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Abstract A closed topological n-manifold Mn is of S1-category 2 if it can be covered by
two open subsets W1,W2 such that the inclusions Wi → Mn factor homotopically through
maps Wi → S1 → Mn . We show that the fundamental group of such an n-manifold is a cyclic
group or a free product of two cyclic groups with nontrivial amalgamation. In particular, if
n = 3, the fundamental group is cyclic.

Keywords Lusternik-Schnirelmann category · Coverings of n-manifolds with open
S1-contractible subsets
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1 Introduction

The concept of the A-category of a manifold was introduced by Clapp and Puppe [1]. For
a closed, connected 3-manifold M it is defined as follows: Let A be a closed connected
k-manifold, 0 ≤ k ≤ 2. A subset B in the 3-manifold M is A-contractible if there are maps
ϕ : B −→ A and α : A −→ M such that the inclusion map i : B −→ M is homotopic to
α ·ϕ. The A-category catA (M) of M is the smallest number of sets, open and A-contractible
needed to cover M . Note that 2 ≤ catA (M) ≤ 4. Endowing M with a (essentially unique)
differential structure, an A-function on M is a smooth function M −→ R whose critical set
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420 J. C. Gómez-Larrañaga et al.

is a finite disjoint union of components each diffeomorphic to A. The invariant critA(M) of
M is the minimum number of components of the critical set over all A-functions on M .

If A is a point, then critpoint (M) = crit(M) has been calculated by Takens [10]. He
shows that crit(M) = 2 if and only if M = S3 and crit(M) = 3 if and only if M is a
connected sum of S2-bundles over S1. A related invariant of a more geometrical nature is
C(M), which is the smallest number of open 3-cells needed to cover M . Hempel–McMillan
[6] (see also [4]) showed that in fact C(M) = crit(M). Finally, catpoint (M) = cat (M) , is
the Lusternik-Schnirelmann category of M, and in [2] it is shown that cat (M) = 2 if and
only if π1(M) = 1 and cat (M) = 3 if and only if π1(M) is a non-trivial free group (of
finite rank). Hence, modulo the Poincaré conjecture, the three invariants crit(M),C(M), and
cat (M) coincide for closed 3-manifolds.

For the case A = S1, Khimshiashvili and Siersma [8] show that for orientable 3-manifolds
M , critS1(M) = 2 if and only if M is a lens space. A related invariant of a more geometrical
nature is T(M), which is the smallest number of open solid 3-tori needed to cover M . In [3]
it is shown that an orientable 3-manifold M has T(M) = 2 if and only if M is a lens pace, so
that in this case T(M) and critS1(M) agree.

In this paper we show that for a closed 3-manifold M we have catS1(M) = 2 if and only
if π1(M) is cyclic.

If M is orientable, then by results of Olum [9], M is homotopy equivalent to a lens
space. Therefore, modulo the conjecture that homotopy lens spaces are lens spaces, it fol-
lows that for orientable 3-manifolds M , critS1(M) = 2 if and only if T(M) = 2 if and only
if catS1(M) = 2.

The case that catS1(M) = 3 seems to be difficult and one is lead to conjecture that the
three invariants critS1(M), T(M), and catS1(M) coincide for closed orientable 3-manifolds.

The paper is organized as follows: If a closed topological n-manifold Mn has catS1(Mn) =
2, we show in Sect. 2 that then M can be constructed from two compact S1-contractible
submanifolds that intersect along their boundaries, and we prove some basic properties
of S1-contractible submanifolds and intersection numbers of their boundaries with closed
curves. In Sect. 3 we show that all closed 2-manifolds with negative Euler characteristic have
catS1(M2) = 3. Section 4 is devoted to the proof of the

Main Theorem Suppose Mn is closed, n ≥ 3 and catS1 Mn = 2. Then π1 Mn = A ∗C B
with A, B and C cyclic non-trivial or π1 Mn = 1.

Here is a sketch of the proof of this theorem.
Using the result from Sect. 2 (Corollary 1) we express M as a union of two compact

S1-contractible compact n-submanifolds W0, W1 such that W0 ∩ W1 = ∂W0 = ∂W1. If W0

and W1 are connected we give a Seifert-van Kampen argument and use Poincaré duality in the
orientable case (and consider the orientable 2-sheeted covering in the nonorientable case), to
show that π1(M) is cyclic (Theorem 1). The case when W0 or W1 is not connected is consid-
erably more complicated and our approach is best described by using the language of graphs
of groups ([11], p. 155): π1(M) is the fundamental group of G, a graph of cyclic groups.
Here, for F = W0 ∩ W1, the graph G of (M, F) is a tree (Lemma 4) whose vertices (resp.
edges) are in one-to-one correspondence with the components W j

i of Wi , i = 0, 1 (resp. with

the components Fjk = W j
0 ∩ W k

1 of F). The group associated to a vertex v corresponding

to W j
i (resp. edge e corresponding to Fjk) is the cyclic group im(π1W j

i −→ π1 M) (resp.

im(π1 Fjk −→ π1 M)). We identify im(π1W j
i −→ π1 M) (resp. im(π1 Fjk −→ π1 M)) with

π1 ̂W j
i (resp. π1 ̂Fjk), where ̂W j

i (resp. ̂Fjk) is obtained from W j
i (resp. Fjk) by attaching

certain 2-cells (Lemmas 5 and 6). An important point here is that Wi can be deformed into a
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Fundamental groups of manifolds with S1-category 2 421

circle contained in M − F (i = 0, 1) (Proposition 1). From this we can show (Lemma 9) that
there is a sub-graph G Q of G homeomorphic to a point or a segment such that the fundamen-
tal group of the restriction of G to G Q is all of π1(M). Furthermore at most two of the edge
monomorphisms corresponding to edges of G Q are not epimorhisms (Proof of Theorem 2,
Claims 1 and 2). It follows that π1(M) is cyclic if G Q is a point and π1(M) = A ∗C B if
G Q is a segment. An additional argument is needed at the end of Sect. 4 to show that C is
not trivial.

Finally, in Sect. 5 we apply the Main Theorem to infer that if catS1 M3 = 2 then π1(M)
is cyclic.

2 Preliminaries

A subspace W of the manifold Mn is S1-contractible (in Mn) if there exist maps f : W → S1,
α : S1 → Mn such that the inclusion ι : W → Mn is homotopic to α f . If H : W × I → Mn

is a homotopy between ι and α f , and ∗ ∈ W , we have a commutative diagram

π1(W, ∗) −→
ι∗

↓
f∗

π1(Mn, ∗)

↓
≈ γ#

π1(S1, f (∗))
α∗−→ π1(Mn, α f (∗)),

where γ = H | {∗}×I is the trace of the homotopy. Hence im ι∗ is cyclic.
Notice that a subset of an S1-contractible set is also S1-contractible.
catS1 M is the smallest m such that there exist m open S1-contractible subsets of M whose

union is M .
It is easy to show that catS1 is a homotopy type invariant.
We first note that for the case that catS1 Mn = 2 we can choose compact S1-contractible

submanifolds that intersect along their boundaries:

Lemma 1 If U0 and U1 are open subsets of the closed manifold Mn whose union is Mn then
there exist compact n-submanifolds W0, W1 such that W0 ∪ W1 = Mn, W0 ∩ W1 = ∂W0 =
∂W1 and Wi ⊂ Ui (i = 0, 1).

Proof Let g : Mn → [0, 1] be a map such that g(Mn − Ui ) = {i}, (i = 0, 1). For ε with
0 < ε < 1/2 there is an ε−approximation f of g such that f −1(1/2) is an (n − 1)−sub-
manifold of M (see [7], Theorem 1.1). Let W0 = f −1([1/2, 1]) and W1 = f −1([0, 1/2]).
These submanifolds satisfy the conclusion of the lemma. ��
Corollary 1 Suppose catS1 Mn = 2 where Mn is a closed n-manifold. Then there exist
S1-contractible compact n-submanifolds W0, W1 such that W0 ∪ W1 = Mn and W0 ∩ W1 =
∂W0 = ∂W1.

Lemma 2 If W n is S1-contractible in Mn and every loop in W n is nullhomotopic in Mn,
then W n is contractible in Mn.

Proof The inclusion W → M is homotopic to a composition W
f̃−→ A

α̃−→ M where
p : A → S1 is the covering space of S1 corresponding to f∗(π1W, ∗) ⊂ π1(S1, f (∗)) and
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422 J. C. Gómez-Larrañaga et al.

f̃ is a lift of f , α̃ = αp. If A ≈ R1, then W is contractible in M ; if not, α must be null
homotopic and, again, W is contractible in M . ��

We think of S1 as the space of complex numbers with modulus 1. If α : S1 → M and
m ∈ Z, we define αm by αm(z) = α(zm). Clearly, if β 
 α then βm 
 αm where 
 means “is
homotopic in Mn to”. If F is a compact (n−1)-submanifold of Mn with empty boundary and
α : S1 → M is a loop, we define the intersection number α · F = min{#β−1(F) : β 
 α},
where #β−1(F) denotes the cardinality of β−1(F).

Lemma 3 Let Mn be a closed n-manifold and let W n
0 and W n

1 be compact nonempty
n-submanifolds of Mn such that W n

0 ∪ W n
1 = Mn and W n

0 ∩ W n
1 = ∂W n

0 = ∂W n
1 and

let α : S1 → M be a loop. If αm · (W0 ∩ W1) = 0 and m �= 0, then α · (W0 ∩ W1) = 0.

Proof We may assume m > 0. For F = W n
0 ∩ W n

1 , the number α · F is finite and we
may assume that α is in general position with respect to F so that #α−1(F) = α · F = p
say. Suppose p > 0. Since αm · F = 0 there exists a loop β, homotopic to αm , such that
β(S1) ∩ F = ∅.

Consider a homotopy ϕ : S1 × I → M with ϕ|S1×{0} = αm and ϕ|S1×{1} = β. Using
transversality of maps between topological manifolds (for example Theorem 1.1 of [7]) we
may assume that ϕ is in general position with respect to F . Then S = ϕ−1(F) consists of
simple closed curves in int (S1 × I ) and arcs, with the endpoints of each arc in S1 ×{0}. Each
arc of S splits off a disk from S1 × I . Since p > 0 there is an innermost such disk D such that
∂D = a∪b, where a is an arc of S and b is an arc on S1 ×0 and D∩S−a is empty or consists
of simple closed curves only. Hence the restriction of αm to b is homotopic rel boundary to
a map into F and thus, for bm = {zm |z ∈ b}, the restriction of α to the arc bm is homotopic
rel boundary to a map from bm into F , contradicting the fact that #α−1(F) = α · F . Hence
0 = p = α · F . ��

Now consider again the case that catS1 Mn = 2. Recall that we can write Mn = W n
0 ∪W n

1
as a union of two compact submanifolds with W n

0 ∩ W n
1 = ∂W n

0 = ∂W n
1 such that for

i = 0, 1 we have homotopy commutative diagrams

W n
i M

S1

�

���fi
���αi

Proposition 1 For i = 0, 1, we can take αi so that αi (S1) does not intersect W n
0 ∩ W n

1 .

Proof If every loop in W n
i is nullhomotopic in Mn then, by Lemma 2, W n

i is contractible
in Mn and therefore we can take as αi a constant map with image in int(W n

0 ) or int(W n
1 ). If

there is a loop γ in W n
i that is not nullhomotopic in Mn , then γ 
 αi fiγ 
 αm

i for some
m �= 0. Hence 0 = γ ·(W n

0 ∩W n
1 ) = αm

i ·(W n
0 ∩W n

1 ) and, by Lemma 3, αi ·(W n
0 ∩W n

1 ) = 0.
Therefore, we can take as αi a loop such that αi (S1) ∩ W n

0 ∩ W n
1 = ∅. ��

Lemma 4 Suppose n > 2. Then every component of W n
0 ∩ W n

1 is separating.

Proof Such a component C is S1-contractible and so the inclusion induced homomorphism
factors as

Hn−1(C; Z2) → Hn−1(S
1; Z2) → Hn−1(M

n; Z2).

Since Hn−1(S1; Z2) = 0, C bounds in Mn and so C is separating. ��
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Fundamental groups of manifolds with S1-category 2 423

3 Two-manifolds

Note that disks, annuli, and Möbius bands embedded in a closed 2-manifold M are S1-con-
tractible in M .
Since

S2 = (disk)∪ (disk)
P2 = (Möbius band)∪ (disk)
T 2 = (annulus)∪ (annulus)
K 2 = (Klein bottle)= (annulus)∪ (annulus)

we have catS1(S2) = catS1(P2) = catS1(T 2) = catS1(K 2) = 2.
We will see that all other closed 2-manifolds have catS1 equal to 3.

Proposition 2 Let M2 be a closed 2-manifold. Suppose there is a compact 1-submanifold of
M2, with empty boundary, such that, for every component X of its complement, im(π1 X →
π1 M2) is cyclic. Then χ(M2) ≥ 0.

Proof Let F be a compact 1-submanifold of M2, with a minimal number of components,
having the property of the statement. We claim that every component X of M2−F has nonneg-
ative Euler characteristic. For, if χ(X) < 0 then ∂X → X is π1-injective, π1 X is not cyclic
and im(π1 X → π1 M2) is cyclic. These three properties imply that ∂X → M2 − X is not
π1-injective and, therefore, some component C of ∂X bounds a 2-disk D in M2 − X . But then
im(π1(X ∪ D) → π1 M2) is cyclic and F − C is a compact 1-submanifold having the prop-
erty of the statement, contradicting our minimality assumption. Hence χ(X) = χ(X) ≥ 0
for every component X of M − F . Therefore χ(M2) = ∑

χ(X)− χ(F) = ∑

χ(X) ≥ 0,
where in the sum X runs over the components of M2 − F . ��
Corollary 2 For a closed 2-manifold M2,

catS1 M2 =
{

2, i f M2 = S2, P2, T 2, K 2

3, otherwise.

Proof If catS1 M2 = 2 then by Corollary 1, there are S1-contractible submanifolds W0, W1

such that W0 ∪ W1 = M2, W0 ∩ W1 = ∂W0 = ∂W1. Every component X of M2 − W0 ∩
W1 is S1-contractible and so im(π1 X → π1 M2) is cyclic. By Prop. 2, χ(M2) ≥ 0. In
any other case, since closed 2-manifolds can be covered with 3 open disks, it follows that
catS1 M2 = 3. ��

4 n-manifolds

In this section we prove the Main Theorem:
Suppose Mn is closed, n ≥ 3 and catS1 Mn = 2. Then π1 Mn = A ∗C B with A, B and

C cyclic non-trivial or π1 Mn = 1.
Suppose catS1 Mn = 2. Recall that we can write Mn = W n

0 ∪ W n
1 , where W n

0 and W n
1 are

S1-contractible compact n-submanifolds with W n
0 ∩ W n

1 = ∂W n
0 = ∂W n

1 .
We first consider the case that Wi is connected:

Theorem 1 If W0 and W1 are connected, then π1 Mn is cyclic.
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424 J. C. Gómez-Larrañaga et al.

Proof By Lemma 4, W n
0 ∩W n

1 is connected. Let A = im(π1W n
0 →π1 Mn), B = im(π1W n

1 →
π1 Mn) and C = im(π1(W n

0 ∩ W n
1 ) → π1 Mn). Since W n

0 ,W n
1 and W n

0 ∩ W n
1 are S1-con-

tractible A, B and C are cyclic.
We have natural homomorphisms π1W n

0 → A → A ∗C B and similarly for π1W n
1 and

π1(W n
0 ∩ W n

1 ). We also have a natural homomorphism ψ : A ∗C B → π1(M). By Van Kam-
pen’s theorem and the universal property of A ∗C B, we have the following commutative dia-
gram with a homomorphism ϕ. Sinceψϕ and ϕψ are the identity on A∪ B we haveψϕ = id

and ϕψ = id . Hence π1 Mn = A∗C B and H1 Mn = A⊕C B := (A⊕ B)/{(c,−c) : c ∈ C}.
Observe that this implies that A = im(H1(W n

0 ) → H1(Mn)), B = im(H1(W n
1 ) →

H1(Mn)) and C = im(H1(W n
0 ∩ W n

1 ) → H1(Mn)).
Case (i): Mn is orientable.

We have

,

,

(Here Hn(W n
i ) = 0 since W n

i is a compact orientable n-manifold with non-empty bound-
ary). Hence 0 = Hn−1(W n

i ) = H1(W n
i , ∂W n

i ), so H1(∂W n
i ) → H1(W n

i ) is onto. Therefore
C = im(H1(∂W0) → H1(M)) = im(H1(W0) → H1(M)) = A and similarly C = B.

It follows that the three cyclic subgroups A, B,C coincide in π1 Mn , which implies that
π1 Mn is cyclic.
Case (ii): Mn is nonorientable.

By a similar proof as in case (i) taking Z2 coefficients, we obtain that C has odd index in
A and in B. Hence coker(H1W n

0 → H1 Mn) = B/C is a finite cyclic group of odd order.
Since the subgroup of H1 Mn consisting of all orientation-preserving loops has index two
in H1 Mn it follows that im(H1W n

0 → H1 Mn) contains an orientation-reversing loop and
hence W n

0 (and similarly W n
1 ) is non orientable. Therefore for the orientable two-fold cov-

ering p : M̃n → Mn the lift W̃i = p−1(W n
i ) is connected. We may assume that αi is an

embedding. Since an orientation reversing loop is not null-homotopic in M it follows that
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Fundamental groups of manifolds with S1-category 2 425

S̃1 = p−1(S1) is homeomorphic to S1, αi lifts to an embedding α̃i , fi lifts to f̃i and we
obtain the following diagram

W̃i M̃n

S̃1

W n
i Mn

S1

�

p

���
f̃i

�

p
���
α̃i

�

p

���
fi

���
αi

Then α̃i f̃i is homotopic to the inclusion ĩ : W̃i → M̃n and catS1 M̃n = 2 and by case (i)
π1W̃i → π1 M̃n is surjective.

Hence im(π1W n
i → π1 Mn) contains im(π1 M̃n → π1 Mn), the index 2 subgroup of ori-

entation preserving loops, and since W n
i is nonorientable, im(π1W n

i → π1 Mn) = π1(Mn).
Therefore π1 Mn is cyclic. ��

We now consider the case that W0 or W1 is not connected.
By Proposition 1 we can assume αi (S1) does not intersect W n

0 ∩ W n
1 . It turns out that the

structure of the fundamental group of M depends on the images αi (S1), i.e. whether αi (S1)

is in Wi or W1−i .
To study π1 M we first embed W0, W1, F = W0 ∩ W1 into spaces ̂W0, ̂W1, ̂F = ̂W0 ∩ ̂W1,

respectively, such that M = W0 ∪ W1 embeds in ̂M = ̂W0 ∪ ̂W1 and such that the compo-
nents of ̂F are π1-injective in the corresponding components of ̂Wi (i = 0, 1), and inclusion

induces an isomorphism π1(M) ∼= π1(̂M).

Lemma 5 Let W 1
i ,W 2

i , . . . be the components of Wi and if W j
0 ∩ W k

1 �= ∅ let Fjk =
W j

0 ∩ W k
1 . By attaching 2-cells to W j

0 ,W k
1 , Fjk we obtain embeddings of W j

0 ,W k
1 , Fjk into

spaces ̂W j
0 ,

̂W k
1 ,

̂Fjk such that

(i) π1 ̂Fjk is cyclic for every jk.

(ii) π1 ̂W j
i is cyclic for every i and every j .

(iii) The inclusions ̂Fjk −→ ̂W j
0 ,

̂Fjk −→ ̂W k
1 are π1-injective.

(iv) For ̂Wi = ∪ j ̂W j
i , the inclusion M = W0 ∪ W1 −→ ̂M = ̂W0 ∪ ̂W1 induces an

isomorphism on fundamental groups.

Proof Note that by Lemma 4 each Fjk is connected. Since subspaces of S1-contractible

spaces are S1-contractible, the images of π1W j
i −→ π1 M and π1 Fjk −→ π1 M are cyclic.

Let K jk = ker
(

π1 Fjk −→ π1 M
)

and K j
i = ker

(

π1W j
i −→ π1 M

)

.

For every jk, attach 2-cells to Fjk along a collection of loops whose normal closure in π1 Fjk

is K jk and denote by E jk the union of these 2-cells. For every i and every j attach 2-cells to

W j
i along a collection of loops whose normal closure in π1W j

i is K j
i and denote by A j

i the
union of these 2-cells. Now let
̂Fjk = Fjk ∪ E jk ,
̂W j

0 = W j
0 ∪ A j

0 ∪ (∪k E jk
)

,
̂W k

1 = W k
1 ∪ Ak

1 ∪ (∪ j E jk
)

.

Clearly the resulting spaces satisfy properties (i)–(iv). ��
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If Y is a union of subspaces of M which are components of W0 or of W1 we write
̂Y = ∪

{

̂W j
i : W j

i is a component of W0 or of W1 contained in Y
}

.Observe that if Y is con-

nected then π1̂Y → π1 ̂M is injective (use, for example, [5, Lemma 2.2]) and we have a
commutative diagram with π1Y → π1̂Y surjective:

π1Y π1 M

π1̂Y π1 ̂M

�

� �
≈

�

Hence we can identify the image of π1Y in π1 M with π1Ŷ ⊂ π1 ̂M . A similar argument
shows that the image of π1 Fjk in π1 M can be identified with π1 ̂Fjk .

Lemma 6 Let β and γ be loops in ̂Fjk that are homotopic in ̂W j
0 or in ̂W k

1 . Then they are
homotopic in ̂Fjk .

Proof Since the fundamental groups of ̂Fjk, ̂W j
0 and ̂W k

1 are abelian, the inclusions ̂Fjk −→
̂W j

0 and ̂Fjk −→ ̂W k
1 are H1-injective. Hence β and γ are homologous, and therefore

homotopic, in ̂Fjk ��
Recall that F = W0 ∩ W1. In the following lemma we will use the graph G of (M, F)

which is defined as follows. The vertices (resp. edges) of G are in one-to-one correspon-
dence with the closures of the components of M − F (resp. with the components of F).
Vertices corresponding to components W j

0 and W k
1 of M − F are joined by an edge e of G

if W j
0 ∩ W k

1 �= ∅. In this case e corresponds to the component Fjk = W j
0 ∩ W k

1 of F .
If n > 2, the graph G is a tree because of Lemma 4.
An example, in the form of a schematic diagram of ̂M , is shown in Fig. 1. The graph G

of (M, F) is obtained by collapsing each ̂W j
i to a point.

Lemma 7 Let β and γ be loops in different components of M − F that are homotopic in
M. Let p : [0, 1] −→ M be a map, with p (0) ∈ im β, p (1) ∈ im γ, such that p−1 (F) has
minimal cardinality m. Let p−1 (F) = {t1, . . . , tm} where t1 < t2 < · · · < tm . Then there is
a sequence of loops β0, β1, . . . , βm+1 such that

1. β0 = β and βm+1 = γ

2. im β j is contained in the component of F that contains p
(

t j
)

( j = 1, . . . ,m), and
3. β j is homotopic to β j+1 in ̂W0 or in ̂W1 ( j = 0, 1, . . . ,m)

Proof Let ϕ : S1 × I −→ M be a homotopy between β and γ in M. By general position
(transversality of maps between topological manifolds e.g. Theorem 1.1 of [7]) we may
assume that S = ϕ−1(F) is a collection of simple closed curves in int(S1 × I ).

Let D1, . . . , Dt be disjoint 2-disks embedded in S1 × I such that ∂D1, . . . , ∂Dt are com-
ponents of S and all components of S − ⋃t

j=1 D j are not null-homotopic in S1 × I. Since

the inclusion of ̂F in ̂M is π1-injective we can define a homotopy ϕ̂ : S1 × I −→ ̂M such

that ϕ̂ coincides with ϕ on S1 × I −⋃t
j=1 int D j and ϕ̂

(

⋃t
j=1 D j

)

⊂ ̂F . If the components

of S −⋃t
j=1 D j are suitably indexed as s1, s2, . . . , sr−1, and s0 = S1 ×{0} , sr = S1 ×{1} ,

then ϕ|si (i = 0, . . . , r ) defines a loop β ′
i in M with β ′

i homotopic to β ′
i+1 (i = 0, . . . , r) in

̂W0 or ̂W1.

The sequence of loops β ′
0, β

′
1, . . . , β

′
r has the following properties
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Fundamental groups of manifolds with S1-category 2 427

Fig. 1 A schematic diagram
of ̂M

(a) The first one is β and the last one is γ .
(b) Their images are contained in F, except the first one and the last one.
(c) Each loop in the sequence is homotopic to the next one in ̂W0 or in ̂W1.

Now let β0, β1, . . . , βs be a sequence of loops satisfying (a), (b) and (c), such that s is
minimal. We claim that s = m + 1 and that 2) holds.

Let G be the graph of (M, F) . Consider the path � in G associated to the sequence
(β0, β1, . . . , βs) , that is, the sequence of edges (e1, . . . , es) such that, for 0 < i < s, im βi

is contained in the component of F associated to ei . The loop β0 (resp. βs) is homotopic to
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β1 (resp. βs−1) in the component of ̂W0 or of ̂W1 containing the component associated to u
(resp. v) where u (resp. v) is a vertex of e1 (resp. es−1).� is a path from u to v in G. Suppose
� is not a simple path. Then ei = ei+1 for some i and, by Lemma 6, βi is homotopic to βi+1

in the component of F associated to ei ; then, if we omit βi+1 in the sequence (β0, β1, . . . , βs)

we still have a sequence satisfying (a), (b) and (c) contradicting the minimality of s. Hence
� is a simple path in G from u to v.

The map p also defines a path
(

e′
1, . . . , e′

s

)

of minimal length from u to v; the component
associated to e′

j is the component of F containing p
(

t j
)

. This path is also simple and, since
G is a tree, we must have e′

j = e j for all j. Hence s = s′ = m + 1 and the component of F

containing im β j is the one to which p
(

t j
)

belongs ( j = 1, . . . ,m). ��
In the following we wish to prove that in some cases the monomorphism π1 ̂F ′ −→ π1 ̂W ′

is surjective, where F ′ is a component of F and W ′ is a component of W0 or of W1 con-
taining F ′. To do so it suffices to show that every loop in W ′ is homotopic in ̂W ′ to a loop
in F ′; this implies that every element of π1 ̂W ′ is conjugate to an element of the image of
π1 ̂F ′ −→ π1 ̂W ′ but, since π1 ̂W ′ is abelian, this image must be π1 ̂W ′.

Lemma 8 Assume that the images of α0 and α1 do not intersect F. Let W q
i be a component

of Wi which does not contain αi
(

S1
)

and let F ′
jk be the component of ∂W q

i separating int W q
i

from αi
(

S1
)

. Then π1 ̂F ′
jk −→ π1 ̂W q

i is an isomorphism.

Proof Since π1 ̂F ′
jk −→ π1 ̂W q

i is injective we only need to prove surjectivity. Let β be a

loop in W q
i . Then β is homotopic in M to a power of αi . A map p : [0, 1] −→ M with

p (0) ∈ im β, p (1) ∈ im αi and #p−1(F)minimal is such that p (t1) ∈ F ′
jk where p−1 (F) =

{t1, . . . , tm} and t1 < t2 < · · · < tm . By Lemma 7, there is a sequence (β, β1, . . . , βm+1)

where βm+1 is a power ofαi , β is homotopic to β1 in ̂W q
i and im β1 ⊂ F ′

jk .Henceπ1 ̂F ′
jk −→

π1 ̂W q
i is surjective. ��

In the next lemma we refer to the graph G of (M, F).

Lemma 9 There is an n-submanifold Qn of Mn with the following properties:
(i) Qn is a union of components of W0 and W1 and the sub-graph G Q of G corresponding

to (Qn, int Qn ∩ F) is linear and connected;
(ii) αi

(

S1
)

, (i = 0, 1) lies in a component of W0 or W1 corresponding to a vertice of
degree 1 in G Q;

(iii) inclusion induces an isomorphism π1 ̂Qn ∼= π1 ̂Mn ∼= π1 Mn.

For example, for the manifold pair (M, F) represented in Fig. 1, ̂Q = ̂W 1
0 ∪ ̂W 1

1 ∪ ̂W 2
0 ∪

̂W 2
1 ∪ ̂W 3

0 ∪ ̂W 3
1 .

Proof Recalling that G is a finite tree, let W p be a component of W0 or W1 corresponding
to a vertex of degree 1 in G and let Qn

1 = Mn − W p . If W p does not contain αi
(

S1
)

for
i = 0, 1 then by Lemma 8, π1 ̂F ′

jk −→ π1 ̂W p
i is an isomorphism, where F ′

jk = W p
i ∩ Qn

1. By

Van Kampen’s Theorem inclusion induces an isomorphism π1 ̂Q1
n ∼= π1 ̂Mn . We now obtain

Qn by cutting off from Mn all those components of W0 and W1 corresponding to vertices
of degree 1 which do not contain αi

(

S1
)

for i = 0, 1 and repeating this process inductively.
��

Corollary 3 If α0
(

S1
)

and α1
(

S1
)

are contained in the same component of M − F then
π1 M is cyclic.
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Proof By Lemma 9, π1 M ≈ π1 ̂Qn where now Qn is equal to the component W p of W0 or of
W1 containing α0(S1) and α1(S1). Hence π1 ̂Qn ∼= π1 ̂W p is cyclic and the result follows. ��

Now we show how the structure of π1(M) depends on the images of αi . Recall that by
Proposition 1 we assume αi (S1) does not intersect W n

0 ∩ W n
1 .

Theorem 2 (a) If α0(S1) ⊂ W1 or α1(S1) ⊂ W0, then π1(Mn) is cyclic.
(b) If αi (S1) ⊂ Wi (i = 0, 1) and Fn−1 is any component of W0 ∩ W1 separating α0(S1)

from α1(S1), let Xi be the component of Mn − Fn−1 containing αi (S1). Then C =
im(π1 Fn−1 → π1 Mn) is cyclic, Ai = im(π1 Xi → π1 Mn) is cyclic (i = 0, 1), and
π1 Mn = A0 ∗C A1.

Proof (a) Suppose α1
(

S1
) ⊂ W0.We may assume α1

(

S1
) ⊂ int W0 and let f ′

1 = f0α1 f1.
Then

W1 M

S1

�

���f ′
1

���α0

is also homotopy commutative and we can take α′
1 = α0 instead of α1. By Corollary 3,

π1 M is cyclic.
Similarly, if α0

(

S1
) ⊂ W1 then π1 M is cyclic.

(b) Assume αi
(

S1
) ⊂ Wi (i = 0, 1). Let Qn be as in Lemma 9 and let W p

0 (resp. W p
1 )

(p = 1, . . . , s) be the components of W0 ∩ Qn (resp. W1 ∩ Qn) indexed such that
int W 1

0 ⊃ α0
(

S1
)

, int W s
1 ⊃ α1

(

S1
)

and W p
0 ∩ W q

1 �= ∅ if and only if p = q or

p = q + 1. Write Fq,q = W q
0 ∩ W q

1 and Fq+1,q = W q+1
0 ∩ W q

1 .

Claim 1 π1 ̂Fq+1,q −→ π1 ̂W q+1
0 and π1 ̂Fq+1,q −→ π1 ̂W q

1 are isomorphisms.

This is an immediate consequence of Lemma 8.

Claim 2 If 1 < q ≤ s then π1 ̂Fq,q −→ π1 ̂W q
0 is an isomorphism and if 1 ≤ q < s then

π1 ̂Fq,q −→ π1 ̂W q
1 is an isomorphism.

To see this, if q > 1, let β be any loop in W q
0 . Then, by Claim 1, β is homotopic in ̂W q

0 to a

loop γ in Fq,q−1. Let δ be a loop in int W q−1
1 homotopic to γ in W q−1

1 . Then δ is homotopic

in M to a loop in W s
1 and therefore, using Lemma 7, δ is homotopic in ̂W q−1

1 to a loop δ1 in
Fq,q−1 and δ1 is homotopic in ̂W q

0 to a loop δ2 in Fq,q . By Lemma 6, γ is homotopic to δ1 in
̂Fq,q−1. Hence, in ̂W q

0 , β � γ � δ1 � δ2. Therefore π1 ̂Fq,q −→ π1 ̂W q
0 is an isomorphism.

Similarly, if q < s, we show that if β is any loop in W q
1 , then, in ̂W q

1 we have β �
γ � δ1 � δ2, where now γ and δ1 are loops in Fq+1,q and δ2 is a loop in Fq,q . Therefore
π1 ̂Fq,q −→ π1 ̂W q

1 is an isomorphism.
Now let F ′ be any component of W0 ∩ W1 separating α0

(

S1
)

from α1
(

S1
)

, that is,
F ′ = Fq,q or F ′ = Fq+1,q for some q. Let Xi be the closure of the component of M − F ′
containing αi

(

S1
)

. The argument in the proof of Lemma 9 shows that the inclusion of ̂W 1
0

in ̂X0 and the inclusion of ̂W s
0 in ̂X1 induce isomorphisms of fundamental groups. Hence

π1̂X0, π1̂X1 and π1 ̂F ′ are cyclic and therefore A0, A1 and C are cyclic (see the remark
before Lemma 6).

Since by Van Kampen’s Theorem we have π1 ̂M = π1̂X0 ∗π1 ̂F ′ π1̂X1 it follows that
π1 M = A0 ∗C A1. ��
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To complete the proof of the Main Theorem it remains to show that if π1 Mn is not trivial,
then the amalgamating subgroup C is non-trivial.

Lemma 10 Let W 0 and W 1 be disjoint compact n-submanifolds of Mn where W 0 is S1-con-
tractible in Mn and W 1 is connected and contractible in M. Let T = Dn−1 × [0, 1] be a tube
in Mn such that W i ∩ T = Dn−1 × {i} , (i = 0, 1). Then W 0 ∪ T ∪ W 1 is S1-contractible
in M.

Proof Let a = {0} × [0, 1] be the core of T , p = (0, 0) and q = (0, 1) so ∂a = {p, q}.
Then W 0 ∪ T ∪ W 1 deformation retracts to W 0 ∪ a ∪ W 1 in M so it suffices to show that
W 0 ∪ a ∪ W 1 is S1-contractible in M. Since it is easy to see that W 0 ∪ a is S1-contractible
in M, it suffices to show that the diagram below is homotopy commutative

W 0 ∪ a ∪ W 1 M

W 0 ∪ a

�inclusion

����r 				

inclusion

where r is the retraction with r
(

W 1
) = q and the other two maps are inclusions.

To construct the homotopy H : (W 0 ∪ a ∪ W 1) × I −→ M we note that since W 1 is
contractible in M there is a map H : W 1 × [

0, 1
2

] −→ M such that H (x, 0) = x and
H

(

W 1 × { 1
2

})

is a point. Extend H to W 1 × [0, 1] by defining H (x, t) = H (q, 1 − t) for
1
2 ≤ t � 1. Since H |q×[0,1] defines a nullhomotopic loop of the form γ · γ−1 we can extend
H to

(

a ∪ W 1
) × [0, 1] in such way that H (p, t) = p for t∈ [0, 1] and H (x, 1) = x if

x ∈ a. Finally, extend H to
(

W 0 ∪ a ∪ W 1
) × [0, 1] by defining H (x, t) = x for x ∈ W 0,

t ∈ [0, 1] . ��
We denote the number of components of a submanifold W of Mn by |W |.

Corollary 4 Suppose that Mn admits a decomposition Mn = W0 ∪ W1 where W0 and
W1 are S1-contractible submanifolds of Mn with W0 ∩ W1 = ∂W0 = ∂W1 and such that
|W0| + |W1| = c is minimal. If |W0| > 1 (resp. |W1| > 1) then no component of W0 (resp.
W1) is contractible in Mn .

Proof Suppose, say, that |W0| > 1 and W0 has a contractible (in Mn) component W 1
0 . Let

T = Dn−1 ×[0, 1] be a tube in Mn joining W0 −W 1
0 to W 1

0 i.e. T ∩(W0 −W 1
0 ) = Dn−1 ×{0}

and T ∩ W 1
0 = Dn−1 × {1} . Then by Lemma 10, W0 ∪ T = (W0 − W 1

0 ) ∪ T ∪ W 1
0 is S1-

contractible and, as a submanifold of W1, the manifold W1 − T is S1-contractible. This
contradicts the minimality of c since |W0 ∪ T | + ∣

∣W1 − T
∣

∣ = c − 1. ��
We now finish the proof of the Main Theorem.
We express Mn as the union of two S1-contractible submanifolds W0,W1 with W0 ∩W1 =

∂W0 = ∂W1 such that |W0| + |W1| = c is minimal.
If c = 2 then π1 M is cyclic by Theorem 1. Hence we can assume c > 2. By

Proposition 1 and Theorem 2 we can assume that αi
(

S1
) ⊂ int W 1

i , (i = 0, 1), where
W 1

i is a component of Wi . Furthermore for a component F ′ of ∂W 1
0 separating α0

(

S1
)

from
α1

(

S1
)

and the closures Xi of the components of M − F ′ containing αi
(

S1
)

(i = 0, 1) we
have π1 M = A0 ∗C A1 where C = im

(

π1 F ′ −→ π1 M
)

and Ai = im (π1 Xi −→ π1 M)
are cyclic (i = 0, 1).

We now show that C is not trivial.
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Suppose, on the contrary, that C is trivial. If W 2
0 (resp. W 2

1 ) is a component of W0 (resp W1)
contained in X1 (resp. X0) then every loop in W 2

0 (resp. W 2
1 ) is homotopic to a loop in W 1

0
(resp. W 1

1 ) and therefore, by Lemma 7, to a loop in F ′. By assumption this loop is null homo-
topic in Mn and so, by Lemma 2, W 2

0 (resp. W 2
1 ) is contractible in M, which is impossible

by Corollary 4 . Hence there are no components of W0 (resp. W1) contained in X1 (resp. X0)
and so X1 = W 1

1 , X0 = W 1
0 and c = 2, a contradiction.

5 Closed 3-manifolds

If the fundamental group of a closed 3-manifold M3 is cyclic, then, by results of Olum [9],
M3 is homotopy equivalent to a lens space L(p, q) including S3 and S1 × S2, or S1×̃S2.
Since these spaces can be expressed as the union of two solid tori or two solid Klein bottles
and since catS1 is a homotopy-type invariant it follows that catS1 M3 = 2.

This shows sufficiency for the following

Theorem 3 Let M3 be a closed 3-manifold. Then catS1 M3 = 2 if and only if π1 M3 is cyclic.

Proof By the Main Theorem, if π1 M3 is not cyclic then π1 Mn = A ∗C B is a non-trivial
free product with amalgamation, with A, B and C cyclic. Hence π1 Mn is infinite with center
C �= 1 and so π1 Mn is not a non-trivial free product and it follows that every 2−sphere in
M is homotopically trivial. Hence the prime decomposition of M shows that π1 Mn = π1 M ′
where M ′ is a closed irreducible 3-manifold.

First assume that M is orientable or non-orientable but P2-irreducible. Then Waldhausen’s
proof of Satz 1.2 [12], applies to show that M ′ contains a closed surface, different from S2

or P2, with fundamental group isomorphic to a subgroup of C , which is impossible. Hence
π1 M3 is cyclic.

If M ′ is non-orientable and contains a 2−sided P2 then i∗π1 P2 ∼= Z2 is conjugate to a
subgroup of A,B, or C and it follows that A,B and C are finite cyclic, hence H1(M ′) is finite,
a contradiction, since the first Betti number of a closed and non-orientable 3-manifold M ′ is
positive. ��
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