Dissection of solutions in cooperative game theory using representation techniques

L. Hernández-Lamoneda • R. Juárez • F. Sánchez-Sánchez

Accepted: 6 September 2006 / Published online: 7 October 2006
© Springer-Verlag 2006

Abstract

We compute a decomposition for the space of cooperative TU-games under the action of the symmetric group S_{n}. In particular we identify all irreducible subspaces that are relevant to the study of symmetric linear solutions namely those that are isomorphic to the irreducible summands of \mathbb{R}^{n}. We then use such decomposition to derive, in a very economical way, some old and some new results for linear symmetric solutions.

1 Introduction

In this article we study linear, symmetric solutions for the space of cooperative TU games with n players using basic representation theory of the group of permutations S_{n}.

Representation theory is a general tool for organizing linear algebra data in the presence of a group of symmetries. It makes sense to use it, first, as a "bookkeeping" tool, converting arguments that would typically require some ingenuity on the part of the researcher into routine exercises. More importantly, it presents the information in a more clear and concise way, thus shedding new light into the relations (sometimes hidden until then) between the elements

[^0]that participate in a given problem. We believe we have shown how this is true in the context of linear symmetric solutions in cooperative game theory.

Briefly, what we do is the following. We derive direct sum decompositions of the space of games and the space of payoffs into "elementary" pieces. Moreover, any linear, symmetric solution when restricted to any such elementary subspace is either zero or multiplication by a single scalar, regardless of the dimension of the elementary subspace - this follows from the so called Schur's lemma; therefore, all linear, symmetric solutions may be written (simultaneously) as a sum of trivial maps.

Once we have such a global description of all linear and symmetric solutions, it is easy to understand the restrictions imposed by other conditions or axioms, for example: efficiency, dummy player axiom, self and anti-self-duality, etc.

The reader will find here new proofs, following the above scheme, of well known results as well as new theorems and characterizations for certain classes of linear symmetric solutions. Besides presenting these results, one of the main objectives of the present work is to advertise representation theory as a natural tool for research in cooperative game theory. We believe it is natural and powerful and nevertheless its use has been neglected (with the notable exception of Kleinberg and Weiss (1985), we have not been able to find a single reference where the theory is used).

2 Framework

Consider \mathbb{R}^{n}, the space of payoff vectors for n players. Every permutation σ of $N=\{1,2, \ldots, n\}$ may be thought of as a linear map $L_{\sigma}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by permuting the coordinates of any vector $x \in \mathbb{R}^{n}$ according to σ. The assignment $\sigma \mapsto L_{\sigma}$ is called a representation, since we represent each permutation by a certain linear map. One can also say that there is a linear "action" on \mathbb{R}^{n} by the group of permutations.

From linear algebra we know that the matrix of the linear map L_{σ} may have a simple block decomposition with respect to some basis of \mathbb{R}^{n} (e.g., L_{σ} might be diagonalizable). But we are not really interested in only finding a basis that will set a single map L_{σ} in a simpler form. What we want is to write them all in a simpler way at the same time.

For example, consider the vector $\mathbf{1}=(1,1, \ldots, 1) \in \mathbb{R}^{n}$, then $\mathbf{1}$ is at the same time an eigenvector to every linear map L_{σ}, for all σ, since permuting its coordinates does nothing to it. Let $\Delta_{n}=\{(t, t, \ldots, t) \mid t \in \mathbb{R}\}$ be the diagonal generated by $\mathbf{1}$; we say that Δ_{n} is "trivial", in the sense that every map L_{σ} is the identity map when restricted to Δ_{n}.

Look also at the orthogonal complement to $\mathbf{1}$, which we denote by Δ_{n}^{\perp}. Clearly $\Delta_{n}^{\perp}=\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} y_{i}=0\right\}$. Now, if we pick $y \in \Delta_{n}^{\perp}$ and apply to it any linear map L_{σ} we obtain another vector also inside of Δ_{n}^{\perp}; that is

$$
y \in \Delta_{n}^{\perp} \Rightarrow L_{\sigma}(y) \in \Delta_{n}^{\perp}, \quad \text { for every } \sigma
$$

since permuting the coordinates of a vector does not change the fact that their sum is zero. We say that Δ_{n}^{\perp} is an invariant subspace.

Thus, we can "decompose" \mathbb{R}^{n} as a direct sum, $\mathbb{R}^{n}=\Delta_{n} \oplus \Delta_{n}^{\perp}$, in such a way that each summand is "invariant". So if we were to choose a basis of \mathbb{R}^{n} consisting of $\mathbf{1}$ and a basis of Δ_{n}^{\perp}, then all L_{σ} would have a matrix, with respect to that basis, of the form

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & A_{\sigma}
\end{array}\right) .
$$

We show in the Appendix - although it is perhaps intuitively clear - that there is no further decomposition; that is, the subspace Δ_{n}^{\perp} does not contain any invariant subspace smaller than itself (and different to $\{0\}$). We say that Δ_{n}^{\perp} is "irreducible".

The space of cooperative games $G=\left\{v: 2^{N} \rightarrow \mathbb{R} \mid v(\emptyset)=0\right\}$ is also a vector space and the group S_{n} has a natural action on G as follows: Given a permutation σ let $T_{\sigma}: G \rightarrow G$ be the linear map defined by

$$
\left[T_{\sigma}(v)\right](S)=v\left(\sigma^{-1} S\right)
$$

for every game $v \in G$ and every coalition $S \subset N$, where $\sigma^{-1} S$ is the coalition that contains a player i if and only if σ_{i} is a player in S.

The main result of Sect. 3 is a statement about a decomposition of G into invariant subspaces for this action.

We first observe the following obvious decomposition

$$
G=\bigoplus_{j=1}^{n} G_{j}
$$

where G_{j} consists of those games that vanish on every coalition not containing exactly j players. Clearly, every G_{j} is invariant under all permutations of the players.

Let us identify certain types of games within each $G_{j}, j<n\left(G_{n}\right.$ is a 1-dimensional trivial subspace generated by the game that assigns 1 to the grand coalition, and zero to every other one). For each $j<n$, and each $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ define the game $x^{j} \in G_{j}$ as follows

$$
x^{j}(S)= \begin{cases}\sum_{i \in S} x_{i} & \text { if }|S|=j \\ 0 & \text { if }|S| \neq j\end{cases}
$$

Let $h_{j}: \mathbb{R}^{n} \rightarrow G_{j}$ denote the map $h_{j}(x)=x^{j} ; h_{j}$ is a linear 1-1 map that commutes with the actions of S_{n}, that is, $h_{j} \circ L_{\sigma}=T_{\sigma} \circ h_{j}$.

Set $C_{j}=h_{j}\left(\Delta_{n}\right)$ and $U_{j}=h_{j}\left(\Delta_{n}^{\perp}\right)$. We note that h_{j} is an isomorphism between U_{j} and Δ_{n}^{\perp} (similarly, between C_{j} and Δ_{n}) since it is a linear map which is 1-1 and onto and it commutes with the respective actions of S_{n}. Isomorphic spaces
are indistinguishable from the point of view of linear algebra together with an action of the group of permutations. Thus we may consider C_{j} as the same as Δ_{n} and U_{j} same as Δ_{n}^{\perp}. In particular, both spaces are irreducible.

Typically (as soon as $n>3$ and $1<j<n-1$), within G_{j} there are games not necessarily lying in $C_{j} \oplus U_{j}$. In G we have defined a natural inner product:

$$
\left\langle v_{1}, v_{2}\right\rangle=\sum_{S \subset N} v_{1}(S) v_{2}(S)
$$

moreover, all T_{σ} are orthogonal transformations with respect to this inner product: $\left\langle T_{\sigma}\left(v_{1}\right), T_{\sigma}\left(v_{2}\right)\right\rangle=\left\langle v_{1}, v_{2}\right\rangle$, for all $v_{1}, v_{2} \in G$ (when this happens it is said that the inner product is invariant under the action).

Call W_{j} the orthogonal complement to $C_{j} \oplus U_{j}$ within G_{j}. We have

$$
G_{j}=C_{j} \oplus U_{j} \oplus W_{j}
$$

and we have arrived to the desired decomposition

$$
G=C_{1} \oplus \cdots \oplus C_{n} \oplus U_{1} \oplus \cdots \oplus U_{n-1} \oplus W
$$

where $W=\bigoplus_{j=1}^{n-1} W_{j}$, and every C_{j} is isomorphic to Δ_{n} and every U_{j} is isomorphic to Δ_{n}^{\perp}. Note that $C=C_{1} \oplus \cdots \oplus C_{n}$ is precisely the space of symmetric games (that is, games whose values depend only on the cardinality of the given coalition).

Each W_{j} could be further decomposed so that in the end we have expressed W as a sum of irreducible subspaces. Now, the main theorem (Proposition 1) asserts that none of the irreducible summands of W is isomorphic to either Δ_{n} or to Δ_{n}^{\perp}.

We use the above decomposition to study solutions, more precisely we look at solutions $\phi: G \rightarrow \mathbb{R}^{n}$ which are linear and symmetric (i.e., $\phi \circ T_{\sigma}=L_{\sigma} \circ \phi$, $\forall \sigma)$. Rather than keep on carrying the L_{σ} 's and T_{σ} 's, one abuses notation and denotes the linear transformations by the same letter σ; thus, symmetry is simply expressed as

$$
\phi(\sigma \cdot v)=\sigma \cdot \phi(v)
$$

Schur's lemma (see the Appendix for a precise statement) implies that every linear, symmetric ϕ is zero on W, is a multiple of $h_{j}^{-1}: C_{j} \rightarrow \Delta_{n}$ when restricted to C_{j} and is a multiple of $h_{k}^{-1}: U_{k} \rightarrow \Delta_{n}^{\perp}$ when restricted to U_{k}. This is the punch line of the decomposition theorem.

As a result, the block decomposition (relative to the decomposition of G) of every symmetric, linear solution

$$
\phi: G=C_{1} \oplus \cdots \oplus C_{n} \oplus U_{1} \oplus \cdots \oplus U_{n-1} \oplus W \rightarrow R^{n}=\Delta_{n} \oplus \Delta_{n}^{\perp}
$$

is as simple as possible: with most entries zeroes, and where the non-zero blocks are all diagonal and multiples of the identity matrix:

$$
\phi=\left(\begin{array}{ccccccccc}
\lambda_{1} & \cdots & \lambda_{n} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \cdots & 0 & \mu_{1} I_{n-1} & \cdots & \mu_{n-1} I_{n-1} & 0 & \cdots & 0
\end{array}\right) .
$$

In particular, the space of all such solutions is $(2 n-1)$-dimensional and W is the common kernel of all of them.

The rest of the article consists of using this information to study solutions satisfying further hypotheses.

In Sect. 4 we give some applications of this method. First we add to linearity and symmetry, the efficiency axiom and characterize very easily all such solutions:

A linear symmetric solution is efficient if and only if its restriction to the symmetric games C coincides with the egalitarian solution.

Next, we study and characterize the linear symmetric solutions that further satisfy the null (or dummy player) axiom.

In Sect. 4.3, we turn to Shapley's value and its relationship to additive games. It turns out that there is an invariant inner product on G (should this be the "natural" inner product on G ?) that makes Shapley's value, $S h$, the adjoint to the additive games map, i.e., the map $\mathbb{R}^{n} \rightarrow G$ such that

$$
x \mapsto\left[S \mapsto x(S)=\sum_{j \in S} x_{j}\right] .
$$

Equivalently, there is an invariant inner product on G such that Shapley's value is the same as orthogonal projection - with respect to this inner product - onto the subspace of additive games.

Another application is to the study of the notion of self-duality. Recall that the duality operator on games $*: G \rightarrow G$, is defined by $(* v)(S)=v(N)-v(N \backslash S)$. A self-dual solution is one for which $\phi(* v)=\phi(v)$, for every game v. We study and characterize self-duality, and its relationship to the other most common axioms (efficiency and nullity).

The last section of the article is devoted to a few results regarding the kernel of linear symmetric solutions: we compute the common kernel of all linear, symmetric and efficient solutions; we give an expression for the kernel of any given linear symmetric solution, in particular we compute it for the Shapley value.

3 Group representation preliminaries

Precise definitions and some proofs for this section may be found in the Appendix at the end of the article. Nevertheless, for the sake of easier reading we repeat here a few definitions and give an idea of proofs, sometimes in a less rigorous but more accessible manner.

Let $N=\{1, \ldots, n\}$ be the set of players. Let $G=G^{(n)}=\left\{v: 2^{N} \rightarrow \mathbb{R} \mid v(\emptyset)=\right.$ $0\}$ be the real vector space of games in n players.

The group of permutations of N, S_{n}, acts naturally on G via linear transformations (i.e., G is a representation of S_{n}). That is, each permutation $\theta \in S_{n}$ corresponds to a linear, invertible transformation, which we still call θ, of the vector space G; namely, let

$$
(\theta \cdot v)(S):=(\rho(\theta)(v))(S)=v\left(\theta^{-1} \cdot S\right)
$$

for every $\theta \in S_{n}, v \in G$ and $S \subset N$, where $\theta \cdot S$ is the set obtained from S by permuting its elements according to θ (i.e., $\theta \cdot S=\left\{\theta_{i}:=\theta(i) \mid i \in S\right\}$).

Moreover, this assignment preserves multiplication (i.e., is a group homomorphism) in the sense that the linear map corresponding to the product of the two permutations $\theta \sigma$ is the product (or composition) of the maps corresponding to θ and σ, in that order. We will sometimes say that S_{n} acts (linearly) on G.

Similarly, \mathbb{R}^{n} is also a representation space for S_{n} :

$$
\theta \cdot\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{\theta_{1}}, x_{\theta_{2}}, \ldots, x_{\theta_{n}}\right) .
$$

Definition 1 A linear symmetric solution ϕ is a linear map $\phi: G \rightarrow \mathbb{R}^{n}$ that is symmetric in the following sense: for every $\theta \in S_{n}$ and $v \in G$ we have that

$$
\phi(\theta \cdot v)=\theta \cdot \phi(v)
$$

In other words, a symmetric ϕ "commutes" with the actions on the domain and range of ϕ.

We denote by $\mathcal{L S}(G)$ the vector space of all linear symmetric solutions on G.
In the language of representation theory, what we are calling a linear, symmetric map is usually referred to as an S_{n}-equivariant map.

3.1 Decomposition of G under S_{n}

Definition 2

- A subspace V of G or \mathbb{R}^{n} is invariant (for the action of S_{n}) if for every vector $v \in V$ and every permutation $\theta \in S_{n}$ we have that

$$
\theta \cdot v \in V
$$

- A subspace V of G or \mathbb{R}^{n} is irreducible if V itself has no invariant subspaces other than $\{0\}$ and V itself.

We begin with the decomposition of \mathbb{R}^{n} into irreducible representations, which is easier, and then proceed to do the same thing for G; that is, we wish to write \mathbb{R}^{n} as a direct sum of subspaces, each invariant for all permutations in S_{n}
and in such a way that the summands cannot be further decomposed (i.e., they are irreducible).

For this, set $\mathbf{1}=(\overbrace{1,1, \ldots, 1}^{n}) \in \mathbb{R}^{n}, \Delta_{n}=\left\{(t, t, \ldots, t) \in \mathbb{R}^{n}\right\}=\mathbb{R} \mathbf{1}$ and $\Delta_{n}^{\perp}=\left\{x \in \mathbb{R}^{n} \mid x \cdot \mathbf{1}=0\right\}$ the orthogonal complement to the diagonal Δ_{n}. The space Δ_{n}^{\perp} is usually called the "standard representation" of S_{n}. Notice that Δ_{n} is a "trivial" subspace in the sense that every permutation acts as the identity transformation.

Every permutation fixes every element of the diagonal line Δ_{n}, so, in particular, this line is an invariant subspace of \mathbb{R}^{n}. Being 1-dimensional, it is automatically irreducible. Its orthogonal complement, Δ_{n}^{\perp}, consists of all vectors such that the sum of their coordinates is zero. Clearly, if we permute the coordinates of any such vector, its sum will still be zero. Hence Δ_{n}^{\perp} is also an invariant subspace. The next result tells us that this subspace is also irreducible.

Lemma 1 The decomposition of \mathbb{R}^{n}, under S_{n}, into irreducible subspaces is

$$
\mathbb{R}^{n}=\Delta_{n} \oplus \Delta_{n}^{\perp}
$$

Thus, Lemma 1 tells us that \mathbb{R}^{n} as a vector space with group of symmetry S_{n} as defined above, can be written as an orthogonal sum of two subspaces $\left(\Delta_{n}\right.$ and Δ_{n}^{\perp}) which are invariant under permutations and which can no longer be further decomposed.

The proof of this lemma is an induction argument that can be found in the Appendix.

For each $j: 1, \ldots, n$, let $G_{j}=\{v \in G \mid v(S)=0$ if $|S| \neq j\}$. G_{j} is a vector subspace of G and, moreover, $G=\bigoplus_{j=1}^{n} G_{j}$, each G_{j} is invariant under S_{n} and the direct sum is orthogonal with respect to the invariant inner product on G given by $\langle v, w\rangle=\sum_{S \subset N} v(S) w(S) .{ }^{1}$

Here, invariance of the inner product means that every permutation $\theta \in S_{n}$ is not only a linear map of G, but an orthogonal map with respect to this inner product. Formally,

$$
\langle\theta \cdot v, \theta \cdot w\rangle=\langle v, w\rangle
$$

for every $v, w \in G$.
The following games play an important role in describing the decomposition of the space of games G.

For each $j: 1, \ldots, n$ define $c_{j} \in G_{j}$ as follows

$$
c_{j}(S)= \begin{cases}1 & \text { if }|S|=j \\ 0 & \text { if }|S| \neq j\end{cases}
$$

[^1]Notice that $G_{n}=\mathbb{R} c_{n}$.
Also, for each $j: 1, \ldots, n$, and for each $x \in \mathbb{R}^{n}$, let $x^{j} \in G_{j}$ be given by

$$
x^{j}(S)=\left\{\begin{array}{cl}
x(S) & \text { if }|S|=j, \\
0 & \text { if }|S| \neq j
\end{array}\right.
$$

where $x(S)=\sum_{i \in S} x_{i}$.
Definition 3 Suppose V_{1} and V_{2} are two representations for the group S_{n} i.e., we have two vector spaces V_{1} and V_{2} where the group S_{n} is acting by linear maps. We say that V_{1} and V_{2} are isomorphic if there is a linear map between them, which is 1-1 and onto and that commutes with the respective S_{n}-actions. Formally, there is an invertible linear map $h: V_{1} \rightarrow V_{2}$, such that

$$
h\left(\theta \cdot v_{1}\right)=\theta \cdot\left(h\left(v_{1}\right)\right) \quad \text { for all } \theta \in S_{n}
$$

We then write $V_{1} \simeq V_{2}$.
For our purposes, V_{1} will be an irreducible subspace of G and V_{2} an irreducible subspace of \mathbb{R}^{n}

Isomorphic representations are essentially "equal"; not only are they spaces of the same dimension, but the actions are equivalent under some linear invertible map between them. A concrete example may be found in the Appendix.

Proposition 1 For $j<n$,

$$
G_{j}=C_{j} \oplus U_{j} \oplus W_{j}
$$

where $C_{j}=\mathbb{R} c_{j} \simeq \mathbb{R}, U_{j}=\left\{x^{j} \mid x \in \Delta_{n}^{\perp}\right\} \simeq \Delta_{n}^{\perp}$ and W_{j} does not contain any summands isomorphic to either \mathbb{R} nor Δ_{n}^{\perp}. The decomposition is orthogonal.

Let us give an idea of how the proof goes; the complete proof of this proposition can be found at the end of the Appendix as the proof of Proposition 9.

We define the map $T_{j}: \mathbb{R}^{n} \rightarrow G_{j}$ by $T_{j}(x)=x^{j}$. This map is linear (and S_{n}-equivariant) and 1-1. From Lemma 1 we have the splitting $\mathbb{R}^{n}=\Delta_{n} \oplus \Delta_{n}^{\perp}$. Thus, inside of G_{j}, we have the images of these two subspaces: $C_{j}=T_{j}\left(\Delta_{n}\right)$ and $U_{j}=T_{j}\left(\Delta_{n}^{\perp}\right)$.

Denote by W_{j} the orthogonal complement to $C_{j} \oplus U_{j}$ within G_{j}. The last, and hardest, part is to show that W_{j} does not contain any summands isomorphic to either C_{j} or U_{j}.

Proposition 1 does not quite give us a decomposition of G_{j} into irreducible summands. The subspaces C_{j} and U_{j} are irreducible (each isomorphic to Δ_{n} and Δ_{n}^{\perp}, respectively) and together give us a copy of \mathbb{R}^{n} inside of G. Whereas W_{j} may or may not be irreducible (depending on j and N), but as we shall see the exact nature of this subspace plays no role in the study of linear, symmetric solutions since (as it will be promptly proved) it lies in the kernel of any such solution.

Proposition 1 gives us a decomposition of the space of games that is a key ingredient in our subsequent analysis.

Set $C=\bigoplus_{j=1}^{n} C_{j}$. This is the space of symmetric games, i.e., games whose value on a given set depends only on its cardinality. According to Proposition $1, C$ is the largest subspace of G where S_{n} acts trivially. Let $U=\bigoplus_{j=1}^{n-1} U_{j}$ and $W=\bigoplus_{j=1}^{n-1} W_{j}$. Then

$$
G=C \oplus U \oplus W
$$

The following result gives a good example of how Proposition 1 is to be used (in conjunction with Schur's Lemma) to gain information about linear symmetric solutions.

Corollary 1

- Every linear symmetric solution vanishes in W.
- $\operatorname{dim} \mathcal{L S}(G)=2 n-1$.

Proof Let $\phi: C \oplus U \oplus W \rightarrow \Delta_{n} \oplus \Delta_{n}^{\perp}$ be a linear symmetric solution. Assume $X \subset W$ is an irreducible summand in the decomposition of W (even while we do not know the decomposition of W as a sum of irreducible subspaces, it is known that such a decomposition exists). Let $\pi_{\alpha}, \alpha \in\{1,2\}$, denote orthogonal projection of \mathbb{R}^{n} onto Δ_{n} and Δ_{n}^{\perp}, respectively. Now, $\phi: G \rightarrow \mathbb{R}^{n}=\Delta_{n} \oplus \Delta_{n}^{\perp}$, may be written as $\phi=\left(\pi_{1} \circ \phi, \pi_{2} \circ \phi\right)$. Denote by $\iota: X \rightarrow G$ the inclusion, then, the restriction of ϕ to X may be expressed as

$$
\phi_{\left.\right|_{X}}=\phi \circ \iota=\left(\pi_{1} \circ \phi \circ \iota, \pi_{2} \circ \phi \circ \iota\right) .
$$

Now, $\pi_{\alpha} \circ \phi \circ \iota$ is a linear symmetric map from X to either Δ_{n} or Δ_{n}^{\perp}; according to Proposition 1, X is not isomorphic to either of these two spaces, thus Schur's Lemma (see Appendix for the statement) says that $\pi_{\alpha} \circ \phi \circ \iota$ must be zero. Since this is true for every irreducible summand X of W, ϕ is zero on all of W.

Schur's Lemma also implies that ϕ maps each C_{j} into Δ_{n} and each U_{j} into Δ_{n}^{\perp}, and that its restriction to each C_{j} or U_{j} is unique up to multiplication by a scalar (i.e., any two linear symmetric solutions when restricted to C_{j} - or U_{j} differ only by multiplication by a constant).

So, define the following linear symmetric solutions. For $j: 1, \ldots, n$ and k : $1, \ldots, n-1$, we set

$$
\begin{gathered}
\phi_{j}\left(c_{l}\right)=\delta_{j l}, \phi_{j_{\left.\right|_{U \oplus W}} \equiv 0}, \\
\psi_{k}\left(x^{l}\right)=\delta_{k l} x, \psi_{\left.k\right|_{C \oplus W}} \equiv 0
\end{gathered}
$$

and where $\delta_{j l}$ is Kronecker's delta.
Clearly $\left\{\phi_{j}\right\} \cup\left\{\psi_{k}\right\}$ is a linearly independent set. Moreover, as discussed above, Schur's Lemma tells us that for any $\phi \in \mathcal{L S}(G)$, every $j: 1, \ldots, n$ and
$k: 1, \ldots, n-1$, the restriction of ϕ to C_{j} is a multiple of ϕ_{j} and ϕ restricted to U_{k} is a multiple of ψ_{k}. Thus ϕ is a linear combination of the ϕ_{j} 's and ψ_{k} 's. Thus $\left\{\phi_{j}\right\} \cup\left\{\psi_{k}\right\}$ is a basis for $\mathcal{L S}(G)$

Remark 1 Proposition 1 and Corollary 2 imply that in order to study symmetric solutions, one needs to look only at those games inside $C \oplus U$; in the next section we refine this further to a subspace of dimension $2 n-1$ inside of G.

3.1.1 The space W

Although we have remarked that to the study of linear symmetric solutions the space W plays only the role of the common kernel of every such solution, it may be interesting, nevertheless, to characterize the games that lie in this subspace. That is the content of Proposition 2 of this subsection.

Lemma 2

$$
C \oplus U=\left\{\sum_{j=1}^{n} x_{j}^{j} \mid x_{j} \in \mathbb{R}^{n}, \text { for } j=1,2, \ldots, n\right\}
$$

Proof Let $V=\left\{\sum_{j=1}^{n} x_{j}^{j} \mid x_{j} \in \mathbb{R}^{n}\right\}$. We first show $V \subset C \oplus U$.
Recall that to every vector $x \in \mathbb{R}^{n}$, and to every $j: 1, \ldots, n$, we have associated a game x^{j} via

$$
x^{j}(S)=\left\{\begin{array}{cl}
x(S) & \text { if }|S|=j \\
0 & \text { if }|S| \neq j
\end{array}\right.
$$

Thus, for the vector $\mathbf{1}=(1,1, \ldots, 1) \in \mathbb{R}^{n}$ we have that

$$
\mathbf{1}^{j}= \begin{cases}j & \text { if }|S|=j \\ 0 & \text { if }|S| \neq j\end{cases}
$$

which in particular shows that $\mathbf{1}^{j}=j c_{j}$.
Now, choose n arbitrary vectors $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{n}$. Each of them may be decomposed as a sum with respect to the direct sum decomposition $\mathbb{R}^{n}=$ $\Delta_{n} \oplus \Delta_{n}^{\perp}$. Thus we write $x_{j}=a_{j} \mathbf{1}+z_{j}$ where $z_{j} \in \Delta_{n}^{\perp}$.

Then,

$$
\sum_{j=1}^{n} x_{j}^{j}=\sum_{j=1}^{n} a_{j} \mathbf{1}^{j}+\sum_{j=1}^{n} z_{j}^{j}=\sum_{j=1}^{n} j a_{j} c_{j}+\sum_{j=1}^{n-1} z_{j}^{j} \in C \oplus U
$$

since $z^{n}=0$ for all $z \in \Delta_{n}^{\perp}$. This shows that $V \subset C \oplus U$.
Now, $c_{j}=\frac{1}{j} \mathbf{1}^{j} \in V$, thus $C_{j} \subset V$. Also, every element in U_{j} is, by definition, of the form x^{j} with $x \in \Delta_{n}^{\perp}$, thus $U_{j} \subset V$. Hence $C \oplus U \subset V$

Proposition 2

$$
W=\left\{w \in G \mid \forall i, j: 1, \ldots, n, \sum_{\substack{|S|=j \\ S \ni i}} w(S)=0\right\}
$$

Proof First, $w \in W \Leftrightarrow w \in(C \oplus U)^{\perp} \Leftrightarrow\left\langle w, \sum_{1}^{n} x_{j}^{j}\right\rangle=0$, for all $x_{j} \in \mathbb{R}^{n}$. Thus, if $\left\{e_{i}\right\}$ stands for the standard basis in \mathbb{R}^{n}, then $w \in W \Leftrightarrow\left\langle w, e_{i}^{j}\right\rangle=0$, for every $i, j: 1, \ldots, n$. Now,

$$
\left\langle w, e_{i}^{j}\right\rangle=\sum_{|S|=j} w(S) e_{i}(S)
$$

but

$$
e_{i}(S)= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { if } i \notin S\end{cases}
$$

In Kleinberg and Weiss (1985) the number of irreducible summands appearing in W is computed, whereas in Amer et al. (2003) a basis for W is given.

Example 1 Let us compute a basis for W for the case of four players, i.e., $n=4$.
If $w \in W$, then for the coalition $\{i\}$ we have

$$
w(\{i\})=\sum_{\substack{|S|=1 \\ S \ni i}} w(S)=0
$$

For subsets of cardinality two we get a system of four equations (one for each $i)$ in the six unknowns $w(\{1,2\}), w(\{1,3\}), w(\{1,4\}), w(\{2,3\}), w(\{2,4\}), w(\{3,4\})$. The solution space for this system is 2 -dimensional with basis:
$(u(\{1,2\}), u(\{1,3\}), u(\{1,4\}), u(\{2,3\}), u(\{2,4\}), u(\{3,4\}))=\left\{\begin{array}{l}(1,0,-1,-1,0,1) \\ (0,1,-1,-1,1,0)\end{array}\right.$.
For subsets of cardinality three we again get four linearly independent equations in four unknowns. Thus the value of w is zero on all subsets with three elements. Finally, on the total set it also vanishes.

Thus, W consists of games that vanish on subsets of cardinality different to 2 , and, on sets of cardinality two satisfy the relations:

$$
\begin{aligned}
& w(\{1,2\})=w(\{3,4\}), w(\{1,3\})=w(\{2,4\}), \\
& w(\{1,4\})=w(\{2,3\})=-w(\{1,2\})-w(\{1,3\}) .
\end{aligned}
$$

Remark 2 It is not difficult to show that always $W_{1}=W_{n-1}=0$.

3.2 Symmetric solutions and the action of H_{n}

Every solution $\phi \in \mathcal{L S}(G)$ is determined by its n th-coordinate, ϕ_{n}. Moreover, ϕ_{n} is an H_{n}-invariant functional, where $H_{n}=\left\{\theta \in S_{n} \mid \theta_{n}=n\right\}$ is the subgroup fixing n. More precisely, let

$$
\begin{gathered}
\operatorname{Hom}_{H_{n}}(G, \mathbb{R})=\{f: G \rightarrow \mathbb{R} \mid f \text { is linear and } f(\theta \cdot v)=f(v), \forall v \in G, \\
\left.\quad \text { and } \forall \theta \in H_{n}\right\}
\end{gathered}
$$

denote the space of H_{n}-invariant linear functions on G. Then
Lemma 3 The linear map $\mathcal{L S}(G) \rightarrow \operatorname{Hom}_{H_{n}}(G, \mathbb{R})$ given by $\phi \mapsto \phi_{n}$ is an isomorphism of vector spaces.

Proof First, let us show that if $\phi \in \mathcal{L S}(G)$ then ϕ_{n} is an H_{n}-invariant functional. Let $v \in G$ be any game, and $\sigma \in H_{n}$ be a permutation fixing player n. Thus, symmetry of ϕ implies

$$
\begin{aligned}
\left(\phi_{1}(\sigma \cdot v), \ldots, \phi_{n-1}(\sigma \cdot v), \phi_{n}(\sigma \cdot v)\right) & =\phi(\sigma \cdot v)=\sigma \cdot\left(\phi_{1}(v), \ldots, \phi_{n-1}(v), \phi_{n}(v)\right) \\
& =\left(\phi_{\sigma_{1}}(v), \ldots, \phi_{\sigma_{n-1}}(v), \phi_{n}(v)\right)
\end{aligned}
$$

since $\sigma_{n}=n$. Thus $\phi_{n}(\sigma \cdot v)=\phi_{n}(v)$ for every $\sigma \in H_{n}$.
In order to check that $\phi \mapsto \phi_{n}$, is an isomorphism it suffices to give the inverse: If $f \in \operatorname{Hom}_{H_{n}}(G, \mathbb{R})$, then let

$$
\Psi(f)=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n-1}, f\right),
$$

where $\phi_{j}(v)=f((j n) \cdot v), v \in G$, and $(j n)$ is the transposition interchanging j with n and fixing every other player. The map Ψ is clearly linear, and the inverse to $\phi \mapsto \phi_{n}$. The remaining question is whether the map $\Psi(f)$ is indeed symmetric. We finish the proof by showing this.

We use the fact that any permutation $\theta \in S_{n}$ is a composition of transpositions. Hence, to prove symmetry it is enough to check it for an arbitrary transposition $(i k)$. There are two cases, when both i and k are different to n, and when $(i k)$ is of the form (in).

Let us consider the first case, and for simplicity of exposition assume $(i k)=$ (12) and $n \geq 3$. For $j \geq 3$, we have

$$
\phi_{j}((12) \cdot v)=f((j n)(12) \cdot v)=f((12)(j n) \cdot v)=f((j n) \cdot v)
$$

where the second equality holds because (jn) and (12) commute and the last equality is the H_{n}-invariance of f.

Also,

$$
\phi_{1}((12) \cdot v)=f((1 n)(12) \cdot v)=f((12)(2 n) \cdot v)=f((2 n) \cdot v)
$$

since $(1 n)(12)=(12)(2 n)$ and invariance of f. Similarly, $\phi_{2}((12) \cdot v)=f((1 n) \cdot v)$. Hence,

$$
\begin{aligned}
\phi((12) \cdot v) & =(f((2 n) \cdot v), f((1 n) \cdot v), f((3 n) \cdot v), \ldots, f(((n-1) n) \cdot v), f(v)) \\
& =(12) \cdot \phi(v) .
\end{aligned}
$$

Finally, we take the case of a transposition of the form (in). In this case, for $j \neq i$,

$$
\phi_{j}((i n) \cdot v)=f((j n)(i n) \cdot v)=f((i j)(j n) \cdot v)=f((j n) \cdot v)
$$

whereas

$$
\phi_{i}((\text { in }) \cdot v)=f((\text { in })(\text { in }) \cdot v)=f(v)=\phi_{n}(v) .
$$

Thus the i th and the nth coordinates of ϕ have been permuted.
Just as we decomposed \mathbb{R}^{n} and G under the action of S_{n}, we want to find a decomposition under the action of the smaller group $H_{n} \subset S_{n}$. Clearly, every space that is invariant under the larger group is still invariant under H_{n}, though it may happen that a space that was irreducible for S_{n} decomposes into more than one piece under H_{n}. Let us see first what happens to \mathbb{R}^{n}.

Recall that $\mathbb{R}^{n}=\Delta_{n} \oplus \Delta_{n}^{\perp}$. Now, Δ_{n} is 1-dimensional so it is also irreducible for H_{n}. What about Δ_{n}^{\perp} ? Consider the vector $\omega \in \Delta_{n}^{\perp}$ given by

$$
\omega=(1,1, \ldots, 1,1-n) .
$$

Clearly ω and its multiples are fixed by every element of H_{n}. Likewise, the orthogonal complement (within Δ_{n}^{\perp}) to the line through ω is also invariant. Call that space A. The simplest way to see that A is invariant is by noticing that

$$
A=\left\{\left(x_{1}, x_{2}, \ldots, x_{n-1}, 0\right) \mid x_{1}+\cdots+x_{n-1}=0\right\}
$$

thus permuting the first $n-1$ entries of a vector leaves the vector inside of A.
The subgroup H_{n} can be identified with S_{n-1}, the group of permutations of the first $n-1$ players, and A is then seen to be isomorphic to the standard representation of S_{n-1}, i.e., Δ_{n-1}^{\perp}. Therefore, it is irreducible.

Summarizing, the irreducible decomposition of \mathbb{R}^{n} under the action of the group H_{n} is

$$
\mathbb{R}^{n}=\mathbb{R} \mathbf{1} \oplus \mathbb{R} \omega \oplus A
$$

We turn now to the decomposition of G under H_{n}.

Theorem 1 Let $n \geq 3$.

1. The space of games G decomposes under H_{n} as

$$
G=C \oplus T \oplus V
$$

where
(a) $\quad C=\bigoplus_{j=1}^{n} C_{j}$ as before, (in particular it is an n-dimensional trivial representation);
(b) $\quad T=\bigoplus_{j=1}^{n-1} \mathbb{R} \omega^{j}$ is a trivial $\left(\right.$ for $\left.H_{n}\right)$ representation of dimension $n-1$;
(c) V does not contain any trivial summands;
(d) The decomposition is orthogonal.
2. Any $f \in \operatorname{Hom}_{H_{n}}(G, \mathbb{R})$ vanishes in V, hence any symmetric solution $\phi \in$ $\mathcal{L S}(G)$ is determined by the values of ϕ_{n} in the $(2 n-1)$-dimensional trivial subspace $C \oplus T$.

Proof Each C_{j} is 1-dimensional, so remains an irreducible piece under the action of H_{n}.

Each U_{j} is isomorphic to Δ_{n}^{\perp}, which we have just seen splits as a sum of two subspaces, a trivial one and a space isomorphic to A. Set $A^{j}=\left\{z^{j} \mid z \in A\right\}$, then

$$
U_{j}=\mathbb{R} \omega^{j} \oplus A^{j}
$$

is the decomposition of U_{j} into irreducibles under the H_{n}-action.
Notice that, even when $n=3$, the action of H_{n} on A (and thus the one on A^{j}) is not the trivial action (e.g., when $n=3, A$ is 1 -dimensional, but the action can be seen to be multiplication by the sign of the permutation).

So we get a decomposition of G of the form

$$
G=C \oplus T \oplus V
$$

C and T as in the statement of the theorem and $V=\bigoplus_{j=1}^{n-1} A^{j} \oplus W$. The A^{j},s are irreducible and non-trivial, so to prove (c) we need to check only that there are no trivial summands (for the H_{n}-action) within W.

Suppose W contains a 1-dimensional trivial subspace Y, say. Take any nonzero element $y \in Y$ and define the linear map $f: G \rightarrow \mathbb{R}$ by setting $f(y)=1$ and $f \equiv 0$ on Y^{\perp}. Such an f is H_{n}-invariant (since H_{n} does nothing on Y and f is set to be zero on its orthogonal complement), and thus, as we have seen, it determines a linear symmetric solution ϕ. But we have proved that every linear symmetric solution vanishes on W. This is a contradiction. Therefore, W cannot contain trivial H_{n}-representations.

Orthogonality of the decomposition follows from that of the S_{n} -decomposition, plus the fact that $\mathbb{R} \omega^{j} \perp A^{j}$.

To prove 2 , notice that, by Schur's Lemma, any H_{n}-invariant $f: G \rightarrow \mathbb{R}$ vanishes when restricted to any irreducible subspace other than a trivial one. Thus $f_{l_{V}} \equiv 0$. On the other hand, any linear $f: C \oplus T \rightarrow \mathbb{R}$, when extended
as zero to V, is an H_{n}-invariant functional and gives rise to a linear symmetric solution.

Remark 3 In other words, any symmetric solution can be uniquely determined as follows: given arbitrary real numbers $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n-1}$ set $\phi_{n}\left(c_{j}\right)=a_{j}$, $\phi_{n}\left(\omega^{j}\right)=b_{j}, \phi_{\left.n\right|_{V}} \equiv 0$. Then ϕ_{n} is H_{n}-invariant and determines via Ψ a symmetric solution ϕ. Notice that this shows again that $\mathcal{L S}(G)$ is $(2 n-1)$-dimensional.

Theorem 1 identifies the minimal possible subspace of games $(C \oplus T)$ that determines every possible linear symmetric solution. Thus, in principle, to understand any given linear symmetric solution one has only to know its values on $c_{1}, \ldots, c_{n}, \omega^{1}, \ldots, \omega^{n-1}$.

4 Applications

4.1 Efficient symmetric solutions

Definition 4 A solution is efficient if

$$
\sum_{j=1}^{n} \phi_{j}(v)=\phi(v) \cdot \mathbf{1}=v(N), \quad \text { for every } v \in G
$$

In the previous section we saw that any linear symmetric solution ϕ is completely determined by its nth coordinate ϕ_{n}. Also, at the end of that section, we saw that ϕ_{n} is itself determined by its values on $C \oplus T$. Thus one expects that efficiency can be translated into some simple condition on these values. Thus,

Proposition 3 Let $f \in \operatorname{Hom}_{H_{n}}(G, \mathbb{R})$. The linear symmetric solution determined by f is efficient if and only if

1. $f\left(c_{j}\right)=0$, for all $j<n$; and
2. $f\left(c_{n}\right)=\frac{1}{n}$.

In particular, the set of efficient symmetric solutions is an affine space of dimension $n-1$.

Proof Let ϕ be the symmetric solution corresponding to f. Thus, $\phi_{k}(v)=$ $f((k n) \cdot v)$.

First of all, C_{n}^{\perp} is exactly the subspace of games v for which $v(N)=0$. Of these, those in $U \oplus W$ trivially satisfy $\phi(v) \cdot 1_{n}=0$, since (by Schur) their image lies in Δ_{n}^{\perp}.

Therefore, efficiency need only be checked on C.
Since c_{j} is fixed by all permutations in S_{n},

$$
\sum_{k=1}^{n} \phi_{k}\left(c_{j}\right)=n f\left(c_{j}\right)
$$

and so, ϕ is efficient if and only if $n f\left(c_{j}\right)=c_{j}(N)=\delta_{j n}$.
Finally, for the last assertion, let $f_{0} \in \operatorname{Hom}_{H_{n}}(G, \mathbb{R})$ be given by $f_{0}\left(c_{j}\right)=0$, $j<n, f_{0}\left(c_{n}\right)=\frac{1}{n}$, and $f_{0_{\mid}} \equiv 0$ (i.e., f_{0} is the invariant functional that gives the "egalitarian solution" $\left.\phi_{0}(v)=\frac{v(N)}{n}\right)$. Then the set of efficient symmetric solutions corresponds to the following affine set of H_{n}-invariant functionals

$$
\left\{f+f_{0} \mid f \in \operatorname{Hom}_{H_{n}}(G, \mathbb{R}) \text { and } f_{\left.\right|_{C}} \equiv 0\right\}
$$

Those games v whose values, $v(S)$, depends only on the cardinality of the coalition, S, are called symmetric games. In our notation these are exactly the games $v \in C$. The next Corollary characterizes the solutions to these games in terms of linearity, symmetry and efficiency.
Corollary 2 Among all linear, symmetric solutions, the egalitarian solution is characterized as the unique efficient solution on symmetric games.

Proof If we restrict a solution ϕ to the symmetric games space C, then efficiency is equivalent to $\phi_{n}\left(c_{j}\right)=\frac{1}{n} \delta_{j n}$, i.e., $\phi(v)=\frac{v(N)}{n}$.

In other words, all linear, symmetric, efficient solutions (e.g., Shapley's value) coincide with the egalitarian solution when restricted to the space of symmetric games.

4.1.1 Formula for all efficient symmetric solutions

We have seen that every efficient symmetric solution is uniquely determined via a functional $f \in \operatorname{Hom}_{H_{n}}(G, \mathbb{R})$ such that

1. $f\left(c_{j}\right)=0, j<n$;
2. $f\left(c_{n}\right)=\frac{1}{n}$.

Now, we want to translate this information into more standard game theoretic terminology. We compute a formula for $f(v)$, for any game v, and, finally, for $\phi(v)$.

Observe that, since $\omega=(1,1, \ldots, 1,1-n)$,

$$
\omega^{j}(S)=\left\{\begin{array}{cc}
\sum_{i \in S} \omega_{i} & |S|=j \\
0 & |S| \neq j
\end{array}=\left\{\begin{array}{cc}
0 & |S| \neq j \\
j & |S|=j \\
j-n & |S|=j \quad \text { and } \quad \text { and } \quad n \neq S
\end{array}\right.\right.
$$

Given a game $v \in G$ we first compute its orthogonal projection onto $C_{n} \oplus T$ (since it is the only part that contributes in the computation of any efficient symmetric solution). The projection of v onto $C_{n}=\mathbb{R} c_{n}$ is just $v(N) c_{n}$. Next we compute its projection, v^{T}, onto T : this is $v^{T}=\sum_{j} \frac{\left\langle v, \omega^{j}\right\rangle}{\left\langle\omega^{j}, \omega^{i}\right\rangle} \omega^{j}$, where

$$
\left\langle v, \omega^{j}\right\rangle=\sum_{S \subset N} v(S) \omega^{j}(S)=\sum_{\substack{|S|=j \\ n \notin S}} j v(S)+\sum_{\substack{|S|=j \\ n \in S}}(j-n) v(S),
$$

and

$$
\left\langle\omega^{j}, \omega^{j}\right\rangle=\sum_{\substack{|S|=j \\ n \notin S}} j^{2}+\sum_{\substack{|S|=j \\ n \in S}}(j-n)^{2}=\binom{n-1}{j} j^{2}+\binom{n-1}{j-1}(n-j)^{2}=\frac{n!}{(j-1)!(n-j-1)!} .
$$

Note that $\left\langle\omega^{j}, \omega^{j}\right\rangle=\left\langle\omega^{n-j}, \omega^{n-j}\right\rangle$.
Remark 4 At this point, we do not really care about the value of $\left\langle\omega^{j}, \omega^{j}\right\rangle$, since it is absorbed by the parameters $b_{j}=f\left(\omega^{j}\right)$. Nevertheless it will be used later on.

Since

$$
f(v)=f\left(v(N) c_{n}+v^{T}\right)=\frac{v(N)}{n}+f\left(v^{T}\right)=\frac{v(N)}{n}+\sum_{j=1}^{n-1} \frac{\left\langle v, \omega^{j}\right\rangle}{\left\langle\omega^{j}, \omega^{j}\right\rangle} f\left(\omega^{j}\right)
$$

for all $v \in G$, we get:
Proposition 4 All efficient linear symmetric solutions are given by $f \in \operatorname{Hom}_{H_{n}}(G, \mathbb{R})$ of the following form:

$$
f(v)=\frac{v(N)}{n}+\sum_{j=1}^{n-1} t_{j}\left[\sum_{\substack{|S|=j \\ n \notin S}} j v(S)+\sum_{\substack{|S|=j \\ n \in S}}(j-n) v(S)\right],
$$

where t_{1}, \ldots, t_{n-1} are arbitrary real numbers.
In the previous formula, the coefficients t_{j} are related to $f\left(\omega^{j}\right)$ via

$$
t_{j}=\frac{f\left(\omega^{j}\right)}{\left\langle\omega^{j}, \omega^{j}\right\rangle} .
$$

Theorem 2 The efficient linear symmetric solutions are precisely those $\phi \in$ $\mathcal{L S}(G)$ of the form

$$
\begin{equation*}
\phi_{i}(v)=\frac{v(N)}{n}+\sum_{\substack{S \ni i \\ S \neq N}}(n-s)\left[\beta_{s} v(S)-\beta_{n-s} v(N \backslash S)\right], \tag{1}
\end{equation*}
$$

where $s=|S|$ and $\beta_{s} \in \mathbb{R}$ are arbitrary.
Proof From Proposition 4 it follows that

$$
\phi_{i}(v)=\frac{v(N)}{n}+\sum_{j=1}^{n-1} t_{j}\left[\sum_{\substack{|S|=j \\ i \neq S}} j v(S)+\sum_{\substack{|S|=j \\ i \in S}}(j-n) v(S)\right]
$$

Now,

$$
\begin{aligned}
\sum_{j=1}^{n-1} \sum_{\substack{|S|=j \\
i \notin S}} t_{j} j v(S) & =\sum_{j=1}^{n-1} \sum_{\substack{|T|=n-j \\
i \in T}} t_{j} j v(N \backslash T) \\
& =\sum_{l=1}^{n-1} \sum_{\substack{|T|=l \\
i \in T}} t_{n-l}(n-l) v(N \backslash T)
\end{aligned}
$$

from which we get the expression of the theorem by setting $\beta_{s}=-t_{s}$.
We should mention that an equivalent formula to (1) has been obtained by Driessen and Radzik (2002).

4.2 Nullity

Definition 5

- For a game $v \in G$, we say that player i is null for v if

$$
v(S)=v(S \cup\{i\})
$$

for all $S \subset N$.

- A solution $\phi \in \mathcal{L S}(G)$ is said to be null (or to satisfy the nullity axiom) if $\phi_{i}(v)=0$ for every game v for which i is a null player.

Here we study the nullity axiom in the same spirit of the previous section. Namely, first we understand the nullity axiom as a condition on the the last coordinate, ϕ_{n}, of a linear symmetric solution. Thus, in terms of H_{n}-invariant functionals, the condition of being null may be restated as follows:
$f \in \operatorname{Hom}_{H_{n}}(G, \mathbb{R})$ gives rise to a null linear symmetric solution if and only if $f(v)=0$ for every game v for which n is a null player.

Let $M_{n}=\{v \in G \mid n$ is null for $v\} \subset G$. Note that M_{n} is an invariant subspace for the action of H_{n}. It is in fact isomorphic to the representation space $G^{(n-1)}$ of all games in $n-1$ players:

If we set $L: G^{(n-1)}=\left\{g: 2^{\{1,2, \ldots, n-1\}} \rightarrow \mathbb{R} \mid g(\emptyset)=0\right\} \rightarrow M_{n}$ by

$$
L(g)(S)=\left\{\begin{array}{lr}
g(S) & \text { if } n \notin S \\
g(S \backslash\{n\}) & \text { if } n \in S
\end{array}\right.
$$

then L is an H_{n}-equivariant isomorphism.
Now, any $f \in \operatorname{Hom}_{H_{n}}(G, \mathbb{R})$ is determined by its values on the subspace $C \oplus T$, thus we want to identify the null games for n inside $C \oplus T$. By definition, this is the space $\mathcal{N}=(C \oplus T) \cap M_{n}$.

Since $C \oplus T$ is the largest trivial subspace - for H_{n} - in G, we conclude that \mathcal{N} is the largest trivial subspace inside M_{n}. Therefore, it corresponds under the isomorphism L to the subspace of symmetric games in $n-1$ players, that is

$$
\mathcal{N}=L\left(C^{(n-1)}\right)
$$

So immediately we get that $\operatorname{dim} \mathcal{N}=n-1$ and, $\operatorname{since} \operatorname{dim}(C \oplus T)=2 n-1$, that the space of null symmetric linear solutions is n-dimensional.

Next we compute an explicit basis for \mathcal{N}.
Lemma 4 Let $\mathcal{N}=(C \oplus T) \cap M_{n}$. Then \mathcal{N} is the $(n-1)$-dimensional trivial subspace with basis $\left\{v_{j}\right\}, j: 1, \ldots, n-1$, where

$$
\nu_{j}=\frac{n-j}{n} c_{j}+\frac{j+1}{n} c_{j+1}+\frac{1}{n}\left(\omega_{n}^{j}-\omega_{n}^{j+1}\right) .
$$

Proof Let $\left\{z_{j}\right\}_{1}^{n-1}$ be the basis of $C^{(n-1)}$ obtained by restricting each c_{j}, j : $1, \ldots, n-1$, to subsets of $\{1, \ldots, n-1\}$. Then, by the above observation, $v_{j}=L\left(z_{j}\right)$ is a basis of \mathcal{N}; more explicitly,

$$
v_{j}(S)=\left\{\begin{array}{ll}
c_{j}(S) & \text { if } n \notin S \\
c_{j}(S \backslash\{n\}) & \text { if } n \in S
\end{array}= \begin{cases}1 & \text { if }|S|=j \quad \text { and } \quad n \notin S \\
1 & \text { if }|S|=j+1 \quad \text { and } \quad n \in S \\
0 & \text { otherwise }\end{cases}\right.
$$

Now, write $\nu_{j}=\sum a_{i} c_{i}+\sum b_{k} \omega^{k}$. To compute the coefficients a_{i}, b_{k} we proceed as follows:

$$
\left.\begin{array}{c}
1=v_{j}(\{1, \ldots, j\})=a_{j}+j b_{j} \\
0=v_{j}(\{1, \ldots, j-1, n\})=a_{j}+(j-n) b_{j}
\end{array}\right\} \Rightarrow b_{j}=\frac{1}{j} \text { and } a_{j}=1-\frac{j}{n}
$$

similarly, evaluating v_{j} on $\{1, \ldots, j+1\}$ and $\{1, \ldots, j, n\}$ one gets $a_{j+1}=\frac{j+1}{n}$ and $b_{j+1}=\frac{-1}{n}$ (if $j<n-1$, for $j=n-1$ one has $a_{j+1}=1, b_{j+1}=0$).

Finally, in the same way one computes that $a_{k}=b_{k}=0$ for the remaining coefficients.
Example 2 Let us assume that $f \in \operatorname{Hom}_{H_{n}}(G, \mathbb{R})$ is null and efficient. Efficiency implies $f\left(c_{j}\right)=0$, for $j \in N \backslash\{n\}$, and $f\left(c_{n}\right)=\frac{1}{n}$. Therefore, if $r_{j}=f\left(\omega_{n}^{j}\right)$,

$$
0=f\left(v_{n-1}\right)=\frac{1}{n}\left(1+r_{n-1}\right) \Rightarrow r_{n-1}=-1,
$$

and so, if $j<n-1$

$$
0=f\left(v_{j}\right)=\frac{1}{n}\left(r_{j}-r_{j+1}\right) \Rightarrow r_{j}=r_{j+1}
$$

thus $r_{j}=-1$, for all $j \in N \backslash\{n\}$.

Hence, we conclude that there is exactly one linear symmetric solution which is efficient and null (the Shapley value, Shapley (1953)). It is given by $f\left(c_{n}\right)=\frac{1}{n}$, $f\left(c_{j}\right)=0$ and $f\left(\omega_{n}^{j}\right)=-1$ for $j \in N \backslash\{n\}$.

We finish this subsection by stating the general formula for null linear symmetric solutions, i.e., solutions that satisfy all the axioms that traditionally characterize the Shapley value except for the efficiency axiom. Dubey et al. (1981) have given a similar formula. See also Weber (1988) for further discussion about solutions satisfying the nullity axiom.

Proposition 5 The space of null linear symmetric solutions is n-dimensional. The general formula for such a solution is given by:

$$
\phi_{i}(v)=\sum_{S \ngtr i} r_{S}[v(S \cup\{i\})-v(S)] .
$$

for arbitrary $r_{0}, \ldots, r_{n-1} \in \mathbb{R}$, and where $s=|S|$.
Proof Define, for $j: 1, \ldots, n-1$,

$$
\mu_{j}(S)= \begin{cases}1 & \text { if }|S|=j \text { and } n \notin S \\ -1 & \text { if }|S|=j+1 \text { and } n \in S \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\chi_{n}(S)=\left\{\begin{array}{ll}
1 & \text { if } S=\{n\} \\
0 & \text { if } S \neq\{n\}
\end{array} .\right.
$$

The μ_{j} 's and χ_{n} are H_{n}-invariant, and so they belong to $C \oplus T$. Let us show that they form a basis for the orthogonal complement to \mathcal{N} inside $C \oplus T$.

Since for every game v,

$$
\left\langle v, v_{k}\right\rangle=\sum_{S \subset N} v(S) v_{k}(S)=\sum_{\substack{|S|=k \\ n \notin S}} v(S)+\sum_{\substack{|S|=k+1 \\ n \in S}} v(S)=\sum_{\substack{|S|=k \\ n \notin S}}[v(S)+v(S \cup\{n\})]
$$

it follows that $\left\langle\mu_{j}, v_{k}\right\rangle=0$ and $\left\langle\chi_{n}, v_{k}\right\rangle=0$. It is also not hard to check that $\left\{\mu_{j}\right\} \cup\left\{\chi_{n}\right\}$ is an orthogonal set.

Let $f \in \operatorname{Hom}_{H_{n}}(G, \mathbb{R})$ be an arbitrary null solution, and $v \in G$. Then

$$
f(v)=f\left(\frac{\left\langle v, \chi_{n}\right\rangle}{\left\langle\chi_{n}, \chi_{n}\right\rangle} \chi_{n}+\sum_{j=1}^{n-1} \frac{\left\langle v, \mu_{j}\right\rangle}{\left\langle\mu_{j}, \mu_{j}\right\rangle} \mu_{j}\right) .
$$

Since

- $\left\langle v, \chi_{n}\right\rangle=v(\{n\})$,
- $\left\langle\chi_{n}, \chi_{n}\right\rangle=1$,
- $\left\langle v, \mu_{j}\right\rangle=\sum_{|S|=j}[v(S)-v(S \cup\{n\})]$ and
- $\left\langle\mu_{j}, \mu_{j}\right\rangle=2\binom{n \notin S}{n-1}$,
we obtain

$$
f(v)=f\left(\chi_{n}\right) v(\{n\})+\sum_{j=1}^{n-1}\left(\sum_{\substack{|S|=j \\ n \notin S}}[v(S)-v(S \cup\{n\})] \frac{f\left(\mu_{j}\right)}{2\binom{n-1}{j}}\right) .
$$

Set $r_{0}=f\left(\chi_{n}\right), r_{j}=\frac{-f\left(\mu_{j}\right)}{2\binom{n-1}{j}}$ for $j: 1, \ldots, n-1$. Then,

$$
f(v)=\sum_{S \ngtr n} r_{S}[v(S \cup\{n\})-v(S)],
$$

where the sum includes $S=\emptyset$ and where s stands for the cardinality of S.
Now recall that $\phi_{i}(v)$ is obtained from $f=\phi_{n}$ by interchanging i with n.
For future computations, we state the formulas of the $\mu_{k}, k: 1, \ldots, n-1$, and χ_{n}, in terms of the orthogonal basis $\left\{c_{i}, \omega^{j}\right\}, i: 1, \ldots, n, j: 1, \ldots, n-1$:

$$
\begin{gathered}
\mu_{k}=\frac{n-k}{n} c_{k}-\frac{k+1}{n} c_{k+1}+\frac{1}{n}\left(\omega^{k}+\omega^{k+1}\right), \\
\chi_{n}=\frac{1}{n}\left(c_{1}-\omega^{1}\right) .
\end{gathered}
$$

4.3 Shapley's solution

Shapley's solution can be characterized (as is well known) as the unique linear symmetric solution which is both efficient and null. As seen in the previous section, it is characterized by saying that its nth coordinate functional $S h_{n}$ is the unique element of $\operatorname{Hom}_{H_{n}}(G, \mathbb{R})$ such that

- $S h_{n}\left(c_{n}\right)=\frac{1}{n}$,
- $S h_{n}\left(c_{j}\right)=0, j<n$, and
- $\quad S h_{n}\left(\omega^{j}\right)=-1, j<n$.

From formula (1) for all efficient, symmetric and linear solutions, we obtain the following formula for Shapley's value [see Myerson (1991) for a similar expression]:

$$
S h_{i}(v)=\sum_{S \ni i} \frac{(s-1)!(n-s)!}{n!}[v(S)-v(N \backslash S)],
$$

where $s=|S|$.

4.3.1 Shapley's value as the adjoint of the additive games map

Throughout the article we have been using an inner product on G which seems very "natural" (we call it the standard inner product on G); namely,

$$
\left\langle v_{1}, v_{2}\right\rangle=\sum_{S \subset N} v_{1}(S) v_{2}(S)
$$

In fact, any other S_{n}-invariant inner product on G would have done as well. By Schur's Lemma, on each irreducible component these inner products are unique up to a constant. We see next, that a suitable choice of conformal factors can be chosen which make the new inner product have a unique relation to Shapley's value.

Look at the following S_{n}-equivariant map:^: $\mathbb{R}^{n} \rightarrow G$, which maps a vector x to the game $S \mapsto x(S)=\sum_{i \in S} x_{i}$, which we denote by \hat{x}. The image $\widehat{\mathbb{R}^{n}} \subset G$, of this map, is precisely the subspace of additive games (i.e., those games v such that $v(S \cup T)=v(S)+v(T)$ whenever $S \cap T=\emptyset)$.

Set a new inner product $\langle\langle\rangle$,$\rangle on G$ as follows:

- On C define it by declaring $\left\{c_{1}, c_{2}, \ldots, c_{n-1}, \widehat{\mathbf{1}}\right\}$ orthogonal, and of length \sqrt{n}.
- On each U_{j} set $\langle\langle\rangle$,$\rangle with$

$$
\left\langle\left\langle x^{j}, y^{j}\right\rangle\right\rangle=\frac{1}{n-1} x \cdot y
$$

for every $x, y \in \Delta_{n}^{\perp}$.

- Set $U_{i} \perp U_{j}$, for all $i \neq j$.
- Set $\langle\langle\rangle\rangle=,\langle$,$\rangle on W$.

Then $\langle\langle\rangle$,$\rangle is S_{n}$-invariant; moreover
Theorem 3 Shapley's value is characterized as being the adjoint, with respect to $\langle\langle\rangle$,$\rangle , of the map x \mapsto \hat{x}$. In other words, for every game $v \in G$ and every vector $x \in \mathbb{R}^{n}$ we have that

$$
\operatorname{Sh}(v) \cdot x=\langle\langle v, \hat{x}\rangle\rangle .
$$

Proof Let $\varphi: G \rightarrow \mathbb{R}^{n}$ be the adjoint to ${ }^{\wedge}$ with respect to $\langle\langle\rangle$,$\rangle , i.e., define the$ linear solution φ by

$$
\varphi(v) \cdot x=\langle\langle v, \hat{x}\rangle\rangle \quad \text { for every } v \in G, x \in \mathbb{R}^{n} .
$$

First of all, notice that φ is symmetric. Thus $\varphi(\widehat{\mathbf{1}})=\lambda \mathbf{1}$, for some $\lambda \in \mathbb{R}$, and since

$$
\lambda n=\lambda \mathbf{1} \cdot \mathbf{1}=\varphi(\widehat{\mathbf{1}}) \cdot \mathbf{1}=\langle\langle\widehat{\mathbf{1}}, \widehat{\mathbf{1}}\rangle\rangle=n
$$

then $\varphi(\widehat{\mathbf{1}})=\mathbf{1}$.
Also, for every $j<n, \varphi\left(c_{j}\right) \cdot \mathbf{1}=\left\langle\left\langle c_{j}, \widehat{\mathbf{1}}\right\rangle\right\rangle=0$, therefore $\varphi\left(c_{j}\right)=0$.
To finish, we need only check that $\varphi_{n}\left(\omega^{j}\right)=-1$ for every $j<n$. Thus, it is enough to check that $\varphi\left(\omega_{n}^{j}\right)=\frac{1}{n-1} \omega$; but, for every $y \in \Delta_{n}^{\perp}$,

$$
\varphi\left(\omega^{j}\right) \cdot y=\left\langle\left\langle\omega^{j}, \hat{y}\right\rangle\right\rangle=\left\langle\left\langle\omega^{j}, y^{j}\right\rangle\right\rangle=\frac{1}{n-1} \omega \cdot y .
$$

Remark 5 The proof shows that given any linear symmetric, efficient solution ψ, for which $\psi_{n}\left(\omega^{j}\right)<0$, for every j, we can find an invariant positive definite inner product on G so that ψ is the adjoint of the map ${ }^{\wedge}$.

The condition $\psi_{n}\left(\omega^{j}\right)<0$, for every j, for efficient ψ, is a natural one, in that it reflects on the fact that the only negative values of the game ω^{j} happen for coalitions that contain player n.

Corollary 3 For any $v \in G$,

$$
S h_{i}(v)=\left\langle\left\langle v, \hat{e}_{i}\right\rangle\right\rangle
$$

where $e_{i} \in \mathbb{R}^{n}$ is the usual ith vector of the standard basis of \mathbb{R}^{n}.
Remark 6 Equivalently, with respect to $\langle\langle\rangle$,$\rangle , Shapley's value is characterized$ by saying that

- $\operatorname{Sh}(\hat{x})=x$, for every additive game \hat{x}, and
- $\operatorname{Sh}(v)=0$, for every game v perpendicular to the additive games.

So Shapley's value, in this sense, is nothing more than the orthogonal projection (with respect to $\langle\langle\rangle$,$\rangle) to the additive games space. This should be compared with$ results by Kultti and Salonen (2005) relating certain efficient linear solutions with different types of inner products on G.

4.4 Duality

The interpretation of $v(S)$ changes accordingly to what people want to model. For example, $v(S)$ could be the joint benefit that the coalition S could generate if they decide to play together; in this case we would say that v is a benefit game. In a second interpretation, we could assume that the players in N want to hire a service, then $v(S)$ could be thought of as the joint cost (for the players in S) if they act together. In the latter case we say that v is a cost game. In both cases,
$v(S)$ is the "worth" assigned to the coalition S when it is formed, i.e., when the players in S decide to play together.

The duality operator, as defined next, allows us to move from one of these interpretations to the other. Thus it is a natural concept to study.

The duality operator $*: G \rightarrow G$ is defined by

$$
(* v)(S)=v(N)-v(N \backslash S) .
$$

Observe that $*^{2}=I$ and that $*$ is S_{n}-equivariant (i.e., symmetric).
Definition 6 A solution $\phi \in \mathcal{L S}(G)$ is

- self-dual, if $\phi(* v)=\phi(v)$ for all $v \in G$;
- anti-self-dual, if $\phi(* v)=-\phi(v)$ for all $v \in G$.

In order to understand better the (anti-)self-dual solutions we need to understand the action of $*$ on the H_{n}-invariant subspace $C \oplus T$. Since $*$ is S_{n}-equivariant, C is an invariant subspace: i.e., $* c \in C$ for every $c \in C$; similarly, T is also an invariant space for $*$.
Lemma 5 The action of $*$ on $C \oplus T$ is as follows:

1. For $j<n, * c_{j}=-c_{n-j}$.
2. $* c_{n}=c_{1}+\cdots+c_{n}$.
3. For $j<n, * \omega^{j}=\omega^{n-j}$.

Proof 1. Let S be such that $|S|=k$, then

$$
* c_{j}(S)=c_{j}(N)-c_{j}(N \backslash S)=-\delta_{j, n-k} .
$$

2.

$$
* c_{n}(S)=c_{n}(N)-c_{n}(N \backslash S)=1-\delta_{n, n-k},
$$

thus, $* c_{n}(S)=1$ for every $S \neq \emptyset$.
3.

$$
* \omega^{j}(S)=-\omega^{j}(N \backslash S)=\left\{\begin{array}{cc}
0 & \text { if }|N \backslash S| \neq j \\
-\omega(N \backslash S) & \text { if }|N \backslash S|=j
\end{array}=\left\{\begin{array}{cc}
0 & \text { if }|S| \neq n-j \\
\omega(S) & \text { if }|S|=n-j \\
=\omega^{n-j}(S)
\end{array}\right.\right.
$$

Remark 7 Note that $* \hat{\mathbf{1}}=\hat{\mathbf{1}}$ (in fact for every $x \in \mathbb{R}^{n} * \hat{x}=\hat{x}$). Thus, one can check that $*$ is orthogonal with respect to the inner product $\langle\langle\rangle$,$\rangle (defined in$ the previous section) that sets Shapley's solution as the adjoint of $x \mapsto \hat{x}$. From this one can give a quick proof of the self-duality of Shapley's value: For every $v \in G, x \in \mathbb{R}^{n}$

$$
\operatorname{Sh}(* v) \cdot x=\langle\langle * v, \hat{x}\rangle\rangle=\langle\langle v, * \hat{x}\rangle\rangle=\langle\langle v, \hat{x}\rangle\rangle=\operatorname{Sh}(v) \cdot x .
$$

Duality of Shapley's value was already noticed in Kalai and Samet (1987).

Clearly, every symmetric solution decomposes uniquely as a sum of a self and an anti-self dual solution $\left(\phi(v)=\frac{\phi(v)+\phi(* v)}{2}+\frac{\phi(v)-\phi(* v)}{2}\right)$, thus the spaces of these solutions have complementary dimensions. In fact,
Corollary 4 Let $f \in \operatorname{Hom}_{H_{n}}(G, \mathbb{R})$, with $f\left(c_{j}\right)=a_{j}$ and $f\left(\omega^{j}\right)=b_{j}$.

1. The symmetric solution corresponding to f is self-dual if and only if $a_{j}=-a_{n-j}, b_{j}=b_{n-j}, j<n$. In particular, the space of symmetric selfdual solutions has dimension n.
2. The symmetric solution corresponding to f is anti-self-dual if and only if $a_{j}=a_{n-j}, b_{j}=-b_{n-j}, j<n$, and $a_{1}+\cdots+a_{n-1}+2 a_{n}=0$. In particular, the space of symmetric anti-self-dual solutions has dimension $n-1$.

Proof Let us show the first statement, the other one is proven similarly.
Let ϕ be the linear symmetric solution such that $\phi_{n}=f$. Then, for every game v

$$
\phi(* v)=\phi(v) \Leftrightarrow f(* v)=f(v) \Leftrightarrow \forall j\left\{\begin{array} { l }
{ f (* c _ { j }) = f (c _ { j }) } \\
{ f (* \omega ^ { j }) = f (\omega ^ { j }) }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
-a_{n-j}=a_{j}, j<n \\
a_{1}+\cdots+a_{n}=a_{n} \\
b_{n-j}=b_{j}
\end{array}\right.\right.
$$

now, notice that the middle equation is a consequence of the first one.
Finally, for the dimension count, assume first that n is even, then $a_{n / 2}=0$, and we have the following "free" variables: $a_{1}, \ldots, a_{n / 2-1}, a_{n}, b_{1}, \ldots, b_{n / 2}$, i.e., n variables in total. Whereas if n is odd, then we can specify values for: $a_{1}, \ldots, a_{[n / 2]}, a_{n}, b_{1}, \ldots, b_{[n / 2]}$, so we have $2[n / 2]+1=n$ variables.

4.4.1 Efficient and self-dual solutions

An efficient and self-dual solution assigns equal importance to the amount that a particular coalition claims as well as to that amount which the players outside of the coalition fail to claim.

Corollary 5 The space of linear symmetric solutions which are both efficient and self-dual has dimension $\left[\frac{n}{2}\right]$. This space is the space of solutions of the form

$$
\phi_{i}(v)=\frac{v(N)}{n}+\sum_{\substack{S \ni i \\ S \neq N}}(n-s) \beta_{s}[v(S)-v(N \backslash S)]
$$

with $\beta_{s}=\beta_{n-s}$.
Proof With same notation as above, efficiency implies $a_{j}=0, j<n$, and $a_{n}=\frac{1}{n}$; while self-duality imposes the extra $b_{j}=b_{n-j}$. Clearly, then, the dimension is $\left[\frac{n}{2}\right]$. The general formula follows from formula (1) for efficient solutions, since $\beta_{n-s}=\beta_{s}$.

Since $a_{1}+\cdots+a_{n-1}+2 a_{n}=0$ for any anti-self-dual solution, there can be none which is also efficient.

4.4.2 Nullity and duality

Recall the bases $\left\{v_{j}\right\}$ and $\left\{\mu_{j}\right\} \cup\left\{\chi_{n}\right\}$ of the null space \mathcal{N} and its orthogonal complement \mathcal{N}^{\perp} (respectively) inside $C \oplus T$. The next lemma gives us the action of * with respect to these bases.

Lemma 6

1. $\operatorname{For} j=1, \ldots, n-2$ we have

$$
* v_{j}=-v_{n-j-1} \text { and } * \mu_{j}=\mu_{n-j-1} .
$$

2. $* \nu_{n-1}=* c_{n}-\chi_{n}$ and $* \mu_{n-1}=-* c_{n}-\chi_{n}$.
3. $* \chi_{n}=\frac{-1}{n}\left(c_{n-1}+\omega^{n-1}\right)$.

Proof The proof follows from Lemma 4, the formulas at the end of 2.2 and Lemma 5.

Recall (Proposition 5) that $f \in \operatorname{Hom}_{H_{n}}(G, \mathbb{R})$ gives rise to a null solution if and only if it is of the form:

$$
f(v)=\sum_{S \ngtr n} r_{S}[v(S \cup\{n\})-v(S)]
$$

where $r_{0}=f\left(\chi_{n}\right)$, and

$$
r_{j}=\frac{-f\left(\mu_{j}\right)}{2\binom{n-1}{j}}
$$

for $j: 1, \ldots, n-1$.
Proposition 6 The null solution $f(v)=\sum_{S \ngtr n} r_{s}[v(S \cup\{n\})-v(S)]$ is self-dual (respectively, anti-self-dual) if and only if $r_{j}=r_{n-j-1}$ (respectively, $r_{j}=-r_{n-j-1}$), for all $j<n$.

Proof Let us give a proof for the self-duality case.
The null f gives a self-dual solution if and only if it satisfies self-duality on any basis for $C \oplus T$. Thus, f gives rise to a self-dual solution if and only if

$$
f\left(* v_{j}\right)=f\left(v_{j}\right), f\left(* \mu_{j}\right)=f\left(\mu_{j}\right) \quad \text { and } \quad f\left(* \chi_{n}\right)=f\left(\chi_{n}\right) .
$$

A null f automatically satisfies $f\left(* v_{j}\right)=0=f\left(v_{j}\right)$ for $j \leq n-1$, thus the first $n-2$ of these equations impose no restriction.

The equation $f\left(* v_{n-1}\right)=f\left(v_{n-1}\right)=0$ is equivalent to

$$
0=f\left(v_{n-1}\right)=f\left(* c_{n}\right)-r_{0}
$$

The set of equations $f\left(* \mu_{j}\right)=f\left(\mu_{j}\right)$ give

$$
\begin{aligned}
& r_{j}=r_{n-j-1}, \quad \text { for } j<n-1, \\
& -2 r_{n-1}=-f\left(* c_{n}\right)-r_{0}
\end{aligned}
$$

which, when combined with the previous one, gives

$$
\begin{aligned}
& r_{j}=r_{n-j-1}, \quad \text { for } j<n-1, \\
& r_{n-1}=r_{0}
\end{aligned}
$$

i.e., $r_{j}=r_{n-j-1}$ for all $j \leq n-1$.

Finally, the last equation, $f\left(* \chi_{n}\right)=f\left(\chi_{n}\right)$, is already implied by the others. Notice that, since $2 c_{n}=v_{n-1}-\mu_{n-1}$ then $f\left(* c_{n}\right)=f\left(c_{n}\right)$ follows from the first two sets of equations. Then,

$$
f\left(\chi_{n}\right)=f\left(-* c_{n}-* \mu_{n-1}\right)=f\left(-c_{n}-\mu_{n-1}\right)=f\left(* \chi_{n}\right) .
$$

Anti-self-duality is treated in the same way.

5 Kernels

Corollary 1 is the statement that the common kernel of all symmetric linear solutions is W, i.e.,

$$
\bigcap_{\phi \in \mathcal{L} \mathcal{S}(G)} \operatorname{ker} \phi=W
$$

From the basic results for efficient solutions discussed in Sect. 3.1 (namely Proposition 3), the next result follows easily.
Proposition 7 The common kernel of all linear, symmetric and efficient solutions is

$$
C_{1} \oplus \cdots \oplus C_{n-1} \oplus W
$$

Remark 8 In Amer et al. (2003) the common kernel of all linear, symmetric and null solutions is computed. It is shown that it coincides with W !

In what follows we concentrate on the kernel of a single solution.
Let $\phi: G \rightarrow \mathbb{R}^{n}$ be any linear symmetric solution. As we saw before it is uniquely determined by the numbers $a_{i}=\phi_{n}\left(c_{i}\right), b_{j}=\phi_{n}\left(\omega^{j}\right)$.
Proposition 8 The kernel of ϕ consists of all games $c+u+w \in C \oplus U \oplus W$, such that

- $\left\langle c, c_{\phi}\right\rangle=0$, where $c_{\phi}=\sum_{i=1}^{n} \frac{a_{i}}{\left\|c_{i}\right\|^{2}} c_{i}$.
- $u=\sum_{j=1}^{n-1} z_{j}^{j}$, with $z_{j} \in \Delta_{n}^{\perp}$ such that $\sum_{j} b_{j} z_{j}=0$.
- $w \in W$ is arbitrary.

Compare the following corollary to a similar result in Kleinberg and Weiss (1985).

Corollary 6 The kernel of Shapley's value consists of all games $c+u+w \in$ $C \oplus U \oplus W$, such that

- $c \in C_{1} \oplus \cdots \oplus C_{n-1}$.
- $u=\sum_{j=1}^{n-1} z_{j}^{j}$, with $z_{j} \in \Delta_{n}^{\perp}$ such that $\sum_{j} z_{j}=0$.
- $w \in W$ is arbitrary.

Proof of Corollary: For Shapley's value $a_{1}=a_{2}=\cdots=a_{n-1}=0, a_{n}=\frac{1}{n}$ and $b_{j}=-1$.

Remark 9 Recall that at the end of Sect. 2.3 we have shown that the kernel of Shapley's value is the orthogonal complement -with respect to the inner product $\langle\langle\rangle$,$\rangle defined there- to the subspace of additive games. This corollary is an$ equivalent formulation without mention to $\langle\langle\rangle$,$\rangle .$

Proof of Proposition: Since ker ϕ is an invariant subspace of G then

$$
\operatorname{ker} \phi=(\operatorname{ker} \phi \cap C) \oplus(\operatorname{ker} \phi \cap U) \oplus(\operatorname{ker} \phi \cap W)
$$

to prove this, let A be an irreducible summand of $\operatorname{ker} \phi$, then A is an irreducible summand of G, and, thus, is contained in either C, U or W.

Now, for $c \in C$

$$
\left\langle c, c_{\phi}\right\rangle=\sum_{i} \frac{a_{i}}{\left\|c_{i}\right\|^{2}}\left\langle c, c_{i}\right\rangle=\sum_{i} \frac{\left\langle c, c_{i}\right\rangle}{\left\|c_{i}\right\|^{2}} \phi_{n}\left(c_{i}\right)=\phi_{n}(c),
$$

and thus, $c \in \operatorname{ker} \phi$ if and only if $\left\langle c, c_{\phi}\right\rangle=0$.
Every $u \in U$ can be written as $u=\sum_{j=1}^{n-1} z_{j}^{j}$, with $z_{j} \in \Delta_{n}^{\perp}$. Then,

$$
\phi(u)=\sum_{j} \phi\left(z_{j}^{j}\right)=\frac{1}{1-n} \sum_{j} b_{j} z_{j} .
$$

Finally, $W \subset \operatorname{ker} \phi$.

Appendix

A reference for basic representation theory is Fulton and Harris (1991). Nevertheless, we recall all the basic facts that we need.

Definition 7 Let H be an arbitrary group. A representation for H is a homomorphism $\rho: H \rightarrow G L(V)$, where V is a vector space and $G L(V)$ denotes the group of invertible linear maps of V.

In other words, a representation of H is a map assigning to each element $h \in H$ a linear map $\rho(h): V \rightarrow V$ that respects multiplication:

$$
\rho\left(h_{1} h_{2}\right)=\rho\left(h_{1}\right) \rho\left(h_{2}\right) .
$$

One usually abuses notation and talks about the representation V without explicitly mentioning the homomorphism ρ. Thus, when applying the linear transformation corresponding to $h \in H$ on a vector $v \in V$, we write $h \cdot v$ rather than $(\rho(h))(v)$.

Definition 8 Let V and W be two representations for the group H.

- A linear map $T: V \rightarrow W$ is H-equivariant if $T(h \cdot v)=h \cdot(T(v))$, for every $v \in V$ and every $h \in H$.
- V and W are isomorphic H-representations, $V \simeq W$, if there exists an H-equivariant isomorphism between them.

Thus, two representations that are isomorphic are, as far as all problems dealing with linear algebra with a group of symmetries, the same. They are vector spaces of the same dimension where the actions are seen to correspond under a linear isomorphism.

Example 3 Let $A \subset G$ denote the subspace of additive games, i.e., $v \in A$ if and only if $v(S \cup T)=v(S)+v(T)$ for every pair of coalitions S, T with $S \cap T=\emptyset$. S_{n} acts on A; in other words, if $\theta \in S_{n}$ and $v \in A$ then $\theta \cdot v \in A$ as is readily seen.

We claim that A as a representation is isomorphic to \mathbb{R}^{n} with the usual action $\theta \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\theta_{1}}, x_{\theta_{2}}, \ldots, x_{\theta_{n}}\right)$.

The S_{n}-equivariant isomorphism $\phi: \mathbb{R}^{n} \rightarrow A$ is given by $\phi(x)=\hat{x}$ where

$$
\hat{x}(S)=\sum_{j \in S} x_{j} .
$$

Clearly ϕ is a linear map and \hat{x} is an additive game for every x. Let us show equivariance. We need to prove that

$$
\phi(\theta \cdot x)=\theta \cdot \hat{x} .
$$

Now,

$$
(\theta \cdot \hat{x})(S)=\hat{x}\left(\theta^{-1} S\right)=\sum_{\left\{j \mid \theta_{j} \in S\right\}} x_{j} ;
$$

on the other hand, if we set $y=\theta \cdot x$, then

$$
(\phi(\theta \cdot x))(S)=\widehat{\theta \cdot x}(S)=\hat{y}(S)=\sum_{i \in S} y_{i},
$$

but $y_{i}=x_{\theta^{-1} i}$ and, hence, both sums are identical (just set $i=\theta_{j}$).
Clearly ϕ is $1-1$, and hence it is onto by counting dimensions of both spaces.
So, from the point of view of linear algebra with S_{n}-action, the space of additive games and \mathbb{R}^{n} are the same.

Definition 9 A representation V is irreducible if it does not contain a nontrivial invariant subspace. That is, if $U \subset V$ is also a representation for H (meaning that $h \cdot u \in U$ for every $h \in H$ and every $u \in U$), then U is either $\{0\}$ or all of V.

The following theorem is one of the reasons why it is worth carrying around the group action when there is one. Its simplicity hides the fact that it is a very powerful tool.

Theorem 4 (Schur's Lemma) Let V, W be irreducible representations of a group H. If $\phi: V \rightarrow W$ is H-equivariant, then $\phi \equiv 0$ or ϕ is an isomorphism.

Moreover, if V and W are complex vector spaces, then ϕ is unique up to multiplication by a scalar $\lambda \in \mathbb{C}$.

Proof $\operatorname{Ker} \phi$ and $\operatorname{Im} \phi$ are invariant subspaces of V and W, respectively, thus it is zero or the total space. From this follows the first part.

If the vector spaces are complex, $\phi, \psi: V \rightarrow W H$-equivariant, then $T=\phi^{-1} \circ \psi: V \rightarrow V$ must have an eigenvalue $\lambda \in \mathbb{C}$. Since the eigenspace corresponding to λ is invariant, it must be all of V, i.e., $T=\lambda I$ or $\psi=\lambda \phi$.

Corollary 7 Let V be a real irreducible representation, such that its complexification $V^{\mathbb{C}}=V \otimes \mathbb{C}=V \oplus i V$ is also irreducible (as a complex representation). Let W be a real irreducible representation. If $\phi: V \rightarrow W$ is equivariant, then ϕ is unique up to multiplication by a real scalar.

Proof Schur's Lemma implies that ϕ is zero or an isomorphism. Suppose ϕ is an isomorphism, then $W^{\mathbb{C}}$ is also isomorphic to $V^{\mathbb{C}}$ and $\phi^{\mathbb{C}}: V^{\mathbb{C}} \rightarrow W^{\mathbb{C}}$ (the complex-linear extension of ϕ) is an isomorphism. If $\psi: V \rightarrow W$ is any equivariant map, then by the previous theorem $\psi^{\mathbb{C}}=\lambda \phi^{\mathbb{C}}$, for some $\lambda \in \mathbb{C}$. Since $\phi^{\mathbb{C}}$ and $\psi^{\mathbb{C}}$ preserve real parts (i.e., send V to W) λ must be real.

Lemma 7 The decomposition of \mathbb{R}^{n}, under S_{n}, into irreducible subspaces is

$$
\mathbb{R}^{n}=\mathbb{R} \mathbf{1} \oplus \Delta_{n}^{\perp}
$$

Proof We need only to check that Δ_{n}^{\perp} is irreducible. This is done by induction on n. If $n=2$, then Δ_{n}^{\perp} is 1 -dimensional and thus, irreducible.
Δ_{n}^{\perp} is generated by $e_{1}-e_{n}, e_{2}-e_{n}, \ldots, e_{n-1}-e_{n}$, where $\left\{e_{i}\right\}$ is the standard basis for \mathbb{R}^{n}. The isotropy subgroup of $e_{n}, H_{n}=\left\{\theta \in S_{n} \mid \theta_{n}=n\right\}$, is isomorphic to S_{n-1}, and Δ_{n}^{\perp} is the standard representation for H_{n}.

Therefore, induction hypothesis says that

$$
\Delta_{n}^{\perp} \simeq \mathbb{R} \oplus 1_{n-1}^{\perp}
$$

is the decomposition (up to isomorphism) into irreducible H_{n}-representations. Actually, the precise summands of this decomposition are $\mathbb{R} \omega$ and its orthogonal complement inside Δ_{n}^{\perp}, where $\omega=\left(e_{1}-e_{n}\right)+\left(e_{2}-e_{n}\right)+\cdots+\left(e_{n-1}-e_{n}\right)=$ $(1,1, \ldots, 1,1-n)$.

Now, if Δ_{n}^{\perp} were a reducible S_{n}-representation, then it would split into subspaces also invariant under H_{n}. Thus, the only possible splitting would be into $\mathbb{R} \omega$ and its complement. But these subspaces are not S_{n}-invariant.

Remark 10 Observe that the above proof also shows that the real irreducible representations \mathbb{R} and Δ_{n}^{\perp} have irreducible complexifications.

Proposition 9 For $j<n$,

$$
G_{j}=C_{j} \oplus U_{j} \oplus W_{j}
$$

where $C_{j}=\mathbb{R} c_{j} \simeq \mathbb{R}, U_{j}=\left\{x^{j} \mid x \in \Delta_{n}^{\perp}\right\} \simeq \Delta_{n}^{\perp}$ and W_{j} does not contain any summands isomorphic to either \mathbb{R} nor Δ_{n}^{\perp}. The decomposition is orthogonal.
Proof Let X_{j} be the subset of 2^{N} consisting of all subsets of cardinality j. So, we may identify G_{j} with $\mathbb{R}\left[X_{j}\right]$ the space of real functions on X_{j}. Let $K=S_{j} \times S_{n-j} \prec S_{n}$ be the subgroup fixing $\{1,2, \ldots, j\}$. Thus, $X_{j}=S_{n} / K$ and

$$
G_{j} \simeq \mathbb{R}\left[S_{n} / K\right]
$$

Hence, if τ is the trivial 1-dimensional representation for K, then G_{j} is the induced representation for S_{n}. Now, Frobenius reciprocity implies that

$$
\left\langle V, G_{j}\right\rangle_{S_{n}}=\left\langle V_{\left.\right|_{K}}, \tau\right\rangle_{K}
$$

for every S_{n}-representation V. Here, $\langle V, W\rangle_{G}$ denotes the dimension of the space of G-equivariant maps from V to W; therefore, if V is irreducible, $\langle V, W\rangle_{G}$ is the number of copies of V in W.

For example, for $V=\mathbb{R}$, the trivial representation, we get

$$
\left\langle\mathbb{R}, G_{j}\right\rangle_{S_{n}}=\langle\tau, \tau\rangle_{K}=1
$$

And if $V=\Delta_{n}^{\perp}$, then again

$$
\left\langle\Delta_{n}^{\perp}, G_{j}\right\rangle_{S_{n}}=\left\langle\left.\Delta_{n}^{\perp}\right|_{K}, \tau\right\rangle_{K}=1
$$

since the standard representation for S_{n}, restricted to $S_{j} \times S_{n-j}$ contains exactly two copies of τ.

The invariant inner product \langle,$\rangle gives an equivariant isomorphism G_{j} \rightarrow$ G_{j}^{*} via $v \mapsto[u \mapsto\langle v, u\rangle]$; in particular must preserve the decomposition. This implies orthogonality of the decomposition.

Acknowledgements We thank Prof. William Thomson for giving us helpful comments and references, and Prof. Gil Bor for several useful conversations regarding the representation theory of the symmetric group. We also express our gratitude to both referees for the thoroughness of their reviews and for the many comments and suggestions which have helped to make this a better article, as well as for providing some of the bibliographical references. L. Hernández-Lamoneda acknowledges support from CONACyT research grant 37558 and F. Sánchez-Sánchez acknowledges support from CONACyT grant 40912.

References

Amer R, Derks AR, Giménez JM, (2003) On cooperative games, inseparable by semivalues. Int J Game Theory 32(2):181-188
Dubey P, Neyman A, Weber RJ (1981) Value Theory without Efficiency. Math Oper Res 6(1):122128
Driessen T, Radzik T (2002) Extensions of Hart and Mas-Collel's consistency to efficient, linear and symmetric values for TU-games. In: ICM2002 GTA Proceedings volume. Hongwei, Petrosjan, eds, Quingdao Publishing House, 129-146
Fulton W, Harris J (1991) Representation theory; a first course. Graduate texts in mathematics. vol. 129 Springer, Berlin Heidelberg New York
Kalai E, Samet D (1987) On weighted Shapley values. Int J Game Theory 16:205-222
Kleinberg NL, Weiss JH (1985) Equivalent N-person games and the null space of Shapley Value. Math Oper Res 10(2):233-243
Kultti K, Salonen H (2005) Minimum norm solutions for cooperative games. preprint
Myerson RB (1991) Game theory: analysis of conflict. Harvard University Press
Shapley LS (1953) A value for n-person games. In: Kulin H, Tucker AW(eds) Contributions to the theory of games, vol. 2, Annals of Mathematics Studies Vol. 28, Princeton University Press, Princeton pp. 307-312
Weber RJ (1988) Probabilistic values for games. In: Roth AE (ed) The Shapley value. Essays in honor of Lloyd S. Shapley. pp 101-120

[^0]: L. Hernández-Lamoneda • F. Sánchez-Sánchez (\boxtimes)

 CIMAT, Guanajuato, Mexico
 e-mail: sanfco@cimat.mx
 L. Hernández-Lamoneda
 e-mail: lamoneda@cimat.mx
 R. Juárez

 Department of Economics, Rice University, Houston, USA
 e-mail: ruben@rice.edu

[^1]: 1 This seems like the natural inner product to consider. Nevertheless, later on we will see that there is another choice for which the Shapley value can be characterized as the adjoint of the map $\mathbb{R}^{n} \rightarrow G$ that takes $x \in \mathbb{R}^{n}$ to the game $\hat{x}(S)=\sum_{i \in S} x_{i}$.

