The elliptic genus on non-spin even 4-manifolds ${ }^{\text {* }}$

Rafael Herrera*
Centro de Investigación en Matemáticas, AP 402, Guanajuato, Gto., CP 36000, Mexico

Received 3 March 2006; received in revised form 5 December 2006; accepted 5 December 2006

Abstract

We prove the rigidity under circle actions of the elliptic genus on oriented non-spin closed smooth 4-manifolds with even intersection form.

© 2006 Elsevier B.V. All rights reserved.
MSC: 58J26; 58G10; 57R91; 57N13; 57R15
Keywords: Elliptic genus; Rigidity theorem; Circle action; Even 4-manifold; Signature operator; Fixed point formula

0. Introduction

The elliptic genus was introduced by S. Ochanine [11] as a topological genus and E. Witten conjectured its rigidity under circle actions on spin manifolds [13]. Witten's rigidity theorem was proved by Taubes [12], Bott and Taubes [5], etc. The aim of this note is to show that the elliptic genus is also rigid under circle actions on oriented non-spin 4-manifolds with even intersection form (see Theorem 1.1), and the proof is carried out along the lines of that of [5] for spin manifolds. Working in dimension 4 , grants us several simplifying features on the fixed point sets and the opportunity to make certain calculations more explicit.

In Section 1 we recall some preliminaries concerning even 4-manifolds and the elliptic genus. In Section 2 we prove the Rigidity Theorem 1.1 for non-spin even 4-manifolds. In Section 3 we give an alternative proof of the vanishing of the signature and the \widehat{A}-genus on smooth even 4-manifolds with circle actions.

1. Preliminaries

1.1. Rigidity of the index of an elliptic operator

Let $D: \Gamma(E) \rightarrow \Gamma(F)$ be an elliptic operator acting on sections of the vector bundles E and F over a compact, connected, oriented, smooth manifold M. The index of $D, \operatorname{ind}(D)$, is the virtual dimension of the virtual vector space

[^0]$$
\operatorname{Ind}(D)=\operatorname{ker}(D)-\operatorname{coker}(D)
$$

If M admits a circle action preserving D, i.e. such that S^{1} acts on E and F, and commutes with D, the virtual vector space $\operatorname{Ind}(D)$ admits a (finite) Fourier decomposition into complex 1-dimensional irreducible representations of S^{1}

$$
\operatorname{ker}(D)-\operatorname{coker}(D)=\sum a_{m} L^{m}
$$

where $a_{m} \in \mathbb{Z}$ and L^{m} is the representation of S^{1} on \mathbb{C} given by $\lambda \mapsto \lambda^{m}$. The elliptic operator D is called rigid for the given action if $a_{m}=0$ for all $m \neq 0$, i.e. if $\operatorname{Ind}(D)$ consists of the trivial representation with multiplicity a_{0}. The elliptic operator D is called universally rigid if it is rigid under any S^{1} action on M by isometries.

Note that this rigidity can be equivalently reflected by the trace of the action of $\lambda \in S^{1}$ on the corresponding spaces, i.e. by considering the equivariant index of D

$$
\operatorname{ind}(D)_{S^{1}}(\lambda)=\operatorname{tr}_{\lambda}(\operatorname{ker}(D)-\operatorname{coker}(D))=\sum_{m} a_{m} \lambda^{m},
$$

which is a (finite) Laurent polynomial on λ. The relevant feature of this expression is that it can be considered as the restriction to $S^{1} \subset \mathbb{C}$ of a Laurent polynomial on $\lambda \in \mathbb{C}$ whose poles can only occur at 0 and ∞, a fact that will be used repeatedly later.

1.2. Elliptic genus

Let $\bigwedge_{c}^{ \pm}$be the even and odd complex differential forms on the oriented, compact, smooth 4-manifold M under the Hodge $*$-operator, respectively. The signature operator

$$
d_{s}^{M}=d-* d *: \bigwedge_{c}^{+} \rightarrow \bigwedge_{c}^{-}
$$

is elliptic and the virtual dimension of its index equals the signature of $M, \operatorname{sign}(M)$. If W is a complex vector bundle on M endowed with a connection, we can twist the signature operator to forms with values in W

$$
d_{s}^{M} \otimes W: \bigwedge_{c}^{+}(W) \rightarrow \bigwedge_{c}^{-}(W)
$$

This operator is also elliptic and the virtual dimension of its index is denoted by $\operatorname{sign}(M, W)$.
Definition 1.1. Let $T=T M \otimes \mathbb{C}$ denote the complexified tangent bundle of M and let R_{i} be the sequence of bundles defined by the formal series

$$
R(q, T)=\sum_{i=0}^{\infty} R_{i} q^{i}=\bigotimes_{i=1}^{\infty} \bigwedge_{q^{i}} T \otimes \bigotimes_{j=1}^{\infty} S_{q^{j}} T,
$$

where $S_{t} T=\sum_{k=0}^{\infty} S^{k} T t^{k}, \bigwedge_{t} T=\sum_{k=0}^{\infty} \bigwedge^{k} T t^{k}$, and $S^{k} T, \bigwedge^{k} T$ denote the k th symmetric and exterior tensor powers of T, respectively. The elliptic genus of M is defined as

$$
\begin{equation*}
\Phi(M)=\operatorname{ind}\left(d_{s}^{M} \otimes R(q, T)\right)=\sum_{i=0}^{\infty} \operatorname{sign}\left(M, R_{i}\right) \cdot q^{i} \tag{1}
\end{equation*}
$$

Note that the first few terms of the sequence $R(q, T)$ are $R_{0}=1, R_{1}=2 T, R_{2}=2\left(T^{\otimes 2}+T\right)$. In particular, the constant term of $\Phi(M)$ is $\operatorname{sign}(M)$.

The equivariant elliptic genus with respect to the S^{1} action is

$$
\begin{equation*}
\Phi(M)_{S^{1}}(\lambda)=\sum_{i=0}^{\infty} \operatorname{sign}\left(M, R_{i}\right)_{S^{1}}(\lambda) \cdot q^{i} \tag{2}
\end{equation*}
$$

The main theorem of this article is the following.

Theorem 1.1. Let M be an oriented, compact, connected, non-spin, even, smooth 4-manifold admitting smooth S^{1} actions. Then, each of the operators $d_{s} \otimes R_{i}$ is universally rigid.

1.3. The complex projective plane

In order to become acquainted with the rigidity property, let us examine the elliptic genus on the complex projective plane $\mathbb{C P}^{2}$.

It is well known that the signature operator d_{s} is rigid on any oriented smooth manifold admitting (isometric) circle actions, including non-spin manifolds such as $\mathbb{C P}^{2}$. However, the twisted signature operator $d_{s} \otimes T$ (the socalled Rarita-Schwinger operator) fails to be universally rigid on $\mathbb{C P}^{2}$ (see $[9,7]$) as we shall see next. We denote by $T \mathbb{C P}_{c}^{2}=T \mathbb{C P}^{2} \otimes \mathbb{C}$ the complexified tangent bundle of $\mathbb{C P}^{2}$. Since $\mathbb{C P}^{2}$ is a homogeneous space for the Lie group $S U(3)$ we can describe the relevant spaces as $S U(3)$ representations.

Let $F\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ denote the complex irreducible representation of $S U(3)$ with dominant weight $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$, where the coordinates are such that $F(1,0,0)=\mathbb{C}^{3}$ and $F(1,1,0)=\mathfrak{s u}(3)$ are the standard and adjoint representations of $S U(3)$ respectively.

As shown in [7], the $S U(3)$-representation corresponding to $\operatorname{sign}\left(\mathbb{C P}^{2}\right)$ is the one-dimensional trivial representation

$$
\operatorname{Ind}\left(d_{s}^{\mathbb{C P}^{2}}\right)=F(0,0,0)
$$

so that

$$
\operatorname{sign}\left(\mathbb{C P}^{2}\right)=1
$$

The representation corresponding to $\operatorname{sign}\left(\mathbb{C P}^{2}, T \mathbb{C P}_{c}^{2}\right)$ is the 16 -dimensional $S U(3)$-representation

$$
\operatorname{Ind}\left(d_{s}^{\mathbb{C P}^{2}} \otimes T \mathbb{C P}_{c}^{2}\right)=2 F(0,0,0) \oplus F(1,0,1) \oplus F(1,0,0) \oplus F(0,0,-1)
$$

where $\operatorname{dim} F(0,0,0)=1, \operatorname{dim} F(1,0,1)=8, \operatorname{dim} F(1,0,0)=3, \operatorname{dim} F(0,0,-1)=3$, so that

$$
\operatorname{sign}\left(\mathbb{C P}^{2}, T \mathbb{C P}_{c}^{2}\right)=16
$$

Let g be a projective involution of $\mathbb{C P}^{2}$ with fixed point set a projective line and a point. By the Weyl character formula, the trace of g on each one of them is

$$
\begin{aligned}
& \operatorname{sign}\left(\mathbb{C P}^{2}\right)^{S^{1}}(g)=\operatorname{tr}_{g}(F(0,0,0))=1, \\
& \begin{aligned}
\operatorname{sign}\left(\mathbb{C P}^{2}, T \mathbb{C P}_{c}^{2}\right)^{S^{1}}(g) & =\operatorname{tr}_{g}(2 F(0,0,0) \oplus F(1,0,1) \oplus F(1,0,0,) \oplus F(0,0,-1)) \\
& =2+0+(-1)+(-1)=0,
\end{aligned}
\end{aligned}
$$

thus showing the non-rigidity of the operator $d_{s} \otimes T \mathbb{C P}_{c}^{2}$.

1.4. Even intersection form

The intersection form of a closed oriented 4-manifold M is an unimodular symmetric bilinear form over the integers. Donaldson [6] proved that among all the definite bilinear forms, only the diagonalizable ones can be the intersections forms of smooth closed 4-manifolds. An indefinite bilinear form is called odd if there exists x such that $Q(x, x)$ is odd, and it is called even otherwise. The indefinite forms Q which are odd are diagonalizable, so that we are left to consider indefinite even unimodular bilinear forms. Let E_{8} be the unique irreducible negative definite quadratic form of rank eight and let H be the hyperbolic quadratic form. It is known that any indefinite even bilinear form Q is of the form $a E_{8} \oplus b H, a, b \in \mathbb{Z}$. A smooth 4-manifold is called even if its intersection form is even. It is a well-known fact that all spin manifolds are even, but the converse is not true [1].

Now, we give some interesting properties of S^{1} actions on smooth even 4-manifolds. Assume M is endowed with a (non-trivial) smooth S^{1}-action. Let $M^{S^{1}}$ denote the fixed point set of the circle action. At each point $p \in M^{S^{1}}$, the tangent space of M splits as a sum of S^{1} representations

$$
T_{p} M=L^{m_{1}(p)} \oplus L^{m_{2}(p)}
$$

where L^{m} denotes the S^{1} representation on which $\lambda \in S^{1}$ acts by multiplication by λ^{m}. The numbers $m_{1}(p), m_{2}(p)$ are called the exponents (or weights) of the S^{1}-action at the point p. The exponents of an action are not canonical and their sign can be changed in pairs. The space $T_{p} M^{S^{1}}$ is a trivial representation of S^{1}, i.e. in dimension 4 at most one exponent can equal 0 .

Consider the sum of the exponents $\sigma(p)=m_{1}(p)+m_{2}(p)$. The number $\sigma(p)$ is constant along connected components of $M^{S^{1}}$, but may vary for different connected components. Note that in this dimension, the connected components P of $M^{S^{1}}$ are oriented totally geodesic submanifolds of even codimension, i.e. oriented surfaces or isolated fixed points.

Definition 1.2. A circle action on an oriented 4-dimensional manifold M with non-empty fixed point set will be called either

- even if $\sigma(p) \equiv 0(\bmod 2)$ for all $p \in M^{S^{1}}$, or
- odd if $\sigma(p) \equiv 1(\bmod 2)$ for all $p \in M^{S^{1}}$.

Lemma 1.1. Let M be an oriented, connected, compact even smooth 4-manifold. Assume M admits a effective smooth S^{1} action. Then

$$
\sigma\left(p_{1}\right) \equiv \sigma\left(p_{2}\right)(\bmod 2)
$$

for all $p_{1}, p_{2} \in M^{S^{1}}$. In particular, the S^{1}-action is either even or odd.
Proof. First note that by the effectiveness assumption the fixed point set M_{k} of the finite subgroup \mathbb{Z}_{k} of S^{1} has codimension greater than or equal to 2 . Thus, consider a path joining p_{1} and p_{2} whose interior points are different from p_{1} and p_{2}, and which is also disjoint from submanifolds with finite isotropy. Let S be the sphere generated by letting S^{1} act on the path. Then $\left.T M\right|_{S}$ is an even dimensional, real, oriented, equivariant bundle on the sphere S, and, by [5, Lemma 9.2], $\left.T M\right|_{S}$ can be considered as a complex equivariant vector bundle on S. Furthermore, by [5, Lemma 9.1],

$$
\left\langle c_{1}(T M \mid S),[S]\right\rangle=\sigma\left(p_{1}\right)-\sigma\left(p_{2}\right) .
$$

On the other hand,

$$
\left.T M\right|_{S}=T S \oplus v
$$

where v is the normal bundle of S in M and $c_{1}(T M \mid S)=c_{1}(S)+c_{1}(\nu)$. Thus

$$
\left\langle c_{1}(T M \mid S),[S]\right\rangle=\left\langle c_{1}(T S),[S]\right\rangle+\left\langle c_{1}(v),[S]\right\rangle=2+S \cdot S \equiv 0(\bmod 2)
$$

by the assumption on the intersection form, where $S \cdot S$ denotes the self-intersection number of S.
From this we see the following.
Lemma 1.2. Let M be an oriented, connected, compact even smooth 4-manifold admitting an effective smooth S^{1} action.

- If $M^{S^{1}}$ contains a surface, then the action is necessarily odd.
- If the action is even, the $M^{S^{1}}$ consists of isolated fixed points only.

2. Rigidity of the elliptic genus

Proof of Theorem 1.1. Let us assume that the S^{1} action is effective. By the Atiyah-Segal G-signature theorem [4], the equivariant elliptic genus can be expressed as

$$
\begin{equation*}
\Phi(M)_{S^{1}}(\lambda)=\sum_{P \subset M^{S^{1}}} \mu_{P}(\lambda), \tag{3}
\end{equation*}
$$

where the sum runs over the connected components P of the fixed point set $M^{S^{1}}$ of the S^{1} action.
Remark. The rigidity theorem is equivalent to showing that $\Phi(M)_{S^{1}}(\lambda)$ does not depend on λ.
Given (3), let us examine the contributions $\mu_{P}(\lambda)$. In this dimension, the connected components P of $M^{S^{1}}$ are oriented totally geodesic submanifolds of even codimension, i.e. oriented surfaces or isolated fixed points. The tangent bundle of M restricted to P splits as

$$
\left.T M\right|_{P}=L^{m_{1}} \oplus L^{m_{2}}
$$

where $L^{m_{i}}$ denotes the complex line bundle $L^{m_{i}}$ on which S^{1} acts by $\lambda^{m_{i}}, m_{i}=m_{i}(P) \in \mathbb{Z}$. We have two possibilities

- $\operatorname{dim} P=0: m_{1}, m_{2} \neq 0$, and they must be coprime since the circle action is effective

$$
\begin{align*}
\mu_{P}(\lambda)= & \frac{\left(1+\lambda^{m_{1}}\right)}{\left(1-\lambda^{m_{1}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \lambda^{m_{1}}\right)\left(1+q^{k} \lambda^{-m_{1}}\right)}{\left(1-q^{k} \lambda^{m_{1}}\right)\left(1-q^{k} \lambda^{-m_{1}}\right)} \\
& \times \frac{\left(1+\lambda^{m_{2}}\right)}{\left(1-\lambda^{m_{2}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \lambda^{m_{2}}\right)\left(1+q^{k} \lambda^{-m_{2}}\right)}{\left(1-q^{k} \lambda^{m_{2}}\right)\left(1-q^{k} \lambda^{-m_{2}}\right)}, \tag{4}
\end{align*}
$$

- $\operatorname{dim} P=2: L^{m_{1}}$ is a trivial representation $\left(m_{1}=0\right)$. Note that $L^{m_{2}}=v$ the normal bundle to P in M and that we can take $m_{2}=1$, since the circle action is effective. Thus,

$$
\begin{align*}
\mu_{P}(\lambda)= & \left\langle x_{1} \frac{\left(1+e^{-x_{1}}\right)}{\left(1-e^{-x_{1}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} e^{-x_{1}}\right)\left(1+q^{k} e^{x_{1}}\right)}{\left(1-q^{k} e^{-x_{1}}\right)\left(1-q^{k} e^{x_{1}}\right)}\right. \\
& \left.\times \frac{\left(1+\lambda e^{-x_{2}}\right)}{\left(1-\lambda e^{-x_{2}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \lambda e^{-x_{2}}\right)\left(1+q^{k} \lambda^{-1} e^{x_{2}}\right)}{\left(1-q^{k} \lambda e^{-x_{2}}\right)\left(1-q^{k} \lambda^{-1} e^{x_{2}}\right)},[P]\right\rangle, \tag{5}
\end{align*}
$$

where $x_{1}=c_{1}(P)$ and $x_{2}=c_{1}\left(L^{m_{2}}\right)$.
Claim 1. The contributions $\mu_{P}(\lambda)$ are meromorphic functions of $\lambda \in \mathbb{T}_{q^{2}}$, where $\mathbb{T}_{q^{2}}$ denotes the 2-dimensional torus \mathbb{C}^{*} / q^{2}, the quotient of $\mathbb{C}^{*}=\mathbb{C}-\{0\}$ by the multiplicative subgroup generated by the element $q^{2} \neq 0$.

Let p denote an isolated S^{1}-fixed point and consider one of the factors of its contribution (4), say

$$
\frac{\left(1+\lambda^{m_{1}}\right)}{\left(1-\lambda^{m_{1}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \lambda^{m_{1}}\right)\left(1+q^{k} \lambda^{-m_{1}}\right)}{\left(1-q^{k} \lambda^{m_{1}}\right)\left(1-q^{k} \lambda^{-m_{1}}\right)},
$$

and substitute λ by $q \lambda$ so that

$$
\frac{\left(1+q^{m_{1}} \lambda^{m_{1}}\right)}{\left(1-q^{m_{1}} \lambda^{m_{1}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} q^{m_{1}} \lambda^{m_{1}}\right)\left(1+q^{k} q^{-m_{1}} \lambda^{-m_{1}}\right)}{\left(1-q^{k} q^{m_{1}} \lambda^{m_{1}}\right)\left(1-q^{k} q^{-m_{1}} \lambda^{-m_{1}}\right)}=(-1)^{m_{1}} \frac{\left(1+\lambda^{m_{1}}\right)}{\left(1-\lambda^{m_{1}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \lambda^{m_{1}}\right)\left(1+q^{k} \lambda^{-m_{1}}\right)}{\left(1-q^{k} \lambda^{m_{1}}\right)\left(1-q^{k} \lambda^{-m_{1}}\right)},
$$

so that

$$
\mu_{p}(q \lambda)=(-1)^{m_{1}+m_{2}} \mu_{p}(\lambda),
$$

which shows that $\mu_{p}(\lambda)$ is the pullback of a meromorphic function on the torus $\mathbb{T}_{q^{2}}$ since $\mu_{p}\left(q^{2} \lambda\right)=\mu_{p}(\lambda)$.
Secondly, let P denote an S^{1}-fixed surface and consider its contribution (5). Substitute λ by $q \lambda$

$$
\begin{aligned}
\mu_{P}(q \lambda)= & \left\langle x_{1} \frac{\left(1+e^{-x_{1}}\right)}{\left(1-e^{-x_{1}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} e^{-x_{1}}\right)\left(1+q^{k} e^{x_{1}}\right)}{\left(1-q^{k} e^{-x_{1}}\right)\left(1-q^{k} e^{x_{1}}\right)}\right. \\
& \left.\times \frac{\left(1+q \lambda e^{-x_{2}}\right)}{\left(1-q \lambda e^{-x_{2}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} q \lambda e^{-x_{2}}\right)\left(1+q^{k} q^{-1} \lambda^{-1} e^{x_{2}}\right)}{\left(1-q^{k} q \lambda e^{-x_{2}}\right)\left(1-q^{k} q^{-1} \lambda^{-1} e^{x_{2}}\right)},[P]\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
= & -\left\langle x_{1} \frac{\left(1+e^{-x_{1}}\right)}{\left(1-e^{-x_{1}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} e^{-x_{1}}\right)\left(1+q^{k} e^{x_{1}}\right)}{\left(1-q^{k} e^{-x_{1}}\right)\left(1-q^{k} e^{x_{1}}\right)}\right. \\
& \left.\times \frac{\left(1+\lambda e^{-x_{2}}\right)}{\left(1-\lambda e^{-x_{2}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \lambda e^{-x_{2}}\right)\left(1+q^{k} \lambda^{-1} e^{x_{2}}\right)}{\left(1-q^{k} \lambda e^{-x_{2}}\right)\left(1-q^{k} \lambda^{-1} e^{x_{2}}\right)},[P]\right\rangle \\
= & -\mu_{P}(\lambda),
\end{aligned}
$$

so that $\mu_{P}\left(q^{2} \lambda\right)=\mu_{P}(\lambda)$, which means that $\mu_{P}(\lambda)$ is the pullback of a meromorphic function on the torus $\mathbb{T}_{q^{2}}$.
Claim 2. The meromorphic function $\Phi(M)_{S^{1}}(\lambda)$ has no poles at all on $\mathbb{T}_{q^{2}}$, i.e. it is holomorphic on a compact surface and, hence, constant on the variable λ.

By looking at

$$
\frac{\left(1+\lambda^{m_{1}}\right)}{\left(1-\lambda^{m_{1}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \lambda^{m_{1}}\right)\left(1+q^{k} \lambda^{-m_{1}}\right)}{\left(1-q^{k} \lambda^{m_{1}}\right)\left(1-q^{k} \lambda^{-m_{1}}\right)}
$$

we notice that poles may occur at the values of λ where the denominators vanish, i.e. we have the equations

$$
1-\lambda^{m_{1}}=0, \quad 1-q^{k} \lambda^{m_{1}}=0, \quad 1-q^{k} \lambda^{-m_{1}}=0
$$

which means the poles may occur at

$$
\lambda=1^{1 / m_{1}}, \quad \lambda=q^{-k / m_{1}}, \quad \lambda=q^{k / m_{1}} .
$$

Secondly, by expanding $\mu_{P}(\lambda)$ up to dimension 2 we get the following expression

$$
\begin{aligned}
\mu_{P}(\lambda) \equiv & 2\left(\prod_{k=1}^{\infty}\left[\left(\frac{1+q^{k}}{1-q^{k}}-\frac{2 q^{k} x_{1}}{\left(1-q^{k}\right)^{2}}\right)\left(\frac{1+q^{k}}{1-q^{k}}+\frac{2 q^{k} x_{1}}{\left(1-q^{k}\right)^{2}}\right)\right]\right. \\
& \left.\times\left(\frac{1+\lambda}{1-\lambda}-\frac{2 \lambda x_{2}}{(1-\lambda)^{2}}\right) \prod_{k=1}^{\infty}\left[\left(\frac{1+q^{k} \lambda}{1-q^{k} \lambda}-\frac{2 q^{k} \lambda x_{2}}{\left(1-q^{k} \lambda\right)^{2}}\right)\left(\frac{\lambda+q^{k}}{\lambda-q^{k}}+\frac{2 q^{k} \lambda x_{2}}{\left(\lambda-q^{k}\right)^{2}}\right)\right],[P]\right\rangle
\end{aligned}
$$

which shows that its poles could occur only if

$$
1-\lambda=0, \quad 1-q^{k} \lambda=0, \quad 1-q^{k} \lambda^{-1}=0
$$

i.e.

$$
\lambda=1, \quad \lambda=q^{-k}, \quad \lambda=q^{k} .
$$

Since we are now working on the torus $\mathbb{T}_{q^{2}}$ and $q^{2} \equiv 1\left(\bmod q^{2}\right)$, we need to check for poles at 1 and q.

- No poles at roots of unity $\lambda^{m}=1$.

Observe that the coefficient of q^{i} in (2), for all i, is the equivariant index of a twisted signature operator ind $\left(d_{s}^{M} \otimes\right.$ $W)_{S^{1}}(\lambda)$, where W is some finite rank (virtual) vector bundle and, therefore, it is a finite Laurent polynomial on λ with poles only at $\lambda=0, \infty$. Moreover, it has no pole on the unit circle $|\lambda|=1$. This property is shared by (3) so that $\Phi(M)_{S^{1}}(\lambda)$ has no pole on the circle $|\lambda|=1$.

- No pole at q.

There could be a pole at q whenever an S^{1}-fixed point has one exponent $m_{i}=1$.
Now, $\Phi(M)_{S^{1}}(\lambda)$ has a pole at $\lambda=q$ if and only if $\Psi(\lambda)=\Phi(M)_{S^{1}}(q \lambda)$ has a pole at 1 . We have seen that the contributions behave as follows

$$
\mu_{p}(q \lambda)=(-1)^{m_{1}+m_{2}} \mu_{p}(\lambda),
$$

for an isolated S^{1}-fixed point, and

$$
\mu_{P}(q \lambda)=-\mu_{P}(\lambda)
$$

for an S^{1}-fixed surface.
By Lemma 1.2, if there is an S^{1}-fixed surface, then the action is odd, and $(-1)^{m_{1}(p)+m_{2}(p)}=-1$ for every fixed point p. This means that $\Psi(\lambda)=-\Phi(M)_{S^{1}}(\lambda)$ has no pole at 1 .

On the other hand, if $M^{S^{1}}$ consists of isolated fixed points only, then

$$
m_{1}(p)+m_{2}(p) \equiv m_{1}\left(p^{\prime}\right)+m_{2}\left(p^{\prime}\right)(\bmod 2)
$$

by Lemma 1.1 , for any fixed points $p, p^{\prime} \in M^{S^{1}}$, so that $\Psi(\lambda)= \pm \Phi(M)_{S^{1}}(\lambda)$ has no pole at 1 .

- No pole at $q^{k_{0} / m}$.

In order to prove that $\Phi(M)_{S^{1}}(\lambda)$ is holomorphic on $\mathbb{T}_{q^{2}}$, we must show that it has no poles on the points

$$
\lambda=q^{-k / m}, \quad \lambda=q^{k / m}
$$

for all k, and all m belonging to the collection of exponents of all the isolated fixed points. The pole $q^{k / m}$ will appear in $\mu_{p}(\lambda)$ if and only if $m=m_{1}(p)$ or $m=m_{2}(p)$ for some p.

Let k_{0} denote a fixed integer. Notice that if a point p has an exponent $m_{1}(p)=m>0$ then there is a submanifold S_{p} of \mathbb{Z}_{m}-fixed points containing p. The submanifold S_{p} is necessarily an S^{1}-invariant 2 -sphere with two isolated S^{1}-fixed points: p and another point p^{\prime}. Since the exponents of the tangent space to the sphere at the two points p and p^{\prime} differ only by sign, let us assume that $m_{1}(p)=-m_{1}\left(p^{\prime}\right)=m$. Let $m_{2}=m_{2}(p)$ and $m_{2}^{\prime}=m_{2}\left(p^{\prime}\right)$. Thus, the contributions of p and p^{\prime} add up to

$$
\begin{aligned}
\mu_{p}(\lambda)+\mu_{p^{\prime}}(\lambda)= & \left(\frac{\left(1+\lambda^{m}\right)}{\left(1-\lambda^{m}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \lambda^{m}\right)\left(1+q^{k} \lambda^{-m}\right)}{\left(1-q^{k} \lambda^{m}\right)\left(1-q^{k} \lambda^{-m}\right)}\right) \\
& \times\left[\frac{\left(1+\lambda^{m_{2}}\right)}{\left(1-\lambda^{m_{2}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \lambda^{m_{2}}\right)\left(1+q^{k} \lambda^{-m_{2}}\right)}{\left(1-q^{k} \lambda^{m_{2}}\right)\left(1-q^{k} \lambda^{-m_{2}}\right)}-\frac{\left(1+\lambda^{m_{2}^{\prime}}\right)}{\left(1-\lambda^{m_{2}^{\prime \prime}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \lambda^{m_{2}^{\prime}}\right)\left(1+q^{k} \lambda^{-m_{2}^{\prime}}\right)}{\left(1-q^{k} \lambda^{m_{2}^{\prime}}\right)\left(1-q^{k} \lambda^{-m_{2}^{\prime}}\right)}\right] .
\end{aligned}
$$

Now, $\mu_{p}(\lambda)+\mu_{p^{\prime}}(\lambda)$ will have a pole at $q^{k_{0} / m}$ if and only if

$$
\begin{equation*}
\mu_{k_{0} / m}(\lambda)=\mu_{p}\left(q^{k_{0} / m} \lambda\right)+\mu_{p^{\prime}}\left(q^{k_{0} / m} \lambda\right) \tag{6}
\end{equation*}
$$

has a pole at 1. Let us examine (6)

$$
\begin{aligned}
& \mu_{p}\left(q^{k_{0} / m} \lambda\right)+\mu_{p^{\prime}}\left(q^{k_{0} / m} \lambda\right) \\
& =\left(\frac{\left(1+q^{m k_{0} / m} \lambda^{m}\right)}{\left(1-q^{m k_{0} / m} \lambda^{m}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} q^{m k_{0} / m} \lambda^{m}\right)\left(1+q^{k} q^{-m k_{0} / m} \lambda^{-m}\right)}{\left(1-q^{k} q^{m k_{0} / m} \lambda^{m}\right)\left(1-q^{k} q^{-m k_{0} / m} \lambda^{-m}\right)}\right) \\
& \quad \times\left[\frac{\left(1+q^{m_{2} k_{0} / m} \lambda^{m_{2}}\right)}{\left(1-q^{m_{2} k_{0} / m} \lambda^{m_{2}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} q^{m} k_{0} / m\right.}{\left(1-\lambda^{m_{2}}\right)\left(1+q^{k} q^{-m_{2} k_{0} / m} \lambda^{m_{2}}\right)\left(1-q^{k} q^{-m_{2} k_{0} / m} \lambda^{-m_{2}}\right)}\right. \\
& \left.\quad-\frac{\left(1+q^{m_{2}^{\prime} k_{0} / m} \lambda^{m_{2}^{\prime}}\right)}{\left(1-q^{m_{2}^{\prime} k_{0} / m} \lambda^{m_{2}^{\prime}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} q^{m_{2}^{\prime} k_{0} / m} \lambda^{m_{2}^{\prime}}\right)\left(1+q^{k} q^{-m_{2}^{\prime} k_{0} / m} \lambda^{\left.-m_{2}^{\prime}\right)}\right.}{\left(1-q^{k} q^{m_{2}^{\prime} k_{0} / m} \lambda^{m_{2}^{\prime}}\right)\left(1-q^{k} q^{-m_{2}^{\prime} k_{0} / m} \lambda^{-m_{2}^{\prime}}\right)}\right] \\
& =\left(\frac{\left(1+q^{k_{0}} \lambda^{m}\right)}{\left(1-q^{k_{0}} \lambda^{m}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} q^{k_{0}} \lambda^{m}\right)\left(1+q^{k} q^{-k_{0}} \lambda^{-m}\right)}{\left(1-q^{k} q^{k_{0}} \lambda^{m}\right)\left(1-q^{k} q^{\left.-k_{0} \lambda^{-m}\right)}\right)}\right. \\
& \quad \times\left[\frac{\left(1+q^{\left[m_{2} k_{0} / m\right]} q^{w(p) / m} \lambda^{m_{2}}\right)}{\left(1-q^{\left[m_{2} k_{0} / m\right]} q^{w(p) / m} \lambda^{m_{2}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} q^{\left[m_{2} k_{0} / m\right]} q^{w(p) / m} \lambda^{m_{2}}\right)\left(1+q^{k} q^{-\left[m_{2} k_{0} / m\right]} q^{-w(p) / m} \lambda^{-m_{2}}\right)}{\left.\left(1-q^{k} m_{2} k_{0} / m\right] q^{w(p) / m} \lambda^{m_{2}}\right)\left(1-q^{k} q^{-\left[m_{2} k_{0} / m\right]} q^{-w(p) / m} \lambda^{-m_{2}}\right)}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.-\frac{\left(1+q^{\left[m_{2}^{\prime} k_{0} / m\right]} q^{w\left(p^{\prime}\right) / m} \lambda^{m_{2}^{\prime}}\right)}{\left(1-q^{\left[m_{2}^{\prime} k_{0} / m\right]} q^{w\left(p^{\prime}\right) / m} \lambda^{m_{2}^{\prime}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} q^{\left[m_{2}^{\prime} k_{0} / m\right]} q^{w^{\prime} / m} \lambda^{m_{2}^{\prime}}\right)\left(1+q^{k} q^{-\left[m_{2}^{\prime} k_{0} / m\right]} q^{-w\left(p^{\prime}\right) / m} \lambda^{-m_{2}^{\prime}}\right)}{\left(1-q^{k} q^{\left[m_{2}^{\prime} k_{0} / m\right]} q^{w\left(p^{\prime}\right) / m} \lambda^{m_{2}^{\prime}}\right)\left(1-q^{k} q^{-\left[m_{2}^{k} k_{0} / m\right]} q^{-w\left(p^{\prime}\right) / m} \lambda^{-m_{2}^{\prime}}\right)}\right] \\
& =(-1)^{k_{0}}\left(\frac{\left(1+\lambda^{m}\right)}{\left(1-\lambda^{m}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \lambda^{m}\right)\left(1+q^{k} \lambda^{-m}\right)}{\left(1-q^{k} \lambda^{m}\right)\left(1-q^{k} \lambda^{-m}\right)}\right) \\
& \times\left[(-1)^{\left[m_{2} k_{0} / m\right]} \frac{\left(1+q^{w(p) / m} \lambda^{m_{2}}\right)}{\left(1-q^{w(p) / m} \lambda^{m_{2}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} q^{w(p) / m} \lambda^{m_{2}}\right)\left(1+q^{k} q^{-w(p) / m} \lambda^{-m_{2}}\right)}{\left(1-q^{k} q^{w(p) / m} \lambda^{m_{2}}\right)\left(1-q^{k} q^{-w(p) / m} \lambda^{-m_{2}}\right)}\right. \\
& \left.-(-1)^{\left[m_{2}^{\prime} k_{0} / m\right]} \frac{\left(1+q^{w\left(p^{\prime}\right) / m} \lambda^{m_{2}^{\prime}}\right)}{\left(1-q^{w\left(p^{\prime}\right) / m} \lambda^{\left.m_{2}^{\prime}\right)}\right.} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} q^{w\left(p^{\prime}\right) / m} \lambda^{m_{2}^{\prime}}\right)\left(1+q^{k} q^{-w\left(p^{\prime}\right) / m} \lambda^{-m_{2}^{\prime}}\right)}{\left(1-q^{k} q^{w\left(p^{\prime}\right) / m} \lambda^{m_{2}^{\prime}}\right)\left(1-q^{k} q^{-w\left(p^{\prime}\right) / m} \lambda^{-m_{2}^{\prime}}\right)}\right], \tag{7}
\end{align*}
$$

where $[x]$ denotes the largest integer less than or equal x and $w(p)=k_{0} m_{2}(p)-\left[k_{0} m_{2} / m\right] m$ is the residue modulo m of $k_{0} m_{2}$.

In order to continue manipulating (7), we need the following lemma.

Lemma 2.1.

$$
w(p)=w\left(p^{\prime}\right),
$$

and

$$
\left[m_{2} k_{0} / m\right] \equiv\left[m_{2}^{\prime} k_{0} / m\right](\bmod 2) .
$$

Proof. On the one hand, by Lemma 1.1

$$
m+m_{2} \equiv m+m_{2}^{\prime}(\bmod 2),
$$

so that

$$
m_{2} \equiv m_{2}^{\prime}(\bmod 2),
$$

On the other hand, since S_{p} is \mathbb{Z}_{m}-fixed, the infinitesimal action on v must satisfy

$$
\begin{aligned}
& m_{2} \equiv m_{2}^{\prime}(\bmod m), \\
& m_{2}-m_{2}^{\prime}=2 b m,
\end{aligned}
$$

for some $b \in \mathbb{Z}$. This implies

$$
k_{0} m_{2}=l_{p} m+w(p) \equiv k_{0} m_{2}^{\prime}=l_{p^{\prime}} m+w\left(p^{\prime}\right)(\bmod m),
$$

where $l_{p}=\left[k_{0} m_{2} / m\right]$ and $l_{p^{\prime}}=\left[k_{0} m_{2}^{\prime} / m\right]$. Since

$$
w(p) \equiv w\left(p^{\prime}\right)(\bmod m) \quad \text { and } \quad 0 \leqslant w(p), w\left(p^{\prime}\right)<m,
$$

the two residues must be equal

$$
w(p)=w\left(p^{\prime}\right)
$$

so that

$$
\begin{aligned}
l_{p} m-l_{p^{\prime}} m & \equiv 0(\bmod m) \\
l_{p} m-l_{p^{\prime}} m & =k_{0}\left(m_{2}-m_{2}^{\prime}\right)=2 b m k_{0}
\end{aligned}
$$

and

$$
l_{p}-l_{p^{\prime}}=2 b k_{0}
$$

Thus, (7) becomes

$$
\begin{align*}
& \mu_{p}\left(q^{k_{0} / m} \lambda\right)+\mu_{p^{\prime}}\left(q^{k_{0} / m} \lambda\right) \\
&=(-1)^{k_{0}+\left[m_{2}(p) k_{0} / m\right]}\left(\frac{\left(1+\lambda^{m}\right)}{\left(1-\lambda^{m}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \lambda^{m}\right)\left(1+q^{k} \lambda^{-m}\right)}{\left(1-q^{k} \lambda^{m}\right)\left(1-q^{k} \lambda^{-m}\right)}\right) \\
& \times\left[\frac{\left(1+q^{w(p) / m} \lambda^{m_{2}}\right)}{\left(1-q^{w(p) / m} \lambda^{m_{2}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} q^{w(p) / m} \lambda^{m_{2}}\right)\left(1+q^{k} q^{-w(p) / m} \lambda^{-m_{2}}\right)}{\left(1-q^{k} q^{w(p) / m} \lambda^{m_{2}}\right)\left(1-q^{k} q^{-w(p) / m} \lambda^{-m_{2}}\right)}\right. \\
&\left.-\frac{\left(1+q^{w(p) / m} \lambda^{m_{2}^{\prime}}\right)}{\left(1-q^{w(p) / m} \lambda^{m_{2}^{\prime}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} q^{w(p) / m} \lambda^{m_{2}^{\prime}}\right)\left(1+q^{k} q^{-w(p) / m} \lambda^{-m_{2}^{\prime}}\right)}{\left(1-q^{k} q^{w(p) / m} \lambda^{m_{2}^{\prime}}\right)\left(1-q^{k} q^{-w(p) / m} \lambda^{-m_{2}^{\prime}}\right)}\right] \\
&= \pm\left(\frac{\left(1+\lambda^{m}\right)}{\left(1-\lambda^{m}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \lambda^{m}\right)\left(1+q^{k} \lambda^{-m}\right)}{\left(1-q^{k} \lambda^{m}\right)\left(1-q^{k} \lambda^{-m}\right)}\right) \\
& \quad \times\left[\frac{\left(1+\alpha \lambda^{m_{2}}\right)}{\left(1-\alpha \lambda^{m_{2}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \alpha \lambda^{m_{2}}\right)\left(1+q^{k} \alpha^{-1} \lambda^{-m_{2}}\right)}{\left(1-q^{k} \alpha \lambda^{m_{2}}\right)\left(1-q^{k} \alpha^{-1} \lambda^{-m_{2}}\right)}\right. \\
&\left.-\frac{\left(1+\alpha \lambda^{m_{2}^{\prime}}\right)}{\left(1-\alpha \lambda^{m_{2}^{\prime}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} \alpha \lambda^{m_{2}^{\prime}}\right)\left(1+q^{k} \alpha^{-1} \lambda^{-m_{2}^{\prime}}\right)}{\left(1-q^{k} \alpha \lambda^{m_{2}^{\prime}}\right)\left(1-q^{k} \alpha^{-1} \lambda^{-m_{2}^{\prime}}\right)}\right] \tag{8}
\end{align*}
$$

where $\alpha=q^{w(p) / m}$. At this point, we recall Bott-Taubes' observation by which (8) is the equivariant version of the index

$$
\begin{aligned}
& \pm \operatorname{ind}\left(d_{s}^{S_{p}} \otimes R\left(q,\left(T S_{p}\right)_{c}\right) \otimes\left(\frac{\bigwedge_{\alpha} v}{\bigwedge_{-\alpha} v} \otimes \bigotimes_{k=1}^{\infty} \frac{\bigwedge_{\alpha q^{k}} v}{\bigwedge_{-\alpha q^{k}} v} \otimes \frac{\bigwedge_{\alpha^{-1} q^{k}} v^{*}}{\bigwedge_{-\alpha^{-1} q^{k}} \nu^{*}}\right)\right) \\
& \quad= \pm\left\langle x_{1} \frac{\left(1+e^{-x_{1}}\right)}{\left(1-e^{-x_{1}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+q^{k} e^{-x_{1}}\right)\left(1+q^{k} e^{x_{1}}\right)}{\left(1-q^{k} e^{-x_{1}}\right)\left(1-q^{k} e^{x_{1}}\right)} \cdot \frac{\left(1+\alpha e^{-x_{2}}\right)}{\left(1-\alpha e^{-x_{2}}\right)} \prod_{k=1}^{\infty} \frac{\left(1+\alpha q^{k} e^{-x_{2}}\right)\left(1+\alpha^{-1} q^{k} e^{x_{2}}\right)}{\left(1-\alpha q^{k} e^{-x_{2}}\right)\left(1-\alpha^{-1} q^{k} e^{x_{2}}\right)},\left[S_{p}\right]\right\rangle
\end{aligned}
$$

where $x_{1}=c_{1}\left(S_{p}\right), \nu=\nu\left(S_{p}\right)$ denotes the normal bundle to S_{p} in M (which can be considered as a complex line bundle [5, Lemma 9.2]) and $x_{2}=c_{1}(\nu)$.

Observe that the coefficient of q^{i}, for all i, is an equivariant index $\operatorname{ind}\left(d_{s}^{S_{p}} \otimes W\right)(\lambda)$ for some finite rank (virtual) vector bundle W and therefore a finite Laurent polynomial on λ with poles only at 0 and ∞, and no pole at 1 . Thus (6) has no pole at 1, i.e. $\Phi(M)_{S^{1}}(\lambda)$ has no pole at $q^{k_{0} / m}$.

3. Vanishing of the signature

As a consequence, we obtain a new proof of the following vanishing result [10], which generalizes the AtiyahHirzebruch vanishing theorem of the \widehat{A}-genus on spin manifolds [3].

Corollary 3.1. Let M be an even 4-manifold admitting smooth circle actions, and let $Q=a E_{8} \oplus b H$ denote its intersection form. Then the signature of M vanishes, $\operatorname{sign}(M)=0$, i.e., the intersection form is $Q=b H$.

Proof. Since in dimension 4 we have that $\operatorname{sign}(M)=-8 \widehat{A}(M)$, we shall prove Corollary 3.1 by proving the vanishing of $\widehat{A}(M)$. Since we are also considering the case when M may be non-spin, $\widehat{A}(M)$ may only be defined as a characteristic number and may not represent the index of an elliptic operator. Thus, $\widehat{A}(M)$ may, in principle, be a rational number.

According to Theorem 1.1, the value of $\Phi(M)_{S^{1}}(\lambda)$ does not depend on λ. Applying the Atiyah-Bott fixed point theorem [2], $\Phi(M)_{S^{1}}(\lambda)$ can be expressed in terms of the fixed point set of $\lambda \in S^{1}$ and the action of λ on its normal bundle of in M. In particular, let $\lambda=-1 \in S^{1}$ be the orientation preserving involution in $\mathbb{Z}_{2} \subset S^{1}$, and let M_{2} denote its fixed point set. We denote the transversal self-intersection of M_{2} by $M_{2} \circ M_{2}$. In [9, p. 315], Hirzebruch and Slodowy showed that

$$
\Phi(M)_{S^{1}}(-1)=\Phi\left(M_{2} \circ M_{2}\right) .
$$

On the other hand, applying Theorem 1.1

$$
\begin{equation*}
\Phi(M)=\Phi(M)_{S^{1}}(\lambda)=\Phi(M)_{S^{1}}(-1)=\Phi\left(M_{2} \circ M_{2}\right) . \tag{9}
\end{equation*}
$$

The codimension of M_{2} is positive and even, so that the elliptic genus $\Phi(M)$ can now be computed from the elliptic genera of submanifolds of M of codimension at least 4, i.e. isolated points.

Now, recall the expansion of $\Phi(M)$ at the other cusp [8]

$$
\tilde{\Phi}(M)=\frac{1}{q^{\operatorname{dim}(M) / 8}} \sum_{j=0}^{\infty} \widehat{A}\left(M, R_{j}^{\prime}\right) \cdot q^{j},
$$

where R_{j}^{\prime} is the sequence of virtual tensor bundles given by

$$
R^{\prime}(q, T)=\bigotimes_{k=2 m+1} \bigwedge_{-q^{k}} T \otimes \bigotimes_{k=2 m+2} S_{q^{k}} T
$$

and the $\widehat{A}\left(M, R_{j}^{\prime}\right)=\left\langle\widehat{A}(M) \cdot \operatorname{ch}\left(R_{j}^{\prime}\right),[M]\right\rangle$ may only defined be as characteristic numbers. The first few terms of the sequence are $R_{0}^{\prime}=1, R_{1}^{\prime}=-T, R_{2}^{\prime}=\bigwedge^{2} T+T$, etc. This expansion is obtained by considering $q=e^{\pi i t}$ and changing the t coordinate in (1) by $t \rightarrow-1 / t$, and then by $t \rightarrow 2 t$ (cf. [8]). This expansion has, a priori, a pole of order $1 / 2$ in the variable q. On the other hand, by (9) we also have

$$
\begin{equation*}
\tilde{\Phi}(M)=\tilde{\Phi}\left(M_{2} \circ M_{2}\right), \tag{10}
\end{equation*}
$$

whose right-hand side has a pole of order at most 0 on the variable q, since the dimension of any connected component of $M_{2} \circ M_{2}$ is at most 0 . Therefore (10) implies that the first coefficient on the left-hand side vanishes,

$$
\widehat{A}(M)=0 .
$$

Acknowledgements

The author wishes to thank Tian-Jun Li and Marcel Nicolau for stimulating conversations, as well as the Centre de Recerca Matemàtica (Barcelona) and the Mathematical Sciences Research Institute (Berkeley) for their hospitality and support.

References

[1] D. Acosta, T. Lawson, Even non-spin manifolds, spin c structures, and duality, Enseign. Math. (2) 43 (1-2) (1997) $27-32$.
[2] M.F. Atiyah, R. Bott, The Lefschetz fixed point theorem for elliptic complexes. II, Appl. Ann. Math. 88 (1968) 451-491.
[3] M.F. Atiyah, F. Hirzebruch, Spin manifolds and group actions, in: Essays in Topology and Related Subjects, Springer, Berlin, 1970, pp. 18-28.
[4] M.F. Atiyah, G. Segal, The index of elliptic operators II, Ann. of Math. 86 (1968) 531-545.
[5] R. Bott, T. Taubes, On the rigidity theorems of Witten, J. AMS 2 (1) (1989) 137-186.
[6] S.K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (2) (1983) $279-315$.
[7] H. Herrera, R. Herrera, Generalized elliptic genus and cobordism class of nonspin real Grassmannians, Ann. Global Anal. Geom. 24 (4) (2003) 323-335.
[8] F. Hirzebruch, T. Berger, R. Jung, Manifolds and Modular Forms. Aspects of Mathematics, Vieweg, 1992.
[9] F. Hirzebruch, P. Slodowy, Elliptic genera, involutions, and homogeneous spin manifolds, Geometriae Dedicata 35 (1990) $309-343$.
[10] W. Huck, V. Puppe, Circle actions on 4-manifolds. II, Arch. Math. (Basel) 71 (6) (1998) 493-500.
[11] S. Ochanine, Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology 26 (1987) 143-151.
[12] C.H. Taubes, S^{1} actions and elliptic genera, Comm. Math. Phys. 122 (3) (1989) 455-526.
[13] E. Witten, The index of the Dirac operator on loop space, in: P.S. Landweber (Ed.), Elliptic Curves and Modular Forms in Algebraic Topology, in: Lecture Notes Math., vol. 1326, Springer, Berlin, 1988, pp. 161-181.

[^0]: 4) Partially supported by a Fellowship of the Japanese Society for the Promotion of Science, NSF Grant DMS-0204002, PSC-CUNY Grant \#67300-00-36, Convenio Concyteg 05-02-K117-112, and Apoyo CONACyT J48320-F.

 * Tel.: +52 (473) 7350800; fax: +52 (473) 7325749.

 E-mail address: rherrera@cimat.mx.

