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Abstract

We give a generalization of uniform smoothness, study its properties and give some examples.
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1. The EIS-property

We recall that an equivalent definition for uniform smoothness in a Banach space is given as
follows:

Definition 1. A Banach space X is uniformly smooth if and only if for every ¢ > 0O there exists
6 > Osuch thatif f, g € Sx= with || f — g|| > ¢, then S(f, g,65) = 0.

It is well known that a uniformly smooth Banach space is superreflexive and has normal
structure. Here we will give a generalization of this concept, which we will call the empty slice
property, and study some of its consequences.

For this we need to give some prior definitions.

Definition 2. Let X be a Banach space.
We define

sp(X) = sup{r : Ix1, x2, ..., xpy1 € Sy with ||x; — x| > r fori # j}.
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Observe that if k = 1, then s (X) = 2 and if dim X = oo, then s (X) > 1 forevery k € N.
s(X) = sup{r : Ix,}p C Sx with ||x; —x;|| > r fori # j}.

Definition 3. Let X be a Banach space. Givenr € N and 0 < ¢ < s,(X*), we say that X has

the “e, t— empty intersection of slices” property (e, t — EIS) if there exists 0 < § so that if

81,...,8+1 € Sxr are such that ||g; — g;|| > e foreveryi # j,i,j =1,...,t + 1, then
S(g1, .-, 8+1,06) = ¢. We will say that X has EIS, if X has ¢, t — EIS for some ¢ and ¢.

Thus X is uniformly smooth if and only if it is €, 1 — EIS for every ¢ < 2.

Definition 4. A Banach space X with dim X = oo has the “dual ¢, f— empty intersection
of slices” property (g, t —* EIS) if there exist t € N,0 < ¢ < 5(X), and 0 < § so that if
X1,...,X41 € Sy are such that ||x; — x;|| > e foreveryi # j,i,j=1,...,t+ 1, then

{feBx«: f(xi)>1-=68,i=1,...,t+1} =0.
We will say that X has *EIS, if X has ¢, t —* EIS for some ¢ and .

In [1] the authors proved that an (r, k, /) somewhat uniformly noncreasy Banach space is
superreflexive. It is easy to see that if X has property EIS and s;(X*) > ¢ > 0 where ¢, § and ¢
are as in the definition, then X is (s(X*), 1, ) — SUNC. Thus we have the following corollary.

Corollary 1. If X has property EIS then it is superreflexive.

Lemma 1. If X has *EIS, then it is reflexive.

Proof. Let 5;(X) > & > 0andt € N,§ > Osuchthatif x1,...,x,11 € Sx and ||x; — x|l > ¢
foreveryi # j,i,j=1,...,t+ 1, then

{feBx«: f(xi)>1-=68,i=1,...,t+1} =0.

Further suppose that § < 1 — ¢.
If X is not reflexive, by James’ theorem there exists {x,}, C Sy and {f,}, C Sx* such that
faxk) =1—=4if n < kand f,(xx) = 0if n > k. Hence, since

G == filky) =134,

there are i, j € {1,...,# + 1} withi # j and [x; — xj|| < &. Suppose that i < j. Then
fi(xj) =1—4and f;(x;) = 0. Consequently

1-8=fi(xj))=fi(xj—x) <llxi—xjll<e
which is a contradiction. O

Corollary 2. If X has €,t — EIS, then X* has ¢,t —* EIS. Also, if X has e,t —* EIS, then X*
has e,t — EIS.

Corollary 3. If X has *EIS then it is superreflexive.

Similarly to Garcia Falset et al. [3] the following can be shown:

Lemma 2. If X has either EIS or *EIS and Y is finitely representable in X, then Y has EIS,
respectively *EIS.
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In their other work [2], Garcia Falset et al. defined the following function
8% 1 10, sx(X)) — [0, 1]
by

X1+ A X

~ ]
Sx(e):mf{l— 1

ix; €By,i=1,...,k+1,min|x; —x;|| > 8}.
i#j
They proved the following theorems:

Theorem 1. If X is a Banach space such that there exist k € N and 0 < & < min(sg(X), 1)
such that 81§( (e) > 0, then X has normal structure.

Theorem 2. If X is a Banach space with strongly bimonotone basis and there exist k € N and
0 < & < min(sg(X), 2) such that 51)‘( (e) > 0, then X has the weak fixed point property.

We will see how the above is related to the EIS property, but first we introduce a lemma:

Lemma 3. Let X be a Banach space and g, h € Bx. Then

g h
= — | > |lg = hll = | lgll = Il
gl Izl

Proof. Since ||g| < 1, we have that

AU
— =/l = llg
gl ~ Tl

Lo ||g||—H
el ~ T ” H ]

lgll
= llg = hll = lIn| '1 T llg =l = Al = 1llgll. O

Proposition 1. Let X be a Banach space. Then
@)) If§ has (¢ —y), k — EIS for some 0 < y < ¢, then 37)‘(*(5) > 0.
(2) If 6%.(¢) > O, then X has &, k — EIS.

Proof. We will only prove 1. The proof of 2 is similar but easier. Suppose ’87)‘(* (¢) = 0 and
0 <y < &.Then forevery 6 > O there exist f; € Bxx,i =1,...,k+ 1, mini«; || f; — fill > ¢

such that 1 — ‘ % < min (ﬁ, k%) Since X is reflexive, there exists x € Sx such
that
f1+"'+fk+l S+t fit 4 s
>max|{1— ——,1——].
k+1 k+1 k+1 k+1

Hence f;(x) > max(1 — 6,1 —y)and 1l —y < ||fill < 1fori =1,...,k+ 1. By Lemma 3, if

But ||f”()c) > fi(x) > 1 —§ and thus x € S(% e ”;k T )andXdoes not have
e —y,kEISforany y > 0. O

‘ze—y.
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Corollary 4. Let X be a Banach space. Then

(1) If X has e,k — EIS for ¢ < min(sx(X), 1), then X has normal structure.
(2) If X has a strongly bimonotone basis, and X has ¢, k — EIS for ¢ < min(sg(X), 2), then X
has the weak fpp.

2. Permanence results

First we will see in what case we can assure that a space isomorphic to a space with the EIS
property inherits this property.

Theorem 3. Let X be an ¢,t — EIS space with ¢ < 2. Let § > 0 be as in the definition of
e, t — EIS. If ||| - || is a norm in X such that for x € X

lxll < llxlIf < (L + p)lxll

where p < ]%, 5¢(X*) > (1 4+ p), and n € N is such that

+ 1
s (X%) =1+ p) > pr—.
thenY = (X, ||| - ) is (1 + p)(e + £),n(t + 1) — EIS.
Proof. Let 8’ = (14 p)8 — p, &' = (14+p)(e+ L) andlet f1,..., fuu+1)+1 € Sy+ be such that

fi — filll > ¢ fori # j,i,je{l,...,t+ 1}. Then, since for f € ¥'*

A== X+ p)ILFIL

and since ||| fi||| = 1, we have that there exists/ € {0, 1,...,n— 1} and A with#A > ¢t + 1 such
that fori € A,

t<1+2 <l 1+0+02 <145,

Then, if fori € A we write g; = H(IJC#)B’ we get ||g;|| <1 and
H LAl ||ff I ‘ - H lgi ||gJ|| ‘
> llgi —gjll = lgill — llg;lll
L
> ol — ———
> |llgi — &jlll T 0+ D2
I
> P
“14p n
Suppose that x € S(fi,a’) in Y. Then ||x|| < ||lx|l| <1 and
8/
/i (x )_ =1-3.
Il fill I+p

Hence, if x € ﬂm“)“ S(fi,8)inY, then x € (\;cx S (”f T ) in X and this proves our
assertion. [J

We will see what the last theorem means for Hilbert spaces. First we need the following result.
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Lemma 4. A Hilbert space H is €, k — EIS for any ¢ in (0, V2) and k € N, with

ke?
§<l— 1 - —-—.
2(k+1)
Proof. The proof of this fact follows from the next equality: Let fi, ..., fr+1 € H* = H, then
k+1 k+1 k+1
L+ + firal® + ZZM FilP =G+ AP @.1)
i=1

jll

So suppose that || fi|| = 1fori =1,...,k+1,that 0 < ¢ < /2 and Il fi — fill = ¢ and that
xe€S(fi,---, fr+1,96) forsome § > 0. Then f;(x) > 1 —4fori =1,...,k+ 1 and thus

I+ + fiprl = (fi 4+ fiaD @) = K+ D(1—3).
By (2.1) this implies that
82
k+ 12> k+ 121 -8)%+ Sk +1)

and hence

2
(k+1)82—28(k+1)+%k50.

Thus,if 0 < § < 1 — /1 — X5 we have that S(fi..... fit1.8) =#. O

A consequence of Theorem 3 is the following.

Corollary 5. Let H be a Hilbert space and X = (H, || - ) with || - ll2 < || - || < @l - |2 where
¢ < /2 and such that s(X*) > /2. Then X has EIS for some ¢ < V2.

Proof.Leta:land0<5<1-,/1-%:1— /1— 53t Then

—L _ Then ¢e¢ < —1— < /2. Hence, ifn € N
S N
satisfies &’ = ¢ (s + 5) < /2, by Theorem 3, X is ¢’, k — EIS.

On the other hand, we will see later (Lemma 8) that X = H 5, H does not have ¢, k — EIS
foranye < v2andk e N. O

Let k € N be big enough so that ¢ <

Corollary 6. Let Xg = (I2, ||| - I|) where |||lx]|| = max(||x|l2, Bllxlloc)- If 1 < B < V2, then Xp
has EIS and by Corollary 4 since it has a strongly bimonotone basis, it has the wfpp.

Proof. Let f = {b} in X} and let x = {a}, € Xp with [|x|[| = 1. Then

ool () (B) <0 (£4) ()
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On the other hand, if S L] — < % forn € Nand x = {c,}, is given by
(X1 87)

vl —|

by

(59)

1
clearly ||[x||| = 1 and f(x) = ( 2,032 Thus ||| £l = (X052 ) biz
+m)
— 2
Now let k € N be such that < Band fiym = m Z _nGitn-n)
canonical basis of X;;. Then clearly [l filll =1 and, if m # n,

W fiem — fesnlll = V2.
Thus s(Xg) > V2. By the previous corollary the result follows. O

Cn = s

e’ where {e}; is the

X 5 is also EIS for some ¢, t and §, but the proof is very technical and we do not present it
here.

Next we will give some results about the behavior of the sum of spaces with the EIS property.

We remember first the definition of Ramsey’s number.

Definition 5. Let m,! € N. Ramsey’s number R(m,[) is the least number of vertices that are
needed in order that a complete graph which is colored with two colors A and V, contains either
a cycle of color A of length m or a cycle of color V of length /.

Further, we present the following lemma which is part of Proposition 1 in [4]. We give the
proof for the sake of completeness.

Lemma 5. Let X and Y be Banach spaces and Z = X @Y. If [ € Sx«, f = g + h with

geEX heY* zeS(f.8%),2=x+ywithxe X,y €Y and|g| > é, thenxeS(llg”,S).

Proof. If z € S(f, 5%) then
1-8>< fm)=gx)+h(y) < gx)+1—|gl.
Hence

2
@ >1 —8— >1-46. O
gl gl

Similarly one gets:

Lemma 6. Let X and Y be Banach spaces and Z = X@p Y where 1 < p < oo. If
f e Sy, f = g+hwithg € X*heY'zeS(f8>),z=x+ywithx € X,yeY
and [lglllxll = 8, then 7 € S(Hg”,a).

The following theorem gives conditions under which the [, sum of two EIS spaces also enjoys
this property.

Theorem 4. Let X and Y be two Banach spaces and Z = X @Y. Let 0 < rg < ¢
and suppose that X and Y are =57, 1y and *5, 1y — EIS spaces respectively with 5 <
min(s; (X*), s, (Y™)). If ¢ < 5;(Z*), wheret+1 = NR(t; +1, 12+ 1) and N is the least integer
such that N%" > 1, then Z is an e,t — EIS Banach space.
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Proof. Let 61,82 > 0 be such thatif g1,..., g,+1 € Sx+ satisfy ||lg; — g/l > for every
i #j,i,j=1,...,01+ 1, then S(g1,...,84+1,01) = ¢ andif hy, ..., A4 € Syx satisfy
i —hjll = 8_2”) foreveryi # j,i,j=1,...,00+ 1, then S(hy, ..., hypy41,82) = ¢.

Let § = min (81, 82, %, 8_2"’) and let N be the least integer such that N% > 1 and
t+1=NR(t; +1,6p+1).

Suppose that f1,..., frr1 € Sz+ are such that || f; — fjl| > €. Then f; = g; + h; with
gi € X*,hj e Y*and 1 = |\ g;|| + ||h;|l. Assume that z € S(fi, ..., fix1,82), 2 =x+y,x €
X,yeY.Let F={1,....t+1}. Then F = | |}_, I; where

E—r)
2

n={ier:G-nF <imi=i3}.
Thus there exists [; with #I; > R(t; + 1, » + 1). Hence for every i, j € I; with i # j either
Ilfi— f,ll

(@) llgi — gjll = or
() llh; — hjll = 15 f'”.
Let I; = {i1, ..., i} and consider the complete graph of m vertices. We color the edge (i, j)

with color A if (a) occurs and with color V if (b) but not (a) occurs. Then by Ramsey’s theorem
there is either a cycle of length #; + 1 with color A or a cycle of length 7, 4+ 1 of color V.

Case 1. There is J; = {ji, ..., jut1} C I such that lg; — ¢;ll = Y=Ll fori £ j, i, j € Jy.
Ifl # N, then | gi|| > rO fori € J; and thus, by Lemma 5, x € ﬂle]l ”g T 8) Also, since
Mgill = ligjlll = Al — 7]l < %0,
by ” II?II ’ > llfi;f_/ I _ 2 > § — 2 and this contradicts the fact that X is
€70 1y — EIS.

If I = N, we have 2 + min(lgil, lg;I) > llgi — gl > Ll

. &—
min(llg; I, llg; ) > =5
as above.

> 5. Hence

. Therefore x € S ( 8) and the rest follows in the same manner

lgill?

Case 2. Thereis J» = {my, ..., my41} C I such that [l — || = Yol fori 2 j i je p
This is done the same as case 1. [

Observe that if X and Y are infinite dimensional spaces then s (X*) > 1, and s¢(Y*) > 1 for
every k € N. Thusife < 1 and X and Y are ¢ —rp, #1 and € — rg, to — EIS spaces, then X @oo Y
has EIS.

Hence we get the following result.

Corollary 7. If fori = 1, ..., m the Banach space X; is €, ki — EIS for every 0 < & < s(X})
and Z =Y 7" | @ Xi, then for every 0 < & < s(Z*) there exists t such that Z is ¢,t — EIS.

In particular we have the above result if X; is uniformly smooth for every i.
Unfortunately it is not true that if X and Y are EIS, Y o @D, X is EIS as the following
lemma and its corollary show.
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Lemma 7. Let X be a Banach space, 2 > ¢ > 0 and let

K(X.e)— Mintke€N:35 =05 VY C Sxe, with || fi — fill = e fori # j
U implies ﬂ';‘:ll S(fi, 8) =0}

Then, if {X;}72, is a sequence of Banach spaces,
k(X1 ®Poo X2Poo -+ Boo Xns €) njoooo'
Proof. Let x; € Sy, and f; € SX;s such that fj(x;) =1,i =1,2,...and let

n=X1+x2+ + X € X1 Poo X2Bo " DPoo X.

Then ||z;|| = landifh; =0+ -+ fi +0+---+0 € X] @1 X5 ®1--- @1 X fori =1,...,n
we have that ||h;|| =1, |h; — hjll =2, hi(zy) = 1. Thus z,, € 0?21 S(hi,8) forany 1 > § > 0
and k(X1 Poo X2 Boo -+ Poo Xn,6) =n—1forevery0 <e <2. O

Corollary 8. If {X,}; is a sequence of Banach spaces Z = ()_; Xi)c, is not EIS.
Proof. Clearly s(Z*) = 2 and forevery 2 > ¢ > 0,
k(Z,&) = k(X1 @00 X2 @oo -+ Boo Xp»8). O

Similarly to Theorem 4, using Lemma 6 in place of Lemma 5, one can prove the following:

Theorem 5. Let X and Y be two Banach spaces, suppose that 1 < p < oo and that q is
the conjugate exponent of p. Let Z = X @p Yand 0 < rg < 2(%)4. Assume that X and Y are

1 1 1
z— (%")?, ty and 5 — (%")?, t — EIS spaces respectively with 5 — (%")? < min(s;, (X*), s, (Y™)).
If ¢ < 50(Z%), wheret +1 = 2(N + D)R(t1 + 1,12 + 1) and N is the least integer such that
(N + 1)’7" > 1, then Z is an ¢,t — EIS Banach space.

For the /1 sum we get the following.

Lemma 8. Suppose that X is any Banach space and that Y is an infinite dimensional Banach
space. Then Z = X 0, Y is not ¢, k — EIS for any ¢ < s(Z*), k € N.

Proof. Let ¢ < s(Z*) and suppose that {hi}fi] C Sz is such that ||h; — hj|| > e fori # j.If
hi = fi + gi with fi € X* and g; € Y™ then by passing to a subsequence we may assume that
either

(1) fi # fj foreveryi # j, g; = g; forevery i and thus || f; — f;ll > & foreveryi # j.

(2) gi # gjforeveryi # j, fi = fj foreveryi and thus ||g; — g;|| > ¢ forevery i # j.

(3) fi # fj and g; # g; for every i # j. In this case, by Ramsey’s theorem, there exists an
infinite set / C N such that either ||g; — g;ll > € or || fi — fjll > ¢ forevery i, j € I with
i#j.

In the first case we have that || f;|| > £ for all i except possibly one, because || f; || < % and
Ilfill < % implies || fi — fjll < . Thus we may assume 1 > | fi|| > % for every i. Hence, if
n € N, there exists 0 < k < n — 1 such that
2-2¢) 2—-2¢)

2n

#{ieN:%—i—k §||f,-||§§+(k+l) }:#Ak:oo.
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Then fori, j € Ay, i # j, by Lemma 3

fi fi 2—¢ 2—¢
= — = >l fi - fl - > ¢ - :
[ v n n
In the second case similarly we obtain
gi gi 2—¢ 2—¢
== 2l > g — gl - >e—
gl lgjll n n

In the third case we proceed similarly as in cases one and two. Then, since max(s(X*), s(Y*)) <
s(Z*), as a conclusion we have that

max(s(X™), s(Y*)) = s(Z%).

Letk > 1€ Nand0 < ¢ < s(Z*). Suppose that s (X*) = s(Z*).Let{fi}fill C Sx+ be such that
| fi— fjll = efori # jandi, j =1,2,...,k+1.Letyo € Sy and g € Sy« such that g(yp) = 1.
Leth! € Z* = X* @, Y* be givenby hf(x +y) = fi(x) +g(y) fori =1,...,k + 1. Then,
:=0+yo€Z |zl =1,hf@x) =1, [|hf| =1andifi # j

Iy =Rl =11fi — fill > e.
Also z € S(hT, h;, el hZH, 8) for any 0 < § < 1 and this proves our claim. [

Remark 1. However, if X and Y are EIS, Z = X @, Y may be ¢ — EIS for some ¢ > s(Z*) as
the following example shows:

Let Hy and H; be two Hilbert spaces, then Z = H; @1 Hj is e, 2—EIS for every V3 <e<2.

First we see thatif 71 = el + 2, hy = el — 2, h3 = —el + €3, where e} € Sy, k = 1,2,

then
i —hjll =2

fori # j,i,j=1,2,3;s0s5(Z%) > 3.

Now letv/3 < & < 2and fi, fa, f3 € By and suppose that || fj — f2|| > &. It cannot happen
that simultaneously || f3 — fill > ¢, and || f3 — f2|| > &, because in this case by (2.1) we would
have

3 3

3 ‘l <
Ifi+ fat SR =3 AP =5 DD i = fiIP <93¢ <.
i=1

i=1 j=1
Also,ife = /4 —¢pwithl < ¢ < 2,if f1, fr € By and || f1 — f21l = &, by the parallelogram
law we get:
Ifi+AIP+4=¢ <Ilfi + £IP+ 1A — £1P=20A17 + 1 £17) <4
and thus

Ifi + f21 < ¢. (2.2)

Now let {hi}?zl € Szx, hi = f; + g; be an arbitrary sequence such that ||z; —h || > €. By the
above, we may assume that || fi — f2ll = &, | fi — f3]| = e and [ g2—g3ll > . Lets < 1(2— /)
and suppose that there exists z € S(h1, ha, h3, §). Then, since h;(z) > 1 — 6 fori = 1,2, 3, we
get that

At + k2 + h3ll = 3(1 = 9).
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On the other hand, by (2.2), || fi + f2ll < /@ and ||g2 + g3]| < /¢. Thus

Ihy + ha + hall = max(l f1 + f2 + f3ll. lg1 + g2 + g3l) < 1+ /o
and this is a contradiction. Thus S(hy, h2, h3, §) = 0.

Acknowledgment
Partially funded by Conacyt Grant 42519.
References

[1] H. Fetter, B. Gamboa de Buen, (r, k,/)—Somewhat uniformly noncreasy Banach spaces, in: Proc. of the
International Conference on Fixed Point Theory and Applications, Valencia 2003, Yokohama Publishers, 2004,
pp. 71-80.

[2] J. Garcia Falset, E. Llorens Fuster, E. Mazcufidan Navarro, The fixed point property and normal structure for some
B-convex Banach spaces, Bull. Austral. Math. Soc. 63 (2001) 75-81.

[3] J. Garcia Falset, E. Llorens Fuster, E. Mazcuiidn Navarro, Banach spaces which are r-uniformly noncreasy, Nonlinear
Anal. 53 (2003) 957-975.

[4] S. Prus, Banach spaces which are uniformly noncreasy, Nonlinear Anal. 30 (1997) 2317-2324.



	A generalization of uniform smoothness
	The EIS-property
	Permanence results
	Acknowledgment
	References


