
www.elsevier.com/locate/imavis

Image and Vision Computing 25 (2007) 1341–1351
A visual landmark framework for mobile robot navigation

J.B. Hayet *, F. Lerasle, M. Devy

LAAS-CNRS, 7 avenue Colonel Roche, 31077 Toulouse Cedex, France

Received 19 August 2005; received in revised form 22 August 2006; accepted 23 August 2006
Abstract

This article describes visual functions dedicated to the extraction and recognition of visual landmarks, here planar quadrangles
detected by a single camera. Landmarks are extracted among edge segments through a relaxation scheme, used to apply geometrical,
topological and appearance constraints on sets of segments. Once extracted, such a landmark is characterized by invariant attributes
so that recognition is made possible from a large range of viewpoints.

Landmarks are represented by an icon which is built using the homography between the current viewpoint and a reference shape (a
square). When detected again, the landmark is recognized by using a distance between icons. We propose a comparison of several of
these metrics and an evaluation on actual and synthetic images that shows the validity of our approach. Results issued from experiments
of a mobile robot navigating in an indoor environment are finally presented.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Vision has become a major element in mobile robot
navigation and many strategies relying on images have
already been proposed, based on environment representa-
tion either by image databases [10] or by visual landmarks.
Classically, the latter are detected by the robot, mapped
into the environment representation and recognized during
the execution of a navigation task. In general, the robot’s
position estimate is computed mainly from the integration
of outputs of odometers, which tends to accumulate small
displacement errors and produces drift. When recognized,
visual landmarks allow to make this drift vanish, so they
play a key role in making navigation systems efficient.

The work presented here aims to be part of a navigation
strategy relying on ‘‘natural’’ visual landmarks, i.e., salient
objects a mobile robot detects/recognizes and from which it
can either simply localize itself (if the map of the environ-
ment is known) or incrementally build a metric map inte-
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grating perceptual data and position estimation,
according to the simultaneous localization and mapping
(SLAM) paradigm [17]. Our robot has several localization
modalities, based either on laser segments learnt using a
laser range finder and on visual landmarks detected from
a single B&W camera: this paper is mainly devoted to the
visual modality. The reader could refer to [1] for a descrip-
tion of these modalities.

Numerous techniques have been proposed to model
landmarks for navigating in indoor environments. They
all rely on two assumptions: (1) landmarks have to be eas-
ily detected in the image signal and (2) they can be locally
characterized to distinguish them from others. In that
scope, landmark-based navigation research has started by
using remarkable characteristics of office-like environments
(3D room corners, lights, etc.) [3,11,9], or collections of
simple edge segments [16]. Point sets can also serve as land-
marks when combined to define projective invariants [2].

Most recent work make use of points to define
landmarks [4,15], taking advantage of new, powerful
interest point detection and characterization algorithms
such as SIFT, which makes landmark-point recognition
much easier [5].
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In our work, planar quadrangular objects (posters,
doors, cupboards, etc.) are selected as landmarks, as they
are one of the basic structures man-made environments
are made of. Among research works similar to ours, we
can quote [12], where the authors take advantage from
genetic algorithms techniques to recognize 2D landmarks.

The paper is organized as follows. Section 2 details the
landmarks detection process, with results on images
acquired during robot navigation. Section 3 presents the
landmarks recognition process; an evaluation of our
recognition method, with respect to different acquisition
criteria, proves its robustness. Navigation experiments are
presented in Section 4. Finally, Section 5 sums up our
approach and opens a discussion for our future work.

2. Landmarks detection

The landmark extraction is focused on planar, mostly
quadrangular objects, e.g., doors, windows, posters, cup-
boards, etc. A natural way of extracting quadrilaterals
relies upon perceptual grouping on edge segments.

2.1. Overview of the method

Let a set of nL edge segments set be L ¼ flig;
1 6 i 6 nL. A naive approach to test all possible 4-uples
inside L does not make sense, as illustrated in Fig. 2.

To reduce the problem complexity, we propose a two-
step algorithm: first, mapping L to L [ f;g so that each
segment is matched with at most one segment; second,
associating pairs of matched segments to form quadran-
gles. The whole process is described in Fig. 1.

2.1.1. Extracting edge segments

The output of a Canny-Deriche edge detector is first
thinned and chained. The resulting edge chains are then
recursively segmented to produce the set L of line
Fig. 1. The landmark detection scheme.
segments as illustrated in Fig. 2. Before the matching pro-
cess starts, small segments are filtered, altogether with seg-
ments that may correspond to repetitive patterns.
Typically, segments corresponding to the floor tiling (as
in the central image of Fig. 5) are found by an accumulator
technique and are eliminated.

2.1.2. Generating segment matches

An initial set of matches is generated by looking for cou-
ples (lk, ll)k„1 for which a similarity measure skl is above a
given level. Indices k and l are associated to individual seg-
ments. This measure combines several cues, as explained
hereafter, so that segments corresponding to opposite sides
of quadrangles have high values of skl.

Moreover, a set of geometric constraints on segment
pairs denoted by Q1

klmn is used in a first relaxation scheme
to validate pairs belonging to quadrangles, i.e., to generate
a set of coherent potential landmarks. Again, indices k, l,
m, n represent individual segments.

2.1.3. Generating potential quadrangular landmarks

With constraints on pairs of detected quadrangles, a
second relaxation process selects only the more consistent
four-segment sets corresponding to landmarks; these con-
straints are denoted by Q2

klmn. Three-segment sets are use-
ful as they may correspond to occluded landmarks or
doors, so a simple heuristic is used to combine two-seg-
ment sets rejected from the second relaxation process
with single segments rejected from the first one by using
constraints T 2

klm. All these constraints, specified in Section
2.3 are applied through a relaxation scheme depicted
hereafter.

2.2. Relaxation scheme

Given two sets S1 (n1 elements) and S2 (n2 elements), the
principle of relaxation is to iteratively make all the
Fig. 2. Segments in a typical indoor scene.
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probabilities pkl of associations between items k (index for
an element of S1) and l (index for an element of S2) evolve
towards 1 or 0, i.e., towards unambiguous match or mis-
match. Let A be the n1 · n2 matrix such as Akl = pkl.

We define the variety A ¼ fA 2 Mn1�n2
j 8ðk; lÞAkl P

0 and 8k
P

lAkl ¼ 1g.
The relaxation steps maximize iteratively a global con-

sistency score using gradient ascent in A. In our specific
case, for each relaxation process i 2 {1,2}, we maximize a
score Gi(A):

GiðAÞ ¼
X
klmn

Qi
klmnAklAmn:

The terms Q1
klmn (resp. Q2

klmn) represent a compatibility de-
gree between pairs of segment pairs (resp. quadrangles)
(k, l) and (m,n). It is derived from constraints detailed in
Section 2.3.

The gradient step a(p) at iteration p is adaptive and
defined by a(p) = argmina Gi(A(p) � a$Gi,(p)). Regarding ini-
tialization, a priori probabilities are computed from simi-
larity measures skl only. If the measure skl is below a
threshold smin, pð0Þkl is set to 0, otherwise it is estimated by:

pð0Þkl ¼
sklP

skn>smin
skn
: ð1Þ

The next section describes the different criteria and con-
straints we use in the relaxation schemes.

2.3. Comparing sets of segments

In this section, we make the way we use sets of segments
more explicit. We first describe the similarity measure skl

between two segments lk and ll used to initialize probabili-
ties pkl. Then, we give details on the constraints Q1

klmn

between pairs of segments, and Q2
klmn between quadrangles

which are used in the two relaxation schemes.

2.3.1. Segment similarity

The measure skl is defined by a weighted sum of the fol-
lowing geometric and luminance cues:

• segments length ratio 1
2
ðjllj
jlk j þ

jlk j
jlljÞ in Fig. 3,

• angular difference jhlk � hll j in Fig. 3,
• a shape criteria giving favour to square-like shapes

1
2
ðjlljþjlk j

hklþhlk
þ hklþhlk
jlljþjlk jÞ where hkl represents the distance

defined in Fig. 3,
• the overlapping rate between lk and ll,
Fig. 3. Conventions for segment matching.
• presence of a third segment in the neighbourhood that
forms a convex three-segments set with the given pair.
Segments pairs (lk, ll) without at least a third segment
lm are discarded for the next.

As far as luminance criteria are concerned, an average
grey-level profile is computed in the direction orthogonal
to each segment, so that an association (lk, ll) is character-
ized by the zero normalized cross correlation (ZNCC) score
between the two segments profiles. In fact, we assume here
that the intensity in the background is uniform around a
trustworthy quadrangle while its two opposite insides are
supposed to include quite similar texture.

2.3.2. Second degree constraints

Here, uniqueness and convexity of potential matches
among segments pairs are checked. Uniqueness constraint
allows to reduce the relaxation algorithm complexity and
enforces the assumption that landmarks are supposed to
be locally unique. Convexity rule says that two segments
pairs, correspond to opposite sides of two trustworthy
quadrangles which must verify rules of full inclusion or
no intersection as shown in the left part of Fig. 4.

From the constraints Q1
klmn described above, the first

relaxation outputs a set of segments pairs. The next step
is to match two segment pairs delimiting trustworthy quad-
rangles. Indexes k, l, m and n refer now to segments pairs.

2.3.3. Third and fourth degree constraints

The fourth degree constraints Q2
klmn ensue from accepted

configurations for two quadrangles which are shown in the
right part of Fig. 4 and are applied throughout the second
relaxation scheme.

From the previous steps, it is possible to extract 3-seg-
ment sets that can be helpful in robot navigation. These
sets involve an unmatched segment pair (k, l) coming from
relaxation #2 and an unmatched segment m coming from
relaxation #1. The selection of these potential landmarks
is based on uniqueness, on the resulting shape convexity
and on vicinity relationships (constraints Tklm).

2.4. Detection results

Experiments have been performed on a large database
of about 300 images acquired from our robot navigating
either in a corridor network or in cluttered open areas.
The robot is a Nomadic XR4000, equipped with a SICK
laser range finder and a CCD camera mounted on a pan-
tilt platform.

Fig. 5 shows examples of landmarks detected in an open
cluttered environment. We note that both quadrangles and
three-segment sets are extracted.

During the environment exploration, the robot executes
two operations: (1) a SICK laser map is built by a classical
SLAM procedure and (2) visual landmarks are detected
and combined with the laser segments. The resulted map
is represented in Fig. 6, with all laser segments and all
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Fig. 4. Examples of accepted configurations for two segments pairs or two quadrangles.

Fig. 5. Examples of landmarks detection: the numbers on the segments indicate the final tag associated to the detected landmark.

Fig. 6. Landmarks detection in office environment.
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detected landmarks: windows or posters in green (lateral
walls or ceiling), doors by a grey icon. Their associated
locations on the walls are triangulated from their perspec-
tive views and the planes defined by the laser segments
assuming the multisensory system is fully calibrated. For
every detected landmark, a visibility map (not shown here)
is statically computed according to the environment model
by an analytical method.

Detection rates are computed over the database of
images taken by the robot. In this database, all quadrangu-
lar objects have been identified by a human operator; the
landmarks detection module extracts 88% of existing land-
marks, without any false detection.

During this environment exploration step, the robot
could stop to perform both detection and recognition
processes, so that only the representation of new discov-
ered landmarks is learnt. Only quadrangular objects which
are successfully detected from different view points (Section
3.3) are considered as landmarks in the environment
model. Later, when the robot navigates using the set of
learnt landmarks, it must be able to achieve these tasks
dynamically.



Fig. 8. Approximated averaging for iconification: zoom of the neigh-
bourhood of the image of an icon pixel (a,b).
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3. Landmarks recognition

Once a landmark has been detected, an appearance
model is built so that it can be recognized from different
viewpoints. In Section 3.1, we describe the landmark
representation: boundaries of a detected landmark allow
to rectify the observed pattern; and such a mapping
provides an invariant representation under scale and
perspective changes. We call it ‘‘icon’’.

In Section 3.2, we propose distances to compare icons
and perform recognition. Section 3.3 thereafter describes
the landmark model. Based on this model, a confidence
factor on the recognition process is proposed in Section
3.4. In Section 3.5, a correlation-based method is compared
with an approach based on interest points extracted from
icons.

3.1. Landmarks iconification

Let us consider, (1) an extracted quadrangular landmark
Q from an image I and (2) a fixed-size reference square S.
The two shapes are related by a homography HSQ that
maps points from S to Q.

By using HSQ, a new small-sized image I 0 is built from
the image I by averaging pixels from I into pixels in I 0

(see Fig. 7). The computation of HSQ is straightforward
as four point correspondences are available [14].

Averaging is performed in order to avoid too much
information compression in the low-scale front view I 0:
the grey level value of a pixel (a,b) in image I 0 is determined
by taking into account all pixels in image I belonging to a
certain neighbourhood of HSQ(a,b, l)T, i.e., its image in I.
This neighbourhood is computed by approximating the
image of a pixel square with simple heuristics (see Fig. 8).

The icon I 0 is processed by the Harris operator to get a
set of n interest points {Xi}16i6n and a local descriptor [13]
in R7, based on Gaussian derivatives, is associated to every
interest point.
Fig. 7. Model construction: quadrilaterals are transformed into icons by
the mean of HSQ.
3.2. Metric on icons

To perform the recognition between a set of learnt land-
marks noted {Cl}16l6N and a detected landmark Q, metrics
on icons are defined.

3.2.1. A correlation-based distance

The centered and normalized correlation score C pro-
vides a distance which is theoretically invariant to overall
light changes.

To be less sensitive to local variations or occlusions, the
icons Q (from the new landmark) and Cl (from the refer-
ence landmark l) are divided into 5 · 5 buckets. Then, we
define a robust correlation score Cr between two icons by
using separated correlations CijðQ; ClÞ between buckets i

and j, and by choosing the kth greatest correlation score
between buckets. The number k is expressed as a ratio r

of admissible outliers among all the buckets. It allows to
ignore the most important local differences between Q
and Cl. From this new score, we derive the distance:

CrðQ; ClÞ ¼ 1� kth
16i;j65CijðQ; ClÞ:
3.2.2. A local features-based distance
Many popular appearance-based methods for object

recognition are based on interest points matched thanks
to their local descriptors [13,15]; these local features are
remarkably stable under moderate rotation or light
changes. We propose to use the partial Hausdorff distance
[8] to compare sets of interest points {Xi}16i6n extracted
from icons.

Let be two sets of points Sl ¼ fX l
ig16i6nl

associated with
a known landmark Cl, and S = {Xi}16j6n, extracted from a
new landmark Q. To handle outliers, the Hausdorff dis-
tance between Sl and S is modified in the same way as
Cr, i.e., by considering only a fraction r of all the points,
k = r min(nl,n):

dr
hðSl; SÞ ¼ maxðhrðSl; SÞ; hrðS; SlÞÞ;

hrðSl; SÞ ¼ kth
16i6ni

min16j6ndðX l
i ; X jÞ:

(
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A threshold sl on the distance is set to recognize landmarks
Q as instances of known landmarks Cl, as it will be de-
scribed in Section 3.3.2. An interpretation of this distance
is that an object is recognized provided that for at least k

points of the second set, a similar point can be found in
the first set, and reciprocally.

The partial Hausdorff distance between two sets of
points depends on the local distance d between points.
We could simply use the Euclidean distance, but we
would lose explicit local photographetric information.
In order to take into account both spatial and photo-
graphetric similarities between points, we define a local
distance noted dp:

dða; bÞ ¼ dvða; bÞka� bk;
where dv(a,b) is the Mahalanobis distance between the
descriptor vectors at points a and b. The Hausdorff dis-
tance based on d is denoted by Hr.

3.3. Building appearance models

For each landmark Cl, a model is built from a set of Nl

representative images Ii at several viewpoints (typically
Nl = 50), from which iconified views I 0i are extracted.

3.3.1. Reducing landmark representation

A principal component analysis is first performed on the
set of raw icons. We keep only three icons, denoted respec-
tively by Q1

l , Q2
l , Q3

l . The first one Q1
l corresponds to the

mean icon of I 0i, 1 6 i 6 Nl, whereas Q2
l and Q3

l correspond
to the more significant modes on this icon set.

For distance Hr, such a process is followed by the
extraction of Harris points and their characteristics in the
I 0i icons closest to the selected eigenvectors.

3.3.2. Determining recognition thresholds

During the recognition step, a detected landmark is
compared to each known landmark Cl, using a recognition
threshold sl specific to it. During the modelling step, an
optimal threshold is computed for each landmark Cl by
computing distances (Cr or Hr) between extracted icons
for this landmark, with either the Cl model or all the other
models noted �Cl.

The distance distributions on representative sets of icons
from Cl and �Cl give us a good approximation of the prob-
ability densities on the distances, given the knowledge of Cl

or �Cl. To specify an optimal threshold sl, we minimize:

SðslÞ ¼ k
Z sl

0

pðdj:ClÞdd|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
:SlðslÞ

þl
Z þ1

sl

pðdjClÞdd|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
SlðslÞ

;

with k and l being two weights for respectively false
positive and false negative, noted �Sl(sl) and Sl(sl). The
choice l ¼ 1

6
k allows to give more importance to false

positives than to false negatives. The security in the robot
navigation being critical, the recognition of a landmark
in a bad position cannot be accepted, i.e., false positive
are more important to be avoided.

3.3.3. Validation gates

For every landmark Cl, the modelling step ends with a
verification of two criteria: (1) Cl must be salient enough,
and (2) the Nl images from which the Cl appearance model
has been generated, must give a good approximation of all
possible viewpoints on Cl.

The saliency criterion is verified from the covariance of
the icons I 0, and from the number of stable extracted inter-
est points. The visibility criterion indicates how far from
each other are the extreme positions at which the landmark
has been detected during this learning step. For all couples
(i, j) 2 [1,Nl]

2, an inter-image homography Hij maps corre-
sponding vertices of the landmark in images Ii and Ij. Let
us consider the normalized homography Ĥij, such as
Ĥ ij

33 ¼ 1, and where image coordinates have been centered
and normalized. Then, we define a visibility confidence
as: vc = maxijiĤij � I33i.

I33 is the 3 · 3 identity matrix. The greater is vc, the more
extended is the area on which the landmark has been per-
ceived during the learning step. The value vc is clearly cor-
related to the planarity: planar landmarks are recognized in
a larger area and under greater camera parameters changes
than non-planar ones.

3.4. Confidence in the recognition result

The recognition task requires to index and compare
detected landmarks. For a set of N modelled landmarks
{Cl}i6z6N and a detected landmark Q, let us note
Dl ¼ DðQ,Cl), the distance between Q and each class Cl

(D being either Cr or Hr). The probability P ðCljQÞ of
labeling Q to Cl, is defined by:

P ðC;jQÞ ¼ 1 and 8l PðCljQÞ ¼ 0 when 8l Dl > sl

P ðCmjQÞ ¼ 1 and 8l 6¼ m PðCljQÞ ¼ 0 when 9!mDm < sl

P ðC;jQÞ ¼ 0 and 8l PðCljQÞ ¼ hðsl�DlÞP
p
hðsl�DpÞ

otherwise

8>><
>>:
where C; refers to the empty class and h the Heaviside
function: h(x) = 1 if x > 0, 0 otherwise. This allows us to
use the entropy-based measure:

mðQ; fClgÞ ¼ 1þ 1

N þ 1

X
j

P ðCjjQÞ log PðCjjQÞ:
3.5. Recognition evaluation

An important issue for our recognition process, is the
way the algorithm behaves with light effects, scale/per-
spective changes and bad segmentation from the detec-
tion step. Other questions are related to the
discriminating power of proposed distances. To investi-
gate this robustness problem, a large test image database
has been constituted both by:
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(1) Two hundred and seventy real images of different
landmarks acquired while the robot wandered
around the lab (see Fig. 9) represented by the map
of Fig. 6.

(2) synthetic images of 300 movie posters with different
light, scale/perspective conditions and occlusions,
these modalities remaining quite difficult to perform
and quantify in real conditions (see Fig. 10).

3.5.1. Discriminating power

Let us consider probability densities computed from the
distribution of distances between a given landmark and
other ones from the database of real images. A poster
found in this database has been selected and learnt as a
landmark, and Fig. 11 now represents distributions of dis-
Fig. 9. Examples of real images with variable scales, occ

Fig. 10. Examples of synthetic images with variable scales, occlusions, brightn
texture.
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Fig. 11. Discriminating power: distribution of distances
tance values obtained (a) for the objects corresponding
which are instances of this landmark (class Cl) and (b)
for objects that are not (class �Cl). This distribution can
be approximated by a Gaussian function, which center
and variance depends on the Hausdorff fraction and on sets
cardinals.

The overlapping surface under the two curves are rela-
tively small for the two distances that have been investigat-
ed. By following the process described in Section 3.3.3, we
have rates of false positive around 1%, whereas false nega-
tive where about 30%, which reflects the high level of dis-
turbances we put on synthetic data sets.

3.5.2. Behavior under viewpoint changes
The graphs in the left part of Fig. 12 represent the evo-

lution of the ratio distances
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for distances and Hr and Cr
lusions, brightness variations or specular reflexions.
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under scale change. This ratio has to remain below 1 to
ensure recognition. Even for a scale factor about three, val-
ues for both of the compared distances remain small w.r.t.
their respective thresholds. However, as expected, results
are degrading fast as soon as the apparent size of the
extracted pattern is below the size of the square used for
the iconic representation.

As far as perspective distortions are concerned, the evo-
lution of the ratio distances

threshold
have been studied for distances Cr

and Hr by performing a planar rotation in the horizontal
plane of a landmark. Results on the right part of Fig. 12
show that the combination of invariants vectors and inter-
est points is a powerful tool to achieve recognition of pla-
nar objects, as distances remain reliable up to ±75� from
the normal to the landmark plane, which is reasonable.

3.5.3. Behavior under light effects and occlusions

The left graph in Fig. 13 shows that it is possible to have
good recognition results for the two distances until local or
global light saturations appear in the image.
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Moreover, as it can be seen on the right part of Fig. 13,
the representation is also robust to partial occlusions,
which occurs for partially detected landmarks, that com-
pose the majority of detected landmarks in indoor environ-
ment. With the distances Hr and Cr, occlusions of the
landmark up to 46% and 56% of its area do not prevent
the landmark from being recognized.

3.6. Discussion: comparing the two metrics

We have compared two different representations and
associated metrics by applying tests w.r.t the main sources
of image noise and variations. Both of the metrics have
quite satisfactory results on ambient brightness variations,
scale or perspective changes, which makes our concept of
quadrangles-landmarks a powerful tool for modelling
environments. The Cr metric gives slightly better
recognition results on all these tests, but it is limited by
the size of data that have to be stored, i.e., all the icons
have to be stored.
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That is why in practice Hr is preferred for our experi-
mental work: this distance is compact and gives fairly good
recognition results.

4. Application to robot navigation

Our landmark detection and recognition scheme has
been integrated as a visual localization module in our Dil-
igent Nomadic XR4000 robot, shown in Fig. 14. Section
4.1 describes the landmark localization with calibrated
vision, and experiments showing our robot navigating in
indoor environments are presented. Then, we introduce
an extension we developed to handle unknown camera
parameters.

4.1. Localization with a calibrated camera

Let us assume that our vision system is fully calibrated
and that a 3D model of the quadrangle Q has been deter-
mined i.e. its four corners noted fP n

i gi¼1;...;4 in the poster
frame are a priori known. The landmark localization in
the camera frame, i.e., the displacement [Rcn,Tcn], is based
on the decomposition of the homography Hm relating four
matches of image points pi and model points P n

i . This
matrix Hm can be interpreted in terms of a displacement
between the poster frame and the camera frame [14]:

½rcn
2 ; r

cn
3 ; T

cn� ¼ kK�1½h1; h2; h3� ð2Þ
½rcn

1 ; r
cn
2 ; r

cn
3 � (resp. [h1,h2,h3]) are columns of Rcn (resp. Hm),

[tcn
x ,tcn

y ,tcn
z ] are the components of Tcn, K the intrinsic param-

eters matrix and k the scale factor.
Let us recall the robot is considered as a complete sys-

tem, equipped not only by a camera, but also by a laser
Fig. 14. The XR4000 ‘‘DILIGENT’’ robot we used in the experiments is
equipped with a laser and BW cameras.
range finder and by odometry. A localization module is
associated to every sensor: all computed positions are log-
ically fused by a dedicated position manager module [1].
The localization strategy is based on a loose coupling of
these modalities. During an off line statistical analysis,
the robot learns the better localization modality it must
execute to locate itself in every area in the environment,
according to their intrinsic performances and to local con-
figurations of learnt landmarks or features. For example,
the robot learns by itself, that: (1) in open space, it is rele-
vant to fuse localizations computed by all modalities, even
if they are computed at various frequencies, (2) in a given
place, due to an uneven area on the ground, the odometry
modality gives an important bias, (3) in a long corridor,
vision modality is better than laser modality.

Figs. 15 and 16 illustrates navigation experiments in a
25 m long corridor (annoted (b) in Fig. 6) where laser local-
ization is known to be inefficient as there is no identifiable
beacon in the direction orthogonal to the corridor. In each
left sub-figure, the blue trace corresponds to current odom-
etry positions; without another modality, the robot would
clearly bump against the left wall of the corridor. The red
trace gives the current corrected position from the vision
method, executed on four previously learnt posters anno-
tated #0 to #3 (red color) on the laser map. Sub-figures
show the robot, respectively at corridor entry, at two posi-
tions close to posters and finally at corridor exit. Each
upper right image shows the current robot perception while
the bottom right image shows the robot in its environment.
The robot perception is ensured by the camera mounted on
Fig. 15. Robot localization: recognizing known landmarks (marked
0,1,2,3) allow to correct the robot’s position.



Fig. 16. Robot localization: external view (bottom) and robot view (up).
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a pan and tilt platform; in every place, the camera is
pointed towards the best landmark, selected with respect
to its visibility area and saliency coefficients estimated dur-
ing the learning step. The number of positions corrections
performed since the robot enters the corridor is displayed
in the superimposed box on each sub-figure. The robot’s
position is corrected 13 times during its navigation. In such
a corridor, the robot can be localized in the corridor
direction, with an error lower than 20 cm.

4.2. Auto-calibration with quadrangles

An extension of our work deals with active vision, which
implies to re-estimate camera intrinsic parameters. We
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propose to do it online, from several views of a planar
quadrangle. It is assumed here that these parameters are
constant on these views. Using Eq. (2), we evaluate the
image of the absolute conic x = K�TK�1, under the simpli-
fied form:

x ¼
x1 0 x2

0 x1 x3

x2 x3 x4

0
B@

1
CA:

Let X = (x1,x2,x3, x4)t be the vector to estimate. Such a
parametrization allows to write linear constraints on intrin-
sic parameters[14]. First, constraints on planar homogra-
phy deduced from Eq. (2) lead to:
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hT
1 xh1 ¼ hT

2 xh2;

hT
1 xh2 ¼ 0:

(
ðC1Þ

Second, assuming the roll angle of the camera platform to
be neglected, makes the skyline and vertical vanishing
point be known. This entails also:

ð0 1 0Þ:xh2 ¼ 0: ðC2Þ

In the same way, given Eq. (2), the constraint of planar ro-
bot motion can be written as follows:

�tnc
z ðhT

1 xh1Þ ¼ hT
2 xh3: ðC3Þ

Combining these three constraints (C1), (C2) and (C3) al-
lows to solve intrinsic parameters K.

Fig. 17 shows calibration results for different constraint
combinations. Synthetic experiments (see Fig. 17, left)
show that the first constraint (C1) seems to be sufficient.
On the right part of Fig. 17, calibration results for real
images are presented. The relative error to ground truth
is inferior to 1% which is suitable for active vision purpos-
es. From five to ten views are required to recover intrinsic
parameters with a good precision.

5. Conclusion and future works

We present an original framework to use quadrangular
visual landmarks for robot navigation in indoor environ-
ment. A first contribution concerns a method for extracting
quadrangles in open cluttered and corridor-like spaces.
These quadrangles can correspond to planar objects (post-
ers, doors, cupboards, etc.). A new representation and
associated recognition method for such landmarks is pre-
sented. It has been verified that this method remains effi-
cient despite ambient brightness variations or viewing
changes.

Navigation experiments have been performed; the
extraction of visual landmarks is very efficient, as well as
the landmark recognition method. During the environment
exploration, about 90% of pertinent landmarks are extract-
ed; then, when the robot goes along a path planned in the
environment model, landmarks are actively searched and
exploited for the robot localization. When only posters
are considered as landmarks, the recognition rate is greater
than 97%. Failures are due to unforeseen occlusions or spe-
cific ambient brightness variations. Our method proposed
to select the thresholds, allows to avoid false positive
errors.

Two directions are currently studied regarding our visu-
al landmarks based navigation system. First, visual func-
tions described here are exploited for topological
navigation and qualitative localization purpose [7]. Consid-
ering ambiguous landmarks (doors, etc.), a Markovian
localization [6] will be implemented to handle multi-
hypothesis on the robot position. Second, a more tied
coupling strategy is studied to improve the explicit robot
localization; the land-mark model, will be learnt together
with the laser map, using a SLAM approach to build a het-
erogeneous stochastic map.
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