(1 − qkλ−m1)

× (1 + λm2)

(1 − λm2)

∞∏
k=1

(1 + qkλm2)(1 + qkλ−m2)

(1 − qkλm2)(1 − qkλ−m2)
, (4)

• dimP = 2: Lm1 is a trivial representation (m1 = 0). Note that Lm2 = ν the normal bundle to P in M and that we
can take m2 = 1, since the circle action is effective. Thus,

μP (λ) =
〈
x1

(1 + e−x1)

(1 − e−x1)

∞∏
k=1

(1 + qke−x1)(1 + qkex1)

(1 − qke−x1)(1 − qkex1)

× (1 + λe−x2)

(1 − λe−x2)

∞∏
k=1

(1 + qkλe−x2)(1 + qkλ−1ex2)

(1 − qkλe−x2)(1 − qkλ−1ex2)
, [P ]

〉
, (5)

where x1 = c1(P ) and x2 = c1(L
m2).

Claim 1. The contributions μP (λ) are meromorphic functions of λ ∈ Tq2 , where Tq2 denotes the 2-dimensional torus

C
∗/q2, the quotient of C

∗ = C − {0} by the multiplicative subgroup generated by the element q2 �= 0.

Let p denote an isolated S1-fixed point and consider one of the factors of its contribution (4), say

(1 + λm1)

(1 − λm1)

∞∏
k=1

(1 + qkλm1)(1 + qkλ−m1)

(1 − qkλm1)(1 − qkλ−m1)
,

and substitute λ by qλ so that

(1 + qm1λm1)

(1 − qm1λm1)

∞∏
k=1

(1 + qkqm1λm1)(1 + qkq−m1λ−m1)

(1 − qkqm1λm1)(1 − qkq−m1λ−m1)
= (−1)m1

(1 + λm1)

(1 − λm1)

∞∏
k=1

(1 + qkλm1)(1 + qkλ−m1)

(1 − qkλm1)(1 − qkλ−m1)
,

so that

μp(qλ) = (−1)m1+m2μp(λ),

which shows that μp(λ) is the pullback of a meromorphic function on the torus Tq2 since μp(q2λ) = μp(λ).
Secondly, let P denote an S1-fixed surface and consider its contribution (5). Substitute λ by qλ

μP (qλ) =
〈
x1

(1 + e−x1)

(1 − e−x1)

∞∏
k=1

(1 + qke−x1)(1 + qkex1)

(1 − qke−x1)(1 − qkex1)

× (1 + qλe−x2)

(1 − qλe−x2)

∞∏ (1 + qkqλe−x2)(1 + qkq−1λ−1ex2)

(1 − qkqλe−x2)(1 − qkq−1λ−1ex2)
, [P ]

〉

k=1
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= −
〈
x1

(1 + e−x1)

(1 − e−x1)

∞∏
k=1

(1 + qke−x1)(1 + qkex1)

(1 − qke−x1)(1 − qkex1)

× (1 + λe−x2)

(1 − λe−x2)

∞∏
k=1

(1 + qkλe−x2)(1 + qkλ−1ex2)

(1 − qkλe−x2)(1 − qkλ−1ex2)
, [P ]

〉
= −μP (λ),

so that μP (q2λ) = μP (λ), which means that μP (λ) is the pullback of a meromorphic function on the torus Tq2 .

Claim 2. The meromorphic function Φ(M)S1(λ) has no poles at all on Tq2 , i.e. it is holomorphic on a compact surface
and, hence, constant on the variable λ.

By looking at

(1 + λm1)

(1 − λm1)

∞∏
k=1

(1 + qkλm1)(1 + qkλ−m1)

(1 − qkλm1)(1 − qkλ−m1)
,

we notice that poles may occur at the values of λ where the denominators vanish, i.e. we have the equations

1 − λm1 = 0, 1 − qkλm1 = 0, 1 − qkλ−m1 = 0,

which means the poles may occur at

λ = 11/m1, λ = q−k/m1, λ = qk/m1 .

Secondly, by expanding μP (λ) up to dimension 2 we get the following expression

μP (λ) ≡ 2

〈 ∞∏
k=1

[(
1 + qk

1 − qk
− 2qkx1

(1 − qk)2

)(
1 + qk

1 − qk
+ 2qkx1

(1 − qk)2

)]

×
(

1 + λ

1 − λ
− 2λx2

(1 − λ)2

) ∞∏
k=1

[(
1 + qkλ

1 − qkλ
− 2qkλx2

(1 − qkλ)2

)(
λ + qk

λ − qk
+ 2qkλx2

(λ − qk)2

)]
, [P ]

〉
which shows that its poles could occur only if

1 − λ = 0, 1 − qkλ = 0, 1 − qkλ−1 = 0,

i.e.

λ = 1, λ = q−k, λ = qk.

Since we are now working on the torus Tq2 and q2 ≡ 1 (mod q2), we need to check for poles at 1 and q .

• No poles at roots of unity λm = 1.

Observe that the coefficient of qi in (2), for all i, is the equivariant index of a twisted signature operator ind(dM
s ⊗

W)S1(λ), where W is some finite rank (virtual) vector bundle and, therefore, it is a finite Laurent polynomial on λ

with poles only at λ = 0,∞. Moreover, it has no pole on the unit circle |λ| = 1. This property is shared by (3) so that
Φ(M)S1(λ) has no pole on the circle |λ| = 1.

• No pole at q .

There could be a pole at q whenever an S1-fixed point has one exponent mi = 1.
Now, Φ(M)S1(λ) has a pole at λ = q if and only if Ψ (λ) = Φ(M)S1(qλ) has a pole at 1. We have seen that the

contributions behave as follows

μp(qλ) = (−1)m1+m2μp(λ),
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for an isolated S1-fixed point, and

μP (qλ) = −μP (λ)

for an S1-fixed surface.
By Lemma 1.2, if there is an S1-fixed surface, then the action is odd, and (−1)m1(p)+m2(p) = −1 for every fixed

point p. This means that Ψ (λ) = −Φ(M)S1(λ) has no pole at 1.

On the other hand, if MS1
consists of isolated fixed points only, then

m1(p) + m2(p) ≡ m1(p
′) + m2(p

′) (mod 2)

by Lemma 1.1, for any fixed points p,p′ ∈ MS1
, so that Ψ (λ) = ±Φ(M)S1(λ) has no pole at 1.

• No pole at qk0/m.

In order to prove that Φ(M)S1(λ) is holomorphic on Tq2 , we must show that it has no poles on the points

λ = q−k/m, λ = qk/m,

for all k, and all m belonging to the collection of exponents of all the isolated fixed points. The pole qk/m will appear
in μp(λ) if and only if m = m1(p) or m = m2(p) for some p.

Let k0 denote a fixed integer. Notice that if a point p has an exponent m1(p) = m > 0 then there is a submanifold
Sp of Zm-fixed points containing p. The submanifold Sp is necessarily an S1-invariant 2-sphere with two isolated

S1-fixed points: p and another point p′. Since the exponents of the tangent space to the sphere at the two points p

and p′ differ only by sign, let us assume that m1(p) = −m1(p
′) = m. Let m2 = m2(p) and m′

2 = m2(p
′). Thus, the

contributions of p and p′ add up to

μp(λ) + μp′(λ) =
(

(1 + λm)

(1 − λm)

∞∏
k=1

(1 + qkλm)(1 + qkλ−m)

(1 − qkλm)(1 − qkλ−m)

)

×
[

(1 + λm2)

(1 − λm2)

∞∏
k=1

(1 + qkλm2)(1 + qkλ−m2)

(1 − qkλm2)(1 − qkλ−m2)
− (1 + λm′

2)

(1 − λm′
2)

∞∏
k=1

(1 + qkλm′
2)(1 + qkλ−m′

2)

(1 − qkλm′
2)(1 − qkλ−m′

2)

]
.

Now, μp(λ) + μp′(λ) will have a pole at qk0/m if and only if

μk0/m(λ) = μp

(
qk0/mλ

) + μp′
(
qk0/mλ

)
(6)

has a pole at 1. Let us examine (6)

μp

(
qk0/mλ

) + μp′
(
qk0/mλ

)
=

(
(1 + qmk0/mλm)

(1 − qmk0/mλm)

∞∏
k=1

(1 + qkqmk0/mλm)(1 + qkq−mk0/mλ−m)

(1 − qkqmk0/mλm)(1 − qkq−mk0/mλ−m)

)

×
[

(1 + qm2k0/mλm2)

(1 − qm2k0/mλm2)

∞∏
k=1

(1 + qkqm2k0/mλm2)(1 + qkq−m2k0/mλ−m2)

(1 − qkqm2k0/mλm2)(1 − qkq−m2k0/mλ−m2)

− (1 + qm′
2k0/mλm′

2)

(1 − qm′
2k0/mλm′

2)

∞∏
k=1

(1 + qkqm′
2k0/mλm′

2)(1 + qkq−m′
2k0/mλ−m′

2)

(1 − qkqm′
2k0/mλm′

2)(1 − qkq−m′
2k0/mλ−m′

2)

]

=
(

(1 + qk0λm)

(1 − qk0λm)

∞∏
k=1

(1 + qkqk0λm)(1 + qkq−k0λ−m)

(1 − qkqk0λm)(1 − qkq−k0λ−m)

)

×
[

(1 + q[m2k0/m]qw(p)/mλm2)

(1 − q[m2k0/m]qw(p)/mλm2)

∞∏ (1 + qkq[m2k0/m]qw(p)/mλm2)(1 + qkq−[m2k0/m]q−w(p)/mλ−m2)

(1 − qkq[m2k0/m]qw(p)/mλm2)(1 − qkq−[m2k0/m]q−w(p)/mλ−m2)

k=1
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− (1 + q[m′
2k0/m]qw(p′)/mλm′

2)

(1 − q[m′
2k0/m]qw(p′)/mλm′

2)

∞∏
k=1

(1 + qkq[m′
2k0/m]qw′/mλm′

2)(1 + qkq−[m′
2k0/m]q−w(p′)/mλ−m′

2)

(1 − qkq[m′
2k0/m]qw(p′)/mλm′

2)(1 − qkq−[m′
2k0/m]q−w(p′)/mλ−m′

2)

]

= (−1)k0

(
(1 + λm)

(1 − λm)

∞∏
k=1

(1 + qkλm)(1 + qkλ−m)

(1 − qkλm)(1 − qkλ−m)

)

×
[
(−1)[m2k0/m] (1 + qw(p)/mλm2)

(1 − qw(p)/mλm2)

∞∏
k=1

(1 + qkqw(p)/mλm2)(1 + qkq−w(p)/mλ−m2)

(1 − qkqw(p)/mλm2)(1 − qkq−w(p)/mλ−m2)

− (−1)[m′
2k0/m] (1 + qw(p′)/mλm′

2)

(1 − qw(p′)/mλm′
2)

∞∏
k=1

(1 + qkqw(p′)/mλm′
2)(1 + qkq−w(p′)/mλ−m′

2)

(1 − qkqw(p′)/mλm′
2)(1 − qkq−w(p′)/mλ−m′

2)

]
, (7)

where [x] denotes the largest integer less than or equal x and w(p) = k0m2(p) − [k0m2/m]m is the residue modulo
m of k0m2.

In order to continue manipulating (7), we need the following lemma.

Lemma 2.1.

w(p) = w(p′),

and

[m2k0/m] ≡ [m′
2k0/m] (mod 2).

Proof. On the one hand, by Lemma 1.1

m + m2 ≡ m + m′
2 (mod 2),

so that

m2 ≡ m′
2 (mod 2),

On the other hand, since Sp is Zm-fixed, the infinitesimal action on ν must satisfy

m2 ≡ m′
2 (mod m),

m2 − m′
2 = 2bm,

for some b ∈ Z. This implies

k0m2 = lpm + w(p) ≡ k0m
′
2 = lp′m + w(p′) (mod m),

where lp = [k0m2/m] and lp′ = [k0m
′
2/m]. Since

w(p) ≡ w(p′) (mod m) and 0 � w(p),w(p′) < m,

the two residues must be equal

w(p) = w(p′),

so that

lpm − lp′m ≡ 0 (mod m),

lpm − lp′m = k0(m2 − m′
2) = 2bmk0,

and

lp − lp′ = 2bk0. �
Thus, (7) becomes



1214 R. Herrera / Topology and its Applications 154 (2007) 1206–1215
μp

(
qk0/mλ

) + μp′
(
qk0/mλ

)
= (−1)k0+[m2(p)k0/m]

(
(1 + λm)

(1 − λm)

∞∏
k=1

(1 + qkλm)(1 + qkλ−m)

(1 − qkλm)(1 − qkλ−m)

)

×
[

(1 + qw(p)/mλm2)

(1 − qw(p)/mλm2)

∞∏
k=1

(1 + qkqw(p)/mλm2)(1 + qkq−w(p)/mλ−m2)

(1 − qkqw(p)/mλm2)(1 − qkq−w(p)/mλ−m2)

− (1 + qw(p)/mλm′
2)

(1 − qw(p)/mλm′
2)

∞∏
k=1

(1 + qkqw(p)/mλm′
2)(1 + qkq−w(p)/mλ−m′

2)

(1 − qkqw(p)/mλm′
2)(1 − qkq−w(p)/mλ−m′

2)

]

= ±
(

(1 + λm)

(1 − λm)

∞∏
k=1

(1 + qkλm)(1 + qkλ−m)

(1 − qkλm)(1 − qkλ−m)

)

×
[

(1 + αλm2)

(1 − αλm2)

∞∏
k=1

(1 + qkαλm2)(1 + qkα−1λ−m2)

(1 − qkαλm2)(1 − qkα−1λ−m2)

− (1 + αλm′
2)

(1 − αλm′
2)

∞∏
k=1

(1 + qkαλm′
2)(1 + qkα−1λ−m′

2)

(1 − qkαλm′
2)(1 − qkα−1λ−m′

2)

]
(8)

where α = qw(p)/m. At this point, we recall Bott–Taubes’ observation by which (8) is the equivariant version of the
index

±ind

(
d

Sp
s ⊗ R

(
q, (T Sp)c

) ⊗
( ∧

α ν∧
−α ν

⊗
∞⊗

k=1

∧
αqk ν∧

−αqk ν
⊗

∧
α−1qk ν∗∧

−α−1qk ν∗

))

= ±
〈
x1

(1 + e−x1)

(1 − e−x1)

∞∏
k=1

(1 + qke−x1)(1 + qkex1)

(1 − qke−x1)(1 − qkex1)
· (1 + αe−x2)

(1 − αe−x2)

∞∏
k=1

(1 + αqke−x2)(1 + α−1qkex2)

(1 − αqke−x2)(1 − α−1qkex2)
, [Sp]

〉
,

where x1 = c1(Sp), ν = ν(Sp) denotes the normal bundle to Sp in M (which can be considered as a complex line
bundle [5, Lemma 9.2]) and x2 = c1(ν).

Observe that the coefficient of qi , for all i, is an equivariant index ind(d
Sp
s ⊗ W)(λ) for some finite rank (virtual)

vector bundle W and therefore a finite Laurent polynomial on λ with poles only at 0 and ∞, and no pole at 1. Thus
(6) has no pole at 1, i.e. Φ(M)S1(λ) has no pole at qk0/m. �
3. Vanishing of the signature

As a consequence, we obtain a new proof of the following vanishing result [10], which generalizes the Atiyah–
Hirzebruch vanishing theorem of the Â-genus on spin manifolds [3].

Corollary 3.1. Let M be an even 4-manifold admitting smooth circle actions, and let Q = aE8 ⊕ bH denote its
intersection form. Then the signature of M vanishes, sign(M) = 0, i.e., the intersection form is Q = bH .

Proof. Since in dimension 4 we have that sign(M) = −8Â(M), we shall prove Corollary 3.1 by proving the van-
ishing of Â(M). Since we are also considering the case when M may be non-spin, Â(M) may only be defined as
a characteristic number and may not represent the index of an elliptic operator. Thus, Â(M) may, in principle, be a
rational number.

According to Theorem 1.1, the value of Φ(M)S1(λ) does not depend on λ. Applying the Atiyah–Bott fixed point
theorem [2], Φ(M)S1(λ) can be expressed in terms of the fixed point set of λ ∈ S1 and the action of λ on its normal
bundle of in M . In particular, let λ = −1 ∈ S1 be the orientation preserving involution in Z2 ⊂ S1, and let M2 denote
its fixed point set. We denote the transversal self-intersection of M2 by M2 ◦ M2. In [9, p. 315], Hirzebruch and
Slodowy showed that

Φ(M)S1(−1) = Φ(M2 ◦ M2).
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On the other hand, applying Theorem 1.1

Φ(M) = Φ(M)S1(λ) = Φ(M)S1(−1) = Φ(M2 ◦ M2). (9)

The codimension of M2 is positive and even, so that the elliptic genus Φ(M) can now be computed from the elliptic
genera of submanifolds of M of codimension at least 4, i.e. isolated points.

Now, recall the expansion of Φ(M) at the other cusp [8]

Φ̃(M) = 1

qdim(M)/8

∞∑
j=0

Â(M,R′
j ) · qj ,

where R′
j is the sequence of virtual tensor bundles given by

R′(q, T ) =
⊗

k=2m+1

∧
−qkT ⊗

⊗
k=2m+2

SqkT ,

and the Â(M,R′
j ) = 〈Â(M) · ch(R′

j ), [M]〉 may only defined be as characteristic numbers. The first few terms of

the sequence are R′
0 = 1, R′

1 = −T , R′
2 = ∧2

T + T , etc. This expansion is obtained by considering q = eπit and
changing the t coordinate in (1) by t → −1/t , and then by t → 2t (cf. [8]). This expansion has, a priori, a pole of
order 1/2 in the variable q . On the other hand, by (9) we also have

Φ̃(M) = Φ̃(M2 ◦ M2), (10)

whose right-hand side has a pole of order at most 0 on the variable q , since the dimension of any connected component
of M2 ◦ M2 is at most 0. Therefore (10) implies that the first coefficient on the left-hand side vanishes,

Â(M) = 0. �
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