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Distribution Theory

AMatrix Variate Closed Skew-Normal Distribution
with Applications to Stochastic Frontier Analysis
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In this article, we introduce the matrix extension of the closed skew-normal
distribution and give two constructions for it: a marginal one and another based on
hidden truncation. Important basic properties of the distribution are presented such
as its closure under linear transformation and moment generating function. We also
give distributional results for quadratic forms involving random matrices distributed
according to two particular cases of it. Using an additive construction, we derive
a submodel which can be employed to describe the compound error structure of a
very general multivariate stochastic frontier model. Finally, we consider the skew-
elliptical extension of the proposed distribution.

Keywords Chi-square distribution; Compound error; Hidden truncation;
Linear transformation; Quadratic forms; Skew-elliptical distribution; Wishart
distribution.

Mathematics Subject Classification Primary 62E15; Secondary 62H10.

1. Introduction

Various multivariate skew-normal distributions have been proposed in the literature,
with each one of them aiming to characterize a particular aspect of a given
phenomenon. For example, one emphasizes invariance under quadratic forms,
another one uses a general latent structure to define distributions, etc.; see Genton
(2004) for an overview. Nevertheless, most of these skew-normal distributions are
special cases of the closed skew-normal (CSN) family of distributions as defined
in Domínguez-Molina et al. (2003). The CSN class of distributions is closed under

Received July 31, 2005; Accepted September 28, 2006
Address correspondence to J. Armando Domínguez-Molina, Universidad de

Guanajuato, Jalisco s/n, Guanajuato, 36240 Mexico; E-mail: jadguez@cimat.mx

1691



1692 Domínguez-Molina et al.

the operations of marginalization and conditioning basic to statistical modeling,
includes the normal distribution, and enjoys some of the appealing properties of the
latter. In particular, the expressions for its marginal and conditional densities are
similar to those for the normal case. However, the distributions included in the CSN
class are, in general, skewed.

Here we consider the extension of the CSN distribution from the vector to
the matrix case. The distribution we propose implicitly defines the matrix variate
generalizations of many other multivariate skew-normal in the literature, and
permits the inclusion of dependence structures, such as those for panel data, which
are basic to the analysis of stochastic frontier models.

The articles by Aigner et al. (1977) and Meeusen and van Den Broeck (1977)
were seminal to the development of models capable of describing the production
efficiency of companies. In them, the concept of a stochastic frontier was introduced
via the model y = f�x� ��+ �, where the error term, � = v− u, is composed of
a symmetric disturbance term, v, which represents measurement error, and by
the non-negative, firm-specific term u which captures technical inefficiencies. This
formulation of the error structure seeks to explain how companies with the same
technical ability to manage their resources might end up with different output levels,
due to the unobservable shocks v. Developments over the last 30 years in the
specification and estimation of frontier production functions are discussed in Coelli
et al. (2005).

Assuming a cross-sectional data structure, Domínguez-Molina et al. (2004)
proposed a stochastic frontier model based on the CSN distribution as given in
González-Farías et al. (2004a). Their proposal encompasses nested submodels with
an increasing degree of complexity for the covariance structure, but within the
framework of normal measurement errors and truncated normals for inefficiencies.
Specifically, their model is

y = f�X� ��+ v +Gu� (1)

where y is a vector consisting of the value-added values for p firms, f is the
production function commonly based on the Cobb-Douglas model with lagged
input variables, v ∼ Np�0� �� models measurement error, and u ∼ N c

q ��� ��, q ≥ p,
where N c

p��� �� denotes the Nq��� �� distribution truncated below at c. The random
vector u models technological inefficiencies in groups of firms, and is weighted by
the p× q full row rank matrix G. Also, it is assumed that v is independent of u,
f�X� �� = �f�x1� ��� � � � � f�xp� ���

′, X = �x1� � � � � xp�
′ is a known matrix of covariates

and � is unknown. The matrix G gives flexibility to the model. If it is left unspecified
it can be estimated and used to validate model assumptions. On the other hand, it
can be defined as G = Ip or G = −Ip for firm-specific cost efficiencies or technical
inefficiencies, respectively.

For reference purposes, we repeat the formal definition of the density of the
CSN distribution given originally by Domínguez-Molina et al. (2003).

Definition 1.1. Consider p ≥ 1� q ≥ 1, � ∈ �p, � ∈ �q, D an arbitrary q × p matrix,
� and 	 positive definite matrices of dimensions p× p and q × q, respectively. Then
the density function of the CSN distribution is given by

gp�q�y� = C
p�y� �� ���q�D�y − ��� �� 	� y ∈ �p�
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with

C−1 = �q�0� �� 	+D�D′�� (2)

where 
p�·� �� �� and �p�·� �� �� are the pdf and the cdf of a p-dimensional normal
distribution, respectively. In the definition of these last two functions, � ∈ �p

denotes a mean vector and � a p× p covariance matrix.

We will denote that the p-dimensional random vector y is distributed according
to a CSN distribution with parameters q� �� ��D� �� 	 by y ∼ CSNp�q��� ��D� �� 	�.

Domínguez-Molina et al. (2004) show that the density of the compound error
term in model (1), � = v +Gu, is g��� = �−1

q �0� c − �� ��
p���G�� ���q��G′�−1

��−G��� c − �� �, where � = �+G�G′ and � = �−�G′�−1G�. Thus,

� ∼ CSNp�q�G�� ���G′�−1� c − �� ���

The data structure for yt = �y1t� y2t� � � � � ypt�
′, t = 1� � � � � m, in (1) is assumed to be

that of a cross-sectional sample of p firms. For panel data structures of the form
Yp×m = �y1� � � � � ym�� where the p firms are followed through times t = 1� � � � � m, we
propose, in Sec. 4 of the article, a multivariate stochastic frontier model that, in
principle, can capture general correlation patterns through time and between firms.
More specifically, we consider the model Y = F +�� where F is a matrix production
function and � = V +DUE′ is a matrix variate compound error structure. With
the latter structure in mind, we first develop the matrix variate closed skew-normal
distribution and study its basic properties. Thus, the remainder of the article is
organized as follows. In Sec. 2, we give technical results for the CSN distribution
that can be directly applied in stochastic frontier analysis (SFA). These results are
also required for the matrix variate representation. Section 3 provides the definition
and basic properties of the matrix variate closed skew-normal distribution, and
presents results for quadratic forms involving random matrices of this type. In
Sec. 4, we employ the matrix variate skew-normal distribution in the definition of
our highly flexible model for use in SFA. In Sec. 5, we provide some concluding
remarks and indicate some directions for further research. The proofs for two of the
propositions presented in the article are given in the Appendix.

2. The Closed Skew-Normal Distribution and Its Properties

The most important properties of the CSN distributions are their closure properties.
For example, the joint distribution of independent CSN variables belongs to the
same family as do the sums of independent CSN random variables. These closure
properties allow one to study the distributional properties of random samples in
a tractable way, and are very useful when considering the extension to the matrix
variate case under certain types of dependencies. In what follows, we give various
results which, apart from being of interest in themselves, also provide the building
blocks for the matrix variate extension and the investigation of its properties.

The moment generating function of the CSN distribution, given in González-
Farías et al. (2004a), allows us to easily derive the moments of the distribution and
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to prove important distributional results. It is given in closed form as

My�s� =
�q�D�s� �� 	+D�D′�
�q�0� �� 	+D�D′�

es
′�+ 1

2 s
′�s� s ∈ �p� (3)

The following proposition gives an alternative marginal representation of the CSN
distribution which is useful, for instance, when conducting simulation or calculating
moments. Moreover, the probabilistic structure defined within it can be applied
directly in stochastic frontier modeling. A simpler version of this result was given in
Domínguez-Molina et al. (2004).

Proposition 2.1 (Marginal Representation). Let v ∼ Np�0� Ip�, u ∼ Nq�0� 	+D�D′�
and u be independent of v. Then the distribution of

y = � + ��−1 +D′	−1D�−1/2v + �D′�	+D�D′�−1u�

is CSNp�q��� ��D� �� 	�.

This representation in terms of normals and truncated normals is far more general
than other representations given in the literature in terms of sums.Moreover, it proves
to be very flexible when modeling different error structures for the SFA model.

An alternative way of motivating the closed skew-normal distribution is via
a hidden truncation process which, in many applications, will be highly plausible.
For example, when the observational mechanism for measuring a variable is such
that we only record a value when an external condition is satisfied, an asymmetric
distribution will often be induced. The hidden truncation characterization also
furnishes a useful means of establishing some of the properties of skew distributions,
by so doing providing greater insight as to how they arise. For the hidden truncation
process, we first condition a normal random vector on a set of latent variables
subject to certain given restrictions (e.g., Z ≥ 0), thus generating a CSN distribution.
Then, if we consider operations such as marginalization, conditioning, or addition,
their application results in distributions which are also members of the CSN family.
However, it is important to point out that we can reverse this procedure in the
following way. First, carry out the corresponding marginalization, conditioning, or
addition procedure on the normal random vector and then consider the hidden
truncation process. This will lead to exactly the same distribution, as shown in
Domínguez-Molina et al. (2003). The same argument applies when we obtain the
joint distribution of independent CSN random variables.

Using the conditioning approach of Domínguez-Molina et al. (2003), we
provide a simple derivation of the distribution function of a CSN random vector
which proves to be useful in the study of dependence structures via copulas (Nelsen,
2006).

Proposition 2.2. The distribution function of a CSN random vector y, with parameters
�� ��D� �� 	 is given by

Fp�q�y0� �� ��D� �� 	� = C�p+q

[(
y0
0

)
�

(
�

�

)
�

(
� −�D′

−D� 	+D�D′

)]
�

where C is as given in (2).
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Although the conditioning argument provides a means with which to derive
elegant proofs for certain results, it cannot be used, for instance, in the calculation
of moments. For the latter, the representation in terms of sums is far more useful.
Hence, we will use the marginal representation given in Proposition 2.1 when
considering the application of the matrix variate extension of the CSN distribution
to SFA.

3. The Matrix Variate CSN Distribution and its Properties

In this section we introduce the matrix variate generalization of the CSN
distribution.

First, we define the p×m random matrix of observations as

X =


x11 · · · x1m
���

� � �
���

xp1 · · · xpm


 = �x1� � � � � xm��

where xi�p× 1�� i = 1� � � � � m is the ith column of X. Here, x1� � � � � xm can be
thought as a sample of size m from a p-dimensional population, but it is not
necessary to assume that x1� � � � � xm are independent. Now, for a p×m matrix X,
the vec operator, vec�X�, is the mp× 1 vector defined as

vec�X� =


x1
���
xm


 �

The random matrix X is said to have a matrix variate normal distribution
with mean matrix M�p×m� and covariance matrix ��mp×mp� if vec�X′� ∼
Npm�vec�M

′����� We will use the notation X ∼ Np�m�M��� and denote the
probability density function (pdf) and the cumulative distribution function
(cdf) of X as 
p�m�X�M��� = 
pm�vec�X�� vec�M����� and �p�m�X�M��� =
�pm�vec�X�� vec�M�����

Using the above and the material on the CSN distribution presented in the
preceding two sections, we are now in the position to define its matrix variate
extension.

Definition 3.1. A random matrix Y�p×m� is said to have a matrix variate
closed skew-normal (MVCSN) distribution with parameters M�p×m�� S�mp×
mp�� B�nq ×mp�� L�q × n�, and Q�nq × nq�, with S > 0 and Q > 0, if

vec�Y ′� ∼ CSNpm�qn�vec�M
′�� S� B� vec�L′��Q�

We will use the notation

Y ∼ CSNp�m�q�n�M� S� B� L�Q� (4)

to denote the fact. In most cases, the matrices S and B will have specific structures.
Properties for the parametrization (4) are obtained immediately from González-
Farías et al. (2004a).
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When working with random matrices it is important to bear in mind how
the random matrix, Y , is assembled. Here we consider the situation in which
Y = �y1� � � � � yn� is a sample of independent and identically distributed (iid)
CSNp�q��� ��D� �� 	� random vectors. Due to Corollary 2.4.1 of González-Farías
et al. (2004b), we know that the distribution of vec�Y� = �y′1� � � � � y

′
n�

′ is

CSNnp�nq�1n ⊗ �� In ⊗ �� In ⊗D� 1n ⊗ �� In ⊗ 	��

and hence

Y ′ ∼ CSNp�n�q�n�1
′
n ⊗ �� In ⊗ �� In ⊗D� 1′n ⊗ �� In ⊗ 	��

Thus, assuming iid columns for Y we obtain the distribution of Y ′, not that of
Y as we might have hoped for. In order to obtain the distribution of Y , we first
consider the distribution of the transpose of a MVCSN matrix. We start by defining
the commutation matrix which transforms vec�A� into vec�A′�� The commutation
matrix, Kmp�mp×mp�� is defined as Kmp =

∑m
i=1

∑p
j=1�Hij ⊗H ′

ij�� where the �i� j�th
element of Hij�m× p� is 1 and all its other elements are 0. Then, if

X ∼ CSNp�m�q�n�M� S� B� L�Q��

the distribution of X′ can be obtained from the fact that vec�X� = Kmpvec�X
′�.

Using Theorem 1 of González-Farías et al. (2004b) and Theorem 1.2.22 of Gupta
and Nagar (2000), we then obtain that

X′ ∼ CSNm�p�n�q�M
′� KmpSKpm� BKpm� L�Q��

Moreover, if S = �⊗�� with ��p× p� > 0 and ��m×m� > 0, then

X′ ∼ CSNm�p�n�q�M
′� � ⊗ ��BKpm� L�Q��

This follows because, from Eqs. (1.2.3) and (1.2.5) of Gupta and Nagar (2000),
K−1

mp = Kpm and Kpm�� ⊗ ��Kmp = �⊗� . Finally, returning to the distribution of
Y = �y1� � � � � yn�, we can use the above results to obtain

Y ∼ CSNn�p�n�q�1n ⊗ �′� �⊗ In� �In ⊗D�Kpn� 1
′
n ⊗ �� In ⊗ 	��

Alternatively, a matrix variate CSN distribution can be obtained using an
extension of the hidden truncation argument of Copas and Li (1997). This
construction, which may be more natural in many experimental settings, proceeds
as follows.

Define the independent normal random matrices U1 ∼ Np�m�0� S� and U2 ∼
Nq�n�0� Q�, where, as previously, S is mp×mp and Q is nq × nq. Now, consider the
matrices W = M + U1 and Z = −L+DU1E

′ + U2, where D is q × p�E is n×m and,
as before, M is p×m and L is q × n. Then the joint distribution of W and Z is

(
W
Z

)
∼ Nqn+pm

[(
M
−L

)
��

]
�
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where

� =
(

S S�D′ ⊗ E′�
�D⊗ E�S Q+ �D⊗ E�S�D′ ⊗ E′�

)
�

Now, if Y
d= W � �Z ≥ 0�� we obtain that f�Y� = K
p�m�Y�M� S��q�n�E�Y −M�

D′� L�Q, where K−1 = �q�n�0� L�Q+ �D⊗ E�S�D′ ⊗ E′�� Hence,

Y ∼ CSNp�m�q�n�M� S�D⊗ E�L�Q��

which is a particular case of (4).

3.1. Basic Properties

Here we present certain basic properties of the MVCSN distribution. First we
consider the distribution of linear transformations of MVCSN matrices and then
give the distribution’s moment generating function. The section ends with results
for quadratic forms of MVCSN variables.

3.1.1. Linear Transformation. Here we consider a closure property for linear
transformations of MVCSN matrices of the form W = A1YA2. This kind of
transformation admits contrasts among rows as well as among columns which, for
the usual setting of random matrices, would allow contrasts among individuals and
among attributes.

Proposition 3.1. Consider Y ∼ CSNp�m�q�n�M� S� B� L�Q� and let A1�n1 × p� and
A2�m× n2� be matrices such that A = A1 ⊗ A′

2 has full row rank. If W = A1YA2 then

W ∼ CSNn1�n2�q�n
�MA� SA� BA� L�QA��

where MA = A1MA2, SA = ASA′, BA = BSA′S−1
A , and QA = Q+ BSB′ − BSA′S−1

A ASB′.

Proof. Using Theorem 1.2.22 of Gupta and Nagar (2000) we obtain that vec�W ′� =
�A1 ⊗ A′

2�vec�Y
′�� The result then follows from Theorem 1 of González-Farías et al.

(2004b).

3.1.2. Moment Generating Function. Prior to presenting the moment generating
function (mgf) of the MVCSN distribution, we need to introduce some additional
notation. We consider the partitioned matrices B = �B′

1� � � � � B
′
q�

′ and S =
�S′

1� � � � � S
′
m�

′, where Bi is n×mp, i = 1� � � � � q and Sj is p×mp, j = 1� � � � � m.
Let T�p×m� be an arbitrary matrix, T† = �B1S vec�T

′�� � � � � BqS vec�T
′� and S† =

�S1 vec�T
′�� � � � � Sm vec�T ′�.

Proposition 3.2. Let Y ∼ CSNp�m�q�n�M� S� B� L�Q�. Then the mgf of Y is given by

MY�T� = E etr�Y ′T� = �q�n�T
†� L′� Q+ BSB′�

�q�n�0� L′� Q+ BSB′�
etr
(
M ′T + 1

2
S†′T

)
(5)

where, for A a square matrix, etr�A� = exp�trace�A�.
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Proof. Due to the fact that tr�Y ′T� = �vec�T ′��′vec�Y ′�, and also that vec�Y ′� ∼
CSNpm�qn�vec�M

′�� S� B� vec�L′��Q�, we obtain from (3) that

E etr�Y ′T� = �nq�BS vec�T
′�� vec�L′��Q+ BSB′�

�nq�0� vec�L′��Q+ BSB′�

× exp
[
�vec�T ′��′vec�M ′�+ 1

2
�vec�T ′��′S vec�T ′�

]
� (6)

Now, by noting that BSvec�T ′� = vec�T†� and S vec�T ′� = vec�S†�, we obtain
�vec�T ′��′S vec�T ′� = tr�S†′T�� Finally, (5) results by making use of these results,
together with the definition of �q�n�·� given at the beginning of Sec. 3, in (6). �

The mgf for the MVCSN distribution with the parametrization S = �⊗� and
B = D⊗ E, where ��p× p� and ��m×m� are positive definite and D�n× p� and
E�q ×m� are arbitrary matrices, is given by the following corollary.

Corollary 3.1. Let Y ∼ CSNp�m�q�n�M��⊗��D⊗ E�L�Q�. Then the mgf of Y is
given by

MY�T� =
�q�n�E�T ′�D′� L�Q+ �D�D′�⊗ �E�E′��

�q�n�0� L�Q+ �D�D′�⊗ �E�E′�
etr
(
M ′T + 1

2
T ′�T�

)
�

3.1.3. Quadratic Forms. As is well known, the distributional properties of
quadratic forms of normal variables play a key role in classical inference. Certain
results for quadratic forms of skew-normal variates have appeared recently in the
literature. Azzalini and Capitanio (1999, Sec. 3.3), discuss the independence of
quadratic forms and present a theorem which is similar to the Fisher-Cochran
Theorem given in Rao (1973, Sec. 3b.4). Loperfido (2001) considers quadratic forms
for skew-normal random vectors. Genton et al. (2001) derive the moments of skew-
normal random vectors and their quadratic forms, and consider applications in
time series analysis and spatial statistics. Finally, Wang et al. (2004) establish an
equivalence between the chi-square and generalized skew-normal distributions. They
also show how properties of the chi-square distribution extend to the univariate and
multivariate skew-normal distributions. In what follows, we present three results
related to the quadratic forms of MVCSN matrices. As will become evident, these
results draw heavily on the work of Domínguez-Molina et al. (2003) on quadratic
forms of CSN variates.

Proposition 3.3. Let A�r ×m�� B�p× p�� C�m× s�� r ≤ m� s ≤ m, and

Y ∼ CSNp�m�q�n�0� �⊗��D⊗ E�L�Q��

Then the mgf of Z = AY ′BYC is

MZ�T� =
�q�n�0� L�Q+ �D⊗ E���D′ ⊗ E′�
�q�n�0� L�Q+ �D�D′�⊗ �E�E′�

�Imp − 2��B�⊗ ��CT ′A��−1/2� (7)

where � = �Imp − 2�B��⊗ �CT ′A��−1�
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Proof. From Eq. (1.2.6) of Gupta and Nagar (2000), we obtain that tr�AY ′BYCT� =
�vec�Y ′��′�B ⊗ �CT ′A��vec�Y ′�. The result then follows from Proposition 13 of
Domínguez-Molina et al. (2003).

Corollary 3.2. Let Y ∼ CSNp�m�1�1�0� �⊗��D⊗ E� 0� ��� A = C = Im� then Y ′�−1Y

has a Wishart distribution with parameters m, p, and �� that is Y ′�−1Y ∼ Wm�p���.

Proof. Using the specified values of the parameters of the distribution of Y in (7),
we obtain that

MZ�T� =
�1�0� 0� � + �D⊗ E���D′ ⊗ E′�
�1�0� 0� � + �D�D′�⊗ �E�E′�

�Imp − 2Ip ⊗ ��T ′��−1/2�

which simplifies to MZ�T� = �Im − 2�T ′�−p/2�

Note that, as a direct consequence of Corollary 3.2, if y has a
CSNp�1�0� �� �� 0� 1� distribution then yy′ ∼ Wp�1� ���

Corollary 3.3. Let Y ∼ CSNp�1�p�n�0� �� � ⊗ E� 0� Q�, where � is part of the spectral
decomposition of �� � = ��� ′ and Q is diagonal. Then Y ′�−1Y ∼ �2p�

Proof. Given that T is a real number, we deduce that � = �Ip − 2��−1��⊗ T ′−1 =
�Ip − 2Ip ⊗ T−1 = �Ip − 2IpT

−1 = �1− 2T�−1Ip� Now,

MZ�T� =
�np�0� 0� Q+ �D⊗ E��1− 2T��−1Ip�D

′ ⊗ E′�
�np�0� 0� Q+ �D�D′�⊗ �EE′�

�Ip − 2���−1�⊗ T �−1/2

= �np�0� 0� Q+ �1− 2T�−1��DD′�⊗ �EE′��
�np�0� 0� Q+ �D�D′�⊗ �EE′�

�Ip − 2IpT �−1/2

= �1− 2T�−p/2�

4. A Multivariate Stochastic Frontier Model

In this section we extend the relationship between the closed skew-normal and SFA
models to the matrix case using a similar approach to that used by Domínguez-
Molina et al. (2004) for the vector case.

In what follows, we will use the notation U ∼ NC
m�n�M� S� to denote that U is

a Nm�n�M� S� random matrix truncated below at C. That is, the truncation is of the
type U ≥ C� where W ≥ C means Wij ≥ Cij , i = 1� � � � � m� j = 1� � � � � n. Note that
U ≥ C ⇒ vec�U ′� ≥ vec�C ′�.

Consider, now, production data on p firms at time t. We assume a stochastic
frontier model for time t of the form yt = f�Xt� �t�+ �t� where f�Xt� �t� =
�f�x1t� �t�� � � � � f�xpt� �t��

′, Xt = �x1t� � � � � xpt�
′ is a known matrix of covariates, �t is

unknown, �t = ��1t� � � � � �pt�
′ is a random vector of compound errors and �t = vt +

Gut� with vt = �v1t� � � � � vpt�
′, ut = �u1t� � � � � uqt�

′ and G is a p× q weighting matrix.
We use Y to denote the p×m matrix of the value added observations for the p
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firms at times t = 1� � � � � m, i.e.,

Y =


y11 · · · y1m
���

� � �
���

yp1 · · · ypm


 = �y1� � � � � ym��

A joint model for such production data can be written as

Y = F +�� (8)

where F = �f�X1� �1�� � � � � f�Xm� �m��, � = V +GU , V = �v1� � � � � vm�, and U =
�u1� � � � � um�.

We choose, in fact, to consider a slightly more general model for the compound
errors, namely,

� = V +DUE′�

where V ∼ Np�m�0� S�, U ∼ NC
q�m�L�Q�, D�p× q�, E�m×m�, and V is independent

of U . By pre-multiplying the matrix of technical inefficiencies, U , by D we can
incorporate common inefficiencies within groups of similar companies. Similarly, by
post-multiplying U by E′, time related inefficiency effects can be allowed for. Note
that the matrix V is no longer constrained to merely reflect measurement error.
Indeed, depending on the structure of the variance matrix S, it can also incorporate
random effects such as random intercepts and time-induced correlations among
the columns of Y . Given that vec��′� = vec�V ′�+ �D⊗ E�vec�U ′�, we obtain from
Domínguez-Molina et al. (2004) that the density of the compound error � = V +
DUE′ is

g��� = �−1
q�m�0� C − L�Q�
p�m���DLE′� ��

×�mq�Q�D′ ⊗ E′��−1�vec��−DLE′�� vec�C − L�����

where � = S + �D⊗ E�Q�D′ ⊗ E′� and � = Q−Q�D′ ⊗ E′��−1�D⊗ E�Q� Thus, �
has a matrix variate closed skew-normal distribution. Specifically,

� ∼ CSNp�m�q�m�DLE′� ��Q�D′ ⊗ E′��−1� C − L����

Model (8), with the compound error structure � = V +DUE′, includes the
following submodels as special cases:

• Model I (Homoscedastic and uncorrelated errors). D an arbitrary p× q
matrix, E = Im, S = Im ⊗ �, and Q = Im ⊗ 	, where ��p× p� and 	�q × q�
are covariance matrices.

• Model II (Heteroscedastic and uncorrelated errors). D an arbitrary p× q
matrix, E = Im, S and Q block diagonal matrices of the form S =⊕m

i=1 �i,
and Q =⊕m

i=1 	i, with
⊕

denoting the matrix direct sum operator (see Horn
and Johnson, 1985, p. 24). The result of A⊕ B is a block diagonal matrix.
Here, �i�p× p� and 	i�m×m� are covariance matrices, i = 1� � � � � m.

• Model III (Correlated errors). If any of the matrices E� S, or Q are non block
diagonal.
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5. Concluding Remarks and Directions of Future Research

In this article, we have emphasized the close relationship that exists bewteen
stochastic frontier analysis and skew distributions, in particular the CSN
distribution and its matrix extension the MVCSN distribution. The latter permits
flexible structures such as those for panel data with contemporaneous as well as
temporal dependencies.

In our discussion of the distributional properties of the CSN and MVCSN
distributions we considered quadratic forms. One line of potential future research
would be to establish conditions for the existence of independent quadratic forms
that would generalize the results of Propositions 8 and 9 of Azzalini and Capitanio
(1999).

A classical approach to estimating the parameters of the MVCSN distribution
would be to use the maximum likelihood method. However, even for the univariate
and multivariate cases of the skew-normal distribution, a range of problems are
known to exist when using this approach; see Pewsey (2000) and Azzalini (2005).
For the MVCSN distribution, the problems associated with maximum likelihood
estimation are likely to be far more complex due to the elevated number of
parameters requiring estimation. Hence, the reliable estimation of its parameters
represents a challenging problem for future research.

An appealing direct extension of the MVCSN distribution would be to allow for
the inclusion of important distributional features such as heavy tails. This could be
done by incorporating the skew-elliptical family of distributions, as we now describe.

A random matrix Y�p×m� is said to have a matrix variate extended skew-
elliptical (MVESE) distribution with pdf generator h and parameters M�p×m�,
S�mp×mp�, B�nq ×mp�, L�q × n�, Q�nq × nq�, where S > 0 and Q > 0, if

vec�Y ′� ∼ ESEpm�nq�vec�M
′�� S� B� vec�L′��Q� h�

Here, ESE denotes the extended skew-elliptical distribution as given in González-
Farías et al. (2004a). We denote this relation by

Y ∼ ESEp�m�q�n�M� S� B� L�Q� h��

Using similar arguments to those employed in Sec. 3, it is also possible to derive
the matrix variate skew-elliptical distribution for which the parameter matrix B =
D⊗ E, where D�n× p� and E�q ×m� are arbitrary matrices.

Appendix

Proof of Proposition 2.1. In order to obtain the distribution of y we use the mgf
technique. Now,

My�s� = es
′
Mv���

−1 +D′	−1D�−1/2sMu��	+D�D′�−1D�s

= es
′
e

1
2 s

′��−1+D′	−1D�−1se
1
2 s

′�D′�	+D�D′�−1�	+D�D′��	+D�D′�−1D�s

× �q�D�s� �� 	+D�D′�
�q�0� �� 	+D�D′�

= �q�D�s� �� 	+D�D′�
�q�0� �� 	+D�D′�

es
′
e

1
2 s

′���−1+D′	−1D�−1+�D′�	+D�D′�−1D�s�
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Using the Sherman–Morrison–Woodbury formula, we obtain ��−1 +D′	−1D�−1 +
�D′�	+D�D′�−1D� = �� Thus,

My�s� =
�q�D�s� �� 	+D�D′�
�q�0� �� 	+D�D′�

es
′+ 1

2 s
′�s�

which is the mgf of a CSNp�q��� ��D� �� 	� random vector. �

Proof of Proposition 2.2. By definition, Fp�q�y0� �� ��D� �� 	� = Pr�y ≤ y0�� Now,
from the extension of the Copas and Li model given in González-Farías et al.
(2004a), we obtain that

Pr�y ≤ y0� = Pr�w0 ≤ y0 � z ≥ 0� = Pr�w0 ≤ y0� z ≥ 0�
Pr�z ≥ 0�

= Pr�w0 ≤ y0�−z ≤ 0�
Pr�−z ≤ 0�

= C Pr�w0 ≤ y0�−z ≤ 0��

The result follows on noting that(
w0

−z

)
∼ �p+q

[(
�

�

)
�

(
� −�D′

−D� 	+D�D′

)]
�

�
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