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There are some conditions under which a compact, convex set is centrally symmetric. The conditions
were established by W. Blaschke and G. Hessenberg [1], G. D. Chakerian and M. S. Klamkin [3], L.
Montejano [7]. In this article we give some new conditions.
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1. Introduction

First we formulate some notions connected with central symmetry of sets in the space Rn.

Definition 1.1. Let M ⊂ R
n be a set and q ∈ R

n be a point. The set M ′ = 2q − M

is said to be centrally symmetric to M with respect to the center q. In other words, M ′

is centrally symmetric to M with respect to the center q if and only if for every point
x ∈ M there is a point x′ ∈ M ′ such that 1

2
(x+ x′) = q and for every point y′ ∈ M ′ there

is a point y ∈ M such that 1

2
(y + y′) = q.

We note that if M ′ is centrally symmetric to M with respect to the center q and M ′′

is centrally symmetric to M with respect to the center r, then M ′′ is obtained from M ′

under the translation with the vector 2(r−q), i.e., the equality M ′′ = 2(r−q)+M ′ holds.

Definition 1.2. A set M ⊂ R
n is centrally symmetric if there exists a point q ∈ R

n such
that M is centrally symmetric to itself with respect to q; the point q is said to be the
center of symmetry for M .

We note that if a compact setM ⊂ R
n is centrally symmetric, then the center of symmetry

for M is determined uniquely.

In [1], [3], [6] some conditions for central symmetry of compact, convex sets are given.
G. D. Chakerian and M. S. Klamkin established [3] the following necessary and suffi-
cient condition under which a compact set M ⊂ R

n (not necessarily convex) is centrally
symmetric:

Theorem 1.3. Let M ⊂ R
n be a compact set. The set M is centrally symmetric if and

only if for every three-point set Q = {a, b, c} contained in M there exists a point q ∈ R
n

such that the set Q′ symmetric to Q with respect to q also is contained in M .
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In particular, Theorem 1.3 holds for compact, convex sets. Another necessary and suffi-
cient condition under which a compact, convex set M ⊂ R

n is centrally symmetric was
established by W. Blaschke and G. Hessenberg [1]:

Theorem 1.4. Let M ⊂ R
n be a compact, convex set. The set M is centrally symmetric

if and only if for every two-dimensional plane L ⊂ R
n the orthogonal projection of M into

L is a centrally symmetric set.

Corollary 1.5. Let M ⊂ R
n be a compact, convex set and k be a fixed integer, 2 ≤ k ≤

n − 1. The set M is centrally symmetric if and only if for every k-dimensional plane

L ⊂ R
n the orthogonal projection of M into L is a centrally symmetric set.

Corollary 1.6. Let M ⊂ R
n be a compact, convex set and ε be a positive number. The set

M is centrally symmetric if and only if its ε-neighborhood Uε(M) is centrally symmetric.

The following necessary and sufficient condition under which a compact, convex set M ⊂
R

n is centrally symmetric was proved by L. Montejano [6]:

Theorem 1.7. Let M ⊂ R
n be a compact, strictly convex body, k be a fixed integer,

1 ≤ k ≤ n− 2, and Γ be a fixed k-dimensional subspace of Rn. The body M is centrally

symmetric if and only if for every (k + 1)-dimensional subspace L ⊃ Γ the orthogonal

projection of M into L is a centrally symmetric set.

In this article we give some new necessary and sufficient conditions under which a compact,
convex set M ⊂ R

n is centrally symmetric.

2. The results

In Section 3 we give a proof of Theorem 1.4. That proof allows us to obtain the follow-
ing generalization of Montejano’s theorem in which instead of the requirement of strict
convexity we use a weaker condition:

Theorem 2.1. Let M ⊂ R
n be a compact, convex body, k be a fixed integer, 1 ≤ k ≤ n−2,

and Γ be a fixed k-dimensional subspace of Rn. Assume that there exists a hyperplane

H such that H is orthogonal to a line contained in Γ and each support hyperplane of M

parallel to H has only one common point with M . The body M is centrally symmetric if

and only if for every (k + 1)-dimensional subspace L ⊃ Γ the orthogonal projection of M

into L is a centrally symmetric set.

Example 2.2. Let M ⊂ R
n be an n-dimensional compact, convex body and I = [a, b] be

an its diameter. If M is not strictly convex, then Theorem 1.7 is not applicable. But from
Theorem 2.1 we deduce (even in the case when M is not strictly convex) that if for every
2-dimensional plane L ⊃ I the orthogonal projection of M into L is a centrally symmetric
set, then M is centrally symmetric. This is a more strong result than Theorem 1.4.

We note that H. Groemer [4] had obtained a result that is similar to our Theorem 2.1.

Theorem 2.3. Let M ⊂ R
n be a compact, convex set. The set M is centrally symmetric

if and only if for every n-dimensional simplex T ⊂ R
n that contains M there exists a

point q ∈ R
n such that the simplex T ′ symmetric to T with respect to q also contains M .
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Definition 2.4. Let T ⊂ R
n be a k-dimensional simplex, 2 ≤ k ≤ n− 1, and N ⊂ R

n be
the orthogonal complement of its affine hull affT . The vector sum B = T ⊕N we name
a k-beam with the base T in R

n.

Theorem 2.5. Let M ⊂ R
n be a compact, convex set. The set M is centrally symmetric

if and only if for every 2-beam B ⊂ R
n that contains M there exists a point q ∈ R

n such

that the 2-beam B′ symmetric to B with respect to q also contains M .

We note that, in a sense, Theorem 2.5 is dual to Theorem 1.3, since instead of three
points we consider three support hyperplanes.

Corollary 2.6. Let M ⊂ R
n be a compact, convex set and k be an integer, 2 ≤ k ≤ n−1.

The set M is centrally symmetric if and only if for every k-beam B ⊂ R
n that contains

M there exists a point q ∈ R
n such that the k-beam B′ symmetric to B with respect to q

also contains M .

Theorem 2.7. Let M ⊂ R
n be a compact, convex body and Γ be a fixed k-dimensional

subspace, 1 ≤ k ≤ n − 2. Assume that there exists a hyperplane H orthogonal to a

line contained in Γ such that each support hyperplane of M parallel to H has only one

common point with M . The body M is centrally symmetric if and only if for every (k+1)-
dimensional subspace L ⊃ Γ and every (k+1)-beam B ⊃ M with a base T ⊂ L there exists

a point q ∈ R
n such that the k-beam B′ symmetric to B with respect to q also contains

M .

Corollary 2.8. Let M ⊂ R
n be a compact, strictly convex body and Γ be a fixed k-

dimensional subspace of Rn, 1 ≤ k ≤ n − 2. The body M is centrally symmetric if and

only if for every (k+1)-dimensional subspace L ⊃ Γ and every (k+1)-beam B with a base

T ⊂ L such that B ⊃ M there exists a point q ∈ R
n such that the k-beam B′ symmetric

to B with respect to q also contains M .

Example 2.9. Let L ⊂ R
n be a two-dimensional subspace and P1, P2, P3 be closed half-

planes of L. The intersection P1∩P2∩P3 (if it is two-dimensional) can be either a triangle
or an unbounded set. It is easily shown that if in the definition of 2-beam we replace the
triangle T by an unbounded set P1 ∩ P2 ∩ P3, then Theorem 2.5 (also Theorem 2.7 and
Corollaries 2.6, 2.8) fails. Indeed, assume that bdP1 ∩ bdP3 is not contained in P2 and
M ⊂ P1 ∩P2 ∩P3. Denoting by b the symmetry axes of P1 ∩P3, we conclude that for any
point q ∈ b ∩ P1 ∩ P2 ∩ P3 far enough from bdP2 the set symmetric to P1 ∩ P2 ∩ P3 with
respect to q contains M , independently on central symmetry of M .

Theorem 1.3 directly implies the following two theorems.

Theorem 2.10. Let M ⊂ R
n be a compact set and k be a fixed integer, 2 ≤ k ≤ n − 2.

The set M is centrally symmetric if and only if there exists a point x ∈ R
n such that

for every (k + 1)-dimensional plane L ⊂ R
n passing through x the intersection L ∩M is

centrally symmetric.

Theorem 2.11. Let M ⊂ R
n be a compact set, k be a fixed integer with 1 ≤ k ≤ n− 4,

and Γ ⊂ R
n be a fixed k-dimensional subspace. The set M is centrally symmetric if and

only if there exists a point x ∈ R
n such that for every (k + 3)-dimensional plane L ⊂ R

n

containing x+ Γ the intersection L ∩M is centrally symmetric.
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We note that for the case of convex sets Theorems 2.10 and 2.11 follow immediately from
the classical Roger’s theorem and its proof [8]; moreover, Theorems 2.10 and 2.11 are
related with the classical false center theorem (see [2]).

3. Proofs

Theorems 1.3, 1.4 and 1.7 are known. But for completeness of the article we give here
their proofs.

Proof of Theorem 1.3. The part “only if" is evident. We prove the part “if". Thus for
every three-point set Q = {a, b, c} ⊂ M there exists a point q ∈ R

n such that the set Q′

symmetric to Q with respect to q is contained in M .

Let [a, b] be a diameter of M , i.e., ‖ x − y ‖≤‖ a − b ‖ for arbitrary points x, y ∈ M .
Let, furthermore, m be the midpoint of the segment [a, b] and d = ‖ a − b ‖. Choose an
arbitrary point c ∈ M . Then there is a point q ∈ R

n such that the set Q′ symmetric to
Q = {a, b, c} with respect to q is contained in M . If q is distinct from m, then at least
one of the distances ‖ q − a ‖, ‖ q − b ‖ is greater than 1

2
d, say ‖ q − a ‖> 1

2
d. The

point a′ = 2q − a (that is symmetric to a with respect to q) belongs to M . Since q is the
midpoint of the segment [a, a′], we have ‖ a′ − a ‖= 2 ‖ q − a ‖> d, contradicting that
d is the diameter of the set M . This contradiction shows that q coincides with m. Thus
for every point c ∈ M the point c′ = 2m− c belongs to M , i.e., M is centrally symmetric
with respect to the center m.

Proof of Theorem 1.4. The part “only if" is evident. We prove the part “if". It is
sufficient to consider the case when M is a compact, convex body, i.e., M has a nonempty
interior in R

n (in the opposite case it is possible to replace R
n by the affine hull of M).

Thus we assume that M is a compact, convex body and its orthogonal projection into
any two-dimensional plane is a centrally symmetric set.

For every unit vector v ∈ S
n−1 denote by Π(v) the support half-space of M with the

outward normal v, i.e., Π(v) is a closed half-space with the outward normal v such that
Π(v) ⊃ M and bdΠ(v) is a support hyperplane of M . The set of all vectors v ∈ S

n−1

for which the intersection M ∩ bdΠ(v) contains more than one point is a set of the first
category in S

n−1. Hence there exists a unit vector v0 ∈ S
n−1 such that each intersection

M ∩ bdΠ(v0), M ∩ bdΠ(−v0) consists of only one point. Denote by p(v0) and p(−v0) the
corresponding intersection points, i.e. M∩bdΠ(v0) = {p(v0)}, M∩bdΠ(−v0) = {p(−v0)}.
The midpoint of the segment [p(v0), p(−v0)] denote by q.

Let now v1 ∈ S
n−1 be an arbitrary unit vector distinct from ±v0. Denote by N the (n−2)-

dimensional plane bdΠ(v0) ∩ bdΠ(v1) and by L the 2-dimensional subspace that is the
orthogonal complement ofN . Let πL : Rn → L be the orthogonal projection. Then the set
πL(N) consists of only one point and each of the images πL(bdΠ(v0)), πL(bdΠ(v1)) is a line
in L. Consequently each of the sets S0 = πL(Π(v0)∩Π(−v0)) and S1 = πL(Π(v1)∩Π(−v1))
is a strip in the plane L. The intersection S0 ∩ S1 it a circumscribed parallelogram of the
figure πL(M). By the hypothesis, πL(M) is a centrally symmetric figure, and hence the
center of the parallelogram S0 ∩ S1 coincides with the center of symmetry of πL(M).

The intersection πL(M)∩πL(bdΠ(v0)) coincides with the point πL(p(v0)), and analogously
the intersection πL(M) ∩ πL(bdΠ(−v0)) coincides with the point πL(p(−v0)). Moreover,
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r = πL(p(v0)) and r′ = πL(p(−v0)) are the single intersection points of two opposite sides
of the parallelogram S0 ∩ S1 with the boundary of the figure πL(M). Consequently the
midpoint m = πL(q) of the segment [r, r′] coincides with the center of the parallelogram
S0 ∩ S1. This means that the boundary lines of the strip S1 are situated in the equal

distances from the point m. Hence, returning to the space R
n, we conclude that the

hyperplanes bdΠ(v1) and bdΠ(−v1) are situated in the equal distances from the midpoint
q of the segment [p(v0), p(−v0)]. In other words, every two parallel hyperplanes of the body

M are situated in the equal distances from the midpoint q of the segment [p(v0), p(−v0)].
From this we conclude that the body M is centrally symmetric and q is its center of
symmetry.

Indeed, assume that q is not the center of symmetry of the body M , i.e., there is a point
x ∈ M such that the point x′ = 2q − x does not belong to M . Let Γ be a hyperplane
through x′ with Γ∩M = ∅. Denote by v ∈ S

n−1 the unit vector orthogonal to Γ such that
the half-space with the boundary Γ and the outward normal v contains M in its interior.
Let Γ′ be the hyperplane that is parallel to Γ and passes through x. Furthermore, denote
by Γ1 and Γ2 the support hyperplanes of M which are parallel to Γ and have the outward
normals v and −v, respectively. Then the hyperplanes Γ and Γ′ are situated in the same
distance d from q, whereas the distance of Γ1 from q is lesser than d and the distance
of Γ2 from q is greater or equal than d. Thus two parallel hyperplanes Γ1 and Γ2 of M
are situated in different distances from q, contradicting what was proved above. This
contradiction shows that q is the center of symmetry of the body M .

Proof of Corollary 1.5. As in the proof of Theorem 1.4, we have to establish only
the part “if" and we may assume that M is a compact, convex body. Let L ⊂ R

n be an
arbitrary two-dimensional plane and K ⊃ L be a k-dimensional plane. For the orthogonal
projections πK : R

n → K and πL : R
n → L we have πL(M) = πL(πK(M)). By the

hypothesis, the set N = πK(M) is centrally symmetric. Hence the set πL(M) = πL(N) is
centrally symmetric, too. Thus for every two-dimensional plane L the projection πL(M)
is centrally symmetric. Hence, by Theorem 1.4, M is centrally symmetric.

Proof of Corollary 1.6. If M is centrally symmetric, then evidently Uε(M) is centrally
symmetric. We prove the opposite affirmation: if M is not centrally symmetric, then
Uε(M) is not centrally symmetric, too.

First we consider the case when M is a compact, convex body. Let us conserve the
notations v0, q introduced in the proof of Theorem 1.4. If every two parallel hyperplanes
of the body M are situated in equal distances from q, then (by the proof of Theorem
1.4) M is centrally symmetric. Since M is not centrally symmetric, there is a vector
v1 ∈ S

n−1 such that the support hyperplanes of M with outward normals ±v1 are situated
in different distances from q. Now it is clear that for the plane L as in the proof of Theorem
1.4 the projection πL(Uε(M)) is not centrally symmetric. Hence Uε(M) is not centrally
symmetric.

If the affine hull of M is distinct from R
n, then the above reasoning shows that Uε(M) ∩

(affM) is not centrally symmetric. Consequently Uε(M) is not centrally symmetric, too.

Proof of Theorem 1.7. Theorem 1.7 is a particular case of Theorem 2.1 (obtained when
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we replace the existence of the hyperplane H in Theorem 2.1 by the more strong require-
ment thatM is strictly convex). Therefore we can restrict ourselves by a proof of Theorem
2.1.

Proof of Theorem 2.1. First we consider the case k = 1. The part “only if" is evident.
We prove the part “if". Thus M ⊂ R

n is a compact, convex body and Γ ⊂ R
n is a

line. Denote by H the orthogonal complement of the line Γ. By the hypothesis, each
support hyperplane of M parallel to H has only one common point with M and for
every 2-dimensional subspace L ⊃ Γ the orthogonal projection of M into L is a centrally
symmetric set. Denote by v0 the unit vector orthogonal to H. Now, using word by word
the proof of Theorem 1.4, we obtain that M is centrally symmetric.

Assume now that k > 1. By the hypothesis, there exists a hyperplane H orthogonal to
a line l contained in Γ such that each support hyperplane of M parallel to H has only
one common point with M and, moreover, for every (k + 1)-dimensional subspace L ⊃ Γ
the set πL(M) is centrally symmetric. Let P be an arbitrary two-dimensional subspace
containing l. Then either L = P ⊕ Γ is a (k + 1)-dimensional subspace and L ⊃ Γ, or
L = Γ. By the hypothesis, the projection πL(M) is centrally symmetric. Consequently, as
in the proof of Corollary 1.5, we conclude that πP (M) is centrally symmetric, and hence
the above considered case k = 1 shows that M is centrally symmetric.

Proof of Theorem 2.3. For the case when M is a compact, convex body this theorem
follows directly from the following result established by E. Lutwak [5]: Let K and L

be convex bodies in R
n. If every n-dimensional simplex that contains K also contains a

translate of L, then K contains a translate of L.

We note that no simple inductive argument allows to obtain Theorem 5 for a compact
convex set M ⊂ R

n with empty interior if even this theorem holds for smaller dimensions.
Indeed, if T is an n-dimensional simplex, containing M , then the intersection T ∩ affM ,
in general, is not a simplex, and therefore the case of smaller dimension is useless.

Nevertheless, it is possible to prove Theorem 2.3 in general case, using Lutwak’s result.
Let T ⊂ R

n be an n-dimensional simplex, r be the radius of its inscribed ball, and ε < r

be a positive number. We denote by T−

ε
the maximal simplex T ′ satisfying the inclusion

Uε(T
′) ⊂ T . The simplex T−

ε
may be defined by the following way. Let Γ0,Γ1, ...,Γn be

the hyperplanes which contain the facets of the simplex T . For every i = 0, 1, ..., n denote
by Γ′

i
the hyperplane parallel to Γi such that Γ′

i
∩ intT 6= ∅ and the distance between Γ′

i

and Γi is equal to ε. Furthermore, by Π′

i
denote the closed half-space with the boundary

Γ′

i
that does not contain Γi. Then T−

ε
= Π′

0
∩ Π′

1
∩ ... ∩ Π′

n
.

Let now M ⊂ R
n be a compact, convex set as in the statement of Theorem 2.3 and

N = clUε(M), where ε is a positive number. We may suppose that M is distinct from a
point. Let T be an n-dimensional simplex that contains N . Then ε is less than the radius
of the inscribed ball of the simplex T . Since T ⊃ Uε(M), the simplex T−

ε
contains M .

Consequently there exists a point q ∈ R
n such that the simplex T ′ symmetric to T−

ε
with

respect to q contains M . Hence clUε(T
′) ⊃ N . This implies that the simplex symmetric

to T with respect to q contains N . Thus N satisfies the condition of Theorem 2.3. Now
the result of E. Lutwak implies that N is centrally symmetric (since N is a compact,
convex body). Hence, by Corollary 1.6, the set M also is centrally symmetric.
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Proof of Theorem 2.5. Let L ⊂ R
n be a two-dimensional subspace, T ⊂ L be a triangle

and B = T ⊕N be the corresponding 2-beam, where N is the orthogonal complement of
L. Assume that B ⊃ M . By the hypothesis, there is a point q ∈ R

n such that the beam
B′ symmetric to B with respect to q also contains M . Without loss of generality, we may
assume that q ∈ L. Thus B′ = T ′ ⊕N where T ′ ⊂ L is the triangle symmetric to T with
respect to q. The inclusion M ⊂ B′ is equivalent to the inclusion πL(M) ⊂ T ′. Thus
for every triangle T with πL(M) ⊂ T there exists a point q ∈ L such that πL(M) ⊂ T ′.
Theorem 2.3 implies now that the set πL(M) ⊂ L is centrally symmetric. Since that holds
for every two-dimensional subspace L ⊂ R

n, we conclude from Theorem 1.4 that M is
centrally symmetric.

Proof of Corollary 2.6 is quite analogous to the proof of Corollary 1.5.

Proof of Theorem 2.7 is an evident combination of the proofs of Theorems 2.1 and 2.3
(taking into account Corollary 2.6).

Proof of Corollary 2.8. This is a direct consequence of Theorem 2.7, since the condi-
tion (1) follows immediately from strict convexity of M .

Proof of Theorem 2.10. Let Q = {a, b, c} ⊂ M be a three-point set. Consider a k-
dimensional plane L ⊂ R

n that contains the points x, a, b, c. By the hypothesis, L ∩M

is centrally symmetric. Let q be its center of symmetry. Then the set Q′ symmetric to
Q with respect to q is contained in L ∩M , i.e., Q′ ⊂ M . By Theorem 1.3, the set M is
centrally symmetric.

Proof of Theorem 2.11. Let Q = {a, b, c} ⊂ M be a three-point set. Choose a (k+3)-
dimensional subspace K ⊂ R

n containing Γ∪Q. Since K ⊃ Γ, the set K ∩M is centrally
symmetric. Let q be its center of symmetry. Then the set Q′ symmetric to Q with respect
to q is contained in K ∩M , i.e., Q′ ⊂ M . By Theorem 1.3, M is centrally symmetric.

The authors thank the reviewer for kind appreciation of the article and for the important
remarks.
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