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A FORMULA FOR JACK POLYNOMIALS

OF THE SECOND ORDER

Abstract. This work solves the partial differential equation for Jack poly-
nomials Cα

κ of the second order. When the parameter α of the solution takes
the values 1/2, 1 and 2 we get explicit formulas for the quaternionic, complex
and real zonal polynomials of the second order, respectively.

1. Introduction. The computation of Jack polynomials has undergone
a vertiginous development in the last few years: see Goulden and Jackson
(1996), Sawyer (1997), Koev (2004), Koev and Edelman (2006) and Du-
mitriu et al. (2005), among many others. Before Jack polynomials, the real
and complex zonal polynomials have been studied extensively in the sta-
tistical literature. Important open problems concerning zonal polynomials
could be handled with Jack polynomials theory, using the fact that the zonal
polynomials of a symmetric matrix and the zonal polynomials of a hermi-
tian matrix are Jack polynomials for α = 2 and α = 1, respectively; see
James (1964), James (1968), Khatri (1970), Muirhead (1982), Dı́az-Garćıa
and Caro-Lopera (2006) and Dı́az-Garćıa and Caro-Lopera (2007), among
many others.

It is known that the real and complex zonal polynomials are eigenfunc-
tions of the Laplace–Beltrami operator. The resulting partial differential
equation leads to a recurrence relation for their coefficients and so the poly-
nomials can be computed. A few explicit formulae to calculate the Jack
polynomials appear in the literature; specifically, in the real case, i.e. when
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α = 2, James (1964, Section 9) proposes some expressions. For the same
value of α, but only for the second order, James (1968) solves the partial
differential equation for real zonal polynomials.

In general, Jack polynomials are also eigenfunctions of an operator of the
Laplace–Beltrami type (see Dumitriu et al. (2005, Definition 2.10)), and as
before, a general recurrence relation can be derived from a partial differential
equation to compute their coefficients.

Following the idea of James (1968), this work finds an explicit formula
for the Jack polynomials of the second order. This is carried out by solv-
ing the general partial differential equation with a parameter α when two
eigenvalues are considered. Taking α = 1/2, 1, formulae for quaternionic
and complex zonal polynomials of the second order are obtained, respec-
tively. For definitions of the quaternionic zonal polynomials see Gross and
Richards (1987). Also, the results derived in James (1968) for the real zonal
polynomials of the second order are recovered for α = 2.

2. A formula for Jack polynomials of the second order. Let us

characterize the Jack symmetric function J
(α)
κ (y1, . . . , ym) of parameter α

(see Sawyer (1997)). A decreasing sequence of nonnegative integers κ =
(k1, k2, . . .) with only finitely many nonzero terms is said to be a partition

of k =
∑

ki. Let κ and λ = (l1, l2, . . .) be two partitions of k. We write
λ ≤ κ if

∑t
i=1 li ≤

∑t
i=1 ki for each t. The conjugate of κ is κ′ = (k′

1, k
′
2, . . .)

where k′
i = card{j : kj ≥ i}. The length of κ is l(k) = max{i : ki 6= 0} = k′

1.
If l(κ) ≤ m, one often writes κ = (k1, . . . , km). The partition (1, . . . , 1) of
length m will be denoted by 1m.

The monomial symmetric function Mκ(·) indexed by a partition κ can
be regarded as a function of an arbitrary number of variables such that
all but a finite number are equal to 0: if yi = 0 for i > m ≥ l(κ) then
Mκ(y1, . . . , ym) =

∑

yσ1

1 · · · yσm

m , where the sum is over all distinct permuta-
tions {σ1, . . . , σm} of {k1, . . . , km}, and if l(κ) > m then Mκ(y1, . . . , ym) = 0.
A symmetric function is a linear combination of monomial symmetric func-
tions. If f is a symmetric function then f(y1, . . . , ym, 0) = f(y1, . . . , ym). For
each m ≥ 1, f(y1, . . . , ym) is a symmetric polynomial in m variables.

Thus the Jack symmetric functions J
(α)
κ (y1, . . . , ym) with parameter α

satisfy the following conditions:

J (α)
κ (y1, . . . , ym) =

∑

λ≤κ

jκ,λMλ(y1, . . . , ym),(1)

J (α)
κ (1, . . . , 1) = αk

m
∏

i=1

(

m − i + 1

α

)

ki

,(2)
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m
∑

i=1

y2
i

∂2J
(α)
κ (y1, . . . , ym)

∂y2
i

+
2

α

m
∑

i=1

y2
i

∑

j 6=i

1

yi − yj

∂J
(α)
κ (y1, . . . , ym)

∂yi
(3)

=
m

∑

i=1

ki

(

ki−1+
2

α
(m− i)

)

J (α)
κ (y1, . . . , ym).

Here the constants jκ,λ do not depend on yi’s but depend on κ and λ, and

(a)n =
∏n

i=1(a + i − 1). Note that if m < l(κ) then J
(α)
κ (y1, . . . , ym) = 0.

The conditions include the case α = 0 and then we have

J (0)
κ (y1, . . . , ym) = eκ′

m
∏

i=1

(m − i + 1)ki ,

where eκ(y1, . . . , ym) =
∏l(κ)

i=1 eki
(y1, . . . , ym) are the elementary symmet-

ric functions indexed by partitions κ; if m ≥ l(κ) then er(y1, . . . , ym) =
∑

i1<···<ir
yi1 · · · yir , and if m < l(κ) then er(y1, . . . , ym) = 0 (see Sawyer

(1997)).

Now, from Koev and Edelman (2006), the Jack functions J
(α)
κ (Y ) =

J
(α)
κ (y1, . . . , ym), with y1, . . . , ym being the eigenvalues of the matrix Y , can

be normalised in such a way that
∑

κ

Cα
κ (Y ) = (tr(Y ))k,

where Cα
κ (Y ) denotes the Jack polynomials. They are related to the Jack

functions by

(4) Cα
κ (Y ) =

αkk!

jκ
Jα

κ (Y ),

where

jκ =
∏

(i,j)∈κ

hκ
∗(i, j)h

∗
κ(i, j),

and hκ
∗(i, j) = kj − i + α(ki − j + 1) and h∗

κ(i, j) = kj − i + 1 + α(ki − j) are
the upper and lower hook lengths at (i, j) ∈ κ, respectively.

Then by applying (4), we can write (3) as

(5)
m

∑

i=1

y2
i

∂2C
(α)
κ (Y )

∂y2
i

+
2

α

m
∑

i=1

y2
i

∑

j 6=i

1

yi − yj

∂C
(α)
κ (Y )

∂yi

=
m

∑

i=1

ki

(

ki − 1 +
2

α
(m − i)

)

C(α)
κ (Y ).
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3. Jack polynomials of the second order. When m = 2 in (5) we

get the partial differential equation for C
(α)
κ = C

(α)
κ (Y ),

(6) y2
1

∂2C
(α)
κ

∂y2
1

+y2
2

∂2C
(α)
κ

∂y2
2

+
2

α
y2
1(y1−y2)

−1 ∂C
(α)
κ

∂y1
− 2

α
y2
2(y1−y2)

−1 ∂C
(α)
κ

∂y2

−
[

k1

(

k1 − 1 +
2

α

)

+ k2(k2 − 1)

]

C(α)
κ = 0.

Substituting u = y1 + y2 and v = y1y2 in (6), we get

(u2 − 2v)
∂2C

(α)
κ

∂u2
+ 2v2 ∂2C

(α)
κ

∂v2
+ 2uv

∂2C
(α)
κ

∂u∂v
+

2u

α

∂C
(α)
κ

∂u
+

2v

α

∂C
(α)
κ

∂v

−
[

k1

(

k1 − 1 +
2

α

)

+ k2(k2 − 1)

]

C(α)
κ = 0.

Substituting now z = u/2
√

v and t =
√

v we obtain

(1 − z2)
∂2C

(α)
κ

∂z2
− t2

∂2C
(α)
κ

∂t2
−

(

2

α
+ 1

)

z
∂C

(α)
κ

∂z
−

(

2

α
− 1

)

t
∂C

(α)
κ

∂t

+ 2

[

k1

(

k1 − 1 +
2

α

)

+ k2(k2 − 1)

]

C(α)
κ = 0.

It is easy to see that the last equation is homogeneous in t. Thus, by taking

C(α)
κ = tk1+k2f(z),

we obtain an ordinary differential equation

(1 − z2)
d2f

dz2
−

(

2

α
+ 1

)

z
df

dz
+

[

(k1 − k2)

(

k1 − k2 +
2

α

)]

f = 0.

Now, taking w = (1 − z)/2 as the independent variable, the differential
equation becomes

(7) w(1 − w)
d2f

dw2
+

(

1

α
+

1

2

)

(1 − 2w)
df

dw
+ ̺

(

̺ +
2

α

)

f = 0,

with ̺ = k1 − k2 > 0.
Comparing with the general hypergeometric equation

(8) w(1 − w)
d2f

dw2
+ [c − (a + b + 1)w]

df

dw
− abf = 0,

we see that the Jack polynomials correspond to the case a = −̺, b = ̺+2/α
and c = 1/α + 1/2.

From Erdélyi et al. (1981), we know that a solution of (8) which is regular
at w = 0 is given by

f(w) =

∞
∑

n=0

(a)n(b)n

(c)nn!
wn = 2F1(a, b; c; w),
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where 2F1(a, b; c; w) is the classical hypergeometric function, which in what
follows will be denoted as F (a, b; c; w).

Thus a solution of (7) is

f(z) = F

(

−̺, ̺ +
2

α
;
1

α
+

1

2
;
1 − z

2

)

.

Let us refine the above solution by applying properties of the hypergeometric
functions. From Erdélyi et al. (1981, Section 2.11, p. 111, equation (2)), we
see that

F

(

2d, 2e; d + e +
1

2
; t

)

= F

(

d, e; d + e +
1

2
; 4t(1 − t)

)

,

so

(9) f(z) = F

(

−̺, ̺ +
2

α
;
1

α
+

1

2
;
1−z

2

)

= F

(

−̺

2
,
̺

2
+

1

α
;
1

α
+

1

2
; 1−z2

)

.

By Erdélyi et al. (1981, Section 2.10, p. 108, equation (1)),

F (a, b; c; t) = A1F (a, b; a + b − c + 1; 1 − t)

+ A2(1 − t)c−a−bF (c − a, c − b; c − a − b + 1; 1 − t),

where

A1 =
Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
and A2 =

Γ (c)Γ (a + b − c)

Γ (a)Γ (b)
.

Thus (9) can be written as

F

(

−̺

2
,
̺

2
+

1

α
;
1

α
+

1

2
; 1 − z2

)

= A1F

(

−̺

2
,
̺

2
+

1

α
;
1

2
; z2

)

+ A2zF

(

1

α
+

1 + ̺

2
,
1

2
− ̺

2
;
3

2
; z2

)

,

where

A1 =
Γ

(

1
α + 1

2

)

Γ
(

1
2

)

Γ
(

1
α + 1+̺

2

)

Γ
(1−̺

2

) and A2 =
Γ

(

1
α + 1

2

)

Γ
(

− 1
2

)

Γ
(

−̺
2)Γ

(̺
2 + 1

α

) .

Then the Jack polynomials of second order are given by

(10)
C

(α)
(k1,k2)

(Y )

C
(α)
(k1,k2)(I2)

=
(y1y2)

(k1+k2)/2Γ
(

1
α + 1

2

)

Γ
(

1
2

)

Γ
(

1
α + 1+̺

2

)

Γ
(1−̺

2

) F

(

−̺

2
,
̺

2
+

1

α
;
1

2
;
(y1 + y2)

2

4y1y2

)

+
(y1y2)

(k1+k2−1)/2

2(y1 + y2)−1

Γ
(

1
α + 1

2

)

Γ
(

− 1
2

)

Γ
(

− ̺
2)Γ

(̺
2 + 1

α

)F

(

1

α
+

1+̺

2
,
1

2
− ̺

2
;
3

2
;
(y1 +y2)

2

4y1y2

)

.
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Since ̺ is a nonnegative integer, (10) can be simplified by considering
the hypergeometric functions with ̺ being either even or odd. To distinguish
the case under consideration, odd or even, we will mark A1 and A2 with the
upper indices o or e. Observing that

• Γ (1/2 + z)Γ (1/2 − z) = π sec(πz),
• Γ (z)Γ (−z) = −πz−1 csc(πz),
• Γ (z + n) = z(z + 1)(z + 2) · · · (z + n − 1)Γ (z),

the following results are obtained:

Even case. If ̺ = k1 − k2 = 2n, n = 0, 1, 2, . . . , then

Ae
1 =

(−1)n
∏n−1

i=0 (1 + 2i)
∏n−1

i=0 (1 + 2(1/α + i))
and Ae

2 = 0.

Odd case. If ̺ = k1 − k2 = 2n + 1, n = 0, 1, 2, . . . , then

Ao
1 = 0 and Ao

2 = (2n + 1)Ae
1.

Three particular cases are of interest in the literature: the quaternionic
case (α = 1/2), the complex zonal polynomials (α = 1) and the real zonal
polynomials (α = 2). These results are summarised in the following table:

α ̺ a b c A1 A2

even −n n + 2
1

2

(−1)n3

(2n + 1)(2n + 3)
0

1

2
odd n + 3 −n

3

2
0

(−1)n3

(2n + 3)

even −n n + 1
1

2

(−1)n

(2n + 1)
0

1
odd n + 2 −n

3

2
0 (−1)n

even −n n + 1/2
1

2

(−1)n(2n)!

22n(n!)2
0

2
odd n + 3/2 −n

3

2
0

(−1)n(2n + 1)!

22n(n!)2

Finally, since F (a, b; c; z) = F (b, a; c; z), the above formula for the real
zonal polynomials corresponds to that derived by James (1968).
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J. A. Dı́az-Garćıa and F. J. Caro-Lopera (2007), Derivation of the Laplace–Beltrami op-

erator for the zonal polynomials of positive definite Hermitian matrix argument, Appl.
Math. Sci. 1, 191–200.

I. Dumitriu, A. Edelman and G. Shuman (2005), MOPSJ : Multivariate orthogonal poly-

nomials (symbolically), Mathworld, http://mathworld.wolfram.com/.
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