Fundamental groups of manifolds with $S^{\mathbf{1}}$-category 2

J. C. Gómez-Larrañaga • F. González-Acuña • Wolfgang Heil

Received: 4 May 2006 / Accepted: 26 January 2007 / Published online: 21 August 2007
© Springer-Verlag 2007

Abstract

A closed topological n-manifold M^{n} is of S^{1}-category 2 if it can be covered by two open subsets W_{1}, W_{2} such that the inclusions $W_{i} \rightarrow M^{n}$ factor homotopically through maps $W_{i} \rightarrow S^{1} \rightarrow M^{n}$. We show that the fundamental group of such an n-manifold is a cyclic group or a free product of two cyclic groups with nontrivial amalgamation. In particular, if $n=3$, the fundamental group is cyclic.

Keywords Lusternik-Schnirelmann category • Coverings of n-manifolds with open S^{1}-contractible subsets

Mathematics Subject Classification (2000) 57N10 • 57N13 • 57N15 • 57M30

1 Introduction

The concept of the A-category of a manifold was introduced by Clapp and Puppe [1]. For a closed, connected 3-manifold M it is defined as follows: Let A be a closed connected k-manifold, $0 \leq k \leq 2$. A subset B in the 3-manifold M is A-contractible if there are maps $\varphi: B \longrightarrow A$ and $\alpha: A \longrightarrow M$ such that the inclusion map $i: B \longrightarrow M$ is homotopic to $\alpha \cdot \varphi$. The A-category cat $_{A}(M)$ of M is the smallest number of sets, open and A-contractible needed to cover M. Note that $2 \leq \operatorname{cat}_{A}(M) \leq 4$. Endowing M with a (essentially unique) differential structure, an A-function on M is a smooth function $M \longrightarrow R$ whose critical set

[^0]is a finite disjoint union of components each diffeomorphic to A. The invariant $\operatorname{crit}_{A}(M)$ of M is the minimum number of components of the critical set over all A-functions on M.

If A is a point, then $\operatorname{crit}_{\text {point }}(M)=\operatorname{crit}(M)$ has been calculated by Takens [10]. He shows that $\operatorname{crit}(M)=2$ if and only if $M=S^{3}$ and $\operatorname{crit}(M)=3$ if and only if M is a connected sum of S^{2}-bundles over S^{1}. A related invariant of a more geometrical nature is $C(M)$, which is the smallest number of open 3-cells needed to cover M. Hempel-McMillan [6] (see also [4]) showed that in fact $C(M)=\operatorname{crit}(M)$. Finally, $\operatorname{cat}_{\mathrm{point}}(M)=\operatorname{cat}(M)$, is the Lusternik-Schnirelmann category of M, and in [2] it is shown that cat $(M)=2$ if and only if $\pi_{1}(M)=1$ and $\operatorname{cat}(M)=3$ if and only if $\pi_{1}(M)$ is a non-trivial free group (of finite rank). Hence, modulo the Poincaré conjecture, the three invariants $\operatorname{crit}(M), C(M)$, and cat (M) coincide for closed 3-manifolds.

For the case $A=S^{1}$, Khimshiashvili and Siersma [8] show that for orientable 3-manifolds $M, \operatorname{crit}_{S^{1}}(M)=2$ if and only if M is a lens space. A related invariant of a more geometrical nature is $T(M)$, which is the smallest number of open solid 3-tori needed to cover M. In [3] it is shown that an orientable 3-manifold M has $T(M)=2$ if and only if M is a lens pace, so that in this case $T(M)$ and crit $_{S^{1}}(M)$ agree.

In this paper we show that for a closed 3-manifold M we have $\operatorname{cat}_{S^{1}}(M)=2$ if and only if $\pi_{1}(M)$ is cyclic.

If M is orientable, then by results of Olum [9], M is homotopy equivalent to a lens space. Therefore, modulo the conjecture that homotopy lens spaces are lens spaces, it follows that for orientable 3-manifolds $M, \operatorname{crit}_{S^{1}}(M)=2$ if and only if $T(M)=2$ if and only if $\operatorname{cat}_{S^{1}}(M)=2$.

The case that $\operatorname{cat}_{S^{1}}(M)=3$ seems to be difficult and one is lead to conjecture that the three invariants crit $_{S^{1}}(M), T(M)$, and $\operatorname{cat}_{S^{1}}(M)$ coincide for closed orientable 3-manifolds.

The paper is organized as follows: If a closed topological n-manifold M^{n} has $\operatorname{cat}_{S^{1}}\left(M^{n}\right)=$ 2, we show in Sect. 2 that then M can be constructed from two compact S^{1}-contractible submanifolds that intersect along their boundaries, and we prove some basic properties of S^{1}-contractible submanifolds and intersection numbers of their boundaries with closed curves. In Sect. 3 we show that all closed 2-manifolds with negative Euler characteristic have $\operatorname{cat}_{S^{1}}\left(M^{2}\right)=3$. Section 4 is devoted to the proof of the

Main Theorem Suppose M^{n} is closed, $n \geq 3$ and cat ${ }_{S^{1}} M^{n}=2$. Then $\pi_{1} M^{n}=A *_{C} B$ with A, B and C cyclic non-trivial or $\pi_{1} M^{n}=1$.

Here is a sketch of the proof of this theorem.
Using the result from Sect. 2 (Corollary 1) we express M as a union of two compact S^{1}-contractible compact n-submanifolds W_{0}, W_{1} such that $W_{0} \cap W_{1}=\partial W_{0}=\partial W_{1}$. If W_{0} and W_{1} are connected we give a Seifert-van Kampen argument and use Poincaré duality in the orientable case (and consider the orientable 2-sheeted covering in the nonorientable case), to show that $\pi_{1}(M)$ is cyclic (Theorem 1). The case when W_{0} or W_{1} is not connected is considerably more complicated and our approach is best described by using the language of graphs of groups ([11], p. 155): $\pi_{1}(M)$ is the fundamental group of \mathcal{G}, a graph of cyclic groups. Here, for $F=W_{0} \cap W_{1}$, the graph G of (M, F) is a tree (Lemma 4) whose vertices (resp. edges) are in one-to-one correspondence with the components W_{i}^{j} of $W_{i}, i=0,1$ (resp. with the components $F_{j k}=W_{0}^{j} \cap W_{1}^{k}$ of F). The group associated to a vertex v corresponding to W_{i}^{j} (resp. edge e corresponding to $F_{j k}$) is the cyclic group $\operatorname{im}\left(\pi_{1} W_{i}^{j} \longrightarrow \pi_{1} M\right.$) (resp. $\operatorname{im}\left(\pi_{1} F_{j k} \longrightarrow \pi_{1} M\right)$). We identify $\operatorname{im}\left(\pi_{1} W_{i}^{j} \longrightarrow \pi_{1} M\right)$ (resp. $\operatorname{im}\left(\pi_{1} F_{j k} \longrightarrow \pi_{1} M\right)$) with $\pi_{1} \widehat{W}_{i}^{j}$ (resp. $\pi_{1} \widehat{F}_{j k}$), where \widehat{W}_{i}^{j} (resp. $\widehat{F}_{j k}$) is obtained from W_{i}^{j} (resp. $F_{j k}$) by attaching certain 2-cells (Lemmas 5 and 6). An important point here is that W_{i} can be deformed into a
circle contained in $M-F(i=0,1)$ (Proposition 1). From this we can show (Lemma 9) that there is a sub-graph G_{Q} of G homeomorphic to a point or a segment such that the fundamental group of the restriction of \mathcal{G} to G_{Q} is all of $\pi_{1}(M)$. Furthermore at most two of the edge monomorphisms corresponding to edges of G_{Q} are not epimorhisms (Proof of Theorem 2, Claims 1 and 2). It follows that $\pi_{1}(M)$ is cyclic if G_{Q} is a point and $\pi_{1}(M)=A *_{C} B$ if G_{Q} is a segment. An additional argument is needed at the end of Sect. 4 to show that C is not trivial.

Finally, in Sect. 5 we apply the Main Theorem to infer that if cat ${ }_{S^{1}} M^{3}=2$ then $\pi_{1}(M)$ is cyclic.

2 Preliminaries

A subspace W of the manifold M^{n} is S^{1}-contractible (in M^{n}) if there exist maps $f: W \rightarrow S^{1}$, $\alpha: S^{1} \rightarrow M^{n}$ such that the inclusion $\iota: W \rightarrow M^{n}$ is homotopic to αf. If $H: W \times I \rightarrow M^{n}$ is a homotopy between ι and αf, and $* \in W$, we have a commutative diagram

where $\gamma=\left.H\right|_{\{*\} \times I}$ is the trace of the homotopy. Hence im ι_{*} is cyclic.
Notice that a subset of an S^{1}-contractible set is also S^{1}-contractible.
cat $_{S^{1}} M$ is the smallest m such that there exist m open S^{1}-contractible subsets of M whose union is M.

It is easy to show that cat ${ }_{S^{1}}$ is a homotopy type invariant.
We first note that for the case that cat ${ }_{S^{1}} M^{n}=2$ we can choose compact S^{1}-contractible submanifolds that intersect along their boundaries:

Lemma 1 If U_{0} and U_{1} are open subsets of the closed manifold M^{n} whose union is M^{n} then there exist compact n-submanifolds W_{0}, W_{1} such that $W_{0} \cup W_{1}=M^{n}, W_{0} \cap W_{1}=\partial W_{0}=$ ∂W_{1} and $W_{i} \subset U_{i}(i=0,1)$.

Proof Let $g: M^{n} \rightarrow[0,1]$ be a map such that $g\left(M^{n}-U_{i}\right)=\{i\},(i=0,1)$. For ϵ with $0<\epsilon<1 / 2$ there is an ϵ-approximation f of g such that $f^{-1}(1 / 2)$ is an $(n-1)$-submanifold of M (see [7], Theorem 1.1). Let $W_{0}=f^{-1}([1 / 2,1])$ and $W_{1}=f^{-1}([0,1 / 2])$. These submanifolds satisfy the conclusion of the lemma.

Corollary 1 Suppose cat ${ }_{S^{1}} M^{n}=2$ where M^{n} is a closed n-manifold. Then there exist S^{1}-contractible compact n-submanifolds W_{0}, W_{1} such that $W_{0} \cup W_{1}=M^{n}$ and $W_{0} \cap W_{1}=$ $\partial W_{0}=\partial W_{1}$.

Lemma 2 If W^{n} is S^{1}-contractible in M^{n} and every loop in W^{n} is nullhomotopic in M^{n}, then W^{n} is contractible in M^{n}.

Proof The inclusion $W \rightarrow M$ is homotopic to a composition $W \xrightarrow{\tilde{f}} A \xrightarrow{\tilde{\alpha}} M$ where $p: A \rightarrow S^{1}$ is the covering space of S^{1} corresponding to $f_{*}\left(\pi_{1} W, *\right) \subset \pi_{1}\left(S^{1}, f(*)\right)$ and
\tilde{f} is a lift of $f, \tilde{\alpha}=\alpha p$. If $A \approx R^{1}$, then W is contractible in M; if not, α must be null homotopic and, again, W is contractible in M.

We think of S^{1} as the space of complex numbers with modulus 1 . If $\alpha: S^{1} \rightarrow M$ and $m \in \mathbb{Z}$, we define α^{m} by $\alpha^{m}(z)=\alpha\left(z^{m}\right)$. Clearly, if $\beta \simeq \alpha$ then $\beta^{m} \simeq \alpha^{m}$ where \simeq means "is homotopic in M^{n} to". If F is a compact ($n-1$)-submanifold of M^{n} with empty boundary and $\alpha: S^{1} \rightarrow M$ is a loop, we define the intersection number $\alpha \cdot F=\min \left\{\# \beta^{-1}(F): \beta \simeq \alpha\right\}$, where $\# \beta^{-1}(F)$ denotes the cardinality of $\beta^{-1}(F)$.

Lemma 3 Let M^{n} be a closed n-manifold and let W_{0}^{n} and W_{1}^{n} be compact nonempty n-submanifolds of M^{n} such that $W_{0}^{n} \cup W_{1}^{n}=M^{n}$ and $W_{0}^{n} \cap W_{1}^{n}=\partial W_{0}^{n}=\partial W_{1}^{n}$ and let $\alpha: S^{1} \rightarrow M$ be a loop. If $\alpha^{m} \cdot\left(W_{0} \cap W_{1}\right)=0$ and $m \neq 0$, then $\alpha \cdot\left(W_{0} \cap W_{1}\right)=0$.

Proof We may assume $m>0$. For $F=W_{0}^{n} \cap W_{1}^{n}$, the number $\alpha \cdot F$ is finite and we may assume that α is in general position with respect to F so that $\# \alpha^{-1}(F)=\alpha \cdot F=p$ say. Suppose $p>0$. Since $\alpha^{m} \cdot F=0$ there exists a loop β, homotopic to α^{m}, such that $\beta\left(S^{1}\right) \cap F=\emptyset$.

Consider a homotopy $\varphi: S^{1} \times I \rightarrow M$ with $\left.\varphi\right|_{S^{1} \times\{0\}}=\alpha^{m}$ and $\left.\varphi\right|_{S^{1} \times\{1\}}=\beta$. Using transversality of maps between topological manifolds (for example Theorem 1.1 of [7]) we may assume that φ is in general position with respect to F. Then $S=\varphi^{-1}(F)$ consists of simple closed curves in $\operatorname{int}\left(S^{1} \times I\right)$ and arcs, with the endpoints of each arc in $S_{1} \times\{0\}$. Each arc of S splits off a disk from $S^{1} \times I$. Since $p>0$ there is an innermost such disk D such that $\partial D=a \cup b$, where a is an arc of S and b is an arc on $S^{1} \times 0$ and $D \cap S-a$ is empty or consists of simple closed curves only. Hence the restriction of α^{m} to b is homotopic rel boundary to a map into F and thus, for $b^{m}=\left\{z^{m} \mid z \in b\right\}$, the restriction of α to the arc b^{m} is homotopic rel boundary to a map from b^{m} into F, contradicting the fact that $\# \alpha^{-1}(F)=\alpha \cdot F$. Hence $0=p=\alpha \cdot F$.

Now consider again the case that cat ${ }_{S^{1}} M^{n}=2$. Recall that we can write $M^{n}=W_{0}^{n} \cup W_{1}^{n}$ as a union of two compact submanifolds with $W_{0}^{n} \cap W_{1}^{n}=\partial W_{0}^{n}=\partial W_{1}^{n}$ such that for $i=0,1$ we have homotopy commutative diagrams

Proposition 1 For $i=0$, 1, we can take α_{i} so that $\alpha_{i}\left(S^{1}\right)$ does not intersect $W_{0}^{n} \cap W_{1}^{n}$.
Proof If every loop in W_{i}^{n} is nullhomotopic in M^{n} then, by Lemma 2, W_{i}^{n} is contractible in M^{n} and therefore we can take as α_{i} a constant map with image in $\operatorname{int}\left(W_{0}^{n}\right)$ or $\operatorname{int}\left(W_{1}^{n}\right)$. If there is a loop γ in W_{i}^{n} that is not nullhomotopic in M^{n}, then $\gamma \simeq \alpha_{i} f_{i} \gamma \simeq \alpha_{i}^{m}$ for some $m \neq 0$. Hence $0=\gamma \cdot\left(W_{0}^{n} \cap W_{1}^{n}\right)=\alpha_{i}^{m} \cdot\left(W_{0}^{n} \cap W_{1}^{n}\right)$ and, by Lemma 3, $\alpha_{i} \cdot\left(W_{0}^{n} \cap W_{1}^{n}\right)=0$. Therefore, we can take as α_{i} a loop such that $\alpha_{i}\left(S^{1}\right) \cap W_{0}^{n} \cap W_{1}^{n}=\emptyset$.

Lemma 4 Suppose $n>2$. Then every component of $W_{0}^{n} \cap W_{1}^{n}$ is separating.
Proof Such a component C is S^{1}-contractible and so the inclusion induced homomorphism factors as

$$
H_{n-1}\left(C ; \mathbb{Z}_{2}\right) \rightarrow H_{n-1}\left(S^{1} ; \mathbb{Z}_{2}\right) \rightarrow H_{n-1}\left(M^{n} ; \mathbb{Z}_{2}\right)
$$

Since $H_{n-1}\left(S^{1} ; \mathbb{Z}_{2}\right)=0, C$ bounds in M^{n} and so C is separating.

3 Two-manifolds

Note that disks, annuli, and Möbius bands embedded in a closed 2-manifold M are S^{1}-contractible in M.
Since
$S^{2}=($ disk $) \cup($ disk $)$
$P^{2}=($ Möbius band $) \cup($ disk $)$
$T^{2}=$ (annulus) \cup (annulus)
$K^{2}=($ Klein bottle $)=($ annulus $) \cup($ annulus $)$
we have cat ${ }_{S^{1}}\left(S^{2}\right)=\operatorname{cat}_{S^{1}}\left(P^{2}\right)=\operatorname{cat}_{S^{1}}\left(T^{2}\right)=\operatorname{cat}_{S^{1}}\left(K^{2}\right)=2$.
We will see that all other closed 2-manifolds have cat ${ }_{S^{1}}$ equal to 3 .
Proposition 2 Let M^{2} be a closed 2-manifold. Suppose there is a compact 1-submanifold of M^{2}, with empty boundary, such that, for every component X of its complement, $\operatorname{im}\left(\pi_{1} X \rightarrow\right.$ $\left.\pi_{1} M^{2}\right)$ is cyclic. Then $\chi\left(M^{2}\right) \geq 0$.

Proof Let F be a compact 1 -submanifold of M^{2}, with a minimal number of components, having the property of the statement. We claim that every component X of $M^{2}-F$ has nonnegative Euler characteristic. For, if $\chi(X)<0$ then $\partial \bar{X} \rightarrow \bar{X}$ is π_{1}-injective, $\pi_{1} \bar{X}$ is not cyclic and $\operatorname{im}\left(\pi_{1} \bar{X} \rightarrow \pi_{1} M^{2}\right)$ is cyclic. These three properties imply that $\partial \bar{X} \rightarrow M^{2}-X$ is not π_{1}-injective and, therefore, some component C of $\partial \bar{X}$ bounds a 2-disk D in $M^{2}-X$. But then $\operatorname{im}\left(\pi_{1}(\bar{X} \cup D) \rightarrow \pi_{1} M^{2}\right)$ is cyclic and $F-C$ is a compact 1 -submanifold having the property of the statement, contradicting our minimality assumption. Hence $\chi(\bar{X})=\chi(X) \geq 0$ for every component X of $M-F$. Therefore $\chi\left(M^{2}\right)=\sum \chi(\bar{X})-\chi(F)=\sum \chi(\bar{X}) \geq 0$, where in the sum X runs over the components of $M^{2}-F$.

Corollary 2 For a closed 2-manifold M^{2},

$$
\operatorname{cat}_{S^{1}} M^{2}= \begin{cases}2, & \text { if } M^{2}=S^{2}, P^{2}, T^{2}, K^{2} \\ 3, & \text { otherwise } .\end{cases}
$$

Proof If cat ${ }_{S^{1}} M^{2}=2$ then by Corollary 1 , there are S^{1}-contractible submanifolds W_{0}, W_{1} such that $W_{0} \cup W_{1}=M^{2}, W_{0} \cap W_{1}=\partial W_{0}=\partial W_{1}$. Every component X of $M^{2}-W_{0} \cap$ W_{1} is S^{1}-contractible and so $\operatorname{im}\left(\pi_{1} X \rightarrow \pi_{1} M^{2}\right)$ is cyclic. By Prop. 2, $\chi\left(M^{2}\right) \geq 0$. In any other case, since closed 2-manifolds can be covered with 3 open disks, it follows that $\operatorname{cat}_{S^{1}} M^{2}=3$.

4 n-manifolds

In this section we prove the Main Theorem:
Suppose M^{n} is closed, $n \geq 3$ and cat ${ }_{S^{1}} M^{n}=2$. Then $\pi_{1} M^{n}=A *_{C} B$ with A, B and C cyclic non-trivial or $\pi_{1} M^{n}=1$.

Suppose cat ${ }_{S^{1}} M^{n}=2$. Recall that we can write $M^{n}=W_{0}^{n} \cup W_{1}^{n}$, where W_{0}^{n} and W_{1}^{n} are S^{1}-contractible compact n-submanifolds with $W_{0}^{n} \cap W_{1}^{n}=\partial W_{0}^{n}=\partial W_{1}^{n}$.

We first consider the case that W_{i} is connected:
Theorem 1 If W_{0} and W_{1} are connected, then $\pi_{1} M^{n}$ is cyclic.

Proof By Lemma 4, $W_{0}^{n} \cap W_{1}^{n}$ is connected. Let $A=\operatorname{im}\left(\pi_{1} W_{0}^{n} \rightarrow \pi_{1} M^{n}\right), B=\operatorname{im}\left(\pi_{1} W_{1}^{n} \rightarrow\right.$ $\left.\pi_{1} M^{n}\right)$ and $C=\operatorname{im}\left(\pi_{1}\left(W_{0}^{n} \cap W_{1}^{n}\right) \rightarrow \pi_{1} M^{n}\right)$. Since W_{0}^{n}, W_{1}^{n} and $W_{0}^{n} \cap W_{1}^{n}$ are S^{1}-contractible A, B and C are cyclic.

We have natural homomorphisms $\pi_{1} W_{0}^{n} \rightarrow A \rightarrow A *_{C} B$ and similarly for $\pi_{1} W_{1}^{n}$ and $\pi_{1}\left(W_{0}^{n} \cap W_{1}^{n}\right)$. We also have a natural homomorphism $\psi: A *_{C} B \rightarrow \pi_{1}(M)$. By Van Kampen's theorem and the universal property of $A *_{C} B$, we have the following commutative diagram with a homomorphism φ. Since $\psi \varphi$ and $\varphi \psi$ are the identity on $A \cup B$ we have $\psi \varphi=i d$

and $\varphi \psi=i d$. Hence $\pi_{1} M^{n}=A *_{C} B$ and $H_{1} M^{n}=A \oplus_{C} B:=(A \oplus B) /\{(c,-c): c \in C\}$.
Observe that this implies that $A=\operatorname{im}\left(H_{1}\left(W_{0}^{n}\right) \rightarrow H_{1}\left(M^{n}\right)\right), B=\operatorname{im}\left(H_{1}\left(W_{1}^{n}\right) \rightarrow\right.$ $\left.H_{1}\left(M^{n}\right)\right)$ and $C=\operatorname{im}\left(H_{1}\left(W_{0}^{n} \cap W_{1}^{n}\right) \rightarrow H_{1}\left(M^{n}\right)\right)$.
Case (i): M^{n} is orientable.
We have

(Here $H^{n}\left(W_{i}^{n}\right)=0$ since W_{i}^{n} is a compact orientable n-manifold with non-empty boundary). Hence $0=H^{n-1}\left(W_{i}^{n}\right)=H_{1}\left(W_{i}^{n}, \partial W_{i}^{n}\right)$, so $H_{1}\left(\partial W_{i}^{n}\right) \rightarrow H_{1}\left(W_{i}^{n}\right)$ is onto. Therefore $C=\operatorname{im}\left(H_{1}\left(\partial W_{0}\right) \rightarrow H_{1}(M)\right)=\operatorname{im}\left(H_{1}\left(W_{0}\right) \rightarrow H_{1}(M)\right)=A$ and similarly $C=B$.

It follows that the three cyclic subgroups A, B, C coincide in $\pi_{1} M^{n}$, which implies that $\pi_{1} M^{n}$ is cyclic.
Case (ii): M^{n} is nonorientable.
By a similar proof as in case (i) taking \mathbb{Z}_{2} coefficients, we obtain that C has odd index in A and in B. Hence coker $\left(H_{1} W_{0}^{n} \rightarrow H_{1} M^{n}\right)=B / C$ is a finite cyclic group of odd order. Since the subgroup of $H_{1} M^{n}$ consisting of all orientation-preserving loops has index two in $H_{1} M^{n}$ it follows that $\operatorname{im}\left(H_{1} W_{0}^{n} \rightarrow H_{1} M^{n}\right)$ contains an orientation-reversing loop and hence W_{0}^{n} (and similarly W_{1}^{n}) is non orientable. Therefore for the orientable two-fold covering $p: \tilde{M}^{n} \rightarrow M^{n}$ the lift $\tilde{W}_{i}=p^{-1}\left(W_{i}^{n}\right)$ is connected. We may assume that α_{i} is an embedding. Since an orientation reversing loop is not null-homotopic in M it follows that
$\tilde{S}^{1}=p^{-1}\left(S^{1}\right)$ is homeomorphic to S^{1}, α_{i} lifts to an embedding $\tilde{\alpha}_{i}, f_{i}$ lifts to \tilde{f}_{i} and we obtain the following diagram

Then $\tilde{\alpha}_{i} \tilde{f}_{i}$ is homotopic to the inclusion $\tilde{i}: \tilde{W}_{i} \rightarrow \tilde{M}^{n}$ and cat ${ }_{S^{1}} \tilde{M}^{n}=2$ and by case (i) $\pi_{1} \tilde{W}_{i} \rightarrow \pi_{1} \tilde{M}^{n}$ is surjective.

Hence $\operatorname{im}\left(\pi_{1} W_{i}^{n} \rightarrow \pi_{1} M^{n}\right)$ contains $\operatorname{im}\left(\pi_{1} \tilde{M}^{n} \rightarrow \pi_{1} M^{n}\right)$, the index 2 subgroup of orientation preserving loops, and since W_{i}^{n} is nonorientable, $\operatorname{im}\left(\pi_{1} W_{i}^{n} \rightarrow \pi_{1} M^{n}\right)=\pi_{1}\left(M^{n}\right)$. Therefore $\pi_{1} M^{n}$ is cyclic.

We now consider the case that W_{0} or W_{1} is not connected.
By Proposition 1 we can assume $\alpha_{i}\left(S^{1}\right)$ does not intersect $W_{0}^{n} \cap W_{1}^{n}$. It turns out that the structure of the fundamental group of M depends on the images $\alpha_{i}\left(S^{1}\right)$, i.e. whether $\alpha_{i}\left(S^{1}\right)$ is in W_{i} or W_{1-i}.

To study $\pi_{1} M$ we first embed $W_{0}, W_{1}, F=W_{0} \cap W_{1}$ into spaces $\widehat{W}_{0}, \widehat{W}_{1}, \widehat{F}=\widehat{W}_{0} \cap \widehat{W}_{1}$, respectively, such that $M=W_{0} \cup W_{1}$ embeds in $\widehat{M}=\widehat{W}_{0} \cup \widehat{W}_{1}$ and such that the components of \widehat{F} are π_{1}-injective in the corresponding components of $\widehat{W}_{i}(i=0,1)$, and inclusion induces an isomorphism $\pi_{1}(M) \cong \pi_{1}(\widehat{M})$.
Lemma 5 Let $W_{i}^{1}, W_{i}^{2}, \ldots$ be the components of W_{i} and if $W_{0}^{j} \cap W_{1}^{k} \neq \emptyset$ let $F_{j k}=$ $W_{0}^{j} \cap W_{1}^{k}$. By attaching 2-cells to $W_{0}^{j}, W_{1}^{k}, F_{j k}$ we obtain embeddings of $W_{0}^{j}, W_{1}^{k}, F_{j k}$ into spaces $\widehat{W}_{0}^{j}, \widehat{W}_{1}^{k}, \widehat{F}_{j k}$ such that
(i) $\pi_{1} \widehat{F}_{j k}$ is cyclic for every $j k$.
(ii) $\pi_{1} \widehat{W}_{i}^{j}$ is cyclic for every i and every j.
(iii) The inclusions $\widehat{F}_{j k} \longrightarrow \widehat{W}_{0}^{j}, \widehat{F}_{j k} \longrightarrow \widehat{W}_{1}^{k}$ are π_{1}-injective.
(iv) For $\widehat{W}_{i}=\cup_{j} \widehat{W}_{i}^{j}$, the inclusion $M=W_{0} \cup W_{1} \longrightarrow \widehat{M}=\widehat{W}_{0} \cup \widehat{W}_{1}$ induces an isomorphism on fundamental groups.
Proof Note that by Lemma 4 each $F_{j k}$ is connected. Since subspaces of S^{1}-contractible spaces are S^{1}-contractible, the images of $\pi_{1} W_{i}^{j} \longrightarrow \pi_{1} M$ and $\pi_{1} F_{j k} \longrightarrow \pi_{1} M$ are cyclic. Let $K_{j k}=\operatorname{ker}\left(\pi_{1} F_{j k} \longrightarrow \pi_{1} M\right)$ and $K_{i}^{j}=\operatorname{ker}\left(\pi_{1} W_{i}^{j} \longrightarrow \pi_{1} M\right)$.
For every $j k$, attach 2-cells to $F_{j k}$ along a collection of loops whose normal closure in $\pi_{1} F_{j k}$ is $K_{j k}$ and denote by $E_{j k}$ the union of these 2-cells. For every i and every j attach 2-cells to W_{i}^{j} along a collection of loops whose normal closure in $\pi_{1} W_{i}^{j}$ is K_{i}^{j} and denote by A_{i}^{j} the union of these 2-cells. Now let
$\widehat{F}_{j k}=F_{j k} \cup E_{j k}$,
$\widehat{W}_{0}^{j}=W_{0}^{j} \cup A_{0}^{j} \cup\left(\cup_{k} E_{j k}\right)$,
$\widehat{W}_{1}^{k}=W_{1}^{k} \cup A_{1}^{k} \cup\left(\cup_{j} E_{j k}\right)$.
Clearly the resulting spaces satisfy properties (i)-(iv).

If Y is a union of subspaces of M which are components of W_{0} or of W_{1} we write $\widehat{Y}=\cup\left\{\widehat{W}_{i}^{j}: W_{i}^{j}\right.$ is a component of W_{0} or of W_{1} contained in $\left.Y\right\}$. Observe that if Y is connected then $\pi_{1} \widehat{Y} \rightarrow \pi_{1} \widehat{M}$ is injective (use, for example, [5, Lemma 2.2]) and we have a commutative diagram with $\pi_{1} Y \rightarrow \pi_{1} \widehat{Y}$ surjective:

Hence we can identify the image of $\pi_{1} Y$ in $\pi_{1} M$ with $\pi_{1} \hat{Y} \subset \pi_{1} \widehat{M}$. A similar argument shows that the image of $\pi_{1} F_{j k}$ in $\pi_{1} M$ can be identified with $\pi_{1} \widehat{F}_{j k}$.
Lemma 6 Let β and γ be loops in $\widehat{F}_{j k}$ that are homotopic in \widehat{W}_{0}^{j} or in \widehat{W}_{1}^{k}. Then they are homotopic in $\widehat{F}_{j k}$.
Proof Since the fundamental groups of $\widehat{F}_{j k}, \widehat{W}_{0}^{j}$ and \widehat{W}_{1}^{k} are abelian, the inclusions $\widehat{F}_{j k} \longrightarrow$ \widehat{W}_{0}^{j} and $\widehat{F}_{j k} \longrightarrow \widehat{W}_{1}^{k}$ are H_{1}-injective. Hence β and γ are homologous, and therefore homotopic, in $\widehat{F}_{j k}$

Recall that $F=W_{0} \cap W_{1}$. In the following lemma we will use the graph G of (M, F) which is defined as follows. The vertices (resp. edges) of G are in one-to-one correspondence with the closures of the components of $M-F$ (resp. with the components of F). Vertices corresponding to components W_{0}^{j} and W_{1}^{k} of $\overline{M-F}$ are joined by an edge e of G if $W_{0}^{j} \cap W_{1}^{k} \neq \emptyset$. In this case e corresponds to the component $F_{j k}=W_{0}^{j} \cap W_{1}^{k}$ of F.

If $n>2$, the graph G is a tree because of Lemma 4 .
An example, in the form of a schematic diagram of \widehat{M}, is shown in Fig. 1. The graph G of (M, F) is obtained by collapsing each \widehat{W}_{i}^{j} to a point.

Lemma 7 Let β and γ be loops in different components of $M-F$ that are homotopic in M. Let $p:[0,1] \longrightarrow M$ be a map, with $p(0) \in \operatorname{im} \beta, p(1) \in \operatorname{im} \gamma$, such that $p^{-1}(F)$ has minimal cardinality m. Let $p^{-1}(F)=\left\{t_{1}, \ldots, t_{m}\right\}$ where $t_{1}<t_{2}<\cdots<t_{m}$. Then there is a sequence of loops $\beta_{0}, \beta_{1}, \ldots, \beta_{m+1}$ such that

1. $\beta_{0}=\beta$ and $\beta_{m+1}=\gamma$
2. $\operatorname{im} \beta_{j}$ is contained in the component of F that contains $p\left(t_{j}\right)(j=1, \ldots, m)$, and
3. β_{j} is homotopic to β_{j+1} in \widehat{W}_{0} or in $\widehat{W}_{1}(j=0,1, \ldots, m)$

Proof Let $\varphi: S^{1} \times I \longrightarrow M$ be a homotopy between β and γ in M. By general position (transversality of maps between topological manifolds e.g. Theorem 1.1 of [7]) we may assume that $S=\varphi^{-1}(F)$ is a collection of simple closed curves in $\operatorname{int}\left(S^{1} \times I\right)$.

Let D_{1}, \ldots, D_{t} be disjoint 2-disks embedded in $S^{1} \times I$ such that $\partial D_{1}, \ldots, \partial D_{t}$ are components of S and all components of $S-\bigcup_{j=1}^{t} D_{j}$ are not null-homotopic in $S^{1} \times I$. Since the inclusion of \widehat{F} in \widehat{M} is π_{1}-injective we can define a homotopy $\widehat{\varphi}: S^{1} \times I \longrightarrow \widehat{M}$ such that $\widehat{\varphi}$ coincides with φ on $S^{1} \times I-\bigcup_{j=1}^{t}$ int D_{j} and $\widehat{\varphi}\left(\bigcup_{j=1}^{t} D_{j}\right) \subset \widehat{F}$. If the components of $S-\bigcup_{j=1}^{t} D_{j}$ are suitably indexed as $s_{1}, s_{2}, \ldots, s_{r-1}$, and $s_{0}=S^{1} \times\{0\}, s_{r}=S^{1} \times\{1\}$, then $\left.\varphi\right|_{s_{i}}(i=0, \ldots, r)$ defines a loop β_{i}^{\prime} in M with β_{i}^{\prime} homotopic to $\beta_{i+1}^{\prime}(i=0, \ldots, r)$ in \widehat{W}_{0} or \widehat{W}_{1}.

The sequence of loops $\beta_{0}^{\prime}, \beta_{1}^{\prime}, \ldots, \beta_{r}^{\prime}$ has the following properties

Fig. 1 A schematic diagram of \widehat{M}

(a) The first one is β and the last one is γ.
(b) Their images are contained in F, except the first one and the last one.
(c) Each loop in the sequence is homotopic to the next one in \widehat{W}_{0} or in \widehat{W}_{1}.

Now let $\beta_{0}, \beta_{1}, \ldots, \beta_{s}$ be a sequence of loops satisfying (a), (b) and (c), such that s is minimal. We claim that $s=m+1$ and that 2) holds.

Let G be the graph of (M, F). Consider the path Δ in G associated to the sequence $\left(\beta_{0}, \beta_{1}, \ldots, \beta_{s}\right)$, that is, the sequence of edges $\left(e_{1}, \ldots, e_{s}\right)$ such that, for $0<i<s$, im β_{i} is contained in the component of F associated to e_{i}. The loop β_{0} (resp. β_{s}) is homotopic to
β_{1} (resp. β_{s-1}) in the component of \widehat{W}_{0} or of \widehat{W}_{1} containing the component associated to u (resp. v) where u (resp. v) is a vertex of e_{1} (resp. e_{s-1}). Δ is a path from u to v in G. Suppose Δ is not a simple path. Then $e_{i}=e_{i+1}$ for some i and, by Lemma $6, \beta_{i}$ is homotopic to β_{i+1} in the component of F associated to e_{i}; then, if we omit β_{i+1} in the sequence ($\beta_{0}, \beta_{1}, \ldots, \beta_{s}$) we still have a sequence satisfying (a), (b) and (c) contradicting the minimality of s. Hence Δ is a simple path in G from u to v.

The map p also defines a path $\left(e_{1}^{\prime}, \ldots, e_{s}^{\prime}\right)$ of minimal length from u to v; the component associated to e_{j}^{\prime} is the component of F containing $p\left(t_{j}\right)$. This path is also simple and, since G is a tree, we must have $e_{j}^{\prime}=e_{j}$ for all j. Hence $s=s^{\prime}=m+1$ and the component of F containing im β_{j} is the one to which $p\left(t_{j}\right)$ belongs $(j=1, \ldots, m)$.

In the following we wish to prove that in some cases the monomorphism $\pi_{1} \widehat{F}^{\prime} \longrightarrow \pi_{1} \widehat{W}^{\prime}$ is surjective, where F^{\prime} is a component of F and W^{\prime} is a component of W_{0} or of W_{1} containing F^{\prime}. To do so it suffices to show that every loop in W^{\prime} is homotopic in \widehat{W}^{\prime} to a loop in F^{\prime}; this implies that every element of $\pi_{1} \widehat{W}^{\prime}$ is conjugate to an element of the image of $\pi_{1} \widehat{F}^{\prime} \longrightarrow \pi_{1} \widehat{W}^{\prime}$ but, since $\pi_{1} \widehat{W}^{\prime}$ is abelian, this image must be $\pi_{1} \widehat{W}^{\prime}$.

Lemma 8 Assume that the images of α_{0} and α_{1} do not intersect F. Let W_{i}^{q} be a component of W_{i} which does not contain $\alpha_{i}\left(S^{1}\right)$ and let $F_{j k}^{\prime}$ be the component of ∂W_{i}^{q} separating int W_{i}^{q} from $\alpha_{i}\left(S^{1}\right)$. Then $\pi_{1} \widehat{F}_{j k}^{\prime} \longrightarrow \pi_{1} \widehat{W}_{i}^{q}$ is an isomorphism.

Proof Since $\pi_{1} \widehat{F}_{j k}^{\prime} \longrightarrow \pi_{1} \widehat{W}_{i}^{q}$ is injective we only need to prove surjectivity. Let β be a loop in W_{i}^{q}. Then β is homotopic in M to a power of α_{i}. A map $p:[0,1] \longrightarrow M$ with $p(0) \in \operatorname{im} \beta, p(1) \in \operatorname{im} \alpha_{i}$ and $\# p^{-1}(F)$ minimal is such that $p\left(t_{1}\right) \in F_{j k}^{\prime}$ where $p^{-1}(F)=$ $\left\{t_{1}, \ldots, t_{m}\right\}$ and $t_{1}<t_{2}<\cdots<t_{m}$. By Lemma 7, there is a sequence $\left(\beta, \beta_{1}, \ldots, \beta_{m+1}\right)$ where β_{m+1} is a power of α_{i}, β is homotopic to β_{1} in \widehat{W}_{i}^{q} and $\operatorname{im} \beta_{1} \subset F_{j k}^{\prime}$. Hence $\pi_{1} \widehat{F}_{j k}^{\prime} \longrightarrow$ $\pi_{1} \widehat{W}_{i}^{q}$ is surjective.

In the next lemma we refer to the graph G of (M, F).
Lemma 9 There is an n-submanifold Q^{n} of M^{n} with the following properties:
(i) Q^{n} is a union of components of W_{0} and W_{1} and the sub-graph G_{Q} of G corresponding to (Q^{n}, int $\left.Q^{n} \cap F\right)$ is linear and connected;
(ii) $\alpha_{i}\left(S^{1}\right),(i=0,1)$ lies in a component of W_{0} or W_{1} corresponding to a vertice of degree 1 in G_{Q};
(iii) inclusion induces an isomorphism $\pi_{1} \widehat{Q}^{n} \cong \pi_{1} \widehat{M}^{n} \cong \pi_{1} M^{n}$.

For example, for the manifold pair (M, F) represented in Fig. 1, $\widehat{Q}=\widehat{W}_{0}^{1} \cup \widehat{W}_{1}^{1} \cup \widehat{W}_{0}^{2} \cup$ $\widehat{W}_{1}^{2} \cup \widehat{W}_{0}^{3} \cup \widehat{W}_{1}^{3}$.

Proof Recalling that G is a finite tree, let W^{p} be a component of W_{0} or W_{1} corresponding to a vertex of degree 1 in G and let $Q_{1}^{n}=\overline{M^{n}-W^{p}}$. If W^{p} does not contain $\alpha_{i}\left(S^{1}\right)$ for $i=0,1$ then by Lemma $8, \pi_{1} \widehat{F}_{j k}^{\prime} \longrightarrow \pi_{1} \widehat{W}_{i}^{p}$ is an isomorphism, where $F_{j k}^{\prime}=W_{i}^{p} \cap Q_{1}^{n}$. By Van Kampen's Theorem inclusion induces an isomorphism $\pi_{1}{\widehat{Q_{1}}}^{n} \cong \pi_{1} \widehat{M}^{n}$. We now obtain Q^{n} by cutting off from M^{n} all those components of W_{0} and W_{1} corresponding to vertices of degree 1 which do not contain $\alpha_{i}\left(S^{1}\right)$ for $i=0,1$ and repeating this process inductively.

Corollary 3 If $\alpha_{0}\left(S^{1}\right)$ and $\alpha_{1}\left(S^{1}\right)$ are contained in the same component of $M-F$ then $\pi_{1} M$ is cyclic.

Proof By Lemma 9, $\pi_{1} M \approx \pi_{1} \widehat{Q^{n}}$ where now Q^{n} is equal to the component W^{p} of W_{0} or of W_{1} containing $\alpha_{0}\left(S^{1}\right)$ and $\alpha_{1}\left(S^{1}\right)$. Hence $\pi_{1} \widehat{Q}^{n} \cong \pi_{1} \widehat{W}^{p}$ is cyclic and the result follows.

Now we show how the structure of $\pi_{1}(M)$ depends on the images of α_{i}. Recall that by Proposition 1 we assume $\alpha_{i}\left(S^{1}\right)$ does not intersect $W_{0}^{n} \cap W_{1}^{n}$.

Theorem 2 (a) If $\alpha_{0}\left(S^{1}\right) \subset W_{1}$ or $\alpha_{1}\left(S^{1}\right) \subset W_{0}$, then $\pi_{1}\left(M^{n}\right)$ is cyclic.
(b) If $\alpha_{i}\left(S^{1}\right) \subset W_{i}(i=0,1)$ and F^{n-1} is any component of $W_{0} \cap W_{1}$ separating $\alpha_{0}\left(S^{1}\right)$ from $\alpha_{1}\left(S^{1}\right)$, let X_{i} be the component of $M^{n}-F^{n-1}$ containing $\alpha_{i}\left(S^{1}\right)$. Then $C=$ $\operatorname{im}\left(\pi_{1} F^{n-1} \rightarrow \pi_{1} M^{n}\right)$ is cyclic, $A_{i}=\operatorname{im}\left(\pi_{1} X_{i} \rightarrow \pi_{1} M^{n}\right)$ is cyclic $(i=0,1)$, and $\pi_{1} M^{n}=A_{0} *_{C} A_{1}$.

Proof (a) Suppose $\alpha_{1}\left(S^{1}\right) \subset W_{0}$. We may assume $\alpha_{1}\left(S^{1}\right) \subset$ int W_{0} and let $f_{1}^{\prime}=f_{0} \alpha_{1} f_{1}$. Then

is also homotopy commutative and we can take $\alpha_{1}^{\prime}=\alpha_{0}$ instead of α_{1}. By Corollary 3, $\pi_{1} M$ is cyclic.
Similarly, if $\alpha_{0}\left(S^{1}\right) \subset W_{1}$ then $\pi_{1} M$ is cyclic.
(b) Assume $\alpha_{i}\left(S^{1}\right) \subset W_{i}(i=0,1)$. Let Q^{n} be as in Lemma 9 and let W_{0}^{p} (resp. W_{1}^{p}) ($p=1, \ldots, s$) be the components of $W_{0} \cap Q^{n}$ (resp. $W_{1} \cap Q^{n}$) indexed such that int $W_{0}^{1} \supset \alpha_{0}\left(S^{1}\right)$, int $W_{1}^{s} \supset \alpha_{1}\left(S^{1}\right)$ and $W_{0}^{p} \cap W_{1}^{q} \neq \emptyset$ if and only if $p=q$ or $p=q+1$. Write $F_{q, q}=W_{0}^{q} \cap W_{1}^{q}$ and $F_{q+1, q}=W_{0}^{q+1} \cap W_{1}^{q}$.

Claim $1 \pi_{1} \widehat{F}_{q+1, q} \longrightarrow \pi_{1} \widehat{W}_{0}^{q+1}$ and $\pi_{1} \widehat{F}_{q+1, q} \longrightarrow \pi_{1} \widehat{W}_{1}^{q}$ are isomorphisms.
This is an immediate consequence of Lemma 8.
Claim 2 If $1<q \leq s$ then $\pi_{1} \widehat{F}_{q, q} \longrightarrow \pi_{1} \widehat{W}_{0}^{q}$ is an isomorphism and if $1 \leq q<s$ then $\pi_{1} \widehat{F}_{q, q} \longrightarrow \pi_{1} \widehat{W}_{1}^{q}$ is an isomorphism.

To see this, if $q>1$, let β be any loop in W_{0}^{q}. Then, by Claim $1, \beta$ is homotopic in \widehat{W}_{0}^{q} to a loop γ in $F_{q, q-1}$. Let δ be a loop in int W_{1}^{q-1} homotopic to γ in W_{1}^{q-1}. Then δ is homotopic in M to a loop in W_{1}^{s} and therefore, using Lemma $7, \delta$ is homotopic in \widehat{W}_{1}^{q-1} to a loop δ_{1} in $F_{q, q-1}$ and δ_{1} is homotopic in \widehat{W}_{0}^{q} to a loop δ_{2} in $F_{q, q}$. By Lemma 6, γ is homotopic to δ_{1} in $\widehat{F}_{q, q-1}^{q, q-1}$. Hence, in $\widehat{W}_{0}^{q}, \beta \simeq \gamma \simeq \delta_{1} \simeq \delta_{2}$. Therefore $\pi_{1} \widehat{F}_{q, q} \xrightarrow{\longrightarrow} \pi_{1} \widehat{W}_{0}^{q}$ is an isomorphism.

Similarly, if $q<s$, we show that if β is any loop in W_{1}^{q}, then, in \widehat{W}_{1}^{q} we have $\beta \simeq$ $\gamma \simeq \delta_{1} \simeq \delta_{2}$, where now γ and δ_{1} are loops in $F_{q+1, q}$ and δ_{2} is a loop in $F_{q, q}$. Therefore $\pi_{1} \widehat{F}_{q, q} \longrightarrow \pi_{1} \widehat{W}_{1}^{q}$ is an isomorphism.

Now let F^{\prime} be any component of $W_{0} \cap W_{1}$ separating $\alpha_{0}\left(S^{1}\right)$ from $\alpha_{1}\left(S^{1}\right)$, that is, $F^{\prime}=F_{q, q}$ or $F^{\prime}=F_{q+1, q}$ for some q. Let X_{i} be the closure of the component of $M-F^{\prime}$ containing $\alpha_{i}\left(S^{1}\right)$. The argument in the proof of Lemma 9 shows that the inclusion of \widehat{W}_{0}^{1} in \widehat{X}_{0} and the inclusion of \widehat{W}_{0}^{s} in \widehat{X}_{1} induce isomorphisms of fundamental groups. Hence $\pi_{1} \widehat{X}_{0}, \pi_{1} \widehat{X}_{1}$ and $\pi_{1} \widehat{F}^{\prime}$ are cyclic and therefore A_{0}, A_{1} and C are cyclic (see the remark before Lemma 6).

Since by Van Kampen's Theorem we have $\pi_{1} \widehat{M}=\pi_{1} \widehat{X}_{0} *_{\pi_{1}} \widehat{F}^{\prime} \pi_{1} \widehat{X}_{1}$ it follows that $\pi_{1} M=A_{0} *_{C} A_{1}$.

To complete the proof of the Main Theorem it remains to show that if $\pi_{1} M^{n}$ is not trivial, then the amalgamating subgroup C is non-trivial.

Lemma 10 Let W^{0} and W^{1} be disjoint compact n-submanifolds of M^{n} where W^{0} is S^{1}-contractible in M^{n} and W^{1} is connected and contractible in M. Let $T=D^{n-1} \times[0,1]$ be a tube in M^{n} such that $W^{i} \cap T=D^{n-1} \times\{i\},(i=0,1)$. Then $W^{0} \cup T \cup W^{1}$ is S^{1}-contractible in M.

Proof Let $a=\{0\} \times[0,1]$ be the core of $T, p=(0,0)$ and $q=(0,1)$ so $\partial a=\{p, q\}$. Then $W^{0} \cup T \cup W^{1}$ deformation retracts to $W^{0} \cup a \cup W^{1}$ in M so it suffices to show that $W^{0} \cup a \cup W^{1}$ is S^{1}-contractible in M. Since it is easy to see that $W^{0} \cup a$ is S^{1}-contractible in M, it suffices to show that the diagram below is homotopy commutative

where r is the retraction with $r\left(W^{1}\right)=q$ and the other two maps are inclusions.
To construct the homotopy $H:\left(W^{0} \cup a \cup W^{1}\right) \times I \longrightarrow M$ we note that since W^{1} is contractible in M there is a map $H: W^{1} \times\left[0, \frac{1}{2}\right] \longrightarrow M$ such that $H(x, 0)=x$ and $H\left(W^{1} \times\left\{\frac{1}{2}\right\}\right)$ is a point. Extend H to $W^{1} \times[0,1]$ by defining $H(x, t)=H(q, 1-t)$ for $\frac{1}{2} \leq t \leqq 1$. Since $\left.H\right|_{q \times[0,1]}$ defines a nullhomotopic loop of the form $\gamma \cdot \gamma^{-1}$ we can extend H to $\left(a \cup W^{1}\right) \times[0,1]$ in such way that $H(p, t)=p$ for $\mathrm{t} \in[0,1]$ and $H(x, 1)=x$ if $x \in a$. Finally, extend H to $\left(W^{0} \cup a \cup W^{1}\right) \times[0,1]$ by defining $H(x, t)=x$ for $x \in W^{0}$, $t \in[0,1]$.

We denote the number of components of a submanifold W of M^{n} by $|W|$.
Corollary 4 Suppose that M^{n} admits a decomposition $M^{n}=W_{0} \cup W_{1}$ where W_{0} and W_{1} are S^{1}-contractible submanifolds of M^{n} with $W_{0} \cap W_{1}=\partial W_{0}=\partial W_{1}$ and such that $\left|W_{0}\right|+\left|W_{1}\right|=c$ is minimal. If $\left|W_{0}\right|>1$ (resp. $\left|W_{1}\right|>1$) then no component of W_{0} (resp. $\left.W_{1}\right)$ is contractible in M^{n}.

Proof Suppose, say, that $\left|W_{0}\right|>1$ and W_{0} has a contractible (in M^{n}) component W_{0}^{1}. Let $T=D^{n-1} \times[0,1]$ be a tube in M^{n} joining $W_{0}-W_{0}^{1}$ to W_{0}^{1} i.e. $T \cap\left(W_{0}-W_{0}^{1}\right)=D^{n-1} \times\{0\}$ and $T \cap W_{0}^{1}=D^{n-1} \times\{1\}$. Then by Lemma $10, W_{0} \cup T=\left(W_{0}-W_{0}^{1}\right) \cup T \cup W_{0}^{1}$ is S^{1} contractible and, as a submanifold of W_{1}, the manifold $\overline{W_{1}-T}$ is S^{1}-contractible. This contradicts the minimality of c since $\left|W_{0} \cup T\right|+\left|\overline{W_{1}-T}\right|=c-1$.

We now finish the proof of the Main Theorem.
We express M^{n} as the union of two S^{1}-contractible submanifolds W_{0}, W_{1} with $W_{0} \cap W_{1}=$ $\partial W_{0}=\partial W_{1}$ such that $\left|W_{0}\right|+\left|W_{1}\right|=c$ is minimal.

If $c=2$ then $\pi_{1} M$ is cyclic by Theorem 1 . Hence we can assume $c>2$. By Proposition 1 and Theorem 2 we can assume that $\alpha_{i}\left(S^{1}\right) \subset \operatorname{int} W_{i}^{1},(i=0,1)$, where W_{i}^{1} is a component of W_{i}. Furthermore for a component F^{\prime} of ∂W_{0}^{1} separating $\alpha_{0}\left(S^{1}\right)$ from $\alpha_{1}\left(S^{1}\right)$ and the closures X_{i} of the components of $M-F^{\prime}$ containing $\alpha_{i}\left(S^{1}\right)(i=0,1)$ we have $\pi_{1} M=A_{0} *_{C} A_{1}$ where $C=\operatorname{im}\left(\pi_{1} F^{\prime} \longrightarrow \pi_{1} M\right)$ and $A_{i}=\operatorname{im}\left(\pi_{1} X_{i} \longrightarrow \pi_{1} M\right)$ are cyclic $(i=0,1)$.

We now show that C is not trivial.

Suppose, on the contrary, that C is trivial. If $W_{0}^{2}\left(\right.$ resp. $\left.W_{1}^{2}\right)$ is a component of $W_{0}\left(\right.$ resp $\left.W_{1}\right)$ contained in X_{1} (resp. X_{0}) then every loop in W_{0}^{2} (resp. W_{1}^{2}) is homotopic to a loop in W_{0}^{1} (resp. W_{1}^{1}) and therefore, by Lemma 7, to a loop in F^{\prime}. By assumption this loop is null homotopic in M^{n} and so, by Lemma 2, W_{0}^{2} (resp. W_{1}^{2}) is contractible in M, which is impossible by Corollary 4 . Hence there are no components of $W_{0}\left(\right.$ resp. $\left.W_{1}\right)$ contained in X_{1} (resp. X_{0}) and so $X_{1}=W_{1}^{1}, X_{0}=W_{0}^{1}$ and $c=2$, a contradiction.

5 Closed 3-manifolds

If the fundamental group of a closed 3-manifold M^{3} is cyclic, then, by results of Olum [9], M^{3} is homotopy equivalent to a lens space $L(p, q)$ including S^{3} and $S^{1} \times S^{2}$, or $S^{1} \tilde{\times} S^{2}$. Since these spaces can be expressed as the union of two solid tori or two solid Klein bottles and since cat ${ }_{S^{1}}$ is a homotopy-type invariant it follows that cat ${ }_{S^{1}} M^{3}=2$.

This shows sufficiency for the following
Theorem 3 Let M^{3} be a closed 3-manifold. Then cat ${ }_{S^{1}} M^{3}=2$ if and only if $\pi_{1} M^{3}$ is cyclic.
Proof By the Main Theorem, if $\pi_{1} M^{3}$ is not cyclic then $\pi_{1} M^{n}=A *_{C} B$ is a non-trivial free product with amalgamation, with A, B and C cyclic. Hence $\pi_{1} M^{n}$ is infinite with center $C \neq 1$ and so $\pi_{1} M^{n}$ is not a non-trivial free product and it follows that every 2 -sphere in M is homotopically trivial. Hence the prime decomposition of M shows that $\pi_{1} M^{n}=\pi_{1} M^{\prime}$ where M^{\prime} is a closed irreducible 3-manifold.

First assume that M is orientable or non-orientable but P^{2}-irreducible. Then Waldhausen's proof of Satz 1.2 [12], applies to show that M^{\prime} contains a closed surface, different from S^{2} or P^{2}, with fundamental group isomorphic to a subgroup of C, which is impossible. Hence $\pi_{1} M^{3}$ is cyclic.

If M^{\prime} is non-orientable and contains a $2-$ sided P^{2} then $i_{*} \pi_{1} P^{2} \cong \mathbf{Z}_{2}$ is conjugate to a subgroup of A, B, or C and it follows that A, B and C are finite cyclic, hence $H_{1}\left(M^{\prime}\right)$ is finite, a contradiction, since the first Betti number of a closed and non-orientable 3-manifold M^{\prime} is positive.

Acknowledgments We would like to thank the referee for the many helpful suggestions and corrections of the first submitted version of this paper. The first and the second authors would like to thank respectively UT Dallas and Osaka City University for their support and hospitality. The third author would like to thank the FSU Council on Research and Creativity for COFRS summer support. All authors would like to thank Hernán González Aguilar and Hiromasa Moriuchi for their TeX help drawing the pictures and diagrams.

References

1. Clapp, M., Puppe, D.: Invariants of the Lusternik-Schnirelmann type and the topology of itical sets. Trans. Am. Math. Soc. 298, 603-620 (1986)
2. Gómez-Larrañaga, J.C., González-Acuña, F.: Lusternik-Schnirelmann category of 3-manifolds. Topology 31, 791-800 (1992)
3. Gómez-Larrañaga, J.C., González-Acuña, F., Heil, W.: 3-Manifolds that are covered by two open bundles, vol. 10. Bol. Soc. Mat. Mexicana, Número especial, pp. 171-180 (2004)
4. Gómez-Larrañaga, J.C., González-Acuña, F., Heil, W.: A note on Hempel-McMillan coverings of 3-manifolds. Topol. App. 154, 1363-1367 (2007)
5. González-Acuña, F., Whitten, W.C.: Imbeddings of three-manifold groups. Mem. Am. Math. Soc. 99(474), viii+55 pp (1992)
6. Hempel, J., McMillan, D.R.: Covering three-manifolds with open cells. Fund. Math. 64, 99-104 (1969)
7. Kirby, R., Siebenmann, L.: Some basic theorems about topological manifolds. In: Foundational Essays on Topological Manifolds, Smoothings and Triangulations. Ann. Math. Stud. vol. 88. Princeton University Press, Princeton (1977)
8. Khimshiashvili, G., Siersma, D.: Remarks on minimal round functions. Geometry and topology of caus-tics-CAUSTICS '02, 159-172, Banach Center Publ., 62, Polish Acad. Sci., Warsaw (2004)
9. Olum, P.: Mappings of manifolds and the notion of degree. Ann. Math. (2) 58, 458-480 (1953)
10. Takens, F.: The minimal number of itical points of a function on a compact manifold and the LusternikSchnirlemann category. Invent. Math. 6, 197-244 (1968)
11. Scott, P., Wall, C.T.C.: Topological methods in group theory. In: Homological Group Theory, London Mathematical Society, Lecture Notes Series, vol. 36. Cambridge University Press, Cambridge (1979)
12. Waldhausen, F.: Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten. Topology 6, 505-517 (1967)

[^0]: J. C. Gómez-Larrañaga \cdot F. González-Acuña

 Centro de Investigación en Matemáticas, A.P. 402, Guanajuato 36000, Gto., Mexico
 e-mail: jcarlos@cimat.mx
 F. González-Acuña

 Instituto de Matemáticas, UNAM, Ciudad Universitaria, 04510 México, D.F., Mexico
 e-mail: fico@math.unam.mx
 W. Heil (\boxtimes)

 Department of Mathematics, Florida State University, Tallahasee, FL 32306, USA
 e-mail: heil@math.fsu.edu

