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Abstract We compute a decomposition for the space of cooperative TU-games
under the action of the symmetric group Sn. In particular we identify all irre-
ducible subspaces that are relevant to the study of symmetric linear solutions –
namely those that are isomorphic to the irreducible summands of R

n. We then
use such decomposition to derive, in a very economical way, some old and some
new results for linear symmetric solutions.

1 Introduction

In this article we study linear, symmetric solutions for the space of cooperative
TU games with n players using basic representation theory of the group of
permutations Sn.

Representation theory is a general tool for organizing linear algebra data
in the presence of a group of symmetries. It makes sense to use it, first, as a
“bookkeeping” tool, converting arguments that would typically require some
ingenuity on the part of the researcher into routine exercises. More importantly,
it presents the information in a more clear and concise way, thus shedding new
light into the relations (sometimes hidden until then) between the elements
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that participate in a given problem. We believe we have shown how this is true
in the context of linear symmetric solutions in cooperative game theory.

Briefly, what we do is the following. We derive direct sum decompositions of
the space of games and the space of payoffs into “elementary” pieces. Moreover,
any linear, symmetric solution when restricted to any such elementary subspace
is either zero or multiplication by a single scalar, regardless of the dimension
of the elementary subspace – this follows from the so called Schur’s lemma;
therefore, all linear, symmetric solutions may be written (simultaneously) as a
sum of trivial maps.

Once we have such a global description of all linear and symmetric solutions,
it is easy to understand the restrictions imposed by other conditions or axioms,
for example: efficiency, dummy player axiom, self and anti-self-duality, etc.

The reader will find here new proofs, following the above scheme, of well
known results as well as new theorems and characterizations for certain classes
of linear symmetric solutions. Besides presenting these results, one of the main
objectives of the present work is to advertise representation theory as a natural
tool for research in cooperative game theory. We believe it is natural and pow-
erful and nevertheless its use has been neglected (with the notable exception
of Kleinberg and Weiss (1985), we have not been able to find a single reference
where the theory is used).

2 Framework

Consider R
n, the space of payoff vectors for n players. Every permutation σ of

N = {1, 2, . . . , n} may be thought of as a linear map Lσ : R
n → R

n by permuting
the coordinates of any vector x ∈ R

n according to σ . The assignment σ �→ Lσ is
called a representation, since we represent each permutation by a certain linear
map. One can also say that there is a linear “action” on R

n by the group of
permutations.

From linear algebra we know that the matrix of the linear map Lσ may have
a simple block decomposition with respect to some basis of R

n (e.g., Lσ might
be diagonalizable). But we are not really interested in only finding a basis that
will set a single map Lσ in a simpler form. What we want is to write them all in
a simpler way at the same time.

For example, consider the vector 1 = (1, 1, . . . , 1) ∈ R
n, then 1 is at the

same time an eigenvector to every linear map Lσ , for all σ , since permuting its
coordinates does nothing to it. Let �n = {(t, t, . . . , t) | t ∈ R} be the diagonal
generated by 1; we say that�n is “trivial”, in the sense that every map Lσ is the
identity map when restricted to �n .

Look also at the orthogonal complement to 1, which we denote by �⊥
n .

Clearly �⊥
n = {(y1, y2, . . . , yn) ∈ R

n | ∑n
i=1 yi = 0}. Now, if we pick y ∈ �⊥

n and
apply to it any linear map Lσ we obtain another vector also inside of�⊥

n ; that is

y ∈ �⊥
n ⇒ Lσ (y) ∈ �⊥

n , for every σ ,
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since permuting the coordinates of a vector does not change the fact that their
sum is zero. We say that �⊥

n is an invariant subspace.
Thus, we can “decompose” R

n as a direct sum, R
n = �n ⊕ �⊥

n , in such a
way that each summand is “invariant”. So if we were to choose a basis of R

n

consisting of 1 and a basis of�⊥
n , then all Lσ would have a matrix, with respect

to that basis, of the form

(
1 0
0 Aσ

)

.

We show in the Appendix – although it is perhaps intuitively clear – that there
is no further decomposition; that is, the subspace �⊥

n does not contain any
invariant subspace smaller than itself (and different to {0}). We say that �⊥

n is
“irreducible”.

The space of cooperative games G = {v : 2N → R | v(∅) = 0} is also a
vector space and the group Sn has a natural action on G as follows: Given a
permutation σ let Tσ : G → G be the linear map defined by

[Tσ (v)](S) = v(σ−1S)

for every game v ∈ G and every coalition S ⊂ N, where σ−1S is the coalition
that contains a player i if and only if σi is a player in S.

The main result of Sect. 3 is a statement about a decomposition of G into
invariant subspaces for this action.

We first observe the following obvious decomposition

G =
n⊕

j=1

Gj,

where Gj consists of those games that vanish on every coalition not containing
exactly j players. Clearly, every Gj is invariant under all permutations of the
players.

Let us identify certain types of games within each Gj, j < n (Gn is a
1-dimensional trivial subspace generated by the game that assigns 1 to the
grand coalition, and zero to every other one). For each j < n, and each
x = (x1, x2, . . . , xn) ∈ R

n define the game xj ∈ Gj as follows

xj(S) =
{∑

i∈S xi if |S| = j;
0 if |S| 
= j.

Let hj : R
n → Gj denote the map hj(x) = xj; hj is a linear 1–1 map that

commutes with the actions of Sn, that is, hj ◦ Lσ = Tσ ◦ hj.
Set Cj = hj(�n) and Uj = hj(�

⊥
n ). We note that hj is an isomorphism between

Uj and �⊥
n (similarly, between Cj and �n) since it is a linear map which is 1–1

and onto and it commutes with the respective actions of Sn. Isomorphic spaces



398 L. Hernández-Lamoneda et al.

are indistinguishable from the point of view of linear algebra together with an
action of the group of permutations. Thus we may consider Cj as the same as
�n and Uj same as �⊥

n . In particular, both spaces are irreducible.
Typically (as soon as n > 3 and 1 < j < n − 1), within Gj there are games not

necessarily lying in Cj ⊕ Uj. In G we have defined a natural inner product:

〈v1, v2〉 =
∑

S⊂N

v1(S)v2(S);

moreover, all Tσ are orthogonal transformations with respect to this inner
product: 〈Tσ (v1), Tσ (v2)〉 = 〈v1, v2〉, for all v1, v2 ∈ G (when this happens it is
said that the inner product is invariant under the action).

Call Wj the orthogonal complement to Cj ⊕ Uj within Gj. We have

Gj = Cj ⊕ Uj ⊕ Wj,

and we have arrived to the desired decomposition

G = C1 ⊕ · · · ⊕ Cn ⊕ U1 ⊕ · · · ⊕ Un−1 ⊕ W,

where W = ⊕n−1
j=1 Wj, and every Cj is isomorphic to�n and every Uj is isomor-

phic to �⊥
n . Note that C = C1 ⊕ · · · ⊕ Cn is precisely the space of symmetric

games (that is, games whose values depend only on the cardinality of the given
coalition).

Each Wj could be further decomposed so that in the end we have expressed
W as a sum of irreducible subspaces. Now, the main theorem (Proposition 1)
asserts that none of the irreducible summands of W is isomorphic to either �n
or to �⊥

n .
We use the above decomposition to study solutions, more precisely we look

at solutions φ : G → R
n which are linear and symmetric (i.e., φ ◦ Tσ = Lσ ◦ φ,

∀σ ). Rather than keep on carrying the Lσ ’s and Tσ ’s, one abuses notation and
denotes the linear transformations by the same letter σ ; thus, symmetry is simply
expressed as

φ(σ · v) = σ · φ(v).

Schur’s lemma (see the Appendix for a precise statement) implies that every
linear, symmetric φ is zero on W, is a multiple of h−1

j : Cj → �n when restricted

to Cj and is a multiple of h−1
k : Uk → �⊥

n when restricted to Uk. This is the
punch line of the decomposition theorem.

As a result, the block decomposition (relative to the decomposition of G) of
every symmetric, linear solution

φ : G = C1 ⊕ · · · ⊕ Cn ⊕ U1 ⊕ · · · ⊕ Un−1 ⊕ W → Rn = �n ⊕�⊥
n
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is as simple as possible: with most entries zeroes, and where the non-zero blocks
are all diagonal and multiples of the identity matrix:

φ =
(
λ1 · · · λn 0 · · · 0 0 · · · 0
0 · · · 0 μ1In−1 · · · μn−1In−1 0 · · · 0

)

.

In particular, the space of all such solutions is (2n − 1)-dimensional and W is
the common kernel of all of them.

The rest of the article consists of using this information to study solutions
satisfying further hypotheses.

In Sect. 4 we give some applications of this method. First we add to line-
arity and symmetry, the efficiency axiom and characterize very easily all such
solutions:

A linear symmetric solution is efficient if and only if its restriction to the
symmetric games C coincides with the egalitarian solution.

Next, we study and characterize the linear symmetric solutions that further
satisfy the null (or dummy player) axiom.

In Sect. 4.3, we turn to Shapley’s value and its relationship to additive games.
It turns out that there is an invariant inner product on G (should this be the
“natural” inner product on G?) that makes Shapley’s value, Sh, the adjoint to
the additive games map, i.e., the map R

n → G such that

x �→ [S �→ x(S) =
∑

j∈S

xj].

Equivalently, there is an invariant inner product on G such that Shapley’s value
is the same as orthogonal projection – with respect to this inner product – onto
the subspace of additive games.

Another application is to the study of the notion of self-duality. Recall that the
duality operator on games ∗ : G → G, is defined by (∗v)(S) = v(N)− v(N \ S).
A self-dual solution is one for which φ(∗v) = φ(v), for every game v. We study
and characterize self-duality, and its relationship to the other most common
axioms (efficiency and nullity).

The last section of the article is devoted to a few results regarding the kernel
of linear symmetric solutions: we compute the common kernel of all linear, sym-
metric and efficient solutions; we give an expression for the kernel of any given
linear symmetric solution, in particular we compute it for the Shapley value.

3 Group representation preliminaries

Precise definitions and some proofs for this section may be found in the Appen-
dix at the end of the article. Nevertheless, for the sake of easier reading we
repeat here a few definitions and give an idea of proofs, sometimes in a less
rigorous but more accessible manner.
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Let N = {1, . . . , n} be the set of players. Let G = G(n) = {v : 2N → R | v(∅) =
0} be the real vector space of games in n players.

The group of permutations of N, Sn, acts naturally on G via linear transfor-
mations (i.e., G is a representation of Sn). That is, each permutation θ ∈ Sn
corresponds to a linear, invertible transformation, which we still call θ , of the
vector space G; namely, let

(θ · v)(S) := (ρ(θ)(v))(S) = v(θ−1 · S)

for every θ ∈ Sn, v ∈ G and S ⊂ N, where θ · S is the set obtained from S by
permuting its elements according to θ (i.e., θ · S = {θi := θ(i) | i ∈ S}).

Moreover, this assignment preserves multiplication (i.e., is a group homo-
morphism) in the sense that the linear map corresponding to the product of the
two permutations θσ is the product (or composition) of the maps corresponding
to θ and σ , in that order. We will sometimes say that Sn acts (linearly) on G.

Similarly, R
n is also a representation space for Sn:

θ · (x1, x2, . . . , xn) = (xθ1 , xθ2 , . . . , xθn).

Definition 1 A linear symmetric solution φ is a linear map φ : G → R
n that is

symmetric in the following sense: for every θ ∈ Sn and v ∈ G we have that

φ(θ · v) = θ · φ(v).

In other words, a symmetric φ “commutes” with the actions on the domain and
range of φ.

We denote by LS(G) the vector space of all linear symmetric solutions on G.

In the language of representation theory, what we are calling a linear, symmetric
map is usually referred to as an Sn-equivariant map.

3.1 Decomposition of G under Sn

Definition 2

• A subspace V of G or R
n is invariant (for the action of Sn) if for every vector

v ∈ V and every permutation θ ∈ Sn we have that

θ · v ∈ V.

• A subspace V of G or R
n is irreducible if V itself has no invariant subspaces

other than {0} and V itself.

We begin with the decomposition of R
n into irreducible representations,

which is easier, and then proceed to do the same thing for G; that is, we wish to
write R

n as a direct sum of subspaces, each invariant for all permutations in Sn
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and in such a way that the summands cannot be further decomposed (i.e., they
are irreducible).

For this, set 1 = (

n
︷ ︸︸ ︷
1, 1, . . . , 1) ∈ R

n, �n = {(t, t, . . . , t) ∈ R
n} = R1 and

�⊥
n = {x ∈ R

n | x · 1 = 0} the orthogonal complement to the diagonal �n. The
space �⊥

n is usually called the “standard representation” of Sn. Notice that �n
is a “trivial” subspace in the sense that every permutation acts as the identity
transformation.

Every permutation fixes every element of the diagonal line �n, so, in partic-
ular, this line is an invariant subspace of R

n. Being 1-dimensional, it is automat-
ically irreducible. Its orthogonal complement, �⊥

n , consists of all vectors such
that the sum of their coordinates is zero. Clearly, if we permute the coordinates
of any such vector, its sum will still be zero. Hence �⊥

n is also an invariant
subspace. The next result tells us that this subspace is also irreducible.

Lemma 1 The decomposition of R
n, under Sn, into irreducible subspaces is

R
n = �n ⊕�⊥

n .

Thus, Lemma 1 tells us that R
n as a vector space with group of symmetry Sn

as defined above, can be written as an orthogonal sum of two subspaces (�n
and �⊥

n ) which are invariant under permutations and which can no longer be
further decomposed.

The proof of this lemma is an induction argument that can be found in the
Appendix.

For each j : 1, . . . , n , let Gj = {v ∈ G | v(S) = 0 if |S| 
= j}. Gj is a vector
subspace of G and, moreover, G = ⊕n

j=1 Gj, each Gj is invariant under Sn and
the direct sum is orthogonal with respect to the invariant inner product on G
given by 〈v, w〉 = ∑

S⊂N v(S)w(S). 1

Here, invariance of the inner product means that every permutation θ ∈ Sn
is not only a linear map of G, but an orthogonal map with respect to this inner
product. Formally,

〈θ · v, θ · w〉 = 〈v, w〉

for every v, w ∈ G.
The following games play an important role in describing the decomposition

of the space of games G.
For each j : 1, . . . , n define cj ∈ Gj as follows

cj(S) =
{

1 if |S| = j,
0 if |S| 
= j.

1 This seems like the natural inner product to consider. Nevertheless, later on we will see that
there is another choice for which the Shapley value can be characterized as the adjoint of the map
R

n → G that takes x ∈ R
n to the game x̂(S) = ∑

i∈S xi.
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Notice that Gn = Rcn.
Also, for each j : 1, . . . , n, and for each x ∈ R

n, let xj ∈ Gj be given by

xj(S) =
{

x(S) if |S| = j,
0 if |S| 
= j.

where x(S) = ∑
i∈S xi.

Definition 3 Suppose V1 and V2 are two representations for the group Sn i.e., we
have two vector spaces V1 and V2 where the group Sn is acting by linear maps. We
say that V1 and V2 are isomorphic if there is a linear map between them, which is
1–1 and onto and that commutes with the respective Sn-actions. Formally, there
is an invertible linear map h : V1 → V2, such that

h(θ · v1) = θ · (h(v1)) for all θ ∈ Sn.

We then write V1 � V2.

For our purposes, V1 will be an irreducible subspace of G and V2 an irre-
ducible subspace of R

n

Isomorphic representations are essentially “equal”; not only are they spaces
of the same dimension, but the actions are equivalent under some linear invert-
ible map between them. A concrete example may be found in the Appendix.

Proposition 1 For j < n,

Gj = Cj ⊕ Uj ⊕ Wj,

where Cj = Rcj � R, Uj = {xj | x ∈ �⊥
n } � �⊥

n and Wj does not contain any
summands isomorphic to either R nor �⊥

n . The decomposition is orthogonal.

Let us give an idea of how the proof goes; the complete proof of this proposition
can be found at the end of the Appendix as the proof of Proposition 9.

We define the map Tj : R
n → Gj by Tj(x) = xj. This map is linear (and

Sn-equivariant) and 1–1. From Lemma 1 we have the splitting R
n = �n ⊕�⊥

n .
Thus, inside of Gj, we have the images of these two subspaces: Cj = Tj(�n) and
Uj = Tj(�

⊥
n ).

Denote by Wj the orthogonal complement to Cj ⊕Uj within Gj. The last, and
hardest, part is to show that Wj does not contain any summands isomorphic to
either Cj or Uj.

Proposition 1 does not quite give us a decomposition of Gj into irreducible
summands. The subspaces Cj and Uj are irreducible (each isomorphic to �n
and �⊥

n , respectively) and together give us a copy of R
n inside of G. Whereas

Wj may or may not be irreducible (depending on j and N), but as we shall see
the exact nature of this subspace plays no role in the study of linear, symmetric
solutions since (as it will be promptly proved) it lies in the kernel of any such
solution.
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Proposition 1 gives us a decomposition of the space of games that is a key
ingredient in our subsequent analysis.

Set C = ⊕n
j=1 Cj. This is the space of symmetric games, i.e., games whose

value on a given set depends only on its cardinality. According to Proposition
1, C is the largest subspace of G where Sn acts trivially. Let U = ⊕n−1

j=1 Uj and

W = ⊕n−1
j=1 Wj. Then

G = C ⊕ U ⊕ W.

The following result gives a good example of how Proposition 1 is to be used (in
conjunction with Schur’s Lemma) to gain information about linear symmetric
solutions.

Corollary 1
•• Every linear symmetric solution vanishes in W.
• dim LS(G) = 2n − 1.

Proof Let φ : C ⊕ U ⊕ W → �n ⊕�⊥
n be a linear symmetric solution. Assume

X ⊂ W is an irreducible summand in the decomposition of W (even while we
do not know the decomposition of W as a sum of irreducible subspaces, it is
known that such a decomposition exists). Let πα , α ∈ {1, 2}, denote orthogonal
projection of R

n onto �n and �⊥
n , respectively. Now, φ : G → R

n = �n ⊕�⊥
n ,

may be written as φ = (π1 ◦φ,π2 ◦φ). Denote by ι : X → G the inclusion, then,
the restriction of φ to X may be expressed as

φ|X = φ ◦ ι = (π1 ◦ φ ◦ ι,π2 ◦ φ ◦ ι).

Now, πα ◦φ◦ι is a linear symmetric map from X to either�n or�⊥
n ; according

to Proposition 1, X is not isomorphic to either of these two spaces, thus Schur’s
Lemma (see Appendix for the statement) says that πα ◦φ ◦ ιmust be zero. Since
this is true for every irreducible summand X of W, φ is zero on all of W.

Schur’s Lemma also implies that φ maps each Cj into �n and each Uj into
�⊥

n , and that its restriction to each Cj or Uj is unique up to multiplication by a
scalar (i.e., any two linear symmetric solutions when restricted to Cj – or Uj –
differ only by multiplication by a constant).

So, define the following linear symmetric solutions. For j : 1, . . . , n and k :
1, . . . , n − 1, we set

φj(cl) = δjl, φj|U⊕W
≡ 0,

ψk(x
l) = δklx, ψk|C⊕W

≡ 0

and where δjl is Kronecker’s delta.
Clearly {φj} ∪ {ψk} is a linearly independent set. Moreover, as discussed

above, Schur’s Lemma tells us that for any φ ∈ LS(G), every j : 1, . . . , n and
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k : 1, . . . , n − 1, the restriction of φ to Cj is a multiple of φj and φ restricted to
Uk is a multiple of ψk. Thus φ is a linear combination of the φj’s and ψk’s. Thus
{φj} ∪ {ψk} is a basis for LS(G) ��
Remark 1 Proposition 1 and Corollary 2 imply that in order to study symmetric
solutions, one needs to look only at those games inside C⊕U; in the next section
we refine this further to a subspace of dimension 2n − 1 inside of G.

3.1.1 The space W

Although we have remarked that to the study of linear symmetric solutions the
space W plays only the role of the common kernel of every such solution, it may
be interesting, nevertheless, to characterize the games that lie in this subspace.
That is the content of Proposition 2 of this subsection.

Lemma 2

C ⊕ U =
⎧
⎨

⎩

n∑

j=1

xj
j | xj ∈ R

n, for j = 1, 2, . . . , n

⎫
⎬

⎭
.

Proof Let V =
{∑n

j=1 xj
j | xj ∈ R

n
}

. We first show V ⊂ C ⊕ U.

Recall that to every vector x ∈ R
n, and to every j : 1, . . . , n, we have associated

a game xj via

xj(S) =
{

x(S) if |S| = j,
0 if |S| 
= j.

Thus, for the vector 1 = (1, 1, . . . , 1) ∈ R
n we have that

1j =
{

j if |S| = j,
0 if |S| 
= j;

which in particular shows that 1j = jcj.
Now, choose n arbitrary vectors x1, x2, . . . , xn ∈ R

n. Each of them may be
decomposed as a sum with respect to the direct sum decomposition R

n =
�n ⊕�⊥

n . Thus we write xj = aj1 + zj where zj ∈ �⊥
n .

Then,

n∑

j=1

xj
j =

n∑

j=1

aj1j +
n∑

j=1

zj
j =

n∑

j=1

jajcj +
n−1∑

j=1

zj
j ∈ C ⊕ U,

since zn = 0 for all z ∈ �⊥
n . This shows that V ⊂ C ⊕ U.

Now, cj = 1
j 1j ∈ V, thus Cj ⊂ V. Also, every element in Uj is, by definition,

of the form xj with x ∈ �⊥
n , thus Uj ⊂ V. Hence C ⊕ U ⊂ V ��
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Proposition 2

W =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w ∈ G | ∀i, j : 1, . . . , n,
∑

|S| = j
S � i

w(S) = 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

Proof First, w ∈ W ⇔ w ∈ (C ⊕ U)⊥ ⇔ 〈w,
∑n

1 xj
j〉 = 0, for all xj ∈ R

n. Thus,

if {ei} stands for the standard basis in R
n, then w ∈ W ⇔ 〈w, ej

i〉 = 0, for every
i, j : 1, . . . , n. Now,

〈w, ej
i〉 =

∑

|S|=j

w(S)ei(S),

but

ei(S) =
{

1 if i ∈ S,
0 if i /∈ S.

.

��
In Kleinberg and Weiss (1985) the number of irreducible summands appear-

ing in W is computed, whereas in Amer et al. (2003) a basis for W is given.

Example 1 Let us compute a basis for W for the case of four players, i.e., n = 4.
If w ∈ W, then for the coalition {i} we have

w({i}) =
∑

|S|=1
S�i

w(S) = 0.

For subsets of cardinality two we get a system of four equations (one for each
i) in the six unknowns w({1, 2}), w({1, 3}), w({1, 4}), w({2, 3}), w({2, 4}), w({3, 4}).
The solution space for this system is 2-dimensional with basis:

(u({1, 2}), u({1, 3}), u({1, 4}), u({2, 3}), u({2, 4}), u({3, 4})) =
{
(1, 0, −1, −1, 0, 1)
(0, 1, −1, −1, 1, 0)

.

For subsets of cardinality three we again get four linearly independent equa-
tions in four unknowns. Thus the value of w is zero on all subsets with three
elements. Finally, on the total set it also vanishes.

Thus, W consists of games that vanish on subsets of cardinality different to
2, and, on sets of cardinality two satisfy the relations:

w({1, 2}) = w({3, 4}), w({1, 3}) = w({2, 4}),
w({1, 4}) = w({2, 3}) = −w({1, 2})− w({1, 3}).
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Remark 2 It is not difficult to show that always W1 = Wn−1 = 0.

3.2 Symmetric solutions and the action of Hn

Every solution φ ∈ LS(G) is determined by its nth-coordinate, φn. Moreover,
φn is an Hn-invariant functional, where Hn = {θ ∈ Sn | θn = n} is the subgroup
fixing n. More precisely, let

HomHn(G, R) = {f : G → R | f is linear and f (θ · v) = f (v), ∀v ∈ G,

and ∀θ ∈ Hn}

denote the space of Hn-invariant linear functions on G. Then

Lemma 3 The linear map LS(G) → HomHn(G, R) given by φ �→ φn is an
isomorphism of vector spaces.

Proof First, let us show that if φ ∈ LS(G) then φn is an Hn-invariant functional.
Let v ∈ G be any game, and σ ∈ Hn be a permutation fixing player n. Thus,
symmetry of φ implies

(φ1(σ · v), . . . ,φn−1(σ · v),φn(σ · v)) = φ(σ · v) = σ · (φ1(v), . . . ,φn−1(v),φn(v))

= (φσ1(v), . . . ,φσn−1(v),φn(v))

since σn = n. Thus φn(σ · v) = φn(v) for every σ ∈ Hn.
In order to check that φ �→ φn, is an isomorphism it suffices to give the

inverse: If f ∈ HomHn(G, R), then let

(f ) = (φ1,φ2, . . . ,φn−1, f ),

where φj(v) = f ((jn) ·v), v ∈ G, and (jn) is the transposition interchanging j with
n and fixing every other player. The map  is clearly linear, and the inverse to
φ �→ φn. The remaining question is whether the map (f ) is indeed symmetric.
We finish the proof by showing this.

We use the fact that any permutation θ ∈ Sn is a composition of trans-
positions. Hence, to prove symmetry it is enough to check it for an arbitrary
transposition (ik). There are two cases, when both i and k are different to n, and
when (ik) is of the form (in).

Let us consider the first case, and for simplicity of exposition assume (ik) =
(12) and n ≥ 3. For j ≥ 3, we have

φj((12) · v) = f ((jn)(12) · v) = f ((12)(jn) · v) = f ((jn) · v);

where the second equality holds because (jn) and (12) commute and the last
equality is the Hn-invariance of f .
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Also,

φ1((12) · v) = f ((1n)(12) · v) = f ((12)(2n) · v) = f ((2n) · v)

since (1n)(12) = (12)(2n) and invariance of f . Similarly, φ2((12) ·v) = f ((1n) ·v).
Hence,

φ((12) · v) = (f ((2n) · v), f ((1n) · v), f ((3n) · v), . . . , f (((n − 1)n) · v), f (v))

= (12) · φ(v).

Finally, we take the case of a transposition of the form (in). In this case, for
j 
= i,

φj((in) · v) = f ((jn)(in) · v) = f ((ij)(jn) · v) = f ((jn) · v),

whereas

φi((in) · v) = f ((in)(in) · v) = f (v) = φn(v).

Thus the ith and the nth coordinates of φ have been permuted. ��
Just as we decomposed R

n and G under the action of Sn, we want to find a
decomposition under the action of the smaller group Hn ⊂ Sn. Clearly, every
space that is invariant under the larger group is still invariant under Hn, though
it may happen that a space that was irreducible for Sn decomposes into more
than one piece under Hn. Let us see first what happens to R

n.
Recall that R

n = �n ⊕�⊥
n . Now,�n is 1-dimensional so it is also irreducible

for Hn. What about �⊥
n ? Consider the vector ω ∈ �⊥

n given by

ω = (1, 1, . . . , 1, 1 − n).

Clearly ω and its multiples are fixed by every element of Hn. Likewise, the
orthogonal complement (within�⊥

n ) to the line through ω is also invariant. Call
that space A. The simplest way to see that A is invariant is by noticing that

A = {(x1, x2, . . . , xn−1, 0) | x1 + · · · + xn−1 = 0},

thus permuting the first n − 1 entries of a vector leaves the vector inside of A.
The subgroup Hn can be identified with Sn−1, the group of permutations of

the first n − 1 players, and A is then seen to be isomorphic to the standard
representation of Sn−1, i.e., �⊥

n−1. Therefore, it is irreducible.
Summarizing, the irreducible decomposition of R

n under the action of the
group Hn is

R
n = R1 ⊕ Rω ⊕ A.

We turn now to the decomposition of G under Hn.
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Theorem 1 Let n ≥ 3.

1. The space of games G decomposes under Hn as

G = C ⊕ T ⊕ V;

where
(a) C = ⊕n

j=1 Cj as before, (in particular it is an n-dimensional trivial
representation);

(b) T = ⊕n−1
j=1 Rωj is a trivial (for Hn) representation of dimension n − 1;

(c) V does not contain any trivial summands;
(d) The decomposition is orthogonal.

2. Any f ∈ HomHn(G, R) vanishes in V, hence any symmetric solution φ ∈
LS(G) is determined by the values of φn in the (2n − 1)-dimensional trivial
subspace C ⊕ T.

Proof Each Cj is 1-dimensional, so remains an irreducible piece under the
action of Hn.

Each Uj is isomorphic to �⊥
n , which we have just seen splits as a sum of two

subspaces, a trivial one and a space isomorphic to A. Set Aj = {zj | z ∈ A}, then

Uj = Rωj ⊕ Aj

is the decomposition of Uj into irreducibles under the Hn-action.
Notice that, even when n = 3, the action of Hn on A (and thus the one on

Aj) is not the trivial action (e.g., when n = 3, A is 1-dimensional, but the action
can be seen to be multiplication by the sign of the permutation).

So we get a decomposition of G of the form

G = C ⊕ T ⊕ V,

C and T as in the statement of the theorem and V = ⊕n−1
j=1 Aj ⊕ W. The Aj’s

are irreducible and non-trivial, so to prove (c) we need to check only that there
are no trivial summands (for the Hn-action) within W.

Suppose W contains a 1-dimensional trivial subspace Y, say. Take any non-
zero element y ∈ Y and define the linear map f : G → R by setting f (y) = 1
and f ≡ 0 on Y⊥. Such an f is Hn-invariant (since Hn does nothing on Y and
f is set to be zero on its orthogonal complement), and thus, as we have seen, it
determines a linear symmetric solution φ. But we have proved that every linear
symmetric solution vanishes on W. This is a contradiction. Therefore, W cannot
contain trivial Hn-representations.

Orthogonality of the decomposition follows from that of the Sn
-decomposition, plus the fact that Rωj ⊥ Aj.

To prove 2, notice that, by Schur’s Lemma, any Hn-invariant f : G → R

vanishes when restricted to any irreducible subspace other than a trivial one.
Thus f|V ≡ 0. On the other hand, any linear f : C ⊕ T → R, when extended
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as zero to V, is an Hn-invariant functional and gives rise to a linear symmetric
solution. ��
Remark 3 In other words, any symmetric solution can be uniquely determined
as follows: given arbitrary real numbers a1, . . . , an, b1, . . . , bn−1 set φn(cj) = aj,
φn(ω

j) = bj,φn|V ≡ 0. Thenφn is Hn-invariant and determines via a symmetric
solution φ. Notice that this shows again that LS(G) is (2n − 1)-dimensional.

Theorem 1 identifies the minimal possible subspace of games (C ⊕ T) that
determines every possible linear symmetric solution. Thus, in principle, to
understand any given linear symmetric solution one has only to know its values
on c1, . . . , cn,ω1, . . . ,ωn−1.

4 Applications

4.1 Efficient symmetric solutions

Definition 4 A solution is efficient if

n∑

j=1

φj(v) = φ(v) · 1 = v(N), for every v ∈ G.

In the previous section we saw that any linear symmetric solution φ is com-
pletely determined by its nth coordinate φn. Also, at the end of that section, we
saw that φn is itself determined by its values on C ⊕ T. Thus one expects that
efficiency can be translated into some simple condition on these values. Thus,

Proposition 3 Let f ∈ HomHn(G, R). The linear symmetric solution determined
by f is efficient if and only if

1. f (cj) = 0, for all j < n; and
2. f (cn) = 1

n .

In particular, the set of efficient symmetric solutions is an affine space of dimen-
sion n − 1.

Proof Let φ be the symmetric solution corresponding to f . Thus, φk(v) =
f ((kn) · v).

First of all, C⊥
n is exactly the subspace of games v for which v(N) = 0. Of

these, those in U ⊕ W trivially satisfy φ(v) · 1n = 0, since (by Schur) their image
lies in �⊥

n .
Therefore, efficiency need only be checked on C.
Since cj is fixed by all permutations in Sn,

n∑

k=1

φk(cj) = nf (cj)
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and so, φ is efficient if and only if nf (cj) = cj(N) = δjn.
Finally, for the last assertion, let f0 ∈ HomHn(G, R) be given by f0(cj) = 0,

j < n, f0(cn) = 1
n , and f0|T ≡ 0 (i.e., f0 is the invariant functional that gives

the “egalitarian solution” φ0(v) = v(N)
n ). Then the set of efficient symmetric

solutions corresponds to the following affine set of Hn-invariant functionals

{f + f0 | f ∈ HomHn(G, R) and f|C ≡ 0}. ��

Those games v whose values, v(S), depends only on the cardinality of the
coalition, S, are called symmetric games. In our notation these are exactly the
games v ∈ C. The next Corollary characterizes the solutions to these games in
terms of linearity, symmetry and efficiency.

Corollary 2 Among all linear, symmetric solutions, the egalitarian solution is
characterized as the unique efficient solution on symmetric games.

Proof If we restrict a solution φ to the symmetric games space C, then efficiency
is equivalent to φn(cj) = 1

nδjn, i.e., φ(v) = v(N)
n . ��

In other words, all linear, symmetric, efficient solutions (e.g., Shapley’s value)
coincide with the egalitarian solution when restricted to the space of symmetric
games.

4.1.1 Formula for all efficient symmetric solutions

We have seen that every efficient symmetric solution is uniquely determined
via a functional f ∈ HomHn(G, R) such that

1. f (cj) = 0, j < n;
2. f (cn) = 1

n .

Now, we want to translate this information into more standard game theoretic
terminology. We compute a formula for f (v), for any game v, and, finally, for
φ(v).

Observe that, since ω = (1, 1, . . . , 1, 1 − n),

ωj(S) =
{∑

i∈S ωi |S| = j
0 |S| 
= j

=
⎧
⎨

⎩

0 |S| 
= j
j |S| = j and n /∈ S

j − n |S| = j and n ∈ S
.

Given a game v ∈ G we first compute its orthogonal projection onto Cn ⊕ T
(since it is the only part that contributes in the computation of any efficient
symmetric solution). The projection of v onto Cn = Rcn is just v(N)cn. Next we

compute its projection, vT , onto T: this is vT = ∑
j

〈v,ωj〉
〈ωj,ωj〉ω

j, where

〈v,ωj〉 =
∑

S⊂N

v(S)ωj(S) =
∑

|S|=j
n/∈S

jv(S)+
∑

|S|=j
n∈S

(j − n)v(S),
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and

〈ωj,ωj〉 =
∑

|S| = j
n /∈ S

j2 +
∑

|S| = j
n ∈ S

(j − n)2 =
(

n − 1
j

)

j2 +
(

n − 1
j − 1

)

(n − j)2 = n!
(j − 1)!(n − j − 1)! .

Note that 〈ωj,ωj〉 = 〈ωn−j,ωn−j〉.
Remark 4 At this point, we do not really care about the value of 〈ωj,ωj〉, since it
is absorbed by the parameters bj = f (ωj). Nevertheless it will be used later on.

Since

f (v) = f (v(N)cn + vT) = v(N)
n

+ f (vT) = v(N)
n

+
n−1∑

j=1

〈v,ωj〉
〈ωj,ωj〉 f (ωj)

for all v ∈ G, we get:

Proposition 4 All efficient linear symmetric solutions are given by
f ∈ HomHn(G, R) of the following form:

f (v) = v(N)
n

+
n−1∑

j=1

tj

⎡

⎢
⎢
⎣

∑

|S|=j
n/∈S

jv(S)+
∑

|S|=j
n∈S

(j − n)v(S)

⎤

⎥
⎥
⎦,

where t1, . . . , tn−1 are arbitrary real numbers.

In the previous formula, the coefficients tj are related to f (ωj) via

tj = f (ωj)

〈ωj,ωj〉 .

Theorem 2 The efficient linear symmetric solutions are precisely those φ ∈
LS(G) of the form

φi(v) = v(N)
n

+
∑

S�i
S 
=N

(n − s)
[
βsv(S)− βn−sv(N \ S)

]
, (1)

where s = |S| and βs ∈ R are arbitrary.

Proof From Proposition 4 it follows that

φi(v) = v(N)
n

+
n−1∑

j=1

tj

⎡

⎢
⎢
⎣

∑

|S|=j
i/∈S

jv(S)+
∑

|S|=j
i∈S

(j − n)v(S)

⎤

⎥
⎥
⎦.
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Now,

n−1∑

j=1

∑

|S|=j
i/∈S

tjjv(S) =
n−1∑

j=1

∑

|T|=n−j
i∈T

tjjv(N \ T)

=
n−1∑

l=1

∑

|T|=l
i∈T

tn−l(n − l)v(N \ T)

from which we get the expression of the theorem by setting βs = −ts. ��
We should mention that an equivalent formula to (1) has been obtained by

Driessen and Radzik (2002).

4.2 Nullity

Definition 5

• For a game v ∈ G, we say that player i is null for v if

v(S) = v(S ∪ {i})

for all S ⊂ N.
• A solution φ ∈ LS(G) is said to be null (or to satisfy the nullity axiom) if

φi(v) = 0 for every game v for which i is a null player.

Here we study the nullity axiom in the same spirit of the previous section.
Namely, first we understand the nullity axiom as a condition on the the last
coordinate, φn, of a linear symmetric solution. Thus, in terms of Hn-invariant
functionals, the condition of being null may be restated as follows:

f ∈ HomHn(G, R) gives rise to a null linear symmetric solution if and only if
f (v) = 0 for every game v for which n is a null player.

Let Mn = {v ∈ G | n is null for v } ⊂ G. Note that Mn is an invariant sub-
space for the action of Hn. It is in fact isomorphic to the representation space
G(n−1) of all games in n − 1 players:

If we set L : G(n−1) = {g : 2{1,2,...,n−1} → R | g(∅) = 0} → Mn by

L(g)(S) =
⎧
⎨

⎩

g(S) if n /∈ S

g(S \ {n}) if n ∈ S

then L is an Hn-equivariant isomorphism.
Now, any f ∈ HomHn(G, R) is determined by its values on the subspace

C ⊕ T, thus we want to identify the null games for n inside C ⊕ T. By definition,
this is the space N = (C ⊕ T) ∩ Mn.
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Since C ⊕ T is the largest trivial subspace – for Hn – in G, we conclude that
N is the largest trivial subspace inside Mn. Therefore, it corresponds under the
isomorphism L to the subspace of symmetric games in n − 1 players, that is

N = L(C(n−1)).

So immediately we get that dim N = n − 1 and, since dim(C ⊕ T) = 2n − 1, that
the space of null symmetric linear solutions is n-dimensional.

Next we compute an explicit basis for N .

Lemma 4 Let N = (C ⊕ T) ∩ Mn. Then N is the (n − 1) -dimensional trivial
subspace with basis {νj}, j : 1, . . . , n − 1, where

νj = n − j
n

cj + j + 1
n

cj+1 + 1
n

(
ω

j
n − ω

j+1
n

)
.

Proof Let {zj}n−1
1 be the basis of C(n−1) obtained by restricting each cj, j :

1, . . . , n−1, to subsets of {1, . . . , n−1}. Then, by the above observation, νj = L(zj)

is a basis of N ; more explicitly,

νj(S) =
{

cj(S) if n /∈ S

cj(S \ {n}) if n ∈ S
=

⎧
⎪⎨

⎪⎩

1 if |S| = j and n /∈ S

1 if |S| = j + 1 and n ∈ S

0 otherwise

.

Now, write νj = ∑
aici +∑ bkω

k. To compute the coefficients ai, bk we proceed
as follows:

1 = νj({1, . . . , j}) = aj + jbj

0 = νj({1, . . . , j − 1, n}) = aj + (j − n)bj

}

⇒ bj = 1
j and aj = 1 − j

n

similarly, evaluating νj on {1, . . . , j + 1} and {1, . . . , j, n} one gets aj+1 = j+1
n and

bj+1 = −1
n (if j < n − 1, for j = n − 1 one has aj+1 = 1, bj+1 = 0).

Finally, in the same way one computes that ak = bk = 0 for the remaining
coefficients. ��
Example 2 Let us assume that f ∈ HomHn(G, R) is null and efficient. Efficiency
implies f (cj) = 0, for j ∈ N\{n}, and f (cn) = 1

n . Therefore, if rj = f (ωj
n),

0 = f (νn−1) = 1
n

(
1 + rn−1

) ⇒ rn−1 = −1,

and so, if j < n − 1

0 = f (νj) = 1
n
(rj − rj+1) ⇒ rj = rj+1;

thus rj = −1, for all j ∈ N\{n}.
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Hence, we conclude that there is exactly one linear symmetric solution which
is efficient and null (the Shapley value, Shapley (1953)). It is given by f (cn) = 1

n ,

f (cj) = 0 and f (ωj
n) = −1 for j ∈ N\{n}. ��

We finish this subsection by stating the general formula for null linear symmetric
solutions, i.e., solutions that satisfy all the axioms that traditionally characterize
the Shapley value except for the efficiency axiom. Dubey et al. (1981) have
given a similar formula. See also Weber (1988) for further discussion about
solutions satisfying the nullity axiom.

Proposition 5 The space of null linear symmetric solutions is n-dimensional. The
general formula for such a solution is given by:

φi(v) =
∑

S 
�i

rs [v(S ∪ {i})− v(S)].

for arbitrary r0, . . . , rn−1 ∈ R, and where s = |S|.
Proof Define, for j : 1, . . . , n − 1,

μj(S) =

⎧
⎪⎨

⎪⎩

1 if |S| = j and n /∈ S

−1 if |S| = j + 1 and n ∈ S

0 otherwise

,

and

χn(S) =
{

1 if S = {n}
0 if S 
= {n} .

The μj’s and χn are Hn-invariant, and so they belong to C ⊕ T. Let us show that
they form a basis for the orthogonal complement to N inside C ⊕ T.

Since for every game v,

〈v, νk〉 =
∑

S⊂N

v(S)νk(S)=
∑

|S|=k
n/∈S

v(S)+
∑

|S|=k+1
n∈S

v(S) =
∑

|S|=k
n/∈S

[v(S)+ v(S ∪ {n})]

it follows that 〈μj, νk〉 = 0 and 〈χn, νk〉 = 0. It is also not hard to check that
{μj} ∪ {χn} is an orthogonal set.

Let f ∈ HomHn(G, R) be an arbitrary null solution, and v ∈ G. Then

f (v) = f

⎛

⎝ 〈v,χn〉
〈χn,χn〉χn +

n−1∑

j=1

〈v,μj〉
〈μj,μj〉μj

⎞

⎠.

Since
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• 〈v,χn〉 = v({n}),
• 〈χn,χn〉 = 1,
• 〈v,μj〉 = ∑

|S|=j
n/∈S

[v(S)− v(S ∪ {n})] and

• 〈μj,μj〉 = 2
(

n − 1
j

)

,

we obtain

f (v) = f (χn)v({n})+
n−1∑

j=1

⎛

⎜
⎜
⎝

∑

|S|=j
n/∈S

[v(S)− v(S ∪ {n})] f (μj)

2
(

n − 1
j

)

⎞

⎟
⎟
⎠ .

Set r0 = f (χn), rj = −f (μj)

2

(
n − 1

j

) for j : 1, . . . , n − 1. Then,

f (v) =
∑

S 
�n

rs [v(S ∪ {n})− v(S)] ,

where the sum includes S = ∅ and where s stands for the cardinality of S.
Now recall that φi(v) is obtained from f = φn by interchanging i with n. ��
For future computations, we state the formulas of the μk, k : 1, . . . , n−1, and

χn, in terms of the orthogonal basis {ci,ωj}, i : 1, . . . , n, j : 1, . . . , n − 1:

μk = n − k
n

ck − k + 1
n

ck+1 + 1
n

(
ωk + ωk+1

)
,

χn = 1
n

(
c1 − ω1

)
.

4.3 Shapley’s solution

Shapley’s solution can be characterized (as is well known) as the unique linear
symmetric solution which is both efficient and null. As seen in the previous
section, it is characterized by saying that its nth coordinate functional Shn is the
unique element of HomHn(G, R) such that

• Shn(cn) = 1
n ,

• Shn(cj) = 0, j < n, and
• Shn(ω

j) = −1, j < n.

From formula (1) for all efficient, symmetric and linear solutions, we obtain
the following formula for Shapley’s value [see Myerson (1991) for a similar
expression]:
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Shi(v) =
∑

S�i

(s − 1)!(n − s)!
n! [v(S)− v(N \ S)],

where s = |S|.

4.3.1 Shapley’s value as the adjoint of the additive games map

Throughout the article we have been using an inner product on G which seems
very “natural” (we call it the standard inner product on G); namely,

〈v1, v2〉 =
∑

S⊂N

v1(S)v2(S).

In fact, any other Sn-invariant inner product on G would have done as well.
By Schur’s Lemma, on each irreducible component these inner products are
unique up to a constant. We see next, that a suitable choice of conformal factors
can be chosen which make the new inner product have a unique relation to
Shapley’s value.

Look at the following Sn-equivariant map: ˆ : R
n → G, which maps a vector

x to the game S �→ x(S) = ∑
i∈S xi, which we denote by x̂. The image R̂n ⊂ G,

of this map, is precisely the subspace of additive games (i.e., those games v such
that v(S ∪ T) = v(S)+ v(T) whenever S ∩ T = ∅).

Set a new inner product 〈〈, 〉〉 on G as follows:

• On C define it by declaring {c1, c2, . . . , cn−1, 1̂} orthogonal, and of length
√

n.
• On each Uj set 〈〈, 〉〉 with

〈〈xj, yj〉〉 = 1
n − 1

x · y

for every x, y ∈ �⊥
n .

• Set Ui ⊥ Uj, for all i 
= j.
• Set 〈〈, 〉〉 = 〈, 〉 on W.

Then 〈〈, 〉〉 is Sn-invariant; moreover

Theorem 3 Shapley’s value is characterized as being the adjoint, with respect to
〈〈, 〉〉, of the map x �→ x̂. In other words, for every game v ∈ G and every vector
x ∈ R

n we have that

Sh(v) · x = 〈〈v, x̂〉〉.

Proof Let ϕ : G → R
n be the adjoint to ˆwith respect to 〈〈, 〉〉, i.e., define the

linear solution ϕ by



Dissection of solutions in cooperative game theory using representation techniques 417

ϕ(v) · x = 〈〈v, x̂〉〉 for every v ∈ G, x ∈ R
n.

First of all, notice that ϕ is symmetric. Thus ϕ(̂1) = λ1, for some λ ∈ R, and
since

λn = λ1 · 1 = ϕ(̂1) · 1 = 〈〈̂1, 1̂〉〉 = n

then ϕ(̂1) = 1.
Also, for every j < n, ϕ(cj) · 1 = 〈〈cj, 1̂〉〉 = 0, therefore ϕ(cj) = 0.
To finish, we need only check that ϕn(ω

j) = −1 for every j < n. Thus, it is
enough to check that ϕ(ωj

n) = 1
n−1ω; but, for every y ∈ �⊥

n ,

ϕ(ωj) · y = 〈〈ωj, ŷ〉〉 = 〈〈ωj, yj〉〉 = 1
n − 1

ω · y. ��

Remark 5 The proof shows that given any linear symmetric, efficient solution
ψ , for which ψn(ω

j) < 0, for every j, we can find an invariant positive definite
inner product on G so that ψ is the adjoint of the map ˆ .

The condition ψn(ω
j) < 0, for every j, for efficient ψ , is a natural one, in that

it reflects on the fact that the only negative values of the game ωj happen for
coalitions that contain player n.

Corollary 3 For any v ∈ G,

Shi(v) = 〈〈v, êi〉〉

where ei ∈ R
n is the usual ith vector of the standard basis of R

n.

Remark 6 Equivalently, with respect to 〈〈, 〉〉, Shapley’s value is characterized
by saying that

• Sh(x̂) = x, for every additive game x̂, and
• Sh(v) = 0, for every game v perpendicular to the additive games.

So Shapley’s value, in this sense, is nothing more than the orthogonal projection
(with respect to 〈〈, 〉〉) to the additive games space. This should be compared with
results by Kultti and Salonen (2005) relating certain efficient linear solutions
with different types of inner products on G.

4.4 Duality

The interpretation of v(S) changes accordingly to what people want to model.
For example, v(S) could be the joint benefit that the coalition S could generate
if they decide to play together; in this case we would say that v is a benefit game.
In a second interpretation, we could assume that the players in N want to hire
a service, then v(S) could be thought of as the joint cost (for the players in S) if
they act together. In the latter case we say that v is a cost game. In both cases,
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v(S) is the “worth” assigned to the coalition S when it is formed, i.e., when the
players in S decide to play together.

The duality operator, as defined next, allows us to move from one of these
interpretations to the other. Thus it is a natural concept to study.

The duality operator ∗ : G → G is defined by

(∗v)(S) = v(N)− v(N \ S).

Observe that ∗2 = I and that ∗ is Sn-equivariant (i.e., symmetric).

Definition 6 A solution φ ∈ LS(G) is
• self-dual, if φ(∗v) = φ(v) for all v ∈ G;
• anti-self-dual, if φ(∗v) = −φ(v) for all v ∈ G.

In order to understand better the (anti-)self-dual solutions we need to under-
stand the action of ∗ on the Hn-invariant subspace C ⊕ T. Since ∗ is Sn-equi-
variant, C is an invariant subspace: i.e., ∗c ∈ C for every c ∈ C; similarly, T is
also an invariant space for ∗.

Lemma 5 The action of ∗ on C ⊕ T is as follows:
1. For j < n, ∗cj = −cn−j.
2. ∗cn = c1 + · · · + cn.
3. For j < n, ∗ωj = ωn−j.

Proof 1. Let S be such that |S| = k, then

∗cj(S) = cj(N)− cj(N \ S) = −δj,n−k.

2.

∗cn(S) = cn(N)− cn(N \ S) = 1 − δn,n−k,

thus, ∗cn(S) = 1 for every S 
= ∅.
3.

∗ωj(S)=−ωj(N \ S)=
{

0 if |N \ S| 
= j
−ω(N \ S) if |N \ S| = j

=
{

0 if |S| 
= n − j
ω(S) if |S| = n − j

= ωn−j(S).

��
Remark 7 Note that ∗1̂ = 1̂ (in fact for every x ∈ R

n ∗x̂ = x̂). Thus, one can
check that ∗ is orthogonal with respect to the inner product 〈〈, 〉〉 (defined in
the previous section) that sets Shapley’s solution as the adjoint of x �→ x̂. From
this one can give a quick proof of the self-duality of Shapley’s value: For every
v ∈ G, x ∈ R

n

Sh(∗v) · x = 〈〈∗v, x̂〉〉 = 〈〈v, ∗x̂〉〉 = 〈〈v, x̂〉〉 = Sh(v) · x.

Duality of Shapley’s value was already noticed in Kalai and Samet (1987).
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Clearly, every symmetric solution decomposes uniquely as a sum of a self
and an anti-self dual solution (φ(v) = φ(v)+φ(∗v)

2 + φ(v)−φ(∗v)
2 ), thus the spaces

of these solutions have complementary dimensions. In fact,

Corollary 4 Let f ∈ HomHn(G, R), with f (cj) = aj and f (ωj) = bj.

1. The symmetric solution corresponding to f is self-dual if and only if
aj = −an−j, bj = bn−j, j < n. In particular, the space of symmetric self-
dual solutions has dimension n.

2. The symmetric solution corresponding to f is anti-self-dual if and only if
aj = an−j, bj = −bn−j, j < n, and a1 + · · · + an−1 + 2an = 0. In particular,
the space of symmetric anti-self-dual solutions has dimension n − 1.

Proof Let us show the first statement, the other one is proven similarly.
Let φ be the linear symmetric solution such that φn = f . Then, for every

game v

φ(∗v) = φ(v) ⇔ f (∗v) = f (v) ⇔ ∀j
{

f (∗cj) = f (cj)

f (∗ωj) = f (ωj)
⇔
⎧
⎨

⎩

−an−j = aj, j < n
a1 + · · · + an = an
bn−j = bj

;

now, notice that the middle equation is a consequence of the first one.
Finally, for the dimension count, assume first that n is even, then an/2 = 0,

and we have the following “free” variables: a1, . . . , an/2−1, an, b1, . . . , bn/2, i.e.,
n variables in total. Whereas if n is odd, then we can specify values for:
a1, . . . , a[n/2], an, b1, . . . , b[n/2], so we have 2[n/2] + 1 = n variables. ��

4.4.1 Efficient and self-dual solutions

An efficient and self-dual solution assigns equal importance to the amount that
a particular coalition claims as well as to that amount which the players outside
of the coalition fail to claim.

Corollary 5 The space of linear symmetric solutions which are both efficient and
self-dual has dimension

[n
2

]
. This space is the space of solutions of the form

φi(v) = v(N)
n

+
∑

S�i
S 
=N

(n − s)βs [v(S)− v(N \ S)]

with βs = βn−s.

Proof With same notation as above, efficiency implies aj = 0, j < n, and an = 1
n ;

while self-duality imposes the extra bj = bn−j. Clearly, then, the dimension is[n
2

]
. The general formula follows from formula (1) for efficient solutions, since

βn−s = βs. ��
Since a1 +· · ·+an−1 +2an = 0 for any anti-self-dual solution, there can be none
which is also efficient.
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4.4.2 Nullity and duality

Recall the bases {νj} and {μj}∪ {χn} of the null space N and its orthogonal com-
plement N⊥ (respectively) inside C ⊕ T. The next lemma gives us the action of
∗ with respect to these bases.

Lemma 6

1. For j = 1, . . . , n − 2 we have

∗νj = −νn−j−1 and ∗ μj = μn−j−1.

2. ∗νn−1 = ∗cn − χn and ∗μn−1 = − ∗ cn − χn.
3. ∗χn = −1

n (cn−1 + ωn−1).

Proof The proof follows from Lemma 4, the formulas at the end of 2.2 and
Lemma 5. ��

Recall (Proposition 5) that f ∈ HomHn(G, R) gives rise to a null solution if
and only if it is of the form:

f (v) =
∑

S 
�n

rs [v(S ∪ {n})− v(S)]

where r0 = f (χn), and

rj = −f (μj)

2
(

n − 1
j

)

for j : 1, . . . , n − 1.

Proposition 6 The null solution f (v) = ∑
S 
�n rs [v(S ∪ {n})− v(S)] is self-dual

(respectively, anti-self-dual) if and only if rj = rn−j−1 (respectively, rj = −rn−j−1),
for all j < n.

Proof Let us give a proof for the self-duality case.
The null f gives a self-dual solution if and only if it satisfies self-duality on

any basis for C ⊕ T. Thus, f gives rise to a self-dual solution if and only if

f (∗νj) = f (νj), f (∗μj) = f (μj) and f (∗χn) = f (χn).

A null f automatically satisfies f (∗νj) = 0 = f (νj) for j ≤ n − 1, thus the first
n − 2 of these equations impose no restriction.

The equation f (∗νn−1) = f (νn−1) = 0 is equivalent to

0 = f (νn−1) = f (∗cn)− r0.
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The set of equations f (∗μj) = f (μj) give

rj = rn−j−1, for j < n − 1,
−2rn−1 = −f (∗cn)− r0

which, when combined with the previous one, gives

rj = rn−j−1, for j < n − 1,
rn−1 = r0;

i.e., rj = rn−j−1 for all j ≤ n − 1.
Finally, the last equation, f (∗χn) = f (χn), is already implied by the others.

Notice that, since 2cn = νn−1 − μn−1 then f (∗cn) = f (cn) follows from the first
two sets of equations. Then,

f (χn) = f (− ∗ cn − ∗μn−1) = f (−cn − μn−1) = f (∗χn).

Anti-self-duality is treated in the same way. ��

5 Kernels

Corollary 1 is the statement that the common kernel of all symmetric linear
solutions is W, i.e.,

⋂

φ∈LS(G)
ker φ = W.

From the basic results for efficient solutions discussed in Sect. 3.1 (namely
Proposition 3), the next result follows easily.

Proposition 7 The common kernel of all linear, symmetric and efficient solutions
is

C1 ⊕ · · · ⊕ Cn−1 ⊕ W.

Remark 8 In Amer et al. (2003) the common kernel of all linear, symmetric
and null solutions is computed. It is shown that it coincides with W!

In what follows we concentrate on the kernel of a single solution.
Let φ : G → R

n be any linear symmetric solution. As we saw before it is
uniquely determined by the numbers ai = φn(ci), bj = φn(ω

j).

Proposition 8 The kernel of φ consists of all games c + u + w ∈ C ⊕ U ⊕ W,
such that

• 〈c, cφ〉 = 0, where cφ = ∑n
i=1

ai
‖ci‖2 ci.

• u = ∑n−1
j=1 zj

j, with zj ∈ �⊥
n such that

∑
j bjzj = 0.

• w ∈ W is arbitrary.
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Compare the following corollary to a similar result in Kleinberg and Weiss
(1985).

Corollary 6 The kernel of Shapley’s value consists of all games c + u + w ∈
C ⊕ U ⊕ W, such that

• c ∈ C1 ⊕ · · · ⊕ Cn−1.
• u = ∑n−1

j=1 zj
j, with zj ∈ �⊥

n such that
∑

j zj = 0.
• w ∈ W is arbitrary.

Proof of Corollary: For Shapley’s value a1 = a2 = · · · = an−1 = 0, an = 1
n and

bj = −1. ��
Remark 9 Recall that at the end of Sect. 2.3 we have shown that the kernel of
Shapley’s value is the orthogonal complement -with respect to the inner prod-
uct 〈〈, 〉〉 defined there- to the subspace of additive games. This corollary is an
equivalent formulation without mention to 〈〈, 〉〉.
Proof of Proposition: Since ker φ is an invariant subspace of G then

ker φ = (ker φ ∩ C)⊕ (ker φ ∩ U)⊕ (ker φ ∩ W) ;

to prove this, let A be an irreducible summand of ker φ, then A is an irreducible
summand of G, and, thus, is contained in either C, U or W.

Now, for c ∈ C

〈c, cφ〉 =
∑

i

ai

‖ci‖2 〈c, ci〉 =
∑

i

〈c, ci〉
‖ci‖2 φn(ci) = φn(c),

and thus, c ∈ ker φ if and only if 〈c, cφ〉 = 0.
Every u ∈ U can be written as u = ∑n−1

j=1 zj
j, with zj ∈ �⊥

n . Then,

φ(u) =
∑

j

φ(zj
j) = 1

1 − n

∑

j

bjzj.

Finally, W ⊂ ker φ. ��

Appendix

A reference for basic representation theory is Fulton and Harris (1991). Nev-
ertheless, we recall all the basic facts that we need.

Definition 7 Let H be an arbitrary group. A representation for H is a homomor-
phism ρ : H → GL(V), where V is a vector space and GL(V) denotes the group
of invertible linear maps of V.

In other words, a representation of H is a map assigning to each element h ∈ H
a linear map ρ(h) : V → V that respects multiplication:



Dissection of solutions in cooperative game theory using representation techniques 423

ρ(h1h2) = ρ(h1)ρ(h2).

One usually abuses notation and talks about the representation V without
explicitly mentioning the homomorphism ρ. Thus, when applying the linear
transformation corresponding to h ∈ H on a vector v ∈ V, we write h · v rather
than (ρ(h))(v).

Definition 8 Let V and W be two representations for the group H.

• A linear map T : V → W is H-equivariant if T(h · v) = h · (T(v)), for every
v ∈ V and every h ∈ H.

• V and W are isomorphic H-representations, V � W, if there exists an H-equi-
variant isomorphism between them.

Thus, two representations that are isomorphic are, as far as all problems deal-
ing with linear algebra with a group of symmetries, the same. They are vector
spaces of the same dimension where the actions are seen to correspond under
a linear isomorphism.

Example 3 Let A ⊂ G denote the subspace of additive games, i.e., v ∈ A if and
only if v(S ∪ T) = v(S)+ v(T) for every pair of coalitions S, T with S ∩ T = ∅.
Sn acts on A; in other words, if θ ∈ Sn and v ∈ A then θ ·v ∈ A as is readily seen.

We claim that A as a representation is isomorphic to R
n with the usual action

θ · (x1, . . . , xn) = (xθ1 , xθ2 , . . . , xθn).
The Sn-equivariant isomorphism φ : R

n → A is given by φ(x) = x̂ where

x̂(S) =
∑

j∈S

xj.

Clearly φ is a linear map and x̂ is an additive game for every x. Let us show
equivariance. We need to prove that

φ(θ · x) = θ · x̂.

Now,

(θ · x̂)(S) = x̂(θ−1S) =
∑

{j | θj∈S}
xj;

on the other hand, if we set y = θ · x, then

(φ(θ · x))(S) = θ̂ · x(S) = ŷ(S) =
∑

i∈S

yi,

but yi = xθ−1i and, hence, both sums are identical (just set i = θj).
Clearly φ is 1–1, and hence it is onto by counting dimensions of both spaces.
So, from the point of view of linear algebra with Sn-action, the space of

additive games and R
n are the same. ��
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Definition 9 A representation V is irreducible if it does not contain a nontrivial
invariant subspace. That is, if U ⊂ V is also a representation for H (meaning that
h · u ∈ U for every h ∈ H and every u ∈ U), then U is either {0} or all of V.

The following theorem is one of the reasons why it is worth carrying around
the group action when there is one. Its simplicity hides the fact that it is a very
powerful tool.

Theorem 4 (Schur’s Lemma) Let V, W be irreducible representations of a group
H. If φ : V → W is H-equivariant, then φ ≡ 0 or φ is an isomorphism.

Moreover, if V and W are complex vector spaces, then φ is unique up to
multiplication by a scalar λ ∈ C.

Proof Kerφ and Imφ are invariant subspaces of V and W, respectively, thus it
is zero or the total space. From this follows the first part.

If the vector spaces are complex, φ,ψ : V → W H-equivariant, then
T = φ−1 ◦ ψ : V → V must have an eigenvalue λ ∈ C. Since the eigenspace
corresponding to λ is invariant, it must be all of V, i.e., T = λI or ψ = λφ. ��
Corollary 7 Let V be a real irreducible representation, such that its complexifi-
cation VC = V ⊗ C = V ⊕ iV is also irreducible (as a complex representation).
Let W be a real irreducible representation. If φ : V → W is equivariant, then φ
is unique up to multiplication by a real scalar.

Proof Schur’s Lemma implies that φ is zero or an isomorphism. Suppose φ is
an isomorphism, then WC is also isomorphic to VC and φC : VC → WC (the
complex-linear extension of φ) is an isomorphism. If ψ : V → W is any equi-
variant map, then by the previous theorem ψC = λφC, for some λ ∈ C. Since
φC and ψC preserve real parts (i.e., send V to W) λ must be real. ��
Lemma 7 The decomposition of R

n, under Sn, into irreducible subspaces is

R
n = R1 ⊕�⊥

n .

Proof We need only to check that �⊥
n is irreducible. This is done by induction

on n. If n = 2, then �⊥
n is 1-dimensional and thus, irreducible.

�⊥
n is generated by e1 − en, e2 − en, . . . , en−1 − en, where {ei} is the standard

basis for R
n. The isotropy subgroup of en, Hn = {θ ∈ Sn | θn = n}, is isomorphic

to Sn−1, and �⊥
n is the standard representation for Hn.

Therefore, induction hypothesis says that

�⊥
n � R ⊕ 1⊥

n−1

is the decomposition (up to isomorphism) into irreducible Hn-representations.
Actually, the precise summands of this decomposition are Rω and its orthogo-
nal complement inside�⊥

n , where ω = (e1 − en)+ (e2 − en)+· · ·+ (en−1 − en) =
(1, 1, . . . , 1, 1 − n).



Dissection of solutions in cooperative game theory using representation techniques 425

Now, if �⊥
n were a reducible Sn-representation, then it would split into sub-

spaces also invariant under Hn. Thus, the only possible splitting would be into
Rω and its complement. But these subspaces are not Sn-invariant. ��
Remark 10 Observe that the above proof also shows that the real irreducible
representations R and �⊥

n have irreducible complexifications.

Proposition 9 For j < n,

Gj = Cj ⊕ Uj ⊕ Wj,

where Cj = Rcj � R, Uj = {xj | x ∈ �⊥
n } � �⊥

n and Wj does not contain any
summands isomorphic to either R nor �⊥

n . The decomposition is orthogonal.

Proof Let Xj be the subset of 2N consisting of all subsets of cardinality j. So, we
may identify Gj with R[Xj] the space of real functions on Xj. Let K=Sj×Sn−j ≺Sn
be the subgroup fixing {1, 2, . . . , j}. Thus, Xj = Sn/K and

Gj � R[Sn/K].

Hence, if τ is the trivial 1-dimensional representation for K, then Gj is the
induced representation for Sn. Now, Frobenius reciprocity implies that

〈V, Gj〉Sn = 〈V|K , τ 〉K

for every Sn-representation V. Here, 〈V, W〉G denotes the dimension of the
space of G-equivariant maps from V to W; therefore, if V is irreducible, 〈V, W〉G
is the number of copies of V in W.

For example, for V = R, the trivial representation, we get

〈R, Gj〉Sn = 〈τ , τ 〉K = 1.

And if V = �⊥
n , then again

〈�⊥
n , Gj〉Sn = 〈�⊥

n |K, τ 〉K = 1

since the standard representation for Sn, restricted to Sj × Sn−j contains exactly
two copies of τ .

The invariant inner product 〈, 〉 gives an equivariant isomorphism Gj →
G∗

j via v �→ [u �→ 〈v, u〉]; in particular must preserve the decomposition. This
implies orthogonality of the decomposition. ��
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