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Abstract In this paper, we characterize the space of multiplication operators from
an Lp-space into a space L1(m) of integrable functions with respect to a vector mea-
sure m, as the subspace L1

p,µ(m) of L1(m) defined by the functions that have finite
p-semivariation. We prove several results concerning the Banach lattice structure of
such spaces. We obtain positive results—for instance, they are always complete, and
we provide counterexamples to prove that other properties are not satisfied—for
example, simple functions are not in general dense. We study the operators that fac-
torize through L1

p,µ(m), and we prove an optimal domain theorem for such operators.
We use our characterization to generalize the Bennet–Maurey–Nahoum Theorem on
decomposition of functions that define an unconditionally convergent series in L1[0, 1]
to the case of 2-concave Banach function spaces.
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1 Introduction

Let (Ω , Σ , µ) be a finite measure space and let E be a Banach. Consider a countably
additive vector measure m : Σ → E. Then L1(m) is the space of Bartle–Dunford–
Schwartz integrable functions with respect to m (see [1,13]). Given p ∈ [1, ∞] let p′ its
conjugate index, that is, the (extended) real number p′ ∈ [1, ∞] satisfying the equation
1/p+1/p′ = 1. The relationship between spaces of µ-continuous vector measures tak-
ing values in a Banach space E with finite p-semivariation and the space of operators
L(Lp′

(µ), E) is a classical result from vector measure theory (see for instance [11]).
Using the same kind of relations, this paper is devoted to the study of a particular
subspace of operators from Lp′

(µ) into L1(m) . This particular subspace is the space
of the multiplication operators from Lp′

(µ) into L1(m). Actually, the first section of
the paper shows that this space can be written as the subspace of L1(m), denoted by
L1

p,µ(m), consisting of all functions on Ω satisfying that the p-semivariation of the
associated vector measure is finite.

The interest of this characterization is given by the applications of these ideas in
the context of the factorization theorems of the Maurey–Rosenthal framework, where
multiplication operators appear in a natural way. The following scheme gives a (in a
canonical sense) factorization result in this context. Let 1 ≤ q < ∞ and let T be a
q-convex operator from a Banach space E into a q-concave Banach function space
Y(µ). Then there is a constant K and a measurable function g with

sup
h∈BLq(µ)

‖g
1
q h‖Y(µ) ≤ K

such that for all x ∈ E,

⎛
⎝

∫

Ω

|T(x)|q
g

dµ

⎞
⎠

1
q

≤ ‖x‖E.

This allows the factorization of the operator T as

E
T ��

R

��

Y(µ)

Lq(µ)

Mg
��

where Mg is the multiplication operator associated with the function g (see [6,
Corollary 2]).

The dual factorization scheme can be written as follows. Let 1 ≤ q < ∞ and
let T be a q-concave operator from a q-convex Banach function space Y(µ) into a
Banach space E. Then there is a positive linear functional ϕ ∈ (Y(µ)[q])′—where
Y(µ)[q] is the q-power of Y(µ), see [6] and the comments after Theorem 3—such that
supf∈BY(µ)

ϕ(|f |q)1/q ≤ K and for all f ∈ Y(µ),

‖T(f )‖E ≤ ϕ(|f |q)
1
q .
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If Y(µ) is order continuous, then ϕ can be identified with a measurable function, and
then there is a measurable function g such that the operator factorizes as

Y(µ)
T ��

Mg

��

E

Lq(µ)

R

��

where Mg is the corresponding multiplication operator (see [6, Corollary 5]).
Both factorization diagrams above involve multiplication operators that belong to

L(Lq(µ), Y(µ)) and L(Y(µ), Lq(µ)), respectively. But no additional information about
the structure of these operators is known. In this paper, we give a representation of
these spaces as subspaces of the space L1(m) of integrable functions with respect to a
vector measure m whenever the space Y(µ) is L1(m). Although this requirement may
seem very strong, this is not the case since it is known that every order continuous
Banach lattice with weak unit can be represented as an L1(m)-space for a suitable
vector measure m (see [3]).

In Sect. 3 we provide a description of the operators that factorize through the
spaces L1

p,µ(m) in a canonical way. In fact, we give an optimal domain theorem (see
Theorem 6), showing that for these operators the maximal extension is the one that is
defined from a space L1

p,µ(m). This factorization can be easily related to the Maurey–
Rosenthal cycle of ideas in order to obtain strong factorizations through the space
Lp(µ). The last section of the paper is devoted to show an application of our rep-
resentation of the spaces of multiplication operators to provide information about
the decomposition of unconditionally convergent series in 2-concave Banach func-
tion spaces, obtaining in this way a generalization of the Bennet–Maurey–Nahoum
Theorem (see [2,16]). A suitable abstract version of this result due to P. Ørno estab-
lishes that for an unconditional convergent series

∑∞
n=1 fn in the space of Lebesgue

integrable functions Lp[0, 1], 1 ≤ p ≤ 2, it is possible to find a sequence (αn)∞n=1 ∈ �2,
a function g ∈ L2[0, 2] and an orthonormal sequence (hn)∞n=1 in L2[0, 2] such that for
all t ∈ [0, 1], fn(t) = αng(t)hn(t) (see [16]). This allows the generalization to uncon-
ditionally summable sequences in Lp[0, 1] of several Menchoff–Rademacher type
theorems concerning almost everywhere convergence of orthogonal series in L2[0, 1].
Recently, Defant and Junge have developed an abstract setting for a unified treatment
of these almost everywhere convergence problems, that is applied in the setting of
non-commutative Lp-spaces (see [7]).

Our results show that the elements of any unconditionally summable sequence∑∞
n=1 fn in L1(m)—whenever this space is 2-concave Banach function space over the

Lebesgue measure µ in [0, 1]—can be written as a product of an scalar coming from
a fixed two-summable sequence, a function hn that belongs to a fixed orthonormal
sequence in L2[0, 2], and a function g belonging to the space L1

2,µ(m).

2 Notation and preliminaries

Throughout this paper, (Ω , Σ , µ) will be a finite measure space and E be a Banach
space. We denote by E′ the topological dual of E and by BE′ its open unit ball. P(A)

will represent the set of partitions π of A ∈ Σ where π has a finite number of disjoint
measurable sets. The cardinality of the partition π ∈ P(A) will be denoted by #π .
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We denote the complementary of a set A by Ac or by Ω \A. As usual we indicate by
L(E, F) the space of all bounded linear operators going from the Banach space E into
the Banach space F.

The expression s = ∑n
k=1 αkχAk

represents a simple function such that (Ak)k ⊆
P(Ω) and αk ∈ R \ {0} for every k = 1, 2, . . . , n where χA is the characteristic function
of the set A. The set of the simple functions is denoted by sim(Σ). The set consisting
of all measurable functions on Ω is denoted by L0(µ).

If 1 ≤ p ≤ ∞ then p′ ∈ [1, ∞] is given by 1/p + 1/p′ = 1.
Let m : Σ → E be a (countably additive) vector measure. The semivariation of m

over A ∈ Σ is defined by

‖m‖(A) = sup
x′∈BE′

|〈m, x′〉|(A) = sup
x′∈BE′

sup
π∈P(A)

∑
B∈π

|〈m(B), x′〉|,

where we have employed the usual notation

〈m, x′〉(A) = 〈m(A), x′〉 for each A ∈ Σ .

A set A ∈ Σ is called m-null if ‖m‖(A) = 0. A property which holds outside an
m-null is said to hold m-almost everywhere (briefly m-almost everywhere or simply
m-a.e.). In this paper, we assume that µ and m are mutually absolutely continuous,
that is, m and µ have the same null sets (see [10, Theorem I.2.6]). In particular, µ

can be a Rybakov measure; recall that a Rybakov measure for a vector measure m
is a scalar measure ν defined as the variation of a measure 〈m, x′〉, where x′ ∈ E′,
whenever m is absolutely continuous with respect to ν. A Rybakov measure always
exists for every vector measure m (see [10, IX.2.2]).

Definition 1 A function f : Ω → R is said to be integrable with respect to the measure
m if

(a) for each x′ ∈ E′ we have that f ∈ L1(〈m, x′〉),
(b) for each A ∈ Σ there exists xA ∈ E such that

〈xA, x′〉 =
∫

A

f d〈m, x′〉 for every x′ ∈ E′.

The vector xA is unique and will be denoted by
∫

A f dm. Observe that
〈∫

A

f dm, x′
〉

=
∫

A

f d〈m, x′〉 for each x′ ∈ E′.

The space of the classes (equality m-almost everywhere) of these functions is denoted
by L1(m). The expression

‖f‖L1(m) = sup
x′∈BE′

∫

Ω

|f |d|〈m, x′〉| for each f ∈ L1(m),

defines a lattice norm on L1(m) for which L1(m) is an order continuous Banach
lattice with weak unit χΩ (see [3]). The indefinite integral mf : Σ → E of a function
f ∈ L1(m) is defined by

mf (A) =
∫

A

f dm, A ∈ Σ .
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The Orlicz-Pettis Theorem ensures that mf is again a countably additive vector mea-
sure. An equivalent norm for L1(m) is given by

|||f |||L1(m) = sup
A∈Σ

∥∥∥∥∥∥

∫

A

f dm

∥∥∥∥∥∥
E

for each f ∈ L1(m),

because |||f |||L1(m) ≤ ‖f‖L1(m) ≤ 2|||f |||L1(m) (see [10, Chap. I.1.11]).
Let 1 ≤ p < ∞. A measurable function f : Ω → R is said to be p-integrable if |f |p

is integrable with respect to m. The space consisting of the equivalence classes (with
respect to m-almost everywhere equality) of these functions is denoted by Lp(m). The
expression

‖f‖Lp(m) = sup
x′∈BE′

⎛
⎝

∫

Ω

|f |pd|〈m, x′〉|
⎞
⎠

1
p

for each f ∈ Lp(m),

defines a lattice norm on Lp(m) (see [12]).

Definition 2 Let (X(µ), ‖·‖X(µ)) be a Banach space consisting of (equivalence classes
with respect to µ-a.e. equality) measurable functions f : Ω → R. We say that X(µ) is
a µ-Köthe function space when the following conditions hold:

(a) If f is a real measurable function defined on Ω and |f | ≤ |g| for some g ∈ X(µ),
then f ∈ X(µ) and ‖f‖X(µ) ≤ ‖g‖X(µ).

(b) χA ∈ X(µ) for each A ∈ Σ .
(c) X(µ) ⊂ L1(µ) and the inclusion is continuous.

The corresponding Köthe dual of X(µ), that is, X(µ)× is the vector space of all mea-
surable functions g on Ω such that fg ∈ L1(µ) for all f ∈ X(µ). The Köthe dual is often
called the associated space of X(µ). Observe that X(µ)× is also a µ-Köthe function
space. If f ∈ X(µ) and g ∈ X(µ)×, then fg ∈ L1(µ) and

∣∣∫
Ω

fg dµ
∣∣ ≤ ‖f‖X(µ)‖g‖X(µ)×

(see X ′ in [15, p. 27]).
For every 1 ≤ p < ∞, Lp(m) is a Köthe function space over any Rybakov measure

for m.

Remark 1 Assume that (hn)n is a sequence in X(µ) converging to h ∈ X(µ). Then,
property (c) in Definition 2 implies that we can find a subsequence (hnk)k such that
hnk → h µ-a.e.

Observe that L1(m) is a ν-Köthe function space for any of its Rybakov measures
ν. Hence, if (hn)n is a sequence in L1(m) that converges to h ∈ L1(m), then there is a
subsequence (hnk)k such that hnk → h m.a.e.

In what follows we recall several definitions regarding the semivariation of the
vector measure m.
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Definition 3 Let A ∈ Σ . For 1 ≤ p < ∞ the p-semivariation, ‖m‖p,µ(A) of a vector
measure m of A ∈ Σ with respect to µ is defined by

‖m‖p,µ(A) = sup
π∈P(A)

sup
x′∈BE′

∥∥∥∥∥
∑
B∈π

〈m(B), x′〉
µ(B)

χB

∥∥∥∥∥
Lp(µ)

= sup
π∈P(A)

sup
x′∈BE′

(∑
B∈π

|〈m(B), x′〉|p
µ(B)p−1

) 1
p

≤ ∞.

For the case p = ∞ the ∞-semivariation is

‖m‖∞,µ(A) = sup
π∈P(A)

sup
x′∈BE′

∥∥∥∥∥
∑
B∈π

〈m(B), x′〉
µ(B)

χB

∥∥∥∥∥
L∞(µ)

= sup
Σ�B⊆A

sup
x′∈BE′

|〈m(B), x′〉|
µ(B)

≤ ∞.

Remark 2 (a) When p = 1, we have that ‖m‖1,µ = ‖m‖ in Σ .
(b) Using that µ(Ω) < ∞ we have that if 1 ≤ q < p ≤ ∞ then

‖m‖q,µ(Ω) ≤ µ(Ω)
1
q − 1

p ‖m‖p,µ(Ω). (1)

Definition 4 Let 1 ≤ p ≤ ∞. We say that a function f : Ω → R belongs to the vector
space L1

p,µ(m) if

(a) f ∈ L1(m), and
(b) the vector measure associated to f , mf , has finite p-semivariation, i.e.,

‖f‖L1
p,µ(m) = ‖mf ‖p,µ(Ω) < ∞. (2)

Note that ‖f‖L1∞,µ(m) = 0 if and only if f = 0 (m-almost everywhere). So, identifying
functions which are equal m-almost everywhere it is easy to see that the expression
(2) defines a norm in L1

p,µ(m), that is , given f ∈ L1
p,µ(m), then

‖f‖L1
p,µ(m) = sup

π∈P(Ω)

sup
x′∈BE′

(∑
A∈π

| ∫A f d〈m, x′〉|p
µ(A)p−1

) 1
p

, if 1 ≤ p < ∞,

and

‖f‖L1∞,µ(m) = sup
A∈Σ

sup
x′∈BE′

| ∫A f d〈m, x′〉|
µ(A)

, if p = ∞.

Remark 3 Observe that for 1 ≤ p ≤ ∞ we have that L1
p,µ(m) ⊆ L1(m). Also, using

the fact that ‖mf ‖1,µ = ‖f‖L1(m) and (a) in Remark 2 we obtain that L1
1,µ(m) = L1(m).

Remark 4 If we take 1 ≤ q < p ≤ ∞ then we have, using (1) with the vector measure
mf , that

‖f‖L1
q,µ(m) ≤ µ(Ω)

1
q − 1

p ‖f‖L1
p,µ(m) for each f ∈ L1

p,µ(m).
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In particular, taking q = 1, we have that

‖f‖L1(m) ≤ µ(Ω)
1
p′ ‖f‖L1

p,µ(m) for each f ∈ L1
p,µ(m).

Remark 5 Observe that

‖χA‖L1
p,µ(m) = ‖m‖p,µ(A) for each A ∈ Σ ,

then if we suppose that the vector measure m has finite p-semivariation then the set
of the simple functions, sim(Σ), is contained in L1

p,µ(m).

Let 1 ≤ r ≤ ∞. Given a measurable function h on Ω let

h · Lr(µ) = {hf : f ∈ Lr(µ)}.
When h · Lr(µ) ⊆ L1(m) we can define the associated multiplication operator Mh :
Lr(µ) → L1(m) by

Mh(f ) = hf , for every f ∈ Lr(µ).

Note that, if h and g are equal µ-a.e., then the multiplication operators Mh and Mg
are equal. Therefore, we can define the vector space of (classes of) all multiplication
operators between Lr(µ) into L1(m) as

M(Lr(µ), L1(m)) = {Mh : h · Lr(µ) ⊆ L1(m)}.
If h ·Lr(µ) ⊆ L1(m) the Closed Graph Theorem shows easily that Mh is bounded. This
means that the vector space of classes of multiplication operators M(Lr(µ), L1(m))

equipped with the operator norm is a subspace of L(Lr(µ), L1(m)). A norm in the
vector space M(Lr(µ), L1(m)) is given by the expression

‖h‖M = ‖Mh‖ = sup{‖hf‖L1(m) : f ∈ BLr(µ)}.
Let 1 ≤ q < ∞, we refer the reader to [15] for information about the notions of

q-convexity and q-concavity.

Definition 5 Let E and F Banach lattices. An operator T ∈ L(E, F) is said to be
q-convex if there exists k ≥ 0 such that for every N ∈ N and x1, x2, . . . , xN ∈ E

∥∥∥∥∥∥∥

(
N∑

i=1

|Txi|q
) 1

q

∥∥∥∥∥∥∥
≤ k

(
N∑

i=1

‖xi‖q

) 1
q

,

and q-concave if there exists k ≥ 0 such that for every N ∈ N and x1, x2, . . . , xN ∈ E

(
N∑

i=1

‖Txi‖q

) 1
q

≤ k

∥∥∥∥∥∥∥

(
N∑

i=1

|xi|q
) 1

q

∥∥∥∥∥∥∥
.

As usual we write M(q)(T) and M(q)(T) for the best constants k ≥ 0 in the inequal-
ities above, respectively.

Definition 6 A Banach lattice E is said to be q-convex (resp. q-concave) if the identity
operator on E is q-convex (resp. q-concave). In this case we write M(q)(E) and M(q)(E)

for the corresponding constants.
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3 The structure of the spaces L1
p,µ(m)

The aim of this section is to prove the general results concerning the structure of the
space L1

p,µ(m). We show that a lattice norm can be given for this space. This norm
allows us to prove that the space is complete, and to provide a suitable representation
of the space as a Banach function space. In this section we assume that m has finite
p-semivariation. In this case recall that the set sim(Σ) is contained in L1

p,µ(m) (see
Remark (5)).

Lemma 1 Let be ν a real measure on a measurable space (Ω , Σ) and take x′ ∈ E′. If f
is a ν-integrable function and A ∈ Σ , then there exists B ∈ Σ such that B ⊆ A and

∫

A

|f | dν ≤ |
∫

B

f dν| + |
∫

A\B

f dν|.

Proof We denote by ν+ and ν−, the positive and negative parts of the measure ν.
According to the Hahn’s Decomposition Theorem we can find Di ∈ Σ , i = 1, 2, such
that D1

⋂
D2 = Ø, D1

⋃
D2 = Ω , ν = ν+ in D1 and ν = −ν− in D2. Let us take

Di,+ = {x ∈ Di : f (x) ≥ 0} and Di,− = {x ∈ Di : f (x) < 0}, i = 1, 2. Then we have that,
∫

A

|f | dν =
∫

A
⋂

D1

|f | dν −
∫

A
⋂

D2

|f | dν

=
∫

A
⋂

(D1,+
⋃

D2,−)

f dν −
∫

A
⋂

(D1,−
⋃

D2,+)

f dν

≤ |
∫

B

f dν + |
∫

A\B

f dν,

where B = A
⋂

(D1,+
⋃

D2,−). 
�

Definition 7 Let f ∈ L1
p,µ(m). For 1 ≤ p < ∞ we define

|||f |||L1
p,µ(m) = sup

π∈P(Ω)

sup
x′∈BE′

(∑
A∈π

(
∫

A |f |d|〈m, x′〉|)p

µ(A)p−1

) 1
p

.

For the case p = ∞ the analogous is

|||f |||L1∞,µ(m) = sup
A∈Σ

sup
x′∈BE′

∫
A |f |d|〈m, x′〉|

µ(A)
.

Obviously ||| · |||L1
p,µ(m) is also a norm in L1

p,µ(m) for every 1 ≤ p ≤ ∞.

Theorem 1 The norms ‖ · ‖L1
p,µ(m) and ||| · |||L1

p,µ(m) are equivalent and satisfy

‖f‖L1
p,µ(m) ≤ |||f |||L1

p,µ(m) ≤ 2
1
p′ ‖f‖L1

p,µ(m) for each f ∈ L1
p,µ(m).
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Proof Obviously, we have that ‖f‖L1
p,µ(m) ≤ |||f |||L1

p,µ(m) for every f ∈ L1
p,µ(m).

Suppose 1 ≤ p < ∞. Let f ∈ L1
p,µ(m), π ∈ P(Ω) and x′ ∈ E′. Using Lemma 1 with

the real measure ν = |〈m, x′〉|, for each A ∈ π there exists BA ∈ Σ such that BA ⊆ A
and

∫

A

|f | d〈m, x′〉| ≤ |
∫

BA

f d〈m, x′〉| + |
∫

A\BA

f d〈m, x′〉|.

Now, using the inequality, (a + b)p ≤ 2p−1(ap + bp) for each a, b ≥ 0, we obtain that

∑
A∈π

(
∫

A |f |d〈m, x′〉|)p

µ(A)p−1
≤

∑
A∈π

(| ∫BA
f d〈m, x′〉| + | ∫A\BA

f d〈m, x′〉|)p

µ(A)p−1

≤ 2p−1
∑
A∈π

| ∫BA
f d〈m, x′〉|p

µ(A)p−1
+ 2p−1

∑
A∈π

| ∫A\BA
f d〈m, x′〉|p

µ(A)p−1

≤ 2p−1
∑
A∈π

| ∫BA
f d〈m, x′〉|p

µ(BA)p−1
+ 2p−1

∑
A∈π

| ∫A\BA
f d〈m, x′〉|p

µ(A \ BA)p−1

= 2p−1
∑
D∈π̃

| ∫D f d〈m, x′〉|p
µ(D)p−1

.

where π̃ is the partition given by π̃ = {BA : A ∈ π} ∪ {A \ BA : A ∈ π}.
For the case p = ∞ the proof is analogous. 
�

Theorem 2 Given 1 ≤ p ≤ ∞, then (L1
p,µ(m), ||| · |||L1

p,µ(m)) is a Banach space.

Proof Let (fn)n be a Cauchy sequence in L1
p,µ(m). Taking into account that

‖f‖L1(m) ≤ µ(Ω)
1
p′ |||f |||L1

p,µ(m),

we have that (fn)n is a Cauchy sequence in L1(m). The completeness of L1(m) ensures
that there exists a function f ∈ L1(m) such that the sequence (fn)n converges to f in
the norm ‖ · ‖L1(m).

Let us see that (fn)n converges to f in the norm ||| · |||L1
p,µ(m). Given ε > 0, there exists

N ∈ N such that if n, k ≥ N, then

|||fn − fk|||L1
p,µ(m) ≤ ε

2
.

Since (fn)n converges to f in ‖ · ‖L1(m) given n ≥ N we have that
∫

A

|fn − fk|d|〈m, x′〉| k−→
∫

A

|fn − f |d|〈m, x′〉|,

for each partition π ∈ P(Ω) and every A ∈ π and x′ ∈ E′. It follows that for n ≥ N
we have that fn − f ∈ L1

p,µ(m) and

|||fn − f |||L1
p,µ(m) ≤ ε.
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In order to see this, note that if for a fixed n ≥ N we have that |||fn − f |||L1
p,µ(m) > ε,

then we can find a partition πn ∈ P(Ω) and x′
n ∈ BE′ such that

∑
A∈πn

(
∫

A |fn − f |d|〈m, x′
n〉|)p

µ(A)p−1
> εp.

Taking k ≥ N we obtain

εp <

∣∣∣∣∣∣
∑

A∈πn

(
∫

A |fn − f |d|〈m, x′
n〉|)p

µ(A)p−1
−

∑
A∈πn

(
∫

A |fn − fk|d|〈m, x′
n〉|)p

µ(A)p−1

∣∣∣∣∣∣

+
∑

A∈πn

(
∫

A |fn − fk|d|〈m, x′
n〉|)p

µ(A)p−1

≤
∣∣∣∣∣∣
∑

A∈πn

(
∫

A |fn − f |d|〈m, x′
n〉|)p

µ(A)p−1
−

∑
A∈πn

(
∫

A |fn − fk|d|〈m, x′
n〉|)p

µ(A)p−1

∣∣∣∣∣∣
+

(ε

2

)p
,

that clearly gives a contradiction just taking k big enough. This implies that f ∈
L1

p,µ(m). 
�

Corollary 1 If the inclusion i : L1(m) → L1(µ) is continuous, then L1
p,µ(m) is a µ-Köthe

function space. In particular, this holds if µ is a Rybakov measure for m.

The main result of this section is the identification of the space of multiplication
operators from Lp′

(µ) in L1(m) and the space L1
p,µ(m). In particular, we show that this

identification is in fact an isometry. This characterization provides a different point
of view for the understanding of the space of multiplication operators; for instance,
it leave us to show some negative results. The main one is the counterexample given
at the end of the section, that shows that the set of simple functions is not in the
general case dense in L1

p,µ(m). The same example proves that, if we do not assume
that the measure m has finite p-semivariation, then the set of simple functions can not
be embedded in L1

p,µ(m). Through this section we assume that m has finite p-semi-
variation unless stated otherwise.

Proposition 1 Let 1 ≤ p ≤ ∞ and let f ∈ L1
p,µ(m) and g ∈ Lp′

(µ). Then

‖fg‖L1(m) ≤ ‖g‖Lp′
(µ)

|||f |||L1
p,µ(m).

Proof For p = 1 the result is obvious (see Remark 3). Suppose that 1 < p ≤ ∞ and
consider a simple function s = ∑n

k=1 αkχAk
. Then

‖fs‖L1(m) = sup
x′∈BE′

∫

Ω

|fs|d|〈m, x′〉| = sup
x′∈BE′

n∑
k=1

|αk|
∫

Ak

|f |d|〈m, x′〉|

= sup
x′∈BE′

n∑
k=1

|αk|µ(Ak)
1
p′

∫
Ak

|f |d|〈m, x′〉|
µ(Ak)

1
p′

≤ sup
x′∈BE′

(
n∑

k=1

|αk|p′
µ(Ak)

) 1
p′ (

n∑
k=1

(
∫

Ak
|f |d|〈m, x′〉|)p

µ(Ak)
p
p′

) 1
p
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= ‖s‖Lp′
(µ)

sup
x′∈BE′

(
n∑

k=1

(
∫

Ak
|f |d|〈m, x′〉|)p

µ(Ak)p−1

) 1
p

≤ ‖s‖Lp′
(µ)

|||f |||L1
p,µ(m).

Suppose now that g ∈ Lp′
(µ). There exists a sequence of simple functions (sn)n that

converges to g pointwise and also in the norm ‖ · ‖Lp′
(µ)

. In particular the sequence
(fsn)n converges pointwise to fg. On the other hand the inequality

‖fs‖L1(m) ≤ ‖s‖Lp′
(µ)

|||f |||L1
p,µ(m) for each s ∈ sim(Σ),

implies that (fsn)n is a Cauchy sequence in the Banach space L1(m) so there exists a
function h ∈ L1(m) such that (fsn)n converges to h in the norm ‖ · ‖L1(m). Take now a
subsequence (fsnk)k that converges to h almost everywhere. Since (fsn)n converges to
fg pointwise then h = fg in almost every point of Ω . Thus fg ∈ L1(m) and

‖fg‖L1(m) = lim
n

‖fsn‖L1(m) ≤ lim
n

|||f |||L1
p,µ(m)‖sn‖Lp′

(µ)
= ‖g‖Lp′

(µ)
|||f |||L1

p,µ(m).


�
Theorem 3 Let 1 ≤ p < ∞. Then there exists an isomorphism between the space
L1

p,µ(m) and the space M(Lp′
(µ), L1(m)). Moreover

|||f |||L1
p,µ(m) = ‖f‖M for every f ∈ L1

p,µ(m).

Proof Suppose first 1 < p < ∞. Let f ∈ L1
p,µ(m). By Proposition 1, the multiplication

operator Mf , is continuous and satisfies ‖f‖M = ‖Mf ‖ ≤ |||f |||L1
p,µ(m). Let us show that

‖f‖M = |||f |||L1
p,µ(m).

Fixed x′ ∈ BE′ and π ∈ P(Ω) consider the simple function

s =
∑
A∈π

(∫
A |f |d|〈m, x′〉|

µ(A)

)p−1

χA. (3)

Observe that

‖s‖Lp′
(µ)

=
(∑

A∈π

(∫
A |f |d|〈m, x′〉|

µ(A)

)p′(p−1)

µ(A)

) 1
p′

=
(∑

A∈π

(
∫

A |f |d|〈m, x′〉|)p

µ(A)p−1

) 1
p′

.

Consider now the norm one simple function s̃ = s/‖s‖Lp′
(µ)

. Note that

∫

Ω

|f s̃ |d|〈m, x′〉| = 1
‖s‖Lp′

(µ)

∑
A∈π

(
∫

A |f |d|〈m, x′〉|)p

µ(A)p−1
= ‖s‖p′−1

Lp′
(µ)

. (4)

Let now ε > 0. There exist a partition π0 ∈ P(Ω) and an element x′
0 ∈ BE′ such that

|||f |||L1
p,µ(m) <

⎛
⎝ ∑

A∈π0

(
∫

A |f |d|〈m, x′
0〉|)p

µ(A)p−1

⎞
⎠

1
p

+ ε.
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Let us denote by s0 the simple function defined as (3) associated to the partition π0
and x′

0. Taking into account (4) we obtain

|||f |||L1
p,µ(m) <

⎛
⎝ ∑

A∈π0

(
∫

A |f |d|〈m, x′
0〉|)p

µ(A)p−1

⎞
⎠

1
p

+ ε = ‖s0‖p′−1
Lp′

(µ)
+ ε

=
∫

Ω

|f s̃0|d|〈m, x′
0〉| + ε ≤ ‖f‖M + ε.

Just take now limits when ε tends to 0+.
Finally, we have to prove that f → Mf is an isomorphism, or equivalently, that it is a
surjection. In order to do this observe first that if h ∈ M(Lp′

(µ), L1(m)) then just tak-
ing g = χΩ ∈ Lp′

(µ) we obtain that Mh(χΩ) = h ∈ L1(m). Thus the vector measure
associated to the function h is well defined as

mh : Σ → E
E �→ ∫

E hdm.

Let us show now that mh has finite p-semivariation. Let π0 ∈ P(Ω) and let x′
0 ∈ BE′ .

Then
∑

A∈π0

|〈mh(A), x′
0〉|p

µ(A)p−1
≤

∑
A∈π0

(
∫

A |h|d|〈m, x′
0〉|)p

µ(A)p−1

=
⎛
⎝

∫

Ω

|hs̃0|d|〈m, x′
0〉|

⎞
⎠

p

≤ ‖h‖p
M.

Therefore ‖h‖L1
p,µ(m) ≤ ‖Mh‖M and then h ∈ L1

p,µ(m).

For the case p = 1 is enough to take s = χΩ . 
�
Let us show as an example some particular representation of spaces of multiplica-

tion operators. If the Banach function space, X(µ), over the measure µ is a p′-concave
Banach lattice then the results of [8, Proposition 3.5] allow us to write

M(Lp′
(µ), X(µ)) = (((X(µ)×)[p])×)[ 1

p ]

where, if Y(µ) is a Banach function space, Y(µ)× is the corresponding Köthe dual
(see E′ in [15, p. 27]), and Y(µ)[p] is defined as the function space

Y(µ)[p] = {f ∈ L0(µ) : |f |1/p ∈ Y(µ)},
with the quasi norm ‖ · ‖Y(µ)[p] defined by

‖f‖Y(µ)[p] = ‖ |f |1/p ‖p
Y(µ)

, f ∈ Y(µ)[p].

In general this abstract result do not give useful information about these spaces—only
in the cases where the Köthe duals can be directly computed. However, our represen-
tation provides an internal characterization of the functions belonging to the space, in
the sense that gives the properties that a measurable function must satisfy to belong
to the space. Thus if L1(m) is p′-concave we obtain

M(Lp′
(µ), L1(m)) = L1

p,µ(m) = (((L1(m))×)[p])×)[ 1
p ].
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Proposition 2 Let 1 ≤ p < ∞. If χΩ ∈ L1∞,µ(m), then Lp(m) ⊆ L1
p,µ(m) and

|||f |||L1
p,µ(m) ≤ |||χΩ |||

1
p′
L1∞,µ(m)

‖f‖Lp(m).

Proof For p = 1 the result is obvious. Suppose that 1 < p < ∞. Take f ∈ Lp(m) and
consider π ∈ P(Ω), x′ ∈ BE′ . Then

∑
A∈π

(∫
A |f | d |〈m, x′〉|)p

µ(A)p−1
≤

∑
A∈π

⎛
⎝

∫

A

|f | p d |〈m, x′〉|
⎞
⎠

( |〈m, x′〉|(A)

µ(A)

)p−1

≤ |||χΩ |||p−1
L1∞,µ(m)

∑
A∈π

∫

A

|f |p d |〈m, x′〉|

≤ |||χΩ |||p−1
L1∞,µ(m)

‖f‖p
Lp(m).


�
Corollary 2 Let 1 < p < ∞ and assume that χΩ ∈ L1∞,µ(m). If f ∈ Lp(m), then there
is a sequence (sn)n of simple functions in Ω such that (sn)n converges to f in L1

p,µ(m).

Lemma 2 Let 1 ≤ q ≤ ∞. If Lq(µ) ⊆ L1(m), then the inclusion i : Lq(µ) → L1(m) is
continuous.

Proof Just observe that a linear positive operator between two Banach lattices is
always continuous (see [15], p. 2). 
�
Theorem 4 Let 1 ≤ p < ∞. The following properties are equivalent:

(a) m has finite p-semivariation.
(b) χΩ ∈ L1

p,µ(m).

(c) Lp′
(µ) ⊆ L1(m).

Proof The equivalence of (a) with (b) is clear. If we suppose (b) is true then (c) follows
immediately from Proposition 1. Suppose finally that the inclusion in (c) is verified
and let us see that (b) is true. Using Lemma 2 the inclusion i : Lp′

(µ) → L1(m)

is continuous. Thus there is some C > 0 such that ‖s‖L1(m) ≤ C‖s‖Lp′
(µ)

, for each

s ∈ Lp′
(µ). Let us fix x′ ∈ BE′ , π ∈ P(Ω) and consider s as in (3) (in Theorem 3) with

f = χΩ . Finally, observe that

∑
A∈π

(
∫

A d |〈m, x′〉|)p

µ(A)p−1
=

∫

Ω

|s| d |〈m, x′〉| ≤ C ‖s‖Lp′
(µ)

= C.

This implies |||χΩ |||L1
p,µ(m) ≤ C. 
�

Theorem 5 Let 1 ≤ p < ∞. Then L1
p,µ(m) ⊆ Lp(m) and |||f |||Lp(m) ≤ |||f |||L1

p,µ(m).

Proof Let f ∈ L1(m). We will prove that if M ∈ R and ‖f‖Lp(m) > M, then
|||f |||L1

p,µ(m) > M.
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So, let M ∈ R and assume that ‖f‖Lp(m) > M. Hence, there is x′ ∈ BE′ such that
∫

Ω

|f |p d |〈m, x′〉| > M.

Since Lp(|〈m, x′〉|)′ = Lp′
(|〈m, x′〉|) isometrically, by the density of simple functions in

Lp′
(|〈m, x′〉|), there is π ∈ Ω , s = ∑

A∈π αAχA, αA ∈ R, such that s ∈ BLp′
(|〈m,x′〉|) and

| ∫
Ω

|f | s d |〈m, x′〉| | > M. That is
∣∣∣∣∣∣
∑
A∈π

αA

∫

A

|f | d |〈m, x′〉|
∣∣∣∣∣∣
> M.

We obtain

|||f |||L1
p,µ(m) ≥

(∑
A∈π

α
p′
A µ(A)

) 1
p′ (∑

A∈π

(
∫

A |f | d |〈m, x′〉|)p

µ(A)
p
p′

) 1
p

> M.

where we have used Hölder’s inequality. 
�

Note that if 1 ≤ p < ∞ and χΩ ∈ L1∞,µ(m) then Lp(m) = L1
p,µ(m). For this particu-

lar case, this identification gives more information about the decomposition given in
Theorem 8, since the properties of the space Lp(m) are nowadays well-known (see
[12]). A direct computation shows that the condition χΩ ∈ L1∞,µ(m) is equivalent to
the existence of a constant k > 0 such that

‖m(A)‖ ≤ k µ(A) for every A ∈ Σ .

It is well known that the set of simple functions is dense in the space L1(m). However,
this is not the case for the spaces L1

p,µ(m), as the following construction shows. The
rest of this section is devoted to present an example in which simple functions are
not dense in L1

p,µ(m). In this final part, we can not suppose that the vector measure
m has finite p-semivariation. Recall that for a vector measure m the space L1

w(m)

of weakly m-integrable (classes of) functions is defined by all the measurable func-
tions that satisfy (1) in Definition 1. This is a Banach function space when the almost
everywhere order and the norm ‖ · ‖L1(m) are considered. L1(m) can be considered
as a sublattice of L1

w(m) but these spaces are not in general equal; L1
w(m) can be no

σ -order continuous. The reader can find more information about this space in [17]
and for the corresponding Lp

w(m) spaces in [12].
The following example is due to S. Okada. Let us define the function ϕ : N → R

given by ϕ(n) = n. Let Σ = 2N and define a vector measure

m : Σ → c0
A �→ m(A) = χA/ϕ,

where the notation is χA/ϕ = (χA/n)∞n=1 ∈ c0.
Then we can obtain by means of a direct computation that

(a) L1(m) = ϕ · c0 = {ϕf : f ∈ c0}, and
(b) L1

w(m) = ϕ · �∞ = {ϕf : f ∈ �∞}.
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Here, the norm on the spaces ϕ · c0 and ϕ · �∞ are defined by

‖f‖ = ‖f/ϕ‖�∞ , f ∈ ϕ · �∞.

We will use this notation through the following construction. Define a finite measure
µ : Σ → [0, ∞) by

µ(A) =
∑
n∈A

1
ϕ(n)3 =

∑
n∈A

1
n3 , A ∈ Σ .

Let us denote by �1+ and (c0)+ the positive cone of �1 and c0, respectively.

Proposition 3 Let 0 < r < ∞. Then

(a) �1+ = {|f |r/ϕ3 : f ∈ Lr(µ)}.
(b) M(Lr(µ), L1(m)) = ϕ(r−3)/r · �∞.

Proof First we claim that for every g ∈ C
N then g · �1 ⊆ �∞ if and only if g ∈ �∞.

Hence, g · �1 ⊆ c0 if and only if g ∈ �∞. To see this, first note that if g ∈ �∞,
then clearly g · �1 ⊆ �1 ⊆ c0 ⊆ �∞. For the converse, assume that g /∈ �∞. Choose
k(1) < k(2) < k(3) < · · · such that |g(k(n))| ≥ n3. Let

f =
∞∑

n=1

1
n2 ek(n) ∈ �1,

where ek(n) = χ {k(n)}. Then

|g(k(n))f (k(n))| ≥ n3 · 1
n2 = n → ∞.

Thus gf /∈ �∞. So we must have g ∈ �∞.
Now let us prove the Proposition. For the proof of (a), note that a function f ∈ R

N

belongs to Lr(µ) if and only if |f |r/ϕ3 ∈ �1+. Therefore, �1+ ⊇ {|f |r/ϕ3 : f ∈ Lr(µ)}.
Conversely, let h ∈ �1+. Then let f = h1/r ·ϕ3/r. Thus, |f |r/ϕ3 = h ·ϕ3/ϕ3 = h ∈ �1, and
then f ∈ Lr(µ).

For the proof of (b), let g ∈ C
N. Then g ∈ M(Lr(µ), L1(µ)). This means that gf ∈ ϕ·c0

for every f ∈ Lr(µ); equivalently, for all f ∈ Lr(µ) we have that |g|rϕ3−r|f |r/ϕ3 =
|g|r|f |r/ϕr ∈ c0. Therefore, by (a) we obtain that |g|rϕ3−r · �1+ ⊆ (c0)+, and by the
claim at the beginning of the proof we obtain that |g|rϕ3−r ∈ �∞. A direct calculation
shows that g ∈ ϕ(r−3)/r · �∞. 
�
Lemma 3 Given α ∈ R,

(a) ϕα · �∞
� sim(Σ) if α < 0.

(b) ϕα · �∞
� �∞

� sim(Σ) if α > 0.
(c) If α > 0, then sim(Σ) is not dense in the space ϕα · �∞.

Proof (a) The constant function χ
N

do not belong to ϕα · �∞ because ϕ−α is not in
�∞ for all −α > 0.

For (b), note that for every f ∈ �∞, f = ϕα · (f/ϕα) ∈ ϕα · �∞.
Let us prove now (c). We show that given g ∈ �∞,

‖ϕα − g‖ϕα ·�∞ ≥ 1/2,
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recalling that ϕα = ϕα · χ
N

∈ ϕα · �∞. Find n0 ∈ N such that |g(n0)/ϕ
α(n0)| < 1/2. So

‖ϕα − g‖ϕα ·�∞ = ‖χ
N

− g
ϕα

‖�∞ ≥
∣∣∣∣1 − g(n0)

ϕα(n0)

∣∣∣∣ ≥
∣∣∣∣1 − | g(n0)

ϕα(n0)
|
∣∣∣∣ >

1
2

.


�
Summing up the results above, we have the following proposition for the vector

measure m that we are working with.

Proposition 4 Given r ∈ R,

(a) If 0 < r < 3, then sim(Σ) � M(Lr(µ), L1(m)).
(b) If r = 3, then sim(Σ) is dense in M(Lr(µ), L1(m)).
(c) If r > 3, then sim(Σ) is not dense in M(Lr(µ), L1(m)).

4 Operators factorizing through L1
p,µ(m)

In this section, we define and characterize a class of operators that satisfy a certain
vector norm inequality that is related to the one for which the space L1

p,µ(m) is the opti-
mal domain. The theory of optimal domains for continuous operators from Banach
function spaces has been developed recently by Curbera and Ricker (see [4,5]). The
optimal domain for an operator can be defined as the bigger function space to which an
operator satisfying a particular property can be extended preserving the same property.
In our case, this property is given in the following definition.

Definition 8 Let X(µ) be a µ-Köthe function space and E a Banach space and let
1 ≤ p ≤ ∞. We say that an operator T : X(µ) → E is Lp-product extensible if there
is a constant K > 0 such that the inequality

sup{‖T(hf )‖ : h ∈ sim(Σ) ∩ BLp′
(µ)

} ≤ K‖f‖X(µ)

holds for every function f ∈ X(µ).

An easy example of Lp-product extensible operator is given by the following con-
struction. Let 1 < p < ∞, µ a finite measure and take an operator S : L1(µ) → L1(µ).
Then the composition S ◦ i -where i : Lp(µ) → L1(µ) is the inclusion map- clearly
provides an Lp-product extensible operator.

Recall that if T : X(µ) → E is an operator from the σ -order continuous µ-Köthe
function space X(µ) to the Banach space E, the expression mT(A) = T(χA), A ∈ Σ ,
defines a countably additive vector measure. It is said that T is µ-determined if the
measure mT controls µ, i.e. if µ(A) = 0 whenever the semivariation of mT on this set
equals 0, for every A ∈ Σ (see [4,5]). The following theorem gives the characterization
of the Lp-product extensible operators and the optimality of L1

p,µ(m) with respect to
this class of operators.

Theorem 6 Let X(µ) be a σ -order continuous µ-Köthe function space with weak unit
χΩ , E a Banach space and T : X(µ) → E a µ-determined operator. The following
statements are equivalent.

(a) T is Lp-product extensible operator.
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(b) There is a constant K > 0 such that

‖(mT)g‖p,µ(Ω) ≤ K‖g‖X(µ) for every function g ∈ X(µ).

(c) T satisfies the following factorization diagram

X(µ)
T ��

i

��

E

L1
p,µ(mT)

ImT

��

where i is the inclusion map and ImT is the corresponding integration map.

Moreover, if Y(µ) is a σ -order continuous µ-Köthe function space with weak unit
χΩ such that X(µ) ⊆ Y(µ), and T can be extended to an Lp-product extensible operator
S : Y(µ) → E, then Y(µ) ⊆ L1

p,µ(mT).

Proof The following argument shows that (a) implies (b); note first that the vector
measure mT is well-defined since X(µ) is σ -order continuous. Thus L1(mT) is the
optimal domain of the operator T (see [4]) and X(µ) ⊆ L1(mT). Take a simple func-
tion s = ∑n

k=1 αkχAk
∈ BLp′

(µ)
and a function g ∈ X(µ). Then gs ∈ X(µ) ⊆ L1(mT)

and for every A ∈ Σ ,

T(gsχA) =
∫

A

gs dmT .

Note also that

sup
s∈B

Lp′
(µ)

sup
A∈Σ

∥∥∥∥∥∥

∫

A

gsdmT

∥∥∥∥∥∥
≤ sup

s∈B
Lp′

(µ)

‖gs‖L1(mT ) ≤ 2 sup
s∈B

Lp′
(µ)

sup
A∈Σ

∥∥∥∥∥∥

∫

A

gsdmT

∥∥∥∥∥∥
,

where only simple functions are considered as functions s, as a consequence of the
equivalent norm for the space L1(m) given after Definition 1. Therefore, Theorem 3
gives the equivalence between (a) and (b). (Observe that the proof of Theorem 3
actually gives the equivalence between the norm of g ∈ L1

p,µ(m) and the norm of
the multiplication operator Mg computed just when acting on the subspace of simple
functions of Lp′

(µ).)
To see the equivalence between (b) and (c) it is enough to use Remark 3 and

Remark 4; if g ∈ L1
p,µ(mT),

∥∥∥∥∥∥

∫

Ω

gdmT

∥∥∥∥∥∥
≤ ‖g‖L1(mT ) ≤ ‖g‖L1

p,µ(mT ).

Therefore, the inequality in (b) holds if and only if the factorization holds.
To prove the optimal domain property given by the last statement of the Theorem,

suppose that Y(µ) is an σ -order continuous Köthe function space with weak unit
χΩ such that X(µ) ⊆ Y(µ). Assume also that the operator T can be extended to an
Lp-product extensible operator S : Y(µ) → E. Since the vector measure mT is the
same than the one defined by S, mS, the same argument that has been used for proving
the equivalence between (a) and (b) gives the continuous inclusion Y(µ) ⊆ L1

p,µ(mT).

�
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In what follows we use the factorization Theorem given above for obtaining fac-
torizations for Lp-product extensible operators through Lp(µ) by means of the Mau-
rey–Rosenthal cycle of ideas that has been explained in the first section.

Lemma 4 The Banach space (L1
p,µ(m), ||| · |||L1

p,µ(m)) is p-convex with constant

M(p)(L1
p,µ(m)) = 1.

Proof The following inequalities gives the proof of this technical result; we use essen-
tially Theorem 3. For p = 1 the result is trivial, so suppose that 1 < p < ∞. Note
that for every x′ ∈ E′, if we denote by mx′ = 〈m, x′〉, then the measure |mx′ | is abso-
lutely continuous with respect to µ. Let us write d|mx′ |/dµ for the corresponding
Radon–Nikodým derivative. Take a finite set of functions f1, . . . , fn ∈ L1

p,µ(m). Then

|||
(

n∑
i=1

|fi|p
) 1

p

|||L1
p,µ(m) = sup

h∈B
Lp′

(µ)

sup
x′∈E′

⎛
⎝

∫

Ω

(
n∑

i=1

|fi|p
) 1

p

|h|d|mx′ |
⎞
⎠

= sup
x′∈E′

sup
h∈B

Lp′
(µ)

⎛
⎝

∫

Ω

∣∣∣∣∣
n∑

i=1

|fi|p| 1
p |h|d|mx′ |

dµ
dµ

⎞
⎠

≤ sup
x′∈E′

⎛
⎝

∫

Ω

(∣∣∣∣∣
n∑

i=1

|fi|p| 1
p

)p (
d|mx′ |

dµ

)p

dµ

⎞
⎠

1
p

= sup
x′∈E′

⎛
⎝

n∑
i=1

∫

Ω

|fi|p
(

d|mx′ |
dµ

)p

dµ

⎞
⎠

1
p

≤
⎛
⎝

n∑
i=1

sup
x′∈E′

∫

Ω

|fi|p
(

d|mx′ |
dµ

)p

dµ

⎞
⎠

1
p

=
⎛
⎝

n∑
i=1

sup
x′∈E′

sup
h∈B

Lp′
(µ)

⎛
⎝

∫

Ω

|fi|d|mx′ |
dµ

|h|dµ

⎞
⎠

p⎞
⎠

1
p

=
(

n∑
i=1

‖fi‖p
L1

p,µ(m)

) 1
p

.

This proves the result. 
�
Corollary 3 Let T : X(µ) → E be an Lp-product extensible µ-determined operator
such that L1

p,µ(mT) is σ -order continuous. Suppose that the integration map ImT is
p-concave. Then T factorizes through Lp(µ) as

X(µ)
T ��

i
��

E

L1
p,µ(mT)

Mg �� Lp(µ)

R

��
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where g ∈ M(L1
p,µ(mT), Lp(µ)), R is a continuous operator and i is the inclusion map.

Proof An application of one of the Maurey–Rosenthal type theorems explained in
Sect. 1 gives the result. We apply first Theorem 6 to factorize T through L1

p,µ(mT).
Since this space is always p-convex, we obtain the complete factorization scheme. 
�

Corollary 4 Let T : X(µ) → E be an Lp-product extensible positive operator such that
L1

p,µ(mT) is σ -order continuous. Suppose that T is µ-determined and E is p-concave.
Then T factorizes through Lp(µ) as in Corollary 3.

Proof Since the integration map is positive and E is p-concave, we obtain that ImT is
p-concave just by applying [15, Proposition 1.d.9.]. Corollary 3 gives the result. 
�

5 A generalization of the Bennet–Maurey–Nahoum Theorem

In this section, we show that a classical result on decomposition of functions that
define an unconditionally summable sequence on L1([0, 1], µ), where µ is Lebesgue
measure, can be extended to any unconditionally sequence of functions in 2-concave
L1(m)-spaces. The key of our Theorem is the characterization of the multiplication
operators from Lp(µ) in L1(m) that we have obtained in the previous section. The
framework where these results are used is the so called Maurey–Rosenthal Factor-
ization Theory for linear operators between Banach lattices. For the proof we use the
Nagy’s Dilation Theorem whose proof can be found in [9, p. 253].

Theorem 7 (Nagy’s Dilation Theorem) Let u ∈ L(H1, H2) be a Hilbert space operator
with u ∈ BL(H1,H2). There is a Hilbert space G such that u admits a factorization

H1
u ��

v

��

H2

G ⊕2 H2

π

		

where v is an isometric embedding and π is a orthogonal projection of G⊕2 H2 onto H2.

Theorem 8 Suppose that µ is a Rybakov measure for a vector measure m and that
L1(m) is a 2-concave space. Let (fn)n be an unconditionally summable sequence in
L1(m). Then we can find (an)n ∈ �2, g ∈ L1

2,µ(m), a Hilbert space G and an orthonor-

mal sequence (xn)n ∈ G ⊕2 L2(µ) such that for every w ∈ Ω and all n ∈ N

fn(w) = g(w)angn(w)

where gn is the projection of xn onto L2(µ).

Proof We assume that all the functions in the sequence are not zero.
Since (fn)n is an unconditionally summable sequence, then we can define a compact
operator by

u : c0 −→ L1(m)

(tn)n �→
∞∑

n=1
tnfn.
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Recall that c0 is σ -order continuous and 2-convex and that L1(m) is 2-concave. From
[9, Theorem 1.f.14] we obtain that for every h1, h2, . . . , hn ∈ c0

1
M(2)(L1(m))

(
n∑

i=1

‖u(hi)‖2

) 1
2

≤
∥∥∥∥∥∥

(
n∑

i=1

|u(hi)|2
) 1

2
∥∥∥∥∥∥

L1(m)

≤ kG‖u‖
∥∥∥∥∥∥

(
n∑

i=1

|hi|2
) 1

2
∥∥∥∥∥∥

c0

.

This means that u is a 2-concave operator. Taking into account [6, Corollary 5] we can
find a sequence a = (an)n ∈ B�2 such that u allows the factorization

c0
u ��

Ma





L1(m)

�2

v
��

where v is a continuous linear operator for which this diagram commutes. (Observe
that u = v ◦ Ma gives v = u ◦ M 1

a
).

In fact the Banach lattice �2 is σ -order continuous and 2-convex so using again [9,
Theorem 1.f.14] but now with the operator v : �2 → L1(m) we have that for every
h1, h2, . . . , hn ∈ �2

∥∥∥∥∥∥

(
n∑

i=1

|v(hi)|2
) 1

2
∥∥∥∥∥∥

L1(m)

≤ kG‖v‖
∥∥∥∥∥∥

(
n∑

i=1

|hi|2
) 1

2
∥∥∥∥∥∥

�2

≤ kG‖v‖
(

n∑
i=1

‖hi‖2

) 1
2

,

since M(2)(�2) = 1. Then we can find a function g ∈ M(L2(µ), L1(m)) = L1
2,µ(m) such

that v can be factorized as

�2
v ��

v̂

��

L1(m)

L2(µ)

Mg
��

where now the commutativity of the diagram above provides that v̂ = Mg−1 ◦ v.
Observe that we can suppose that v̂ has norm less or equal to one (changing the
function g if it is necessary).

Take now the operator v̂ : �2 → L2(µ). Since ‖v̂‖ ≤ 1 then applying the Dilation
Theorem there is a Hilbert space G such that v̂ admits the factorization

�2
v̂ ��

w

��

L2(µ)

G ⊕2 L2(µ)

π

��

where w is an isometric embedding and π is a orthogonal projection of G ⊕2 L2(µ)

onto L2(µ).
Since w is an isometry then the sequence (xn)n given by xn = w(en), n ≥ 1, is an

orthonormal sequence in G ⊕2 L2(m). For each n ∈ N

fn = T(en) = Mg(π(w(Ma(en)))) = Mg(π(w(anen)))

= Mg(anπ(xn)) = Mg(angn) = gangn, in L1(m).
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Then there exists a µ-null set An ∈ Σ such that fn = gangn in Ω \ An. Let us consider
the function

ĝn = gχAc
n
+ fn

ang
χAn

.

Finally just observe that for every n ∈ N we have that ĝn = gn in L1(m) and clearly
fn(t) = g(t)angn(t) for each t ∈ [0, 1]. 
�
Remark 6 Note that the characterization of unconditionally summable sequence
given in [9, Theorem 1.9] provides a compact operator from c0 onto L1(m) although
we only use the continuity of u in the proof of Theorem 8 so the reader can think
that the same argument should provide a more general result regarding sequences of
elements of L1(m) satisfying that the corresponding operator is continuous. However
a simple argument shows that every operator from c0 onto L1(m) is compact when-
ever L1(m) is 2-concave. The reason is that we can always give for such operator a
factorization through an operator R : c0 → �2. These operators are always compact
as a consequence of Pitt’s Theorem (see [14, Proposition 2.c.3.]).

Remark 7 Since every L1(m) can be included in the space L1(µ), where µ is a Rybakov
measure for m, every unconditionally convergent series in L1(m) can be considered
as an unconditionally convergent series in L1(µ) (see [16]). Thus, a function g ∈ L2(µ)

can be obtained for the decomposition given in Theorem 8. Our result provides a
more specialized information about the function g.

In the particular case that the vector measure is defined on the measurable space
([0, 1], B([0, 1])) and L1(m) is a Köthe function space for Lebesgue measure µ then
the Hilbert space G that appears in the factorization is L2(µ). In this case the space
G ⊕2 L2(µ) that gives can be chosen to be L2([0, 2], µ) (see [9, Theorem 12.31]). This
enables us to present the following

Corollary 5 Let m be a vector measure on ([0, 1], B([0, 1])) such that L1(m) is a Köthe
function space for Lebesgue measure µ and L1(m) is 2-concave. Let (fn)n be an uncon-
ditionally summable sequence in L1(m). Then we can find (an)n ∈ �2, g ∈ L1

2,µ(m) and

an orthonormal sequence (gn)n ∈ L2[0, 2] such that for every t ∈ [0, 1] and all n ∈ N

fn(t) = g(t)angn(t).
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