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Abstract

We give a generalization of uniform smoothness, study its properties and give some examples.
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1. The EIS-property

We recall that an equivalent definition for uniform smoothness in a Banach space is given as
follows:

Definition 1. A Banach space X is uniformly smooth if and only if for every ε > 0 there exists
δ > 0 such that if f, g ∈ SX∗ with ‖ f − g‖ ≥ ε, then S( f, g, δ) = ∅.

It is well known that a uniformly smooth Banach space is superreflexive and has normal
structure. Here we will give a generalization of this concept, which we will call the empty slice
property, and study some of its consequences.

For this we need to give some prior definitions.

Definition 2. Let X be a Banach space.
We define

sk(X) = sup{r : ∃x1, x2, . . . , xk+1 ∈ SX with ‖xi − x j‖ ≥ r for i 	= j}.
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Observe that if k = 1, then sk(X) = 2 and if dim X = ∞, then sk(X) ≥ 1 for every k ∈ N.

s(X) = sup{r : ∃{xn}n ⊂ SX with ‖xi − x j‖ ≥ r for i 	= j}.

Definition 3. Let X be a Banach space. Given t ∈ N and 0 < ε < st (X∗), we say that X has
the “ε, t− empty intersection of slices” property (ε, t − EIS) if there exists 0 < δ so that if
g1, . . . , gt+1 ∈ SX∗ are such that ‖gi − g j‖ ≥ ε for every i 	= j, i, j = 1, . . . , t + 1, then
S(g1, . . . , gt+1, δ) = φ. We will say that X has EIS, if X has ε, t − EIS for some ε and t .

Thus X is uniformly smooth if and only if it is ε, 1 − EIS for every ε ≤ 2.

Definition 4. A Banach space X with dim X = ∞ has the “dual ε, t− empty intersection
of slices” property (ε, t −∗ EIS) if there exist t ∈ N, 0 < ε < st (X), and 0 < δ so that if
x1, . . . , xt+1 ∈ SX are such that ‖xi − x j‖ ≥ ε for every i 	= j, i, j = 1, . . . , t + 1, then

{ f ∈ BX∗ : f (xi ) > 1 − δ, i = 1, . . . , t + 1} = ∅.

We will say that X has ∗EIS, if X has ε, t −∗ EIS for some ε and t .

In [1] the authors proved that an (r, k, l) somewhat uniformly noncreasy Banach space is
superreflexive. It is easy to see that if X has property EIS and st (X∗) > ε > 0 where ε, δ and t
are as in the definition, then X is (s(X∗), 1, t) − SUNC. Thus we have the following corollary.

Corollary 1. If X has property EIS then it is superreflexive.

Lemma 1. If X has ∗EIS, then it is reflexive.

Proof. Let st (X) > ε > 0 and t ∈ N, δ > 0 such that if x1, . . . , xt+1 ∈ SX and ‖xi − x j‖ ≥ ε

for every i 	= j, i, j = 1, . . . , t + 1, then

{ f ∈ BX∗ : f (xi ) > 1 − δ, i = 1, . . . , t + 1} = ∅.

Further suppose that δ < 1 − ε.
If X is not reflexive, by James’ theorem there exists {xn}n ⊂ SX and { fn}n ⊂ SX∗ such that

fn(xk) = 1 − δ if n ≤ k and fn(xk) = 0 if n > k. Hence, since

f1(x1) = · · · = f1(xt+1) = 1 − δ,

there are i, j ∈ {1, . . . , t + 1} with i 	= j and ‖xi − x j‖ < ε. Suppose that i < j . Then
f j (x j ) = 1 − δ and f j (xi) = 0. Consequently

1 − δ = f j (x j ) = f j (x j − xi ) ≤ ‖xi − x j‖ < ε

which is a contradiction. �

Corollary 2. If X has ε, t − EIS, then X∗ has ε, t −∗ EIS. Also, if X has ε, t −∗ EIS, then X∗
has ε, t − EIS.

Corollary 3. If X has ∗EIS then it is superreflexive.

Similarly to Garcı́a Falset et al. [3] the following can be shown:

Lemma 2. If X has either EIS or ∗EIS and Y is finitely representable in X, then Y has EIS,
respectively ∗EIS.
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In their other work [2], Garcı́a Falset et al. defined the following function

δ̃k
X : [0, sk(X)) → [0, 1]

by

δ̃k
X (ε) = inf

{
1 −

∥∥∥∥ x1 + · · · + xk+1

k + 1

∥∥∥∥ : xi ∈ BX , i = 1, . . . , k + 1, min
i 	= j

‖xi − x j‖ ≥ ε

}
.

They proved the following theorems:

Theorem 1. If X is a Banach space such that there exist k ∈ N and 0 < ε < min(sk(X), 1)

such that δ̃k
X (ε) > 0, then X has normal structure.

Theorem 2. If X is a Banach space with strongly bimonotone basis and there exist k ∈ N and
0 < ε < min(sk(X), 2) such that δ̃k

X (ε) > 0, then X has the weak fixed point property.

We will see how the above is related to the EIS property, but first we introduce a lemma:

Lemma 3. Let X be a Banach space and g, h ∈ BX . Then∥∥∥∥ g

‖g‖ − h

‖h‖
∥∥∥∥ ≥ ‖g − h‖ − | ‖g‖ − ‖h‖|.

Proof. Since ‖g‖ ≤ 1, we have that∥∥∥∥ g

‖g‖ − h

‖h‖
∥∥∥∥ ≥ ‖g‖

∥∥∥∥ g

‖g‖ − h

‖h‖
∥∥∥∥ =

∥∥∥∥g − ‖g‖ h

‖h‖
∥∥∥∥

≥ ‖g − h‖ − ‖h‖
∣∣∣∣1 − ‖g‖

‖h‖
∣∣∣∣ = ‖g − h‖ − |‖h‖ − ‖g‖|. �

Proposition 1. Let X be a Banach space. Then

(1) If X has (ε − γ ), k − EIS for some 0 < γ < ε, then δ̃k
X∗(ε) > 0.

(2) If δ̃k
X∗(ε) > 0, then X has ε, k − EIS.

Proof. We will only prove 1. The proof of 2 is similar but easier. Suppose δ̃k
X∗(ε) = 0 and

0 < γ < ε. Then for every δ > 0 there exist fi ∈ BX∗, i = 1, . . . , k + 1, mini 	= j ‖ fi − f j ‖ ≥ ε

such that 1 −
∥∥∥ f1+···+ fk+1

k+1

∥∥∥ < min
(

γ
k+1 , δ

k+1

)
. Since X is reflexive, there exists x ∈ SX such

that

f1 + · · · + fk+1

k + 1
(x) =

∥∥∥∥ f1 + · · · + fk+1

k + 1

∥∥∥∥ > max

(
1 − γ

k + 1
, 1 − δ

k + 1

)
.

Hence fi (x) > max(1 − δ, 1 − γ ) and 1 − γ < ‖ fi‖ ≤ 1 for i = 1, . . . , k + 1. By Lemma 3, if
i 	= j ∥∥∥∥ fi

‖ fi‖ − f j

‖ f j ‖
∥∥∥∥ ≥ ε − γ.

But fi‖ fi‖ (x) > fi (x) > 1 − δ and thus x ∈ S
(

f1‖ f1‖ , . . . ,
fk+1

‖ fk+1‖ , δ
)

and X does not have

ε − γ, kEIS for any γ > 0. �
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Corollary 4. Let X be a Banach space. Then

(1) If X has ε, k − EIS for ε < min(sk(X), 1), then X has normal structure.
(2) If X has a strongly bimonotone basis, and X has ε, k − EIS for ε < min(sk(X), 2), then X

has the weak fpp.

2. Permanence results

First we will see in what case we can assure that a space isomorphic to a space with the EIS
property inherits this property.

Theorem 3. Let X be an ε, t − EIS space with ε < 2. Let δ > 0 be as in the definition of
ε, t − EIS. If |‖ · ‖| is a norm in X such that for x ∈ X

‖x‖ ≤ |‖x‖| ≤ (1 + ρ)‖x‖
where ρ < δ

1+δ
, st (X∗) > ε(1 + ρ), and n ∈ N is such that

st (X∗) − ε(1 + ρ) > ρ
ρ + 1

n
,

then Y = (X, |‖ · ‖|) is (1 + ρ)(ε + ρ
n ), n(t + 1) − EIS.

Proof. Let δ′ = (1 + ρ)δ − ρ, ε′ = (1 + ρ)(ε + ρ
n ) and let f1, . . . , fn(t+1)+1 ∈ SY ∗ be such that

|‖ fi − f j‖| ≥ ε′ for i 	= j , i, j ∈ {1, . . . , t + 1}. Then, since for f ∈ Y ∗

|‖ f ‖| ≤ ‖ f ‖ ≤ (1 + ρ)|‖ f ‖|,
and since |‖ fi‖| = 1, we have that there exists l ∈ {0, 1, . . . , n − 1} and A with #A ≥ t + 1 such
that for i ∈ A,

1 ≤ 1 + l
ρ

n
≤ ‖ fi‖ ≤ 1 + (l + 1)

ρ

n
≤ 1 + ρ.

Then, if for i ∈ A we write gi = fi
1+(l+1)

ρ
n

, we get ‖gi‖ ≤ 1 and∥∥∥∥ fi

‖ fi ‖ − f j

‖ f j ‖
∥∥∥∥ =

∥∥∥∥ gi

‖gi‖ − g j

‖g j‖
∥∥∥∥

≥ ‖gi − g j‖ − |‖gi‖ − ‖g j‖|
≥ |‖gi − g j‖| −

ρ
n

1 + (l + 1)
ρ
n

≥ ε′

1 + ρ
− ρ

n
= ε.

Suppose that x ∈ S( fi , δ
′) in Y . Then ‖x‖ ≤ |‖x‖| ≤ 1 and

fi

‖ fi‖ (x) ≥ 1 − δ′

1 + ρ
= 1 − δ.

Hence, if x ∈ ⋂n(t+1)+1
i=1 S( fi , δ

′) in Y , then x ∈ ⋂
i∈A S

(
fi

‖ fi ‖ , δ
)

in X and this proves our

assertion. �

We will see what the last theorem means for Hilbert spaces. First we need the following result.
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Lemma 4. A Hilbert space H is ε, k − EIS for any ε in (0,
√

2) and k ∈ N, with

δ < 1 −
√

1 − kε2

2(k + 1)
.

Proof. The proof of this fact follows from the next equality: Let f1, . . . , fk+1 ∈ H ∗ = H , then

‖ f1 + · · · + fk+1‖2 + 1

2

k+1∑
j=1

k+1∑
i=1

‖ fi − f j ‖2 = (k + 1)

k+1∑
i=1

‖ fi‖2. (2.1)

So suppose that ‖ fi‖ = 1 for i = 1, . . . , k + 1, that 0 < ε <
√

2 and ‖ fi − f j ‖ ≥ ε and that
x ∈ S( f1, . . . , fk+1, δ) for some δ > 0. Then fi (x) ≥ 1 − δ for i = 1, . . . , k + 1 and thus

‖ f1 + · · · + fk+1‖ ≥ ( f1 + · · · + fk+1)(x) ≥ (k + 1)(1 − δ).

By (2.1) this implies that

(k + 1)2 ≥ (k + 1)2(1 − δ)2 + ε2

2
k(k + 1)

and hence

(k + 1)δ2 − 2δ(k + 1) + ε2

2
k ≤ 0.

Thus, if 0 < δ < 1 −
√

1 − kε2

2(k+1)
, we have that S( f1, . . . , fk+1, δ) = ∅. �

A consequence of Theorem 3 is the following.

Corollary 5. Let H be a Hilbert space and X = (H, ‖ · ‖) with ‖ · ‖2 ≤ ‖ · ‖ ≤ φ‖ · ‖2 where
φ <

√
2 and such that s(X∗) ≥ √

2. Then X has EIS for some ε <
√

2.

Proof. Let ε = 1 and 0 < δ < 1 −
√

1 − kε2

2(k+1)
= 1 −

√
1 − k

2(k+1)
. Then

δ

1 − δ
<

1 −
√

1 − k
2(k+1)√

1 − k
2(k+1)

.

Let k ∈ N be big enough so that φ < 1√
1− k

2(k+1)

. Then φε < 1√
1− k

2(k+1)

<
√

2. Hence, if n ∈ N

satisfies ε′ = φ(ε + ρ
n ) <

√
2, by Theorem 3, X is ε′, k − EIS.

On the other hand, we will see later (Lemma 8) that X = H
⊕

1 H does not have ε, k − EIS
for any ε <

√
2 and k ∈ N. �

Corollary 6. Let Xβ = (l2, |‖ · ‖|) where |‖x‖| = max(‖x‖2, β‖x‖∞). If 1 < β <
√

2, then Xβ

has EIS and by Corollary 4 since it has a strongly bimonotone basis, it has the wfpp.

Proof. Let f = {bn}n in X∗
β and let x = {an}n ∈ Xβ with |‖x‖| = 1. Then∣∣∣∣∣ ∞∑

i=1

ai bi

∣∣∣∣∣ ≤
( ∞∑

i=1

a2
i

) 1
2
( ∞∑

i=1

b2
i

) 1
2

≤ |‖x‖|
( ∞∑

i=1

b2
i

) 1
2

=
( ∞∑

i=1

b2
i

) 1
2

.
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On the other hand, if |bn |(∑∞
i=1 b2

i

) 1
2

≤ 1
β

for n ∈ N and x = {cn}n is given by

cn = bn( ∞∑
i=1

b2
i

) 1
2

,

clearly |‖x‖| = 1 and f (x) = (∑∞
i=1 b2

i

) 1
2 . Thus |‖ f ‖| = (∑∞

i=1 b2
i

) 1
2 .

Now let k ∈ N be such that 1√
k

< β and fk+m = 1√
k+m

∑ (m+1)(2k+m)
2 −1

i= m(2k+m−1)
2

e∗
i where {e∗

i }i is the

canonical basis of X∗
β . Then clearly |‖ fi‖| = 1 and, if m 	= n,

|‖ fk+m − fk+n‖| = √
2.

Thus s(Xβ) ≥ √
2. By the previous corollary the result follows. �

X√
2 is also EIS for some ε, t and δ, but the proof is very technical and we do not present it

here.
Next we will give some results about the behavior of the sum of spaces with the EIS property.
We remember first the definition of Ramsey’s number.

Definition 5. Let m, l ∈ N. Ramsey’s number R(m, l) is the least number of vertices that are
needed in order that a complete graph which is colored with two colors A and V , contains either
a cycle of color A of length m or a cycle of color V of length l.

Further, we present the following lemma which is part of Proposition 1 in [4]. We give the
proof for the sake of completeness.

Lemma 5. Let X and Y be Banach spaces and Z = X
⊕

∞ Y . If f ∈ SX∗ , f = g + h with

g ∈ X∗, h ∈ Y ∗, z ∈ S( f, δ2), z = x + y with x ∈ X, y ∈ Y and ‖g‖ ≥ δ, then x ∈ S
(

g
‖g‖ , δ

)
.

Proof. If z ∈ S( f, δ2) then

1 − δ2 ≤ f (z) = g(x) + h(y) ≤ g(x) + 1 − ‖g‖.
Hence

g(x)

‖g‖ ≥ 1 − δ2

‖g‖ ≥ 1 − δ. �

Similarly one gets:

Lemma 6. Let X and Y be Banach spaces and Z = X
⊕

p Y where 1 < p < ∞. If

f ∈ SX∗, f = g + h with g ∈ X∗, h ∈ Y ∗, z ∈ S( f, δ2), z = x + y with x ∈ X, y ∈ Y

and ‖g‖‖x‖ ≥ δ, then x
‖x‖ ∈ S

(
g

‖g‖ , δ
)

.

The following theorem gives conditions under which the l∞ sum of two EIS spaces also enjoys
this property.

Theorem 4. Let X and Y be two Banach spaces and Z = X
⊕

∞ Y . Let 0 < r0 < ε

and suppose that X and Y are ε−r0
2 , t1 and ε−r0

2 , t2 − EIS spaces respectively with ε−r0
2 <

min(st1(X∗), st2(Y
∗)). If ε < st (Z∗), where t +1 = N R(t1 +1, t2 +1) and N is the least integer

such that N r0
2 ≥ 1, then Z is an ε, t − EIS Banach space.
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Proof. Let δ1, δ2 > 0 be such that if g1, . . . , gt1+1 ∈ SX∗ satisfy ‖gi − g j‖ ≥ ε−r0
2 for every

i 	= j, i, j = 1, . . . , t1 + 1, then S(g1, . . . , gt1+1, δ1) = φ and if h1, . . . , ht2+1 ∈ SY ∗ satisfy
‖hi − h j ‖ ≥ ε−r0

2 for every i 	= j, i, j = 1, . . . , t2 + 1, then S(h1, . . . , ht2+1, δ2) = φ.

Let δ = min
(
δ1, δ2,

r0
2 ,

ε−r0
2

)
and let N be the least integer such that N r0

2 ≥ 1 and
t + 1 = N R(t1 + 1, t2 + 1).

Suppose that f1, . . . , ft+1 ∈ SZ∗ are such that ‖ fi − f j ‖ ≥ ε. Then fi = gi + hi with
gi ∈ X∗, hi ∈ Y ∗ and 1 = ‖gi‖ + ‖hi‖. Assume that z ∈ S( f1, . . . , ft+1, δ

2), z = x + y, x ∈
X, y ∈ Y . Let F = {1, . . . , t + 1}. Then F = ⊔N

j=1 I j where

I j =
{

i ∈ F : ( j − 1)
r0

2
≤ ‖hi‖ ≤ j

r0

2

}
.

Thus there exists Il with #Il ≥ R(t1 + 1, t2 + 1). Hence for every i, j ∈ Il with i 	= j either

(a) ‖gi − g j‖ ≥ ‖ fi − f j ‖
2 or

(b) ‖hi − h j‖ ≥ ‖ fi − f j ‖
2 .

Let Il = {i1, . . . , im} and consider the complete graph of m vertices. We color the edge (i, j)
with color A if (a) occurs and with color V if (b) but not (a) occurs. Then by Ramsey’s theorem
there is either a cycle of length t1 + 1 with color A or a cycle of length t2 + 1 of color V .

Case 1. There is J1 = { j1, . . . , jt1+1} ⊂ Il such that ‖gi − g j‖ ≥ ‖ fi− f j ‖
2 for i 	= j , i, j ∈ J1.

If l 	= N , then ‖gi‖ ≥ r0
2 for i ∈ Jl and thus, by Lemma 5, x ∈ ⋂i∈J1

S
(

gi
‖gi‖ , δ

)
. Also, since

|‖gi‖ − ‖g j‖| = |‖hi‖ − ‖h j ‖| ≤ r0

2
,

by Lemma 3,
∥∥∥ gi‖gi‖ − g j

‖g j ‖
∥∥∥ ≥ ‖ fi − f j ‖

2 − r0
2 ≥ ε

2 − r0
2 and this contradicts the fact that X is

ε−r0
2 , t1 − EIS.

If l = N , we have r0
2 + min(‖gi‖, ‖g j ‖) ≥ ‖gi − g j‖ ≥ ‖ fi − f j ‖

2 ≥ ε
2 . Hence

min(‖gi‖, ‖g j‖) ≥ ε−r0
2 . Therefore x ∈ S

(
gi

‖gi ‖ , δ
)

and the rest follows in the same manner

as above.

Case 2. There is J2 = {m1, . . . , mt2+1} ⊂ Il such that ‖hi − h j ‖ ≥ ‖ fi − f j ‖
2 for i 	= j , i, j ∈ J2.

This is done the same as case 1. �

Observe that if X and Y are infinite dimensional spaces then sk(X∗) ≥ 1, and sk(Y ∗) ≥ 1 for
every k ∈ N. Thus if ε < 1 and X and Y are ε − r0, t1 and ε − r0, t2 − EIS spaces, then X

⊕
∞ Y

has EIS.
Hence we get the following result.

Corollary 7. If for i = 1, . . . , m the Banach space Xi is ε, ki − EIS for every 0 < ε < s(X∗
i )

and Z = ∑m
i=1

⊕
∞ Xi , then for every 0 < ε < s(Z∗) there exists t such that Z is ε, t − EIS.

In particular we have the above result if Xi is uniformly smooth for every i .
Unfortunately it is not true that if X and Y are EIS,

∑∞
i=1

⊕
∞ X is EIS as the following

lemma and its corollary show.
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Lemma 7. Let X be a Banach space, 2 > ε > 0 and let

k(X, ε) = min{k ∈ N : ∃δ > 0 s.t. ∀{ fi }k+1
i=1 ⊂ SX∗, with ‖ fi − f j‖ ≥ ε for i 	= j

implies ∩k+1
i=1 S( fi , δ) = ∅}.

Then, if {Xi }∞i=1 is a sequence of Banach spaces,

k(X1 ⊕∞ X2 ⊕∞ · · · ⊕∞ Xn, ε) →
n→∞ ∞.

Proof. Let xi ∈ SXi and fi ∈ SX∗
i

such that fi (xi ) = 1, i = 1, 2, . . . and let

zn = x1 + x2 + · · · + xn ∈ X1 ⊕∞ X2 ⊕∞ · · · ⊕∞ Xn .

Then ‖zn‖ = 1 and if hi = 0+· · ·+ fi +0+· · ·+0 ∈ X∗
1 ⊕1 X∗

2 ⊕1 · · · ⊕1 X∗
n for i = 1, . . . , n

we have that ‖hi‖ = 1, ‖hi − h j‖ = 2, hi (zn) = 1. Thus zn ∈ ⋂n
i=1 S(hi , δ) for any 1 ≥ δ > 0

and k(X1 ⊕∞ X2 ⊕∞ · · · ⊕∞ Xn, ε) ≥ n − 1 for every 0 < ε < 2. �

Corollary 8. If {Xi }i is a sequence of Banach spaces Z = (
∑

i Xi )c0 is not EIS.

Proof. Clearly s(Z∗) = 2 and for every 2 ≥ ε > 0,

k(Z , ε) ≥ k(X1 ⊕∞ X2 ⊕∞ · · ·⊕∞ Xn, ε). �

Similarly to Theorem 4, using Lemma 6 in place of Lemma 5, one can prove the following:

Theorem 5. Let X and Y be two Banach spaces, suppose that 1 < p < ∞ and that q is
the conjugate exponent of p. Let Z = X

⊕
p Y and 0 < r0 < 2( ε

4 )q . Assume that X and Y are
ε
2 −(

r0
2 )

1
q , t1 and ε

2 −(
r0
2 )

1
q , t2−EIS spaces respectively with ε

2 −(
r0
2 )

1
q < min(st1(X∗), st2(Y

∗)).
If ε < st (Z∗), where t + 1 = 2(N + 1)R(t1 + 1, t2 + 1) and N is the least integer such that
(N + 1) r0

2 ≥ 1, then Z is an ε, t − EIS Banach space.

For the l1 sum we get the following.

Lemma 8. Suppose that X is any Banach space and that Y is an infinite dimensional Banach
space. Then Z = X

⊕
1 Y is not ε, k − EIS for any ε < s(Z∗), k ∈ N.

Proof. Let ε < s(Z∗) and suppose that {hi }∞i=1 ⊂ SZ∗ is such that ‖hi − h j‖ ≥ ε for i 	= j . If
hi = fi + gi with fi ∈ X∗ and gi ∈ Y ∗ then by passing to a subsequence we may assume that
either

(1) fi 	= f j for every i 	= j, gi = g j for every i and thus ‖ fi − f j‖ ≥ ε for every i 	= j .
(2) gi 	= g j for every i 	= j, fi = f j for every i and thus ‖gi − g j‖ ≥ ε for every i 	= j .
(3) fi 	= f j and gi 	= g j for every i 	= j . In this case, by Ramsey’s theorem, there exists an

infinite set I ⊂ N such that either ‖gi − g j‖ ≥ ε or ‖ fi − f j ‖ ≥ ε for every i, j ∈ I with
i 	= j .

In the first case we have that ‖ fi‖ ≥ ε
2 for all i except possibly one, because ‖ fi‖ < ε

2 and
‖ f j ‖ < ε

2 implies ‖ fi − f j ‖ < ε. Thus we may assume 1 ≥ ‖ fi ‖ ≥ ε
2 for every i . Hence, if

n ∈ N, there exists 0 ≤ k ≤ n − 1 such that

#

{
i ∈ N : ε

2
+ k

(2 − ε)

2n
≤ ‖ fi ‖ ≤ ε

2
+ (k + 1)

(2 − ε)

2n

}
= #Ak = ∞.
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Then for i, j ∈ Ak , i 	= j , by Lemma 3∥∥∥∥ fi

‖ fi‖ − f j

‖ f j ‖
∥∥∥∥ ≥ ‖ fi − f j ‖ − 2 − ε

n
≥ ε − 2 − ε

n
.

In the second case similarly we obtain∥∥∥∥ gi

‖gi‖ − g j

‖g j‖
∥∥∥∥ ≥ ‖gi − g j‖ − 2 − ε

n
≥ ε − 2 − ε

n
.

In the third case we proceed similarly as in cases one and two. Then, since max(s(X∗), s(Y ∗)) ≤
s(Z∗), as a conclusion we have that

max(s(X∗), s(Y ∗)) = s(Z∗).
Let k ≥ 1 ∈ N and 0 < ε < s(Z∗). Suppose that s(X∗) = s(Z∗). Let { fi }k+1

i=1 ⊂ SX∗ be such that
‖ fi − f j ‖ ≥ ε for i 	= j and i, j = 1, 2, . . . , k +1. Let y0 ∈ SY and g ∈ SY ∗ such that g(y0) = 1.
Let h∗

i ∈ Z∗ = X∗⊕∞ Y ∗ be given by h∗
i (x + y) = fi (x) + g(y) for i = 1, . . . , k + 1. Then,

z = 0 + y0 ∈ Z , ‖z‖ = 1, h∗
i (z) = 1, ‖h∗

i ‖ = 1 and if i 	= j

‖h∗
i − h∗

j ‖ = ‖ fi − f j‖ ≥ ε.

Also z ∈ S(h∗
1, h∗

2, . . . , h∗
k+1, δ) for any 0 < δ < 1 and this proves our claim. �

Remark 1. However, if X and Y are EIS, Z = X
⊕

1 Y may be ε − EIS for some ε > s(Z∗) as
the following example shows:

Let H1 and H2 be two Hilbert spaces, then Z = H1
⊕

1 H2 is ε, 2−EIS for every
√

3 < ε < 2.
First we see that if h1 = e1

1 + e2
1, h2 = e1

1 − e2
1, h3 = −e1

1 + e2
1, where ek

1 ∈ SHk , k = 1, 2,
then

‖hi − h j‖ = 2

for i 	= j , i, j = 1, 2, 3; so s2(Z∗) ≥ 3.
Now let

√
3 < ε < 2 and f1, f2, f3 ∈ BH∗

1
and suppose that ‖ f1 − f2‖ ≥ ε. It cannot happen

that simultaneously ‖ f3 − f1‖ ≥ ε, and ‖ f3 − f2‖ ≥ ε, because in this case by (2.1) we would
have

‖ f1 + f2 + f3‖2 = 3
3∑

i=1

‖ fi‖2 − 1

2

3∑
i=1

3∑
j=1

‖ fi − f j ‖2 ≤ 9 − 3ε2 < 0.

Also, if ε = √
4 − φ with 1 < φ < 2, if f1, f2 ∈ BH∗

1
and ‖ f1 − f2‖ ≥ ε, by the parallelogram

law we get:

‖ f1 + f2‖2 + 4 − φ ≤ ‖ f1 + f2‖2 + ‖ f1 − f2‖2 = 2(‖ f1‖2 + ‖ f2‖2) ≤ 4

and thus

‖ f1 + f2‖2 ≤ φ. (2.2)

Now let {hi }3
i=1 ∈ SZ∗, hi = fi + gi be an arbitrary sequence such that ‖hi −h j‖ ≥ ε. By the

above, we may assume that ‖ f1 − f2‖ ≥ ε, ‖ f1 − f3‖ ≥ ε and ‖g2−g3‖ ≥ ε. Let δ < 1
3 (2−√

φ)

and suppose that there exists z ∈ S(h1, h2, h3, δ). Then, since hi (z) ≥ 1 − δ for i = 1, 2, 3, we
get that

‖h1 + h2 + h3‖ ≥ 3(1 − δ).
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On the other hand, by (2.2), ‖ f1 + f2‖ ≤ √
φ and ‖g2 + g3‖ ≤ √

φ. Thus

‖h1 + h2 + h3‖ = max(‖ f1 + f2 + f3‖, ‖g1 + g2 + g3‖) ≤ 1 +√
φ

and this is a contradiction. Thus S(h1, h2, h3, δ) = ∅.
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