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Abstract

This thesis tackles the problem of robot navigation within crowds. We propose a re-
active methodology, i.e., such that the robot has no full knowledge of the environment
and such that its decisions have to be taken in real time. We rely on a well-known geo-
metric approach, the Velocity Obstacle approach.

We suppose that we are given a set of trajectory prediction models for a group of
mobile obstacles (humans, robots, etc.). The robot takes this information from the en-
vironment to go from its initial position to its goal, avoiding collisions. We introduce a
conservative discretization of the VOs, which we call Quadrilateral Velocity Obstacle,
QVO. It consists of a trapezoid that bounds the VO and is computationally easy to model.

We propose two approaches: one Deterministic, and one Probabilistic. The first con-
siders the most probable trajectory for each mobile obstacle. This approach results in an
optimization problem with linear constraints in the velocity space. The second approach
handles a full trajectory distribution, and decides what velocity to take, both to avoid col-
lisions with obstacles, and to reach its goal. Unlike the deterministic model, this approach
contemplates the collision probabilistically.

We present results of the two approaches in simulation, for holonomic and non-holonomic
agents, and we provide exhaustive evaluations of the different parameters involved in
our algorithms.
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Chapter 1

Theoretical background

1.1 Collision avoidance techniques
There are several categories of collision avoidance methods, namely single-step and multi-
step. In the first category, we usually have a global notion of the workspace, i.e., the
dimensions and characteristics of the world and obstacles and their location are known
[1].

Potential Field Methods (PFM) [2] use a physical analogy assuming that the robot is a
charged particle that moves in the workspace under the influence of repulsion/attraction
force fields. These force fields are generated by taking into account two factors: the prox-
imity to the Goal means greater attractive force, and the proximity to an obstacle or border
in the world generates greater repulsive force. The Potential Field is the sum of both forces.
It is generally used in environments without mobile obstacles, although it can be extended
to deal with them by converting the method into a reactive approach (multi-step).

Multi-step methods may or may not need global knowledge of the workspace. They
are characterized by being more local and reactive; that is, they focus on solving the col-
lision avoidance problem constantly (at every step) usually only around the robot [1].
An advantage they have over one-step methods is that they can avoid obstacles discov-
ered in real time because they constantly update their status and relative positions of the
obstacles in their world. This is very important because it supposes a more realistic per-
formance and is able to face situations that single-step models could not solve. Some of
these methods are mentioned below.

Vector Field Histogram (VFH) [3] focuses on estimating a series of candidate motion
directions to subsequently select one of them. Initially, the space around the robot is di-
vided into polar segments to be represented by a histogram. The histogram represents
the probability that there is an obstacle in each segment, weighted by its likely distance.
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The segment chosen from the histogram valley, with density lower than some threshold,
is the one closest to the segment in the direction towards the Goal. The choice of the ap-
propriate velocity can be made by discretizing the selected segment into cells with values
that prioritize the distance to the Goal and the clearance to the obstacles.

Another multi-step method is the Obstacle Restriction Method (ORM) [4], which is
geometrically-based and has been shown to perform an effective movement in dense,
complex and cluttered scenarios. It consists of calculating, if necessary, a sub-Goal that
takes the robot to a region of the space with better possibilities to reach the Goal, avoiding
deadlocks. To reach the Goal, priority is given to reach the sub-Goal by restricting the set
of velocities that do not move the robot to it even if it means moving away from the Goal.

There are also some methods that can complement others, rather than being a method
by itself. Examples of these are Nearness Diagram Navigation (ND) [5] and Dynamic
Window Approach (DWA) [6]. The first is a geometrically-based method and consists of
applying different behaviors according to specific situations. These situations are based
on criteria such as the distance to the obstacles, the Goal and/or secure areas of the space.
Also the current velocity and dynamic constraints of the robot are taken into account. It
has been shown that the ND achieves safe robot navigation in complex scenarios.

Dynamic Window Approach consists of generating a window of attainable velocities ac-
cording to the dynamics of the robot. To choose a suitable velocity, a function is evalu-
ated within the window of attainable velocities. The function must take into account the
proximity to the Goal; this factor leads the robot to its destination. It is also important
to prioritize the selection of velocities that move the robot away from obstacles and that
have a magnitude close to a desired speed.

Velocity Obstacles (VO) [7] is another geometrically-based, multi-step method con-
sisting of generating an obstacle within the velocity space by combining the dimensions of
both the robot and the current obstacle and their velocities. This approach is very practi-
cal because it does not require much computational power for its development. We chose
VOs as a fundamental part of this thesis because it has been proven that, with some mod-
ifications, the method can be applied satisfactorily in multiple-agents environments [8].
Also, it is not necessary to know the workspace, and the method is robust to the addition
of obstacles in real time. This approach and its most important variants are shown in
more detail below [9] [10] [8] [11].
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Figure 1.1: a) Two disc-shaped agentsA andB, with their corresponding radius, positions
and velocities. b) Collision Cone CCA|B of A induced by B, centered in pA. c) Velocity
obstacle V OA|B of A induced by B as an infinite union of circles, the same as CCA|B but
moved by vB from its apex.

1.2 Velocity Obstacles approach (VO)
A velocity obstacle VO [7] is the set of velocities that a moving (controlled) agent could
take and that would result in a collision with another obstacle agent, within some time in
the future, assuming that both the controlled agent and the obstacle agent maintain their
velocity. In other words, if the controlled agent takes a velocity inside the V O and if both
agents maintain their velocity, then they will collide; otherwise, it is guaranteed that no
collision will occur in the future.

A V O is defined as follows: Let A denote a robot and B a moving obstacle lying in
R2, with circular shapes. Their corresponding radius are rA, rB, their current positions are
pA,pB, and the velocity of agent B is vB. The V O of A induced by B is denoted as V OA|B,
and it represents the set of velocities of A that result in a collision between both agents in
some time, assuming that agent B maintains its velocity. If we denote D(p, r) as a disc of
radius r with center p, the V OA|B is given by (see Fig. 1.1):
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V OA|B = {v|∃t > 0 :: t(v − vB) ∈ D(pB − pA, rA + rB)}.

Note that, for one specific t, a collision means:

t(v − vB) ∈ D(pB − pA, rA + rB),

which is equivalent to

‖pB − pA − t(v − vB)‖ ≤ rA + rB,

and to

‖v − (vB +
1

t
(pB − pA))‖ ≤ rA + rB

t
.

Seeing v as a variable in this equation, this means that, for a collision occuring at t, a
necessary and sufficient condition is that v is inside a disc centered at vB + 1

t
(pB − pA)

(which, when t varies, moves along a half-line centered at vB with direction pB − pA),
with radius rA+rB

t
, inversely proportional to t. Hence, as seen in Fig. 1.1, the collision

cone (CC) of the possible relative velocities generating collisions is the union of all these
discs when t varies.

The V O corresponds to the collision cone CC moved by vB, i.e., CCA|B = V OA|B when
vB = 0. The concept of V O is used in this work with some variants. For instance, one of
the keypoints of this thesis is that we consider that the moving obstacles are not moving
with the same velocities all the time.

Finite-time velocity obstacle

A velocity obstacle with finite-time horizon τ , denoted by V Oτ
A|B [12], is defined as the

set of velocities of A that result in a collision between the two agents in a time at most τ ,
if A and B maintain their velocity. This can be expressed as:

V Oτ
A|B = {v|∃t ∈ [0, τ ] :: tv ∈ D(pB − pA, rA + rB)}.

The velocity obstacle V Oτ
A|B can be interpreted geometrically as a truncated cone

whose apex is on the origin of the velocity space of the robot A and delimited by the
tangents to the disc of radius rA + rB centered in pB − pA. The lower bound of the cone
corresponds to the arc of circle of radius (rA + rB)/τ centered in (pB − pA)/τ (see Fig.
1.2.a). This simple geometric interpretation results from the interpretation of the collision
cone seen above, i.e., as the union of discs of radius rA+rB

t
.

A V O bounded between two time instants can be similarly defined as:



CHAPTER 1. THEORETICAL BACKGROUND 5

Figure 1.2: a) Velocity obstacle V Oτ
A|B of A induced by B with time horizon τ . The upper

side tends to infinity and corresponds to the set of large velocities in the direction of B,
causing instantaneous collision. b) Velocity obstacle V Oτ1,τ2

A|B bounded between times τ1

and τ2.

V Oτ1,τ2
A|B = {v|∃t ∈ [τ1, τ2] :: tv ∈ D(pB − pA, rA + rB)}.

The notion of truncated V O will allow to tune the reactivity of the method by neglect-
ing an obstacle for some time if this obstacle is far enough. Thus, the time bounds of the
finite-time velocity obstacle can be adapted according to the predicted motion parameters
of the obstacles such that the robot does not react immediately nor too late [13]. In the
latter case, the robot may not have enough time to avoid the collision.

A few VO variants

The use of VO in multi-agent configurations may generate undesired oscillations in paths,
as shown in Fig. 1.3. These oscillations are generated in this approach because no robot
takes into account that the others also adjust their velocities in each timestep, making ve-
locities that were not valid in the previous step valid again. To address this problem, some
approaches have been designed to reduce these oscillations, such as RVO [9], HRVO [10],
ORCA [8], EVO [11], etc., and they are briefly reviewed below.
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Figure 1.3: Trajectories resulting from 12 robots controlled with the original VO approach.
Taken from [9]

Figure 1.4: Oscillations caused by VO (left). Trajectories done when using RVO (right).
Taken from [9]

RVO and HRVO

In the Reciprocal Velocity Obstacle (RVO), it is assumed that in an environment with multi-
ple agents, all agents act similarly, i.e., they all use the same velocity selection algorithm.
Collision- and oscillation-free navigation is ensured by mutually (reciprocally) sharing
responsibility to avoid a collision, (see Fig. 1.4). The construction of RV OA|B is similar to
V OA|B but with CCA|B moved by vA+vB

2
instead of vB (see Fig. 1.6 center).

When a robot chooses a velocity outside the RV O induced by another robot, both au-
tomatically choose to pass through the same side (left or right) of each other, obtaining
trajectories free of collisions and oscillations. This approach guarantees the above, as long
as there is only one agent influencing another; otherwise, the robots will not necessarily
choose the same side to pass. A new problem arises then: reciprocal dances (see Fig. 1.5
center).

In order to solve the problem of reciprocal dances, the Hybrid Reciprocal Velocity Ob-
stacle (HRVO) approach was designed. HRVO consists in choosing one of the two sides
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Figure 1.5: Trajectories described by five agents arranged in a circle with their Goal on
the opposite side. Many oscillations may occur when applying VO (left), and reciprocal
dances are evident when applying RVO (center). When applying HRVO, there are no
oscillations or reciprocal dances. Taken from [14].

Figure 1.6: Geometric interpretation of V OA|B (left), construction of RV OA|B as a trans-
lation of CCA|B at vA+vB

2
(center) and construction of HRV OA|B (right), whose vertex is

at the point of intersection of the right side of RV OA|B and the left side of V OA|B. Taken
from [10].

(left/right) of the other agent for consensus and apply reciprocity. Otherwise, if the other
side is chosen, then the agent must take full responsibility to avoid collision. The con-
struction of HRV O is similar to V O and RV O, taking as the vertex the point of intersec-
tion between the right (or left) side of RV O with the left side (or right) of V O. Fig. 1.5
center and right shows trajectories with reciprocal dances generated by applying RV O
and trajectories free of oscillations by applying HRV O, respectively.
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ORCA

In some cases, both RVO and HRVO produce velocity transitions that may not be smooth.
Another disadvantage of these methods is that in very crowded environments, the selec-
tion of optimal velocities may be very complex because the space of viable velocities is
greatly restricted. To solve this problem, the Optimal Reciprocal Collision Avoidance ap-
proach [8] was designed to maximize the space of eligible velocities by the use of semi-
planes. It reciprocally ensures that the robots will be collision-free for at least one time
window τ , and it also achieves smooth velocity transitions.

The construction of ORCAτA|B, read as ORCA of robot A induced by obstacle B with
a time horizon τ , is defined as follows. Taking into account the V Oτ

A|B, it is assumed that
there will be a collision if vA−vB ∈ V Oτ

A|B. Let u be the vector from vA−vB to the nearest
point on the edge of the Velocity Obstacle:

u = ( argmin
v∈δV Oτ

A|B

‖ v − (vA − vB) ‖)− (vA − vB).

Now let n be the external normal to the edge of V Oτ
A|B at the point (vA−vB)−u. Then

u is the smallest change necessary to avoid collision between the two objects. To assume
reciprocity, robot A adjusts its velocity at least in u

2
, assuming that B will do the same.

More formally:

ORCAτA|B = {v|(v − (vA + u
2
)) · n ≥ 0}.

Fig. 1.7 shows the geometric representation of ORCAτA|B. By using semi-planes, the
set of possible velocities is restricted for each obstacle. Choosing a velocity outside of
these semi-planes ensures collision-free navigation. ORCA provides sufficient conditions
for the avoidance of obstacles in multiple robot environments using this same strategy.

EVO

A modification of the VO approach has been made to handle collision avoidance and
oscillations by enlarging the collision cone. Extended Velocity Obstacle [11] uses predicted,
communicated, or derived information about the agents’ future intentions. It prevents col-
lisions not only with the current velocity, but also with an interpolation of the future
velocity. That way, the robot anticipates the behavior of the other agent and takes actions
to obtain a smooth, collision-free and blockage-free trajectory [11]. Fig. 1.8 shows the
construction of EV OA|B.
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Figure 1.7: The set ORCAτA|B of reciprocal velocities permitted for A to achieve collision
avoidance with B is a half-plane delimited by the line perpendicular to u at the point
vA + u

2
. Taken from [8].

Figure 1.8: Construction of EV OA|B. vt
B is the predicted, communicated, or derived velocity

to be reached at some point in time by B. vγ is the degree of extension, a variable and
adjustable parameter. Taken from [11].
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Figure 1.9: In blue, four positions corresponding to different times in which a mobile
agent will follow the path c(t). In yellow, five circles representing the edges of the NLVO
at five different moments of time. The NLVO is defined as the infinite sequence of circum-
ferences at each moment of time, represented by velocity obstacles. Taken from [13].

1.3 Non-Linear Velocity Obstacle (NLVO)
Because mobile agents generally follow nonlinear trajectories, i.e., arbitrary curves, the
conventional VO concept is not sufficient to avoid collisions. If the path c(t) that a mov-
ing agent will follow is known in advance, it is possible to model the Nonlinear Velocity
Obstacle, which corresponds to a stretched cone in the velocity space of the robot [15]. If
a velocity outside NLVO is chosen, collision avoidance is ensured at any point in time as
long as the agent follows the trajectory c(t). Fig. 1.9 shows an example of NLVO.

Since it is not practical to computationally generate an NLVO, ELVOs can be used.
Equivalent Linear Velocity Obstacle consists in taking only a discrete set of times ti at which
the agent moves linearly on the path and in estimating the VO to its corresponding piece-
wise constant velocity, while extrapolating its position according to its current velocity
[15].

1.4 Probabilistic Velocity Obstacle
To model the uncertainty that may exist in shape and velocity of mobile obstacles due to
the measurement of these parameters, it has been proposed to use Probabilistic Velocity
Obstacles [16]. PVOs mainly start from the notion of VO, since the principle is similar in
shape and construction.
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To handle the uncertainty in shape, the shape is first simplified and is modeled as a
circumference for both the robot Ai and for the observed agent Aj , in the same way as
for VO. The fundamental difference is that the collision is not deterministic (binary) any-
more, and real values are obtained in some regions of the Probabilistic Collision Cone
PCCi,j , being a function defined in PCCi,j : R2 → [0, 1].

To represent the uncertainty in shape, two regions corresponding to the sum of the
radii of the robot and the obstacle are bounded. The first region is constructed with
inf(ri + rj), where the density of the probability function is considered to be 1, that is,
it is assumed that there will be a collision when choosing a velocity within the V O that it
generates. The second region is bounded between inf(ri + rj) and sup(ri + rj) where the
probability density function is considered to be a linear descent function from inf(ri + rj)
to sup(ri + rj), taking values between (0, 1]. Both boundaries correspond to the minimum
and maximum sum respectively, of the radii ri and rj with a high confidence level in the
measure of at least 90%. See Fig. 1.10.

Uncertainty in the velocity of Aj must be considered too. As the relationship between
CC and V O, the Probabilistic Velocity Obstacle PV O is constructed by moving PCCi,j
according to velocity vj , represented as a probability function Vj : R2 → R+

0 , which maps
the absolute velocities vi to its corresponding probability of colliding with Aj .

PV Oi,j(vi) =
∫
R2 Vj(vj)PCCi,j(vi − vj)d2vj.

This corresponds analogously to the convolution of Vj and PCCi,j , resulting in

PV Oi,j = Vj ∗ PCCi,j .

In the same way, the Composed Probabilistic Velocity Obstacle is defined as the union of
all the PV Oi,j induced by any obstacle Aj . That corresponds to the probability of not
avoiding collisions with such obstacles. Formally it is defined for an agent Aj as the
function

PV Oi = 1−
∏
j 6=i

(1− PV Oi,j).

The use of PVOs must be implemented differently from the deterministic model to
choose the optimal velocity. Unlike the deterministic model that consists of generating
VOs that restrict the space of velocities in a binary form, i.e., inside the VOs one manages
the complete probability of a collision, whereas, outside these, the probability of collision
is zero. PVOs are continuous, which means that there are regions with a greater probabil-
ity of collision than others. A good algorithm for choosing an optimal velocity under this
scheme must first take into account the probability of collision, which should be low or
zero, and the accessibility of this velocity.
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Figure 1.10: Probabilistic Collision Cone. ci, cj correspond to the agents’ positions i, j.
inf(ri + rj) is the minimum sum with a high confidence level (usually 90% or higher) of
both agents’ radii; sup(ri + rj) is the maximum sum of of both agents’ radii with the same
level of confidence.

In [16], a relative utility function is proposed as RUi = Ui ·Di · (1− PV Oi), for which
it is necessary to choose a velocity vi that maximizes it. It is not ensured to be collision
free, except when RUi = 1 and oscillations will depend on Di : R2 → [0, 1]. This function
describes the accessibility of the new velocity, while Ui : R2 → [0, 1] is a utility function to
navigate to the Goal, analogous to ‖ vi − vprefi ‖2 in the deterministic model.

On the other hand, other authors have proposed models that combine the PVOs with
occupation grids in the physical space [17]. This allows to handle obstacles with arbi-
trary shapes and not just represent them as discs. In [17], PVOs are combined with the
Bayesian Occupation Filter BOF. The BOF consists in continuously constructing a grid
that stores, for each obstacle, a discretized estimate of the Probabilistic Distribution Func-
tion (pdf) on its velocity and, in the same way, the probability of occupancy of it. Each cell
is updated independently; then clusters of cells that share coherent positions and veloci-
ties are identified in order to find independent obstacles. See Fig. 1.11.

An advantage of using this type of grid is that the robot makes decisions in a proba-
bilistic context. This allows it to deal with unexpected situations that other models such
as Potential Field Based or other Path Planners cannot handle. To reduce the velocity search
space, the grid is modeled according to the robot’s kinematic and dynamic constraints.

Additionally, there have been other models that do not use the PVOs. Instead, they
apply Probability Density Functions of collision for the selection of velocities, as is the case
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Figure 1.11: Simulated detection of two cars crossing each other. (a) Simulated environ-
ment: the robot equipped with a laser range finder detects a car moving from left to right
and a second car moving from right to left. (b) Dynamic occupancy grid: red is high
probability of occupation, blue is low. The space behind the cars has low probability
of occupation. (c) Clustering: different colours characterise objects and occluded or free
space. Taken from [17].

of [18]. Using pdf’s, one can take into account the uncertainty in volume, position and
velocity of the robot and the obstacle. These can be build by approximating with average
sampling (Monte-Carlo).

1.5 Motivation of the thesis
As a main motivation, it is desired to control a robot (or eventually a set of robots) in
crowded environments, in such a way as to show a behavior free of collisions and os-
cillations. As input information, we are given a series of trajectory probabilistic models
that can be followed by each agent acting as an obstacle (robot or human). Each controlled
robot should be able to measure/sense the position of the others agents, and there will
no communication between them. In a first approach (called deterministic), we will take
the most probable model (trajectory) for each agent and define a Velocity Obstacle Chain,
defined later. In a second approach, all models with their respective probability will be
taken into account to form a weighted sum of collision probability in the velocity space
(probabilistic approach), specifically in the Attainable Cartesian Velocities Region, which
corresponds to the set of dynamically feasible velocities.

The sequel of the document is divided into four main sections. First we dedicate a
chapter to the Deterministic Approach; as mentioned above, the most likely trajectory
model for each agent is used. In the next chapter, we show details about implementation
and results of the Deterministic Modeling. Then, in another chapter we describe the Proba-
bilistic Approach, where we consider a probability distribution of the trajectory for each
agent and choose the safest velocity according to the probability density function of colli-
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sion. A chapter is also dedicated to the implementation and results of this methodology.
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Chapter 2

Deterministic Approach

Our deterministic modeling uses only one predicted trajectory for each agent to define the
velocity obstacle. It is assumed to be the one that the agent (moving obstacle) will follow,
and, in case we handle a distribution over trajectories, it may correspond to the statistical
mode of the distribution, or its mean. Under these assumptions, the whole process is
geometric, and binary, i.e., in this model, safe and conflictive areas in the velocity space
are well-defined. If the robot chooses velocities inside the safe area, a collision-free path
is completely guaranteed. Otherwise, the robot will necessarily have a collision at some
future time instant if it maintains its selected velocity. The aim is to bring the robot to
its Goal while following a collision-free path, prioritizing the last feature (avoid collision)
over the first (reach the goal).

2.1 Quadrilateral based Velocity Obstacle
We recall that V Oτ1,τ2

A|B (see Chapter 1) is a velocity obstacle induced by B on A and re-
duced to a time interval [τ1, τ2]. It is delimited by line segments and arcs of circle. In
order to model it in a simpler and computationally more practical manner, we propose
to approximate it by the trapezoid of minimum area circumscribed to the corresponding
V O. We name this approximation Quadrilateral Velocity Obstacle QV O, see Fig. 2.1.c,
and it is defined as follows. Consider S(p, d) the line segment perpendicular to the line
joining p to the origin, and centered on the same point, with dimension 2d. Then, let us
define τ−1 = τ1‖pB−pA‖

‖pB−pA‖+(rA+rB)
and τ+

2 = τ2‖pB−pA‖
‖pB−pA‖−(rA+rB)

as the times that correspond to the
farthest extreme points of V Oτ1,τ2

A|B , along its axis of symmetry.

In order to explain more clearly the construction of QV O, we focus on the special case
where vB = 0, and τ1 = 1. We define θ as the angle with respect to the direction pB − pA
of the external bi-tangents between the circles D(pB − pA, rA + rB) and D(pB−pA

τ2
, rA+rB

τ2
),

as depicted in Fig. 2.2.
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Figure 2.1: Extension of Fig. 1.2 to show the QVO construction. a) Velocity obstacle V Oτ
A|B

forA induced byB with time horizon τ . The upper side tends to infinity and corresponds
to the set of large velocities in the direction of B, causing instantaneous collision. b)
Velocity obstacle V Oτ1,τ2

A|B bounded between times τ1 and τ2. c) Construction of the QV O
corresponding to V Oτ1,τ2

A|B . Red areas are improperly constrained due to the conservative
choice for the shape of QV O.

By simple geometric analysis, and with the help of Fig. 2.2, we can deduce:

β = arcsin ( rA+rB
‖pB−pA‖

),

θ = π
2

+ β,

c = (rA + rB) cos θ.

Then, we define crA,B as the composed radius of A and B. It corresponds to the distance
between pB − pA and the point on the bitangent. Furthermore, we define b = ‖pB − pA‖.
Since the green and yellow triangles in Fig. 2.2 are similar, we have a/b = a′/b′, where
b′ = b− c. It becomes straightforward to deduce

crA,B = a = (rA+rB)‖pB−pA‖
‖pB−pA‖−c

.

Once we have found crA,B, we can formally define QV Oτ1,τ2
A|B similarly to V Oτ1,τ2

A|B , as
follows:
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Figure 2.2: Construction of the QV O.

QV Oτ1,τ2
A|B = {v|∃t ∈ [τ−1 , τ

+
2 ] :: tv ∈ S(pB − pA, crA,B)}.

In this way, we obtain a quadrilateron as an approximation of the V O, and with which
it is easier to evaluate whether a candidate for the optimal velocity, voptA , is inside or out-
side the shape (mentioned later as a part of the algorithm), as it consists only on tests on
semi-planes. Moreover, it only requires storing four points in 2D. Otherwise, it would
be necessary to store only two points corresponding to the center of each of the circles
delimiting the V Oτ1,τ2

A|B at their ends, and their respective radii. Although this would give
greater precision when defining the safe and conflicting areas and would use less mem-
ory, it becomes more complex to validate if a candidate for the optimal velocity voptA is
inside or outside the V O, due to the curvature of its ends.

VO Chains

The aforementionedQV Omodel is also useful for creating a Velocity Obstacle Chain, V OCA|B
for A, induced by a mobile agent B, from which a trajectory has been predicted or is
known. This predicted trajectory is discretized and is seen as the union of chords (line
segments) between some points on it. Each sub-path (chord) corresponds to the velocity
and position of the obstacle along different periods of time, see Fig. 2.3. In this approxi-



CHAPTER 2. DETERMINISTIC APPROACH 18

Figure 2.3: Discretization of a trajectory in chords to simplify the predicted behavior of the
mobile agent. Each pB(τi) corresponds to the position predicted for pB at each selected
point on the chord.

mation, the velocity is piecewise constant, on each sub-path.

More specifically, each agent (mobile obstacle) is associated with a continuous probabil-
ity distribution that predicts its trajectory for a few time steps in the future; examples of
these probability distributions will be given in the next chapters. One of the kind of mod-
els we handle is a mixture of simpler models (e.g., Gaussian Processes). Depending on the
predictor and observed data, these models are regularly updated, and we can deduce a
deterministic predicted trajectory within the next time span τ , by using the mean or the
mode of this distribution.

For simplicity, it is assumed that the trajectory is traced with a piecewise constant
speed by the agent, and that the n points taken from it form n-1 chords which are equidis-
tant in time. It is also assumed that n > 2 and that both endpoints corresponding to pB(τ1)
and pB(τn) are used.

Formally, the VOC (Velocity Obstacle Chain) for A induced by B, for a time horizon τ ,
is defined as:

V OCτ
A|B =

⋃n−1
i=1 {v|∃t ∈ [τi, τi+1] :: t(v − vB(τi)) ∈ D(pB(τi)− vB(τi)τi − pA, rA + rB)},
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Figure 2.4: a) Theoretical shape of V OCτ1,τ2
A|B . b) Shape of QV OCτ1,τ2

A|B , where red areas
are improperly constrained because of the QV O model. c) Shape of QV OCτ1≈0,τ2

A|B when
the lower time is approximated to 0, the area that is improperly constrained is of little
significance.

where n is the number of sample points taken from the trajectory which divide it in n− 1
chords, [τi, τi+1] is the time window corresponding to each chord, starting with τ1 = 0 and
finishing with τn = τ , and vB(τi) is the associated (constant) velocity of B with which
it will trace the chord. Then, V OCτ

A|B corresponds to the union of every single V Oτi,τi+1

A|B
within τ . Note that this is a generalization of the concept of Velocity Obstacles for time-
varying velocities of the moving obstacle, where, for simplicity, the evolution of these
velocities is assumed piecewise constant. Then, we define a QV OCτ

A|B, Quadrilateral Ve-
locity Obstacle Chain within [0, τ ] of A, induced by B as follows:

QV OCτ
A|B =

⋃n−1
i=1 {v|∃t ∈ [τi, τi+1] :: t(v − vB(τi)) ∈ S(pB(τi)− vB(τi)τi − pA, crA,B)}.

It would seem that with this modeling, the set of collision-free velocities is excessively
restricted, since when inscribing each V O inside a trapezoid (QV O) there are areas that
are improperly constrained. In Fig. 2.1 c, we see in red these improperly constrained
areas due to the conservative shape of QV O, but in Fig. 2.4 b and c, we can see that much
of the red zone of a QV O is part of the region corresponding to the previous segment and
thanks to recalculation in each iteration, the loss is of little significance if the trajectory
curvature is not too high.
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2.2 Selection of the optimal velocity

Recall that we intend to bring a robot A to its goal pGoalA , which consists of a point on the
Cartesian plane. The robot A has, as intrinsic parameters, the magnitudes sprefA and smaxA

corresponding to its preferred and maximum speeds, i.e., the magnitude of the velocity
at which it is preferred to control the robot most of the time and the maximum speed
magnitude it is able to reach. The robot A must reach its goal without causing collisions
with other mobile agents or fixed obstacles.

Figure 2.5: A robotA in a dynamic environment with fixed obstacles o5 and o6 and mobile
obstacles o1, . . . ,o4, aims to reach its goal pGoalA while avoiding collisions, using velocities
of magnitude sprefA (inner circle) and remaining at the margin of maximum speed smaxA

(outer circle).

In the previous section, we have defined the V OCτ
A|B for only one robot A and one

mobile obstacleB, with a predicted trajectory forB, within the time interval [0, τ ] starting
from the current instant. Now suppose that we have a set O of obstacles (mobile and
fixed). We define the combined V O for A, denoted as V Oτ

A, as the union of all V Oτi,τi+1

A|oj
within [0, τ ], induced by each obstacle oj in O, as follows:

V Oτ
A =

⋃
oj∈O V OC

τ
A|oj .

In order to choose an optimal velocity, we first need to compute the set of Attainable
Cartesian Velocities (ACV)[13] that A could reach in a time lapse ∆t, i.e., the physically
feasible velocities. We define UA as the set of permissible controls for A. For the moment,
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we are focusing only in holonomic robots, hence the control u is defined as the instanta-
neous velocities along each axis:

u =

[
vx
vy

]
,

with vx and vy the velocities along each direction in the Cartesian plane.

The set UA takes into account the dynamic and kinematic constraints of the robot.
First, we define u̇ as the instantaneous acceleration taken by A to reach the optimal ve-
locity. When implemented, this term is simply approximated by the difference between
the selected optimal velocity and the current one, divided by the time lapse ∆t between
consecutive velocity decisions. In each direction, this acceleration is bounded between
the (positive) maximum reachable acceleration of the robot, u̇Max

A , and its (negative) max-
imum reachable deceleration u̇maxA .

Second, the magnitude of u is at most smaxA , the maximum reachable speed of A. By
combining the velocity and acceleration constraints, UA is defined as follows:

UA = {u ∈ R2 | ‖u‖ ≤ smaxA :: u̇maxAx
≤ v̇x ≤ u̇Max

Ax
; u̇maxAy

≤ v̇y ≤ u̇Max
Ay
}.

Once we calculate UA, we can now define the set of Attainable Cartesian Velocities of A,
ACVA(t), by integrating the admissible controls u ∈ UA from the current state (pA,vA(t)).
For holonomic robots, it is defined as:

ACVA(t) = UA.

To solve the problem that we have formulated initially (reach a goal and simultane-
ously avoid static and dynamic obstacles), we must find a velocity voptA for each time step
∆t, which corresponds to a point in the velocity space such that its distance to vprefA is
minimal and which does not cause a future collision, i.e., a velocity which is outside V Oτ

A,
subject to the velocity and acceleration constraints of A. More formally, the optimization
problem is defined as:

voptA = argmin
v∈ACVA(t)\V OτA

‖ v − vprefA ‖,

where ACVA(t)\V Oτ
A is the set of velocities within ACVA(t) but not in V Oτ

A, as shown in
Fig. 2.7. This velocity is applied to the robot on time intervals of duration ∆t, and is then
re-estimated again. Note that the problem stated in this way is a convex optimization
problem with linear inequalities (VO and control constraints).

One option to solve it is the ClearPath algorithm, presented in [12]. We propose an
alternative to it, starting from the following lemma, where BE (for Boundary Edges) is the
set of line segments that delimit the contour of V Oτ

A.
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Figure 2.6: Restrictions on velocity space of A. The arrow points to the current velocity
vA(t) at t. The square around vA(t) corresponds to the acceleration constraints (in this
case u̇maxAx

= −u̇Max
Ax , same as u̇maxAy

= −u̇Max
Ay ). The green area corresponds to ACVA(t), and

the red area is the set of controls invalidated due to maximum speed constraints (dashed
external circle).

Lemma 2.2.1. When velocities are unconstrained, if vprefA is inside V Oτ
A, then voptA must lie on

BE .

Proof. We prove it by contradiction. Let voptA not be on one of the edges BE and say it
minimizes the distance from vprefA . Consider a disk of radius ε

∣∣∣voptA − vprefA

∣∣∣, centered at

voptA , with ε > 0. For a sufficiently small ε, the circle is completely outside V Oτ
A, and we

have a point voptA + ε(vprefA − voptA ) that is outside and at a distance of (1 − ε)
∣∣∣voptA − vprefA

∣∣∣
from vprefA . Thus we arrive at a contradiction as we could exhibit a better optimal point.
Therefore, voptA must lie on the boundary segment of one of the V Os [12].

To complement and follow the reasoning of lemma 2.2.1, we consider the case with
constraints on velocity and formulate the following, similar lemma:

Lemma 2.2.2. In the case with velocity constraints, if vprefA is outside ACVA(t), voptA must lie on
BE and/or BACVA(t).
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Figure 2.7: In red, magenta, blue and green colors, theQV Os induced onA by four mobile
obstacles whose union gives rise to V Oτ

A. ACVA(t) is shown as the dark green outline
square, corresponding to a holonomic robot. In this configuration, vprefA (green dot) is
inside the first set. We want to find voptA withinACVA(t)\V Oτ

A; to achieve this, we calculate
a series of candidates within ACVA(t). Nonviable candidates are represented as points
with thicker contour.

Proof. As proof of this lemma we consider the union of the complement of ACVA(t) and
V Oτ

A, and BACVA(t), the boundary of ACVA(t). Then we can use exactly the same argu-
ment from the proof of lemma 2.2.1.

Once we have proved than voptA must lie on BE and/or BACVA(t) when vprefA is not
valid, we can go even further and show that we can consider only a finite set of candidate
points for voptA . Since the initial search space is infinite, this leads us to formulate the
following lemma:

Lemma 2.2.3. If vprefA is in conflict by violating either collision or feasibility constraint, then voptA

must lie at some of the intersections of the boundaries of the V Os (BE ); or at some intersection
of BE with BACVA(t); or at some of the orthogonal projections of vprefA on the boundary of some
V O that contains it; or finally at some of the orthogonal projections of vprefA on BACVA(t).

Proof. Consider Fig. 2.8. We prove this lemma by first defining VB as the set of valid
boundaries of BACVA(t) and BE , i.e., such that none of their line segments are in conflict.
Then, we arbitrarily take one point h, different from the points described in the lemma,
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Figure 2.8: In magenta and blue, two QV Os induced on A by two obstacles. ACVA(t) is
shown as the dark green outline square, corresponding to a holonomic robot. The the
candidates found using lemma 2.2.3 are named as ci. Arbitrary points along VB are
shown as hj . In blue and unlabeled, points closer to vprefA than hj . In red and unlabeled,
points farther to vprefA than ci. In this example, we show that c3, c2 and c8 are closer points
to vprefA than h1, h2 and h3, respectively.

from the infinite set of points along one line segment vbi of VB. If we consider a disc
dh centered on h with a radius ε > 0 sufficiently small so that the two intersections of
the boundary of dh and vbi lie on the latter, then one point q, of the two new generated,
is closer to vprefA than h, except for one of the points c described in the lemma. This
results from the convexity of the minimized function. Then we would have found a better
candidate, which is a contradiction.

Taking these lemmas as a reference, a set C of candidates to choose voptA can be created
as all points, represented in orange in Fig. 2.7, corresponding to the intersections between
BACVA(t) and all the V Os that share area with it and the intersections between these
V Os. Candidates are also added to C as a result of projecting vprefA on the edges of all
V Os containing it as it is done in [14], and as it is shown in the figure in cyan, and finally
the projections of vprefA on BACVA(t), which are shown in yellow. Even though many
of the candidates will not be on VB (nonviable), as represented as points with thicker
contour in Fig. 2.7, they can become viable when constraints are relaxed (i.e., when we
remove some of them, as described below).
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Algorithm for selecting the optimal velocity

We will now describe the Algorithm 1 (see below) for selection of the optimal velocity of
the robot. As an input, a set of parameters is received, as described hereafter:

τ : the time window in which obstacle trajectories are known/predicted.

∆τ : relaxation time, is the time span by which τ is reduced when restrictions on time are
relaxed.

τmin: minimum time, is the minimum time span by which τ can be reduced, i.e., τ ≥ τmin.

nO: higher value of the maximum number of obstacles that the robot can observe, that
is, for which the robot can estimate their positions and velocities. This value is set
depending on the memory and computational capacity available.

nmO: lower value of the maximum number of obstacles that the robot can observe. This
second value is set when relaxing the restrictions when no optimal velocity voptA has
been found. Typically, nO ≥ nmO.

O: set of obstacles visible by the robot, where each o ∈ O has its own trajectory predic-
tion models within a time horizon τo.

In order to improve the performance of the algorithm, we can discard the V Os that do
not influence the robot within the future time span t + tc, where tc is the maximal time to
collision that we want to take into account. Then we define ACV view

A (tc) as an area, in the
velocity space, corresponding to all the achievable velocities within times [t, t+ tc], i.e., it
is an expanded version of the ACVA(t).

The first 7 lines of Algorithm 1 consist of calculating LVO, i.e., the list of V Os induced
by the nO closest obstacles (or less if there is not that many) that intersect with ACVA(t),
and sort them by tstart (the lower bound of time for each V O). We also verify that vprefA

is not in conflict. If the latter is out of LVO and, at the same time, is reachable (is inside
ACVA(t)), then voptA will be vprefA .

In case vpref is in conflict, the instructions will be executed until line 13. These consist
of generating C, the set of candidates described by lemma 2.2.3, and choosing the best
among them. To do so, we iterate among them in ascending order by their distance to
vprefA , and in case we found a viable candidate, then voptA will be the best of them, c.

If we have not found voptA at this time, we relax the constraints, first by reducing the
time window τ (i.e., by not considering potential collisions far in the future), and then, if
necessary, by reducing the number of obstacles visible by the robot. If we reduce the con-
straints, we may get a smaller LVO, and the velocity space may be less restricted. Thus,
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the number of candidates in C decreases and some of them may now be viable.

In lines 14 to 18, we iteratively relax the constraints to find voptA , by reducing τ by in-
crements ∆τ in each step while τ ≥ τmin. By doing this, LVO is now the set of V Os for
which tstart (lower time limit) is less than τ .

The rest of the algorithm consists of relaxing the velocity restrictions by ignoring some
obstacles, i.e., we now focus only on up to nmO obstacles. Note that a possible implemen-
tation could consider different priorities among obstacles, i.e., we could give high priority
to obstacles that should be avoided at any cost. After updating the candidates in C, we
look again for voptA among them. In case of not finding a viable candidate, we gradually
reduce the velocity until reaching a zero velocity (i.e., stopping the robot), hoping that
in future iterations, the restrictions will be solved and the dynamic obstacles will try to
avoid the robot, so we give higher priority to avoid collisions than to reach the robot’s
Goal.

Handling non-instantaneous velocity changes

In the previous paragraphs, we have assumed implicitly that the desired velocity voptA can
be reached instantaneously at time t, when actually it is the case only after some delay,
i.e., at t+ ∆t. This produces a position error e in pA(t+ ∆t), that can be bounded as:

e = ‖
∫ t+∆t

t
(vA(τ)− voptA )dτ‖

≤ ‖vA(t)− voptA ‖∆t
≤

√
max(u̇maxAx

, u̇Max
Ax

)2 + max(u̇maxAy
, u̇Max

Ay
)2∆t

where the first inequality holds if we suppose that the velocity controller drives the cur-
rent velocity to the desired one in a monotonous way. Then, if we set ∆t small enough,
this error is not significant (see Fig. 2.9). In addition, e does not accumulate along time
since a new voptA is estimated at each iteration, as we have seen above.

Extension to non-holonomic robots

The algorithm described above is applicable to any robot control model, as long as UA and
ACVA(t) can be well specified and computed. The latter will be different for each model,
since it represents the result of an integration of valid controls for A. We now focus on
differential drive robots (DDRs) because they are the most common in this research area.
The controls of these robots are defined as follows:

u =

[
`
ω

]
,
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Algorithm 1 Algorithm for choosing the optimal velocity

Input: τ , ∆τ , τmin, tc, nO, nmO, O
Output: voptA

1: calculate vprefA

2: compute ACVA(t), ACV view
A (tc)

3: compute V Oτ
A, the set of V Os for the robot induced by O within time window τ

4: LVO = {vo ∈ V Oτ
A | vo ∩ ACV view

A (tc) 6= ∅}
5: sort LVO by tstart
6: if (vprefA ∈ ACVA(t)\V Oτ

A) then
7: return vprefA

8: C = ∅
9: for all lvo ∈ LVO do

10: T C = Candidates generated by lvo inside ACVA(t)
11: C = C ∪ T C
12: sort C by distance to vprefA

13: return if there exists c ∈ C, the best viable candidate
14: repeat
15: τ = τ −∆τ
16: update LVO by removing VOs with tstart after τ (relaxing constraints)
17: update C, by removing missing candidates and updating their viability
18: return if there exists c ∈ C, the best viable candidate
19: until (∀vo ∈ LVO | votstart < τmin or LVO 6= ∅ )
20: updateLVO by removing VOs generated by the farthest nO−nmO obstacles (relaxing

constraints)
21: update C, by removing missing candidates and updating their viability.
22: if there exists c ∈ C then
23: return the best viable candidate
24: else
25: return the maximum attainable velocity that approaches vA at zero velocity.
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Figure 2.9: In black, the path that A actually traces in the time period ∆t by changing
its velocity from vA(t) to voptA . In red, the magnitude of the error e, which is bounded by
the magnitude of the distance between pA(t) + vA(t)∆t (dotted blue), and pA(t) + voptA ∆t
(dotted green).

with ` the linear velocity, and ω the angular velocity. In this case |u| corresponds to |`|. As
in the holonomic case, we assume that u̇ corresponds to the acceleration taken by A when
having to apply the control u, bounded between the maximum acceleration reachable by
the robot, u̇Max

A and its maximum deceleration u̇maxA . In this way, UA is defined as:

UA = {u ∈ R2 | |`| ≤ smaxA :: u̇maxA`
≤ ˙̀ ≤ u̇Max

A`
; u̇maxAω

≤ ω̇ ≤ u̇Max
Aω
},

and then we transform these constraints from the `, ω plane to the cartesian velocities
plane, see Fig 2.10.

We get a rough estimation of the set of admissible velocities by integrating UA in order
to get ACVA(t). It is important to observe that the geometry is absolutely not the one of
UA, as in the holonomic case. The set ACVA(t) is still centered on vA(t) but its orienta-
tion is aligned with the orientation of the robot and not with the Cartesian plane, while
the maximal values for the angular velocity define a cone-like shape of possible cartesian
points to reach, see Fig 2.11.

The next chapter will show how this deterministic approach was implemented and
will describe the results we obtained in simulation.



CHAPTER 2. DETERMINISTIC APPROACH 29

Figure 2.10: The set of controls UA bounded by the integration of its maximum acceler-
ations and decelerations in both ` and ω, shown as dotted black lines. Also, we depict
the maximum and minimum velocities in ω, as horizontal dotted red lines, and the max-
imum velocity norm of ` restrict UA. The latter corresponds to smaxA and is represented as
the bounded area between the two vertical dotted red lines.

Figure 2.11: Integration of UA in order to get ACVA(t) in the Cartesian plane, aligned
with the robot orientation. In straight dotted red lines, the constraints induced by the
maximum acceleration and deceleration in ω. ` is bounded by sprefA , shown as the dotted
red circle, as well as by the maximum acceleration and deceleration of `, shown as dotted
black circles of smaller and larger radius.
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Chapter 3

Implementation and results of
Deterministic Approach

3.1 Data inputs and velocity obstacle representations
To describe the most probable trajectories that a mobile obstacle will trace, a set of 2D
points corresponding to a trajectory of duration T is given for each model. The following
format of plain text data is used.

ID
N_MODELS T
x y vx vy

... ... ... ...

x y vx vy
# PROB

...

x y vx vy
... ... ... ...
x y vx vy
# PROB
.

For each observation (every time data is received), the format first describes, on a
single line, the ID of the mobile obstacle. Then, in the next line, it gives the number of
predicted models and the duration τ , shown as T, during which they will be traced. For
each model, a sequence of points is given, one per line, described by its coordinates x, y
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and the variances varx, vary on this position. To complete the description of a model, the
following line has a wildcard character #, and the probability of occurrence PROB of the
model. Finally, the character . completes the input of that observation.

We have implemented a C++ library that we called Simulator, with which we can sim-
ulate/represent a dynamic environment and control one or multiple robots, choosing at
each time step a velocity that will bring them closer to their goals, while avoiding col-
lisions between them, and with other mobile or static obstacles. This class receives the
data (about obstacles) either by reading a file or by streaming, and packs it in a structure
that assigns to each obstacle a time horizon τ , and communicates these data to each robot.
This structure stores a set of predicted trajectory models, each corresponding to a prob-
ability of occurrence and it is described as a sequence of points x, y, with their variances
varx, vary. In the same way, Simulator can receive, as a data input, a set of structures as
described above, generated by an external program. With this class, we can simulate a
centralized observation system, i.e., a system responsible for receiving and processing the
input data that represent the positions of all the obstacles and their prediction models. It
is also responsible for giving the notion of fixed obstacles, and for updating the status
of the robots, i.e., it communicates to each robot the position of its nO nearest obstacles
(mobile and fixed), and indicates it when it is ready to update its velocity.

Discretization of trajectories

For each trajectory model, we can model up to p − 1 chords, where p ≥ 2 is the number
of points that describe the trajectory by a piecewise linear model. In the deterministic
modelling, we use only one model, the one with the highest probability, and we do not
take into account the variance of the points.

Because we know the time span τ corresponding to the prediction, it is possible to
estimate the velocities of each sub-trajectory. For practical purposes, we assume that the
speed is constant throughout the prediction and that the points are evenly distributed.
Therefore we can easily estimate a set of up to p − 1 chords, which will be the basis
for constructing the QV OC. In Fig. 2.3, we can see the way in which a trajectory is
discretized, given as input data a set of points along that trajectory. Each chord is indexed
by i and will be described by the following attributes:

τi: the time at which the obstacle is predicted to begin tracing the chord i.

tdur: the duration of the tracing. For simplicity, we assume that all the chords will be
traced with the same duration. It corresponds to τi+1 − τi.

velocity: the predicted velocity with which the obstacle will trace the chord.
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pstart: starting point of the chord, which corresponds to the point at which the obstacle
is predicted at τi.

Modelling of QVOs

As we proposed in the previous chapter, we use QV Os to represent the V Os that describe
each predicted chord between times τi, τi+1, for each obstacle. For practicity in the con-
struction, we do not link the QV Os of the same chain in the same structure, but we store
them as independent objects.

Based on observations made on the human behavior, we define a comfort radius for
the robot. With this radius, the robot avoids passing very close to the obstacles, since
otherwise, due to the construction of the V Os, the robot avoids collisions by passing tan-
gentially to the obstacles. This is because voptA is chosen on BACV .

Each QV O consists of the following attributes:

τi: the start time that bounds the QV O, the same as τi of the chord.

τi+1: the end time, that corresponds to τi+1 of the chord that it describes.

points: array of four 2D points that are the vertices bounding the QV O. Joining them in
the order they are stored, and joining the endpoints, we get a quadrilateral.

The construction of the QV O is then very simple. We only have to calculate the
four points that bound the V O, that is, two points corresponding to the segment pA +
vB + S(pB−pA

τ−i
,
crA,B

τ−i
), and two more points corresponding to the segment pA + vB +

S(pB−pA
τ+i+1

,
crA,B

τ+i+1

), see Fig. 2.2. Finally, we store these QV Os in a vector, V Oτ
A, as described

in line 3 of Algorithm 1. Then we compute LVO and sort it in ascending order by τi,
as seen in lines 4 and 5. For our experiments we consider tc = ∞, that is, we omit the
construction of ACV view

A (tc), and use all the generated QV Os.

Virtual Obstacles

To model the VOC corresponding to the discretized predicted trajectory of an agent B,
first a virtual mobile agent Bv(τi) is created for each chord, starting from an initial point
pB(τi), such that moving at a constant velocity vB(τi), it traces the chord between the
times [τi, τi+1]. This is similar to the Equivalent Linear Velocity Obstacle, ELV O(B, τi) in-
troduced in [15], but replacing the tangent to the trajectory with the chord between two
points of it; with an infinite number of tangents and chords, both cases would be equiva-
lent, see Fig. 3.1.a.
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Figure 3.1: a) Construction of V OCA|B. Objects in red, green, blue and gold correspond
to virtual agents[15], their trajectories and velocities. b) V OCτ

A|B within a time window τ ,
modelled with quadrilaterals, QV OCτ

A|B.

Once ELV Os are estimated for each chord of the prediction, the V OC can be con-
structed by truncating the shape of each according to the tdur corresponding to the tracing
of the chord. Fig. 3.1.b shows the Quadrilateral VO Chain of A induced by B, for a time
horizon τ , QV OCτ

A|B.

3.2 Evaluation of the feasibility of the candidates

If vprefA is in conflict, then we must evaluate the feasibility of the candidates to choose the
best of them, as shown in lines 13, 18 and 23 of the Algorithm 1.

To avoid oscillations when choosing vopt
A [9], we weight the distance between a candi-

date c to the preferred velocity vprefA with the distance between c to the current velocity
vA. To achieve more continuous velocities, i.e., less oscillations, we use an adjustable pa-
rameter α, to give more or less priority to velocities close to vA. Hence, we redefine the
distance function for a candidate c to vprefA as follows:
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wDist(c,vprefA ,vA, α) = α‖ c− vprefA ‖+ (1− α)‖ c− vA ‖,

where α ∈ [0, 1]. In our implementation we set α = 0.8. The optimization problem
becomes:

voptA = argmin
v∈ACVA(t)\V OτA

α‖ v − vprefA ‖+ (1− α)‖ v − vA ‖

= argmin
v∈ACVA(t)\V OτA

wDist(v,vprefA ,vA, α).

The candidates are stored in a double ended queue (deque), for the purpose of accessing
them in amortized constant time, O(1). We denote this deque as C, as in Algorithm 1 from
line 8, and sort each of its elements c by the value of the weighted distance function evalu-
ated on them. The sorting of the structure is carried out with a computational complexity
of N ∗ log(N). In case a candidate is generated as the intersection of two QV Os, we will
call them parent 1 and parent 2. Each candidate is described by the following attributes:

vx: Coordinate x of the candidate in the velocity space.

vy: Coordinate y of the candidate in the velocity space.

distance: Value of the weighted distance function of the candidate: wDist(c,vprefA ,vA, α).

belongs: List of indices in LVO, which identify the QV Os that make the candidate not
viable, i.e., the QV Os in LVO that contain c.

parent 1: Index that identifies one of the twoQV Os that generate the candidate by an in-
tersection of both, if it is the case. Otherwise it is the index of theQV O that intersects
with BACV , or the QV O on which it projects orthogonally.

parent 2: Index of the other parent that generates the candidate by intersection, if appli-
cable.

To know if a candidate is viable, we use a version of the Crossing Test algorithm [19],
which consists in evaluating whether a point is inside a polygon or not, by tracing a line
from the point, in some direction towards infinity. If the candidate is within the polygon,
the number of crosses of this line with the segments of the polygon will be odd, otherwise
it will be even.

In our implementation, the algorithm consists of two phases. The first step is to vali-
date whether the candidate c is on any of the four segments that delimit the QV O. If so,
we say that the point is outside the quadrilateral. The implementation of this part of the
algorithm consists in evaluating if any of the segments between two points a and b de-
limiting the quadrilateral contains c, i.e., abs((cx− ax)(by − ay)− (cy − ay)(bx− ax)) < ε.
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Due to the possible numerical errors, we allow a tolerance of ±ε to the result value of
(cx − ax)(by − ay)− (cy − ay)(bx − ax), with ε ≈ 10−6.

The second phase of our implementation consists in counting the number of crosses
made by a ray to infinity in the direction v+

x , −→r , that starts in c, on each side ab of the
QV O, consisting of a pair of consecutive points a,b. Because the coordinate −→r y is con-
stant along the ray, we first evaluate that cy ∈ [ay,by]. Otherwise, there are 0 crosses
between −→r and ab. Then, if the coordinate vx of the point of intersection pint between
r and ab, i.e., pintx = ax + (cy−ay)(bx−ax)

(by−ay)
, is greater than or equal to cx, there will be an

intersection.

In this process, we take advantage of the Crossing Test that is made on each candidate,
with each QV O ∈ LVO, in order to fill what we refer to as its belongs list. This is done
with the purpose of knowing exactly which of the QV Os contains the candidate, making
it not viable. Then, if we relax the constraints, it is easier to update its viability.

Relaxation of constraints

Once we have checked all the candidates, and if none has been found viable, we proceed
to relax the constraints. That is, to remove some of the QV Os of LVO, in order to increase
the feasible area of attainable velocities, i.e., ACVA(t)\V Oτ

A. We first relax constraints with
respect to time, lines 14− 19 of Algorithm 1. If it is not enough, we reduce the number of
visible obstacles, lines 20− 23 of Algorithm 1.

Both ways of relaxing the constraints result in the reduction of LVO. By having less
QV Os, some of the candidates will be eliminated, as one or both of their parents will
disappear. In the same way, some of the candidates will survive and may have their status
changed to viable, so they could become eligible as voptA .

Constraints on time horizon

As a first intent, we eliminate the QV Os that represent longer time to collision, i.e., those
such that their τi is greater than a given τ . Remember that LVO is sorted in ascending
order by τi, in order to quickly find the candidates that meet the condition in each step
of relaxation in the time horizon. See Algorithm 1, lines 14 − 19. The comparison can be
done with linear computational complexity O(N), with N as the number of candidates,
by checking one by one the elements in LVO, or with logarithmic complexity, O(log N),
by doing a binary search. Remember that in each relaxation, we must update C and the
viability of the candidates.
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Constraints on visible obstacles

In the case we have not found voptA until now, our second intent is to reduce the number
of visible obstacles to eliminate more elements of LVO, see Algorithm 1 lines 20 - 23.

Initially, the robot can see up to nO obstacles, and after reducing the number of these,
the robot can see up to nmO obstacles. These should be the nearest nmO obstacles. In order
to select them, we use the library boost for geometry [20]. With this library, we implemented
an R-tree[21] on the set of points that represent the obstacles, i.e., their centroids. An
R-tree allows us to make queries with complexity of O(log N). It is an optimized data
structure for query of spatial data. This allows us to efficiently consult the nearest nmO
visible obstacles.

3.3 Experiments with Simulator
As mentioned before, the Simulator class provides what is necessary to design and sim-
ulate an environment of multiple mobile agents (robots or humans), and fixed obstacles.
In order to visualize the experiments, we have developed an interactive application with
OpenFrameworks development toolkit, which allows us to work on different platforms, be-
cause it is cross-compatible. It currently supports five operating systems (Windows, OSX,
Linux, iOS, Android) and five IDEs (XCode, Code::Blocks, and Visual Studio, Eclipse and
QTCreator) [22]. We use the latter to develop the application.

The simulator consists of a basic visualization of the elements of the environment.
Remember that both robots and humans are represented in the Simulator class as disk-
shaped objects, as shown in Fig. 3.2 and Fig. 3.3.

Fig. 3.2 shows a simulated experiment of a robot A, in white and purple. At the origin
of the cartesian frame, shown as a cross at the center of the figure, a blue circle represents
the zone corresponding to pGoalA , with arrival tolerance (within the disk).

Fig. 3.3 shows some of the attributes of the robot. The red and white concentric
squares correspond to the set of velocities (vx, vy) with magnitude sprefAvx,vy

and smaxAvx,vy
, re-

spectively. The lines that start from the center of the robot, in red and blue, correspond
to the current velocity vA and the preferred velocity vprefA , respectively. In light yellow,
and centered on vA, isACVA(t). Note that it is truncated with the maximal velocity smaxAvx,vy

.

The class Simulator allows us to execute experiments without having to visualize them.
This is very useful to measure the performance of the Algorithm 1.
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Figure 3.2: Experiment with a holonomic robot shown in white and purple, with 55 simu-
lated non-controlled mobile obstacles (humans) in purple and their exact predicted posi-
tions within a time horizon of 5 seconds, shown in magenta gradient. In coral, we depict
55 fixed obstacles. Gray areas (in the velocity space) are unconstrained, while green areas
are not, corresponding to the V Os induced by the obstacles.
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Figure 3.3: Zoom on the robot, shown as a purple and white circle. Lines in red and blue
correspond to the current velocity vA and the preferred velocity vprefA . In order to avoid
collisions, the robot takes velocities on the border of V Oτ

A, shown as green areas.

Setup of the experiments

In order to measure the performance of the algorithm, a base case was defined. This con-
sists of a series of parameters of configuration of the algorithm, such that they make a
robot A reach its Goal in a considerable average time, and with a low number of iterations
in conflict (collision), i.e., less than 1%.

All the experiments were executed on a machine with 24 CPUs at 2600 MHz, with
32910284KB of RAM, running a 64-bit Linux operating system and having 93180 KB of
Swap space. The experiments were performed in a simulated environment consisting of a
space of squared shape and dimension 400m2, where a set of randomly arranged humans
moves, (see Appendix A). To keep the density of the environment constant, humans are
restricted to moving only within it. The initial position of the robot is configured by ran-
domly choosing a polar angle in [−π, π]. Then the robot is placed on the circle inscribed to
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the environment, in the direction of the chosen angle, and looking towards the center of
it. pGoalA is also on the circle, in a position diametrically opposite to the initial position ofA.

Now we describe the parameters that were used to simulate the robot and the humans.
In order to adjust these parameters as realistically as possible, we take as a basis the
physical configuration of the Turtlebot 2[23], resulting in the following parameters:

Radius: 0.177m.

Max `: 0.7m/s.

Max ω: πrad/s.

Max ˙̀: 1.26m/s2.

Max ω̇: 5.65rad/s2.

We assume that the maximum decelerations are symmetrical to the maximum acceler-
ations, i.e., these have the same magnitude but in the opposite direction. We also assume
that they correspond to 1.8 times the maximum velocities. Because Turtlebot 2 is a DDR
robot, we use some of its specifications for the purpose of modelling a holonomic robot,
resulting in parameters for this case as follows:

Radius: 0.177m.

Max vx: 0.7m/s.

Max vy: 0.7m/s.

Max v̇x: 1.26m/s2.

Max v̇y: 1.26m/s2.

The following list shows the configuration parameters that were used for the experi-
ments and their default value (base case):

nH : the number of humans in the environment, (150 humans).

nOPercentage: percentage of obstacles that the robot can see with respect to nH , (nO =
nH ∗ (nOPercentage/100)), (50%).

ComfortRadScale: the scale of the comfort radius that is used with respect to the original
radius of the robot, (1.1).

RestAccScale: the scale of the restrictions in acceleration, with respect to the maximum
velocity, (1.8).
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Segments: number of chords into which a predicted trajectory is divided, (5 segments).

τ : duration of predictions, (5.0 seconds).

∆t: the duration of the time increment for the simulation, (0.35 seconds).

In this implementation, the number of obstacles that the robot can see (nO), directly
affects the minimum number of obstacles that the robot must see (nmO) when the con-
straints are relaxed. For these experiments, we set nmO = nO ∗ 0.2, so as not to relax
excessively the constraints. It is also necessary to mention that the scale with respect to
the restrictions in acceleration influences both velocities, i.e., we use the same scale for
vx, vy in the holonomic case, and the same scale for `, ω for DDR robots.

In order to compare the performance of the robot with different setups, the experi-
ments were performed by varying each of the 7 parameters mentioned above, in at least
five different configurations, the base case being one of them. We use three metrics to
measure the overall performance of the algorithm: Percentage of iterations in conflict (colli-
sion); Average time per iteration (measured in milliseconds); and Number of iterations made
until reaching the Goal. Below we show a summary of the results obtained by varying the
configuration parameters of the robot for the holonomic case.

Experiments with the holonomic robot

8 thousand executions of the algorithm were performed with the base setup. Fig. 3.4
shows some boxplot graphs to interpret the three proposed metrics. A boxplot is a useful
statistical graph to visualize the distribution of a data set. The upper and lower lines that
delimit the box represent the positions of the 3rd and 1st quartiles,Q3, andQ1 respectively.
The red line shows the mean of the data. The points represented as crosses and circles are
outliers data. We define IQR as the interquartile range, and it refers to the distance between
Q1 and Q3. Then, the outliers are beyond 1.5 ∗ IQR, either below Q1 or above Q3. In the
same way, the extremely outlier data (circles) are located beyond 3∗IQR below Q1or above
Q3.
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Figure 3.4: Three boxplots representing the distribution of the performance metrics pro-
posed on the base case.

Fig. 3.4 is useful as a reference for the interpretation of subsequent boxplots. In the
case of Fig. 3.4.left, the box is completely flat because the vast majority of results, i.e., at
least 75% of them, result with 0% of iterations in conflict. The outliers, displayed in red,
show that in the base case, the maximum percentage of iterations in collision is 10.34%.
Its mean is 0.37%.

In Fig. 3.4.center, the box is partially flattened. Quartiles Q1, Q2 (median), Q3, have
values of 70.42, 71.96, 74.71, respectively. It has a large number of outliers, both below Q1,
and above Q3, while the mean has a value of 70.91 (ms).

Finally, in Fig. 3.4.right, quartiles Q1, Q2 (median), Q3, have values of 129, 145, 168,
respectively. All its outliers are above Q3. Its mean has a value of 152.82. Based on
these results, we can compare the performance of the experiments by varying each of the
7 parameters. For these experiments, each setup was executed 1000 times, in order to
obtain sufficiently dense data sets.
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Variation of the parameter nH

The number of simulated humans directly influences the density of the environment.
Since its dimensions are constant (20m ∗ 20m), the density corresponds to nH

400
humans
m2 . Re-

calling that the base case has a total of 150 humans, then its density is 0.375humans
m2 . The

values in which the parameter was varied nH and their respective densities are the fol-
lowing: 50: 0.125humans

m2 ; 75: 0.1875humans
m2 ; 100: 0.25humans

m2 ; 150: 0.375humans
m2 (base case);

200: 0.5humans
m2 .

0.125 0.1875 0.25 0.375 0.5
0

5

10

15

20

0.125 0.1875 0.25 0.375 0.5
0

100

200

300

400

500

600

0.125 0.1875 0.25 0.375 0.5
0

100

200

300

400

500

600

Percentage of iterations in conflict (%)

Mean time by iteration (ms)

Total number of iterations

Figure 3.5: Performance metrics on the testing sets by varying the parameter nH. The x
axis shows the value of the human density of the environment, measured in humans

m2 . With
0.375humans

m2 in the base case.

In Fig. 3.5, we can see the impact of the number of humans on performance metrics.
Fig. 3.5 top shows that the percentage of iterations in conflict is negatively affected, as ex-



CHAPTER 3. IMPLEMENTATION AND RESULTS OF DETERMINISTIC APPROACH43

pected, by increasing the density of the environment. The first four density values show
the majority of their records with 0% of iterations with collision, with maximum outliers
between 5% and 7.5%. On the other hand, having a density of 0.5humans

m2 , the median has
the value of Q2 = 0.48, and Q3 = 2.07. Although the percentage of iterations with colli-
sion is small, since it is the most important metric, it must always be minimized.

The average time per iteration is also affected by increasing the density, because there
is a greater probability that the feasible area of attainable velocities be totally obstructed.
That means that the algorithm would try to relax in greater proportion the constraints
to find voptA , causing an extra cost in the computing time. In Fig. 3.5 center, we can see
that the average time per iteration is acceptable, i.e., in all configurations, Q3 stays be-
low ∆t = 350 ms, taking the values 7.558 ms, 17.35 ms, 31.98 ms, 75.04 ms, 179.74 ms,
respectively. However, the maximum outlier observed for nH = 200 reaches the value of
594.91 ms, also showing a significant number of them above ∆t. The other configurations
show maximum outliers smaller than 160ms, therefore, they remain within the execution
parameters for the base case.

The number of iterations made until reaching the Goal also increases as the density
of humans in the environment increases. In Fig. 3.5 bottom, we can see that in experi-
ments with low density, the number of iterations to reach the goal is relatively small, with
outliers smaller than 200. For the base case, as for 200 humans, the number of iterations
increases on a large scale, reaching outliers of up to 345 y 597, respectively.

Variation of the parameter nOPercentage

The maximum percentage of simulated humans that the robot can see, is used not to sat-
urate the feasible area of attainable velocities, so that it is computationally less expensive to
calculate voptA . Fig. 3.6 shows the behavior of the three performance metrics by varying
the parameter nOPercentage. Recall that the base case takes into account 150 humans, of
which nO corresponds to 50%, and nmO to 10%. Also recall that nmO = nO ∗ 0.2. The
values in which the parameter nOPercentage was varied, and their respective nO and
nmO, are the following ones: 10%: 15 humans, 3 humans; 25%: 37 humans, 7 humans;
50%: 75 humans, 15 humans (base case); 80%: 120 humans, 24 humans; 100%: 150 hu-
mans, 30 humans.
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Figure 3.6: Performance metrics varying the parameter nOPercentage. The x axis of the
three graphs shows the percentages that represent nO and nmO over the number of hu-
mans, (150). With 50%− 10% in the base case.

Fig. 3.6 top shows that, in general, the percentage of iterations in conflict is mostly 0%
when the robot can see at least 25% of the humans. With 10% of the humans, the robot has
an average of 0.86% iterations in conflict, while for 25%, 50%, 80%, 100% the mean is less
than 0.5%. In general, by increasing the percentage of humans that the robot can see, we
reduce the percentage of iterations in conflict. When the robot sees all the humans, there is
a considerable increase in the percentage of iterations in conflict, with respect to the case
in which the robot sees only 80% of humans. This may be because, as mentioned above,
ACVA\V Oτ

A can be mostly obstructed, giving the same priority to all humans regardless
of their distance and time to collision. At first, it may seem that this is good, but in doing
so, humans with lower risk of collision influence the decision making, causing that some-
times voptA is not the best option and that it directs the robot to a stagnation impossible to
solve. Recall that humans are blind and do not interact with the robot or other humans.
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In Fig. 3.6 center, we observe that, when increasing the percentage of humans that
the robot can see, the average time of computation per iteration increases, as expected,
because a greater number of humans will produce a greater number of candidates, and in
the same way, ACVA\V Oτ

A can be mostly occluded, producing more relaxation steps. In
general, in the base case, the average time per iteration is acceptable (less than ∆t), and in
the worst case, when all humans are taken into account, the mean has a value of 285.5ms.
However, only the maximum outliers of the first three configurations are less than ∆t,
with values of 681.44 ms and 929.93 ms for the cases with 80% and 100% respectively.

Finally, in Fig. 3.6 bottom, we can easily see that the number of iterations to reach
the goal is practically unaffected by varying the number of visible humans. The means
fluctuate between 150 and 162 iterations, while the magnitude of the outliers is affected,
although there is no clear pattern on them.

Variation of the parameter ComfortRadScale

The scale of the comfort radius, with respect to the radius of the robot, is a factor that
allows the robot to navigate with some slackness among the obstacles. Intuitively, if the
scale is 1.0, the comfort radius is equal to rA, and the robot will do the calculations to
avoid the obstacles in a way tangent to its volume. In real life, this is not the case, because
people try not to touch each other when they avoid each other. Fig. 3.7 shows the behav-
ior of the three performance metrics by altering the parameter ComfortRadScale. Recall
that, in the base case, we have used a scale of 1.1, with respect to rA. The values in which
the parameter was varied are the following: 1.0; 1.1 (base case); 1.5; 1.8; 2.0.

In Fig. 3.7 top, we observe that the median of the percentage of iterations in conflict,
for the first three configurations of the comfort radius, shows a value of 0%, while for
scales 1.8 and 2.0, we get the values of 0.45 and 1.15 respectively. Intuitively, by increasing
the comfort radius of the robot, its space of non-conflicting velocities is more restricted,
since V Os of greater dimension are generated. As an analogy, if we had a robot repre-
sented as a point in space, the V O would only take into account the dimensions of the
humans. For practical purposes, the best option is to use a value of 1.1 on the comfort
radio scale, according to the experiments. In addition, as explained above, people have
greater confidence in walking if they maintain a distance between them and the obstacles.

It is clear that the wider the comfort radius of the robot, the greater the average time
per iteration, as it can be seen in Fig. 3.7 center. This is due to what has been commented
previously: the velocity space is more occluded by the V Os, then the robot has to relax its
constraints to a greater extent.
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Figure 3.7: Performance metrics by varying the parameter ComfortRadScale. The x axis
shows the scale of the comfort radius with respect to the radius of the robot. With 1.1 in
the base case.

The size of the comfort radius also influences the total number of iterations to reach
the Goal, as seen in Fig. 3.7 bottom. This is because, in each iteration, the robot is more
cautious and avoids traversing narrow spaces between obstacles, which causes the robot
to try to surround a set of humans, instead of going through it.

Variation of the parameter RestAccScale

The scale of maximum accelerations for the robot, with respect to its maximum control
velocities, is a factor that allows the robot to increase its ACV . Intuitively, if the ACV is
large, the robot will have a better chance of avoiding obstacles, although its control may
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become less continuous. Fig. 3.8 shows the behavior of the three performance metrics by
altering the parameter RestAccScale. Recall that, in the base case, we take into account
a scale of 1.8, with respect to the maximum velocities in the robot controls. The values
in which the parameter RestAccScale was varied are the following: 1.0; 1.2; 1.5; 1.8 (base
case); 2.0.
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Figure 3.8: Performance metrics by varying the parameter RestAccScale. The x axis
shows the scale of maximum accelerations for the robot with respect to its maximum
control velocities. With 1.8 in the base case.

It is logical to think that the greater the acceleration capacity in the robot controls, the
lower the percentage of iterations in collision. In Fig. 3.8 top it can be seen that, in gen-
eral, the median percentage of iterations in collision decreases as this parameter grows,
because the robot is able to adjust its velocity more freely.
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Both the average time per iteration, and the total number of iterations, are not very
affected, see Fig. 3.8 center, bottom. The trend is clearer if we look at the outliers: the
higher the acceleration capability, the larger the ACV , then the number of candidates is
higher, and searching among them for voptA results in a heavier task. We can also observe,
based on the outliers, that the total number of iterations tends to be reduced because, as
the robot has more options in choosing voptA , it can access to a greater extent at speeds with
magnitude equal to or greater than the preferred speed of its controls.

Variation of the parameter Segments

The number of segments (chords) in which the predicted trajectories for dynamic obsta-
cles are divided, generates better approximations of the V Os for non-linear trajectories.
Intuitively, by having more segments, we can have a better estimation for voptA , but because
it gradually increases the complexity of the calculation, it is convenient to use a conser-
vative approximation that does not compromise the average time per iteration. Fig. 3.9
shows the behavior of the three performance metrics by altering the parameter Segments.
Recall that in the base case we take into account 5 segments. The values in which the pa-
rameter Segmentswas varied are the following: 1 (conventional V O); 2; 3; 4; 5 (base case);
6; 7; 8; 9; 10.
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Figure 3.9: Performance metrics by varying the parameter Segments. The x axis shows
the number of segments (chords) used for the predictions. With 5 in the base case.

With the help of Fig. 3.9 top, we quickly see that the construction of a conventional
V Os, i.e., in the case of a single segment, generates a considerably high percentage of
iterations in conflict. The obtained mean is 5.38%, while from 2 segments, the average
does not exceed 1%. We can also see that the best case, in this metric, is when we use 3
segments, followed by 5, with means of 0.37% and 0.5%, and values of Q3 of 0%.

In Fig. 3.9 center, we can see that for the base case, using a discretization of 6 segments
is unsustainable based on ∆t, because some of the outliers exceed that value. As expected,
with a greater number of segments, the computational complexity increases, generating
more V Os, more candidates and a greater number of steps to relax constraints. Therefore,
the average time per iteration is increased.
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Like the percentage of iterations in conflict, the total number of iterations, shown in
Fig. 3.9 bottom, increases when using the conventional V O, while using 2 or more seg-
ments, the quartiles Q2 and Q3 behave very similarly. In this case, no particular trend
appears among outliers.

Variation of the parameter τ

The prediction duration (τ ), is the time span from the current time in which the pre-
dicted trajectory will be traced. Intuitively, with a higher τ , the robot can better predict
which velocities will be conflicting in the future. It may seem that, as with the parame-
ter nOPercentage, the excessive increase of τ can be counterproductive, by saturating the
ACV . However, due to the relaxation of constraints in time, and the fact that the set of
furthest velocities produce V Os of smaller area, the increase of τ does not turn out to be
counterproductive in this context. Fig. 3.10 shows the behavior of the three performance
metrics by altering the parameter τ . Recall that in the base case we take into account 5.0 s.
The values in which the parameter was varied τ are the following: 2.5 s; 3.5 s; 5.0 s (base
case); 7.5 s; 10 s.
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Figure 3.10: Performance metrics by varying the parameter τ . The x axis shows the dura-
tion of predictions in seconds. With 5.0 s in the base case.

When increasing the parameter τ , we observe a decrease in the percentage of itera-
tions in collision, in Fig. 3.10 top. This behavior is intuitive, because the robot has a better
notion of the future behavior of dynamic obstacles, which allows it to foresee probable
collisions and avoid them with greater effectiveness.

In Fig. 3.10 center, bottom, based on the average time per iteration and the total num-
ber of iterations, we can see that the best value assigned to τ for the experiments was
of 10 s. While the last metric is less significant, the average time per iteration and the
percentage of iterations in collision show as maximum outliers 157.7 ms and 7.26%, re-
spectively. The first is less than half of ∆t, and the second one is the best worst case, in that
metric varying τ .
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Variation of the parameter ∆t

It is possible that ∆t is the most important parameter in the simulation, because it de-
termines the rate at which the dynamic obstacles are observed, and at which the robot is
controlled. The magnitude of ∆t directly influences the dimensions of the ACV : like the
parameterRestAccScale, the higher the value, the larger will be theACV . Fig. 3.11 shows
the behavior of the three performance metrics by altering the parameter ∆t. Recall that in
the base case, we take into account 0.35 s. The values in which the parameter was varied
∆t are the following: 0.1 s; 0.25 s; 0.35 s (base case); 0.5 s; 0.75 s.
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Figure 3.11: Performance metrics by varying the parameter ∆t. The x axis shows the
duration in seconds of this parameter. With 0.35 s in the base case.

Fig. 3.11 bottom shows that the higher ∆t, the lower the number of iterations to reach
the Goal. This parameter influences the same way as RestAccScale, increasing the size
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of the ACV . Recall that the bigger the ACV , the greater the search space for voptA . This
allows that controls with speed equal or greater than the preferred speed may be used in
greater proportion. ∆t is a dangerous parameter since a very high configuration, i.e., a low
frequency of updating of the controls, would cause an equally slow reaction capacity, and
clumsy in cases where humans do not stick to predictions.

In Fig. 3.11 center, we can observe that, in all cases of variation of this parameter, the
maximum outliers are always below the value of ∆t, that is, the average time per iteration
is always acceptable.

Finally, in Fig. 3.11 top, the effect of a smaller ACV is shown: the search space for
the optimal velocity is smaller, so there may be no collision-free velocities, the robot takes
a zero velocity, and is hit by some dynamic obstacle. Recall that dynamic obstacles are
blind.

Experiments with the Differential Drive Robot

As in the holonomic model, the algorithm was executed 8 thousand times with the base
case setup, in order to obtain a sufficiently dense data set to evaluate the effect of the al-
gorithm parameters. It is necessary to mention that the behavior of the algorithm in both
models (holonomic and DDR), have a very similar performance, according to the metrics.

Fig. 3.12 shows distributions similar to those in Fig. 3.4. For example, at least 75% of
the executions in the base case obtained 0% of iterations in collision.

In Fig. 3.12.center, quartiles Q1, Q2 (median), Q3, have values of 71.75, 73.25, 75.8, re-
spectively, while in the holonomic case they have values of 70.42, 71.96, 74.71. Its mean has
a value of 71.77 (ms), and in the holonomic case 71.91 (ms).
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Figure 3.12: Three boxplots representing the distribution of the performance metrics pro-
posed on the base case.

In Fig. 3.12.right, quartiles Q1, Q2 (median), Q3, have values of 136, 151, 174, respec-
tively, while in the holonomic case they show the values of 129, 145, 168. The distribution
is then similar in both cases, although the DDR case has higher quartiles, being approxi-
mately 5% biggers than the holonomic case.

Variation of the parameter nH

In Fig. 3.13, we can see that the percentage of iterations with collision is distributed in a
similar way in holonomic and in DDR, the latter being approximately 50% less conflictive,
based on the outliers. We can also observe that the average times per iteration are almost
the same, except for some outliers, as well as the total number of iterations.
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Figure 3.13: Performance metrics by varying the parameter nH for a DDR. The x axis
shows the value of the human density of the environment, in humans

m2 . With 0.375humans
m2 in

the base case.

Variation of the parameter nOPercentage

Fig. 3.14 shows that varying the parameter nOPercentage does not give a clear trend in
the percentage of iterations in conflict. However, the average time per iteration shows the
same trend as with the holonomic robot: the higher the percentage in nO, the longer the
iterations take. This parameter affects in the same proportion the holonomic case as the
DDR.

As in the holonomic case, the total number of iterations does not show a clear trend
when the parameter nOPercentage is varied, but the value of both medians are very close
to 150.
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Figure 3.14: Performance metrics varying the parameter nOPercentage. The x axis of
the three graphs shows the percentage that represents nO and nmO over the number of
humans, (150). With 50%− 10% in the base case.

Variation of the parameter ComfortRadScale

Fig. 3.15 shows that, in general, the percentage of iterations in conflict is lower for the
DDR case than for the holonomic case. The only trend that can be seen with the naked
eye for the first metric, is that the higher ComfortRadScale, the lower the percentage of
iterations in conflict, although the distribution of outliers tends to increase with a scale of
1.5.

The other two metrics show very similar distributions in both cases, with the exception
of the outliers, which get to be of greater magnitude in the case of the DDR for the average
time per iteration, but of smaller magnitude for the total number of iterations.
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Figure 3.15: Performance metrics by varying the parameter ComfortRadScale for a DDR.
The x axis shows the scale of the comfort radius with respect to the radius of the robot.
With 1.1 in the base case.

Variation of the parameter RestAccScale

As with the parameter ComfortRadScale, when viewing Fig. 3.16, it can be deduced that,
with an intermediate value of the parameterRestAccScale, it has a lower percentage of it-
erations in collision, based on the outliers, because the medians remain at 0%. Otherwise,
in the holonomic case, the trend is: the higher RestAccScale, the lower the percentage of
iterations in collision.

It can also be deduced that, compared to the ComfortRadScale parameter, when
RestAccScale varies, not much impact is produced, exception made for the outliers. The
effect for the DDR is to increase the average time per iteration, and decrease the total
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number of iterations.
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Figure 3.16: Performance metrics by varying the parameter RestAccScale for a DDR. The
x axis shows the scale of maximum accelerations for the robot with respect to its maxi-
mum control velocities. With 1.8 in the base case.

Variation of the parameter Segments

In Fig. 3.17, we can see that the number of segments in which trajectories are discretized
has the same effect in the holonomic case and in the DDR case. The distributions are
practically the same: the greater the number of segments, the greater the average time per
iteration. In the same way, the number of segments practically does not influence the total
number of iterations necessary to reach the Goal.
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Figure 3.17: Performance metrics by varying the parameter Segments for a DDR. The x
axis shows the number of segments (chords) used for the predictions. With 5 in the base
case.

Variation of the parameter τ

Performance metrics by varying the parameter τ , see Fig. 3.18, generally show a lower
percentage of conflicting iterations, having the same tendency as in the holonomic case.
The average time per iteration also shows the same tendency in both cases: this metric
is not altered much when increasing τ , and the data follow very similar distributions.
The total number of iterations also has the same tendency in both cases: the median of
each configuration is close to 150 iterations. The difference between both cases is the
magnitude of the outliers, although it is not significant.
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Figure 3.18: Performance metrics by varying the parameter τ for a DDR. The x axis shows
the duration in seconds of predictions. With 5.0 s in the base case.

Variation of the parameter ∆t

The effect of the parameter ∆t is shown in Fig. 3.19. The percentage of iterations in
conflict has the same tendency in the holonomic robot and the DDR when varying this
parameter. In both cases, increasing this parameter reduces the value of the metric, but
with ∆t = 0.75 s, in both cases the magnitude of the outliers is increased.

Both the average time per iteration and the total number of iterations to reach the Goal,
show the same tendency in both cases. In the first of these metrics, the only apparent
significant difference is in the magnitude of the outliers, while in the last one, even the
outliers show a similar distribution.
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Figure 3.19: Performance metrics by varying the parameter ∆t for a DDR. The x axis
shows the duration in seconds of this parameter. With 0.35 s in the base case.
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Chapter 4

Probabilistic Approach

4.1 Introduction
Up to now, we have worked with deterministic predictions, i.e., the robots have the notion
that the mobile obstacles will follow exactly the predicted trajectories. In the probabilistic
modelling presented in this chapter, we suppose that we have richer information, namely
a full distribution on the possible trajectories followed by the mobile agents. At some
time t, we assume that we are able to maintain the prediction over one mobile obstacle
trajectory. Let us index the mobile obstacles with o. The model that we use for that has
the following form, which is a sum over M different prediction models:

p(po(t)) =
∑
m∈M

p(po(t)|m)p(m)

where po(t) are potential trajectories of the mobile obstacle o at time t, and m indexes the
different models. To simplify the use of this distribution, we obtain a series of trajectories,
each represented by a set of points (x, y), whose uncertainty is represented by variances
along each coordinate.

Now let us suppose a hypothetical velocity vA(t) for the robot A, that will be taken at
t and kept up to infinity. We want to know the probability that this velocity will end in a
collision with one of the present agents, at some time t′ > t. Hence, we want to determine
the probability

p(ct,∞ = 1|vA(t)).

Let us suppose that the robot is sharing its workspace with nOmobile obstacles. Then,
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p(ct,∞ = 1|vA(t)) = 1− p(ct,∞ = 0|vA(t)) (the complement event, i.e., that no collision will occur)

= 1−
nO∏
o=1

p(ct,∞o = 0|vA(t)) (no collision with any of the mobile obstacles)

= 1−
nO∏
o=1

(1− p(ct,∞o = 1|vA(t)))

where ct,∞ = 1 is the event that there will be some collision between t and∞, and ct,∞o = 1
is the event that there will be collision between the robot and the mobile obstacle indexed
by o, between t and ∞. Now, by making the mobile obstacle velocity appear and by
supposing (first) that the mobile obstacle maintains its velocity constant, we have

p(ct,∞o = 1|vA(t)) =

∫
vo

p(ct,∞o = 1|vA(t),vo)p(vo)dvo

where p(ct,∞o = 1|vA(t),vo) is the probability of collision with mobile obstacle o, at some
time after t, for a robot having velocity vA(t) at t and keeping it, while o keeps its velocity
vo. Now, in those conditions, the probability p(ct,∞o = 1|vA(t),vo) is binary, depending on
the value of vA(t): 1 when vo is inside a velocity obstacle generated by vA(t), 0 otherwise;
hence, we can write

p(ct,∞o = 1|vA(t)) =

∫
V Oo|A

p(vo)dvo,

where V Oo|A is the velocity obstacle generated by the robot (at pA(t), with velocity vA(t))
on the mobile obstacle o (at po).

We end up with the following expression for the probability of collision with some
mobile obstacle, for a robot maintaining its velocity at vA(t), starting in t,

p(ct,∞ = 1|vA(t)) = 1−
nO∏
o=1

(1−
∫
V Oo|A

p(vo)dvo).

Note that we can also write it:

1− p(ct,∞ = 1|vA(t)) =
nO∏
o=1

(1−
∫
V Oo|A

p(vo)dvo) (4.1)

and by taking the log of the previous expression

log(1− p(ct,∞ = 1|vA(t))) =
nO∑
o=1

log(1−
∫
V Oo|A

p(vo)dvo). (4.2)
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This expression is obviously untractable, but here we give some hints on how to esti-
mate this.

First of all, the robot velocities vA(t) may be discretized in a regular grid. This grid
should not be too large because we are only concerned by selecting velocities around the
current robot velocity. We name this grid as GridA(t), and it represents (in a discretized
way) the Attainable Cartesian Velocities (ACV)[13], at current time t.

Furthermore,

• the time horizon can be set finite as τ and the reasoning will be the same as above;

• the terms
∫
V Oo|A

p(vo)dvo can be computed fast, e.g., by sampling (Monte-Carlo).

4.2 Monte-Carlo implementation
A sampling method can give a relatively efficient way to approximate the integral

∫
V Oo|A

p(vo)dvo

of Eq. 4.2. For easiness in the explanations, let us first consider that only one mobile ob-
stacle, indexed by o, is being described by the distribution of its current velocity (not a
whole predicted trajectory).

Refer to figure 4.1 below. The current robot position is represented by the point pA.
The mobile obstacle position and velocity being uncertain, its distribution is represented
by samples, indexed with indices between parenthesis. Given the (fixed) robot position
pA, then each sample (j) of the mobile obstacle o position/velocity gives rise to a velocity
obstacle defined by the mobile obstacle candidate velocity vo(j) and its position po(j) .

In Fig. 4.1, for one mobile obstacle o and for two samples (1) and (2), the correspond-
ing velocity obstacle generated by the robot has been drawn. We focus on the holonomic
case, so we depict the ACV as a rectangle. Note that each of the VOs generated on the
samples allows to generate a forbidden region for the robot velocity where the translated
versions of the VO may include the velocity vo(i) . Those regions intersect the ACV along
some shape (which has been drawn in green and red). Now, imagine that the ACV is reg-
ularly sampled. Note that this is a second sampling process among candidates velocities
for the robot, represented as cells indexed by k in the grid GridA(t).

Then, to evaluate
∫
V Oo|A

p(vo)dvo, we use a Monte Carlo approximation:∫
V Oo|A

p(vo)dvo ≈
1

N

N∑
j=1

IV O
o(j)|A

(vo(j)) (4.3)
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Figure 4.1: Sampling approach for the probabilistic version. ACVo(1,2)(t) corresponds to
the ACV of o, generated when processing these two samples, and assuming the same
restrictions on velocity of A.

where N is the number of samples and IV O
o(j)|A

(vo(j)) = 1 if and only if vo(j) is inside
the V Oo(j)|A, 0 otherwise. With the geometric approach described above, this sum can be
evaluated sample by sample: each sample is processed, and the colored region computed
above will allow to update the cells Grid

(k)
A (t) where a collision occurs. The indicators

above are used to increment a counter associated to each of it. When all the N mobile ob-
stacle velocity samples have been processed, we have at each cell Grid

(k)
A (t) the estimate

of 1
N

∑N
j=1 IV Oo(j)|A

(vo(j)).

The geometric approach described above can be simplified as illustrated in Fig. 4.2:
instead of considering the velocity obstacle generated by the robot on the mobile obstacle,
one can see from the figure that on the reverse way, it is possible to reason on the velocity
obstacles generated by each mobile obstacle sample on the robot. The principle is the
same: each VO intersects the ACV along some shape; once this shape is determined, it
becomes possible to iterate on the affected cells of GridA(t) to update the corresponding
probability of collision and to deduce the approximation of Eq. 4.3.
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Figure 4.2: Simplified version of sampling. Note that ACVA(t) is the same as ACVo(1,2)(t)
rotated by π rads. That is because V OA|o(j) and V Oo(j)|A are the same, but in the opposite
direction.

4.3 Extension to piecewise linear mobile obstacle
trajectories

Starting from the explanations above, we can first generalize them to the case the veloc-
ities of the mobile obstacles are constant on intervals [τi, τi+1] with τi+1 > τi. The deriva-
tions are quite similar, and the only difference is that the velocity obstacle is a truncated
cone delimited by arcs of circle on its extremities, as seen on Chapter 1. The figure 4.3 il-
lustrates this principle for the case of two samples of a mobile obstacle position/velocity
in [τi, τi+1]. Note that the underlying algorithm will allow to estimate
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Figure 4.3: Extension to the update of the probabilities of collision on some interval
[τi, τi+1].

1− p(c[i] = 1) =
nO∏
o=1

(1−
∫
V O

τi,τi+1
o|A

p(vo)dvo)

≈
nO∏
o=1

(1− 1
N

∑N
j=1 IV Oτi,τi+1

o(j)|A
(vo(j)))

≈
nO∏
o=1

(1− 1
N

∑N
j=1 IV Oτi,τi+1

A|o(j)
(vA(t)))

where p(c[i] = 1) ≡ p(cτi,τi+1 = 1|vA(t)) for simplification, and V Oτi,τi+1 refers to the trun-
cated velocity obstacle. Note that the position to take into account for this velocity obsta-
cle is the one at t+ τi.

Given a linear trajectory of a mobile obstacle, discretized in s segments, we can gen-
eralize the previous considerations for the two first time intervals, we have:

1− p(c[1,2] = 1) = p(c[1] = 0) + p(c[2] = 0)− p(c[1] = 0) ∗ p(c[2] = 0),

then, for the first three time intervals:
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Figure 4.4: Top: one predicted trajectory model m, discretized in two segments between
points p

(m),τ1
o , p

(m),τ2
o and p

(m),τ3
o . Bottom: in black, the second chord of the discretiza-

tion. Five pairs of points π1, π2 sampled for the segment between times τ2, and τ3. The
ellipses in gray represent the uncertainty in the position, described with Gaussian normal
distributions in 2D.

1− p(c[1,3] = 1) = p(c[1,2] = 0) + p(c[3] = 0)− p(c[1,2] = 0) ∗ p(c[3] = 0),

and finally for all the s segments of the predicted trajectory:

1− p(c[1,s] = 1) = p(c[1,s−1] = 0) + p(c[s] = 0)− p(c[i,s−1] = 0) ∗ p(c[s] = 0).

Now, referring to equation 4.3, for a single obstacle o, and for each chord (segment)
of one of its given prediction models m, each sample (j) is generated with the follow-
ing steps: select two points, π1, π2, around the predicted points for the time span τi, τi+1

in which the chord is traced, (p
(m),τi
o and p

(m),τi+1
o ), according to Gaussian distributions,

with the points as means, and with their variances (σ
(m),τi
ox )2, (σ

(m),τi
oy )2, and (σ

(m),τi+1
ox )2,

(σ
(m),τi+1
oy )2 associated to them. More formally, π1, π2 are sampled according to

N(p
(m),τi
o , ((σ

(m),τi
ox )2, (σ

(m),τi
oy )2)) and, N(p

(m),τi+1
o , ((σ

(m),τi+1
ox )2, (σ

(m),τi+1
oy )2)), respectively. See

fig. 4.4 bottom.

All of the above holds for a single trajectory model, with different segments and with
uncertainty in po(t) and vo(t). Suppose now that we haveM predicted trajectory models,
each with an associated occurrence probability. How to compute the grid while taking



CHAPTER 4. PROBABILISTIC APPROACH 69

into account these models? The procedure can be done in a relatively simple way: do
exactly the above, but for each sample, randomly choose a model m, according to the
probability associated with it. The complete procedure to obtain voptA is shown in the fol-
lowing section.

4.4 Proposed algorithm

The algorithm to find voptA in the probabilistic approach is very different from the deter-
ministic one. In this approach enter new notions such as the discretization of the robot
velocities in a grid and the use of a threshold, which refers to the maximum collision
probability value that we are willing to take when choosing the optimal velocity. Also,
the way we select the best candidate velocity is through a BFS, (Breadth-first search) [24],
starting in the nearest cell, or the cell containing vprefA , and ending whenever a probability
inferior to threshold is found.

The algorithm is divided into two large parts: the first, contemplated in lines 1 - 13,
consists of filling GridA(t) with the estimated probability of collision, induced by the tra-
jectory prediction models of the nO obstacles closest to the robot. The second part of the
algorithm, lines 14 - 24, consists of choosing the optimal velocity for the robot, consider-
ing the constraints on the velocity space.

Below is the algorithm and the description of each operation. As input parameters we
have the following:

τ : Duration of predictions.

s: Number of segments into which the predicted trajectories are divided.

maxV elA: Maximum attainable velocity by robot A.

threshold: the maximum collision probability value that we are willing to take when
choosing voptA .

N : Number of samples to estimate
∫
V O

τi,τi+1
o|A

p(vo)dvo.

cols, rows: Dimensions of GridA(t).

nO: value of the maximum number of obstacles that the robot can observe, that is, for
which the robot can estimate their positions and velocities. This value is set de-
pending on the memory and computational capacity available.

O: The set of obstacles visible by the robot, where each o ∈ O has its own trajectory
prediction models within a time horizon τ .
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Algorithm 2 Algorithm for choosing the optimal velocity

Input: τ , s, tc, maxV elA, threshold, N , cols, rows, nO, O
Output: voptA

1: compute ACVA(t) and discretize it into GridA(t), a matrix of cols× rows
2: build the s time span grids TSGA(t), matrices of cols× rows
3: for all the nearest nO mobile obstacles in O, indexed by o do
4: Receive the M trajectory prediction models, representing the next time span τ
5: for j = 1→ N do
6: Randomly select from M a model m
7: for i = 1→ s do
8: Generate sample points and estimate a position and velocity of o: p

(m),τi
o(j) , v

(m),τi
o(j)

9: Generate the velocity obstacle V Oτi,τi+1

A|o(j)

10: if distance(V Oτi,τi+1

A|o(j) , vA(t)) < ‖maxV elA‖ ∗ tc then
11: Intersect V Oτi,τi+1

A|o(j) with the ACVA(t) and deduce the updatable cells (k)

12: For all the updatable cells, update TSG
i,(k)
A (t) with 1

N

∑N
j=1 IV Oτi,τi+1

A|o(j)
(v

(k)
A (t))

13: Update the value of 1 −
nO∏
o=1

(1 − 1
N

∑N
j=1 IV Oτ

A|o(j)
(vA(t))) on GridA(t), with the con-

tribution of o on each TSGA(t)
14: calculate the preferred velocity vprefA

15: calculate the cell corresponding to vprefA , Grid
(pref)
A (t)

16: repeat
17: resultCell = BFS(Grid

(pref)
A (t), threshold)

18: if resultCell is valid then
19: return convToVel(resultCell)
20: else
21: Subtract from GridA(t) the contribution of TSGs

A(t)
22: s = s− 1
23: until s ≤ 1
24: return the global minimum found with BFS
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The algorithm is detailed below. In line 1, we compute ACVA(t), as described in pre-
vious chapters. Then, GridA(t) is built as a matrix of cols × rows. This matrix stores the
probability of collision for the speeds achievable by the robot. The greater the number
of cells, the greater the precision of the calculation. It is initialized with all its cells in 0,
because it represents the probability of collision with any of the obstacles, i.e., p(c[1,s] = 1),
before considering any of them.

In line 2, we build s grids, similar to GridA(t), which represents the contribution of the
nO nearest obstacles in the s time lapses. We call these grids TSG i

A(t), where the index i,
represents the i− th segment.

The code between lines 3 - 13 fills GridA(t) with the probability of collision, deduced
from the predictions for the nO obstacles. In line 3, one loop is started to iterate over the
nO obstacles closest to the robot A. In line 4, the data corresponding to the M trajectory
prediction models, for the time period between [t, t+ τ ] are received and processed.

To sample the V Os, a loop for j = 1 → N is initiated. The first instruction in the loop
is to randomly select a model m from the M received. The selection is made according
to the probability of occurrence associated to them, i.e., the higher it is, the greater the
probability of being chosen.

Lines 7 - 12 result in the contribution of the selected model m for the obstacle o, over
each time lapse indexed by i. For each of them, a probability of collision, induced by o,
accumulates in TSG i

A(t). For this, we first estimate a position and velocity, deduced from
two points π1, π2, as mentioned above, see Fig. 4.4. Once we have p

(m),τi
o(j) , v

(m),τi
o(j) , we de-

duce the V O (line 9).

In line 10, we do a quick test to rule out generated V Os that do not have influence on
the ACVA(t). The test is not completely accurate, since it considers the distance to the V O
from its centroid, and not from its closest point to pA. In this way, we obtain a reduced
set of V O, which leads to a decrement of the number of calculations of intersection with
ACVA(t). After passing the test, in line 11, we intersect the V O with the ACVA(t) to de-
duce the set of cells, indexed by k, within TSG i

A(t) that will be affected. In line 12 we add
on each affected cell TSG i,(k)

A (t) the value 1
N

∑N
j=1 IV OA|o(j) (v

(k)
A (t)).

Once we have the distributions of probability of collision with o, for each of the

s segments, represented in the TSGs, we update on line 13 the value of 1 −
nO∏
o=1

(1 −
1
N

∑N
j=1 IV OA|o(j) (vA(t))), i.e, p(c[1,s] = 1) on GridA(t), with the contribution induced by

the obstacle o.
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Finally, to return voptA , we first calculate vprefA in line 14, i.e., the velocity with magni-
tude spref and in direction to pGoalA . Once calculated, we must now find Grid

(pref)
A (t), i.e.,

the cell within GridA(t) closest to vprefA , or containing it.

In lines 16 - 23, we perform a BFS over GridA(t), starting from Grid
(pref)
A (t), and we

return the velocity corresponding to the center of the first cell found with p(c[1,s] = 1) ≤
threshold.

If a cell that meets this condition is not found, we relax the constraints in time (line 21),
i.e., we remove the contribution to the probability of collision that generates the segment
of the furthest trajectory in the prediction model. This process is repeated as long as the
number of segments is strictly greater than 1.

In the case that we relax the restrictions until we consider only the first time lapse, and
we can not find a cell with a value less than or equal to threshold in GridA(t), we return
in line 24 the velocity corresponding to the center of the cell with the minimum value. In
case of a tie, we return the velocity corresponding to the center of the cell closest to vprefA ,
i.e., the first one found by the BFS.
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Chapter 5

Implementation and results of
Probabilistic Approach

5.1 Implementation
As data input for the probabilistic model implementation, we use the same plain text for-
mat described in the chapter 3. In this version, we use either all the prediction models
received, or only those with the higher probability of occurrence, by choice in the param-
eters, as opposed to the deterministic model, that only uses the most probable model.
Each model m within the trajectory prediction mixture model for an obstacle o, with du-
ration τ , is described as a sequence of points p

(m)
o , with some uncertainty in their position,

represented by the variances (σ
(m)
oy )2, and (σ

(m)
ox )2, respectively.

One of the main differences with respect to the deterministic approach is that we use
now a grid to represent the ACV, which we name GridA(t). The size of the search space
for vA will depend directly on the number of rows and columns of this discretized ACV.
The more cells we represent in this grid, the more accurate and computationally expen-
sive the calculation of voptA will be. We use the QV O approach to represent the V Os, just
like in the deterministic model (chapters 2 and 3).

As in the deterministic model, we use chords to discretize the predicted trajectories.
Having uncertainty in both the velocity and the position of o over time, we use sampling,
as mentioned in the previous chapter, to estimate probabilities of collision.

Sampling

To build the N velocity obstacles, for the chord (time segment) between the times τi, τi+1,
we draw two points π1, π2, from the distributions N(p

(m),τi
o , ((σ

(m),τi
ox )2, (σ

(m),τi
oy )2)) and,
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Figure 5.1: The V Oswhose centroid is outside the green circle of magnitude ‖maxV el‖∗tc,
will not be taken into account to check their contribution to the ACV.

N(p
(m),τi+1
o , ((σ

(m),τi+1
ox )2, (σ

(m),τi+1
oy )2)), respectively. Then we can easily estimate the ve-

locity of the virtual obstacle, v
(m)
o (t) = π2−π1

τi+1−τi , and its position, p
(m)
o (t) = π1 − v

(m)
o (t) ∗ τi,

and build a velocity obstacle. As explained in the previous chapter, each of these velocity
obstacles contributes 1

N
to the probability of collision for o, over the cells of TSG i

A(t) that
intersect with them.

Because N samples are drawn per chord, the number of generated velocity obstacles
may be very large, so it is necessary to do a quick test to discard samples without influence,
as mentioned in line 14 of Algorithm 2, to process the intersections of a smaller number of
velocity obstacles with the ACV. The test consists of drawing a circle centered on pA, of ra-
dius ‖maxV elA‖∗tc. This is a conservative way to take into account the reachable velocity
obstacles, by considering the maximum speed of the robot A, in any direction, during the
time tc. As mentioned in the previous chapter, this method is not entirely accurate, but it
does give a quick and light notion of which V Os are worth taking into account. See Fig. 5.1.

The process to deduce which cells of TSG i
A(t) will be affected by each velocity obsta-

cle, consists of the following steps:

1: Define a segment of horizontal line that we call level; at the beginning, level will cross
through the center of all cells in the first row of GridA(t).

2: Find the start and end indices, on the columns that contain some portion of the QV O
over the current row, i.e., where it intersects any of the segments that delimit QV O,
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or with the edges of the grid.

3: Store the indices of the columns start and end, and the index of the row.

4: Increase the level line segment to center it on the next row.

5: Repeat the steps 2− 4, until finishing with the rows.

To add the contribution of each obstacle to the probability of collision, first, all the cells
of each TSG i

A(t) are initialized with a probability of collision 0.0, i.e., p(c[i] = 1) = 0. For
each sampling process, we use a temporary grid, which we call tmpGrid, also initialized
with values in 0.0. After each sample is drawn, each affected cell is updated, adding
the value of 1

N
to it. Once we finish the sampling process, we update TSG i

A(t) with the
probability of collision with both the current obstacle, or with any of the obstacles seen
before, as described below. Let a be the probability of collision with the obstacle o1, and
b the probability of collision with another obstacle o2, then the probability collision with
either of the two obstacles is defined as p(a∨b) = p(a)+p(b)−p(a∧b). Being non-exclusive
events, there may be cases in which the choice of a speed leads to collision with both at
the same time. Here, p(a∧ b) is the probability that both events occur, and in this case it is
given by p(a ∧ b) = p(a) ∗ p(b). Then, to add the contribution, we just update the value at
each cell k in the following way:

TSG
i,(k)
A (t) = TSG

i,(k)
A (t) + tmpGrid(k) − TSG

i,(k)
A (t) ∗ tmpGrid(k).

Once the process of adding the contribution of each obstacle in the different TSGs is
finished, the probability of collision is updated in a similar way, by adding the contribu-
tion of all the TSG i

A(t) to GridA(t):

Grid
(k)
A (t) = Grid

(k)
A (t) + TSG

i,(k)
A (t)−Grid

(k)
A (t) ∗ TSG i,(k)

A (t).

When necessary, we relax the constraints in time. This is done (as in the deterministic
case) whenever no cell representing a velocity with a collision probability less than or
equal to threshold can be found. To do this, we withdraw the contribution of a TSG i

A(t)
in GridA(t). For each cell k, we apply the following:

Grid
(k)
A (t) =

Grid
(k)
A (t)− TSG

i,(k)
A (t)

1− TSG
i,(k)
A (t)

.

In this case, we must validate the denominator to avoid numerical errors, i.e., when
1− TSG

i,(k)
A (t) ≈ 0.
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Figure 5.2: Above: a robot and a human, left visualization of GridA(t) with temperature
gradient colors, right visualization without GridA(t). Bottom: Zoom on the grid. In ma-
genta, we depict voptA chosen for the next iteration.

5.2 Experiments with Simulator
As in the deterministic model, the visualization of the experiments was carried out using
OpenFrameworks development toolkit. Fig. 5.2 shows a visualization example. In this case,
only one human is considered, with three trajectory prediction models, which consist of
a series of points in the cartesian plane, and are shown as positions with magenta circles.
The velocity obstacles generated in the sampling are represented as polygons of yellow
outline and without filling. The grid that discretizes the ACV is represented in tempera-
ture color scale, i.e., the greater the probability of collision, the bluer is the color; on the
contrary, the higher the collision probability, the redder is the color.

In fig. 5.2, vprefA is represented by a blue line starting from the center of the robot. In
red, one line represents vA. Finally, in magenta, we depict voptA chosen for the next iter-
ation, i.e., the velocity with probability less than or equal to threshold, 0.2 in this case,
closest to vprefA .

The experiments with the probabilistic model were carried out with holonomic robots,
and the extension to differential drive robots remains as future work.
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Setup of the experiments

In order to measure the performance of the algorithm, as in the deterministic model, we
define a base case. Since the robots and the experiments are similar, we use the same val-
ues in the configuration parameters shared by the two models (see Chapter 3). To achieve
a fair comparison, the extra parameters for this model were adjusted to obtain a similar
average computational time per iteration as in the deterministic case. We established a
maximum time of 2000 seconds to reach the goal, and in case of exceeding this time, the
experiment is considered finished.

Recall that the experiments were performed in a simulated environment consisting
of a space of squared shape and dimensions 400m2, where a set of randomly arranged
humans move. The robot is placed on the circle inscribed to the environment, looking
towards the center of it. The goal position pGoalA is also on the circle, in a position dia-
metrically opposite to the initial position of A. Humans were simulated with prediction
mixture models involving three models, with associated occurrence probabilities of 0.3̄,
0.2̄ and 0.2̄. The only shared parameter that was not configured with the same value as in
the deterministic model is the number of humans. When using three models per human,
the density of velocity obstacles is three times higher, therefore, to have a fair comparison,
we use about 1

3
of the humans in each configuration.

The following list shows the extra configuration parameters that were used for the
experiments and their default value (base case):

nH : the number of humans in the environment, (50 humans).

rows, columns: The dimensions of the grid. (140 and 140, resulting on 19600 cells)

samples: The number of samples to estimate the probability of collision induced by a
velocity obstacle, (100).

threshold: The maximum collision probability value that we are willing to accept when
choosing the optimal velocity, (0.2).

timeToCollision: The time we consider to perform the discard test, (2.5).

In order to compare the performance of the robot with different setups, the experi-
ments were performed by varying each of the parameters mentioned above, in addition
to the parameters common with the deterministic case, in at least five different configura-
tions. We use the same three metrics to measure the overall performance of the algorithm:
Percentage of iterations in conflict (collision); Average time per iteration (measured in millisec-
onds); and Number of iterations made until reaching the goal. Below we show a summary of
the results obtained.
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As in the deterministic model, the algorithm was executed 8 thousand times with the
base case setup, in order to obtain a sufficiently dense data set to evaluate the effect of the
algorithm parameters.

Fig. 5.3 shows distributions of the metrics similar to the ones in Fig. 3.4. For exam-
ple, at least 75% of the executions in the base case obtained 0% of iterations in collision, a
mean of 0.107%, and the maximum is 4.02%.

In Fig. 5.3.center (average time per iteration), quartiles Q1, Q2, Q3, have values of
74.31, 77.95, 81.58, respectively, while in the deterministic case they have values of 71.75, 73.25, 75.8,
respectively. The mean has a value of 77.99 (ms), and in the deterministic case 71.77 (ms).
Due to the manual adjustment of extra configuration parameters, the mean time per it-
eration tends to be slightly higher than in the deterministic model, but generally close
enough to make comparisons between both.
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Figure 5.3: Three boxplots representing the distribution of the performance metrics pro-
posed on the base case.

In Fig. 5.3.right (total number of iterations), quartiles Q1, Q2 (median), Q3, have val-
ues of 175, 225, 291, respectively, while in the deterministic case they show the values of
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136, 151, 174. In the probabilistic model, the number of iterations to reach the goal is be-
tween 25% and 70% greater, with this base configuration. This is because the robot has
more constraints in the velocity space, induced by the sampling of V Os. Also, not being
a boolean approach, but continuous, the robot takes velocities of smaller magnitude. Be-
low is a summary of the results obtained by varying the configuration parameters of the
experiments.

Variation of the parameter nH

The number of simulated humans directly influences the density of the environment.
Since its dimensions are constant (20m ∗ 20m), the density corresponds to nH

400
humans
m2 . Re-

calling that the base case has a total of 50 humans, then its density is 0.125humans
m2 . The

values in which the parameter nH was varied and their respective densities are the fol-
lowing: 17: 0.0425humans

m2 ; 25: 0.0625humans
m2 ; 34: 0.085humans

m2 ; 50: 0.125humans
m2 (base case); 67:

0.1675humans
m2 .
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Figure 5.4: Performance metrics on the testing sets by varying the parameter nH. The x
axis shows the value of the human density of the environment, measured in humans

m2 . With
0.125humans

m2 in the base case.

In Fig. 5.4, we can see that in this approach, by increasing the density of predicted
trajectory models (remember that each human now provides 3 models), the metrics are
negatively affected, as in the deterministic approach. But in this case, the increase in den-
sity affects less the metrics. Fig. 5.4 top shows that the percentage of iterations in conflict
is negatively affected, as expected, by increasing the density of the environment.

The average time per iteration is also affected by increasing the density, as in the de-
terministic model. By generating more velocity obstacles, the calculation of the optimal
velocity is slowed down, since the filling of the grid is carried out with more operations.
Coupled with this, the denser the environment, the more likely it is to relax the constraints
in time, adding more complexity to the iterations. In Fig. 5.4 center, we can see that the
average time per iteration remains acceptable, i.e., in all configurations, Q3 stays below
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∆t = 350 ms.

The number of iterations made until reaching the goal also increases as the density of
humans in the environment increases. In Fig. 5.4 bottom, we can see that in experiments
with lower density, the number of iterations to reach the goal is relatively small, with
outliers smaller than 350.

Variation of the parameter nOPercentage

Fig. 5.5 shows the behavior of the three performance metrics by varying the parame-
ter nOPercentage. Recall that the base case takes into account 50 humans, i.e., 150 pre-
diction models, of which nO corresponds to 50%. The values in which the parameter
nOPercentage was varied are the following ones: 10%: 5 humans; 25%: 12 humans; 50%:
25 humans (base case); 80%: 40 humans; 100%: 50 humans.

Fig. 5.5 top shows that, in general, the percentage of iterations in conflict is mostly 0%
when the robot can see at least 10% of the humans.
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Figure 5.5: Performance metrics varying the parameter nOPercentage. The x axis of the
three graphs shows the percentages of nO over the number of humans, (50). With 50% in
the base case.

Fig. 5.5 top shows that, in general, the percentage of iterations in conflict is mostly 0%
when the robot can see at least 10% of the humans.

In Fig. 5.5 center, we observe that, when increasing the percentage of humans that
the robot can see, the average time of computation per iteration increases, as expected,
because a greater number of humans will produce a greater number of candidates, and in
the same way, ACVA\V Oτ

A can be mostly occluded, producing more relaxation steps. The
distributions when varying this parameter, both in the deterministic model and in the
probabilistic one, are very similar, but the outliers are distributed closer to the median. In
general, in the base case, the average time per iteration is acceptable (less than ∆t), and in
the worst case, the maximum outlier remains less than ∆t.
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Finally, as in the deterministic model, in Fig. 5.5 bottom, we can see that the number
of iterations to reach the goal is practically unaffected by varying the number of visible
humans.

Variation of the parameter ComfortRadScale

The fig. 5.6 shows the behavior of the three performance metrics by altering the param-
eter ComfortRadScale. Recall that, in the base case, we have used a scale of 1.1, with
respect to rA. The values in which the parameter was varied are the following: 1.0; 1.1
(base case); 1.5; 1.8; 2.0.
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Figure 5.6: Performance metrics by varying the parameter ComfortRadScale. The x axis
shows the scale of the comfort radius with respect to the radius of the robot. With 1.1 in
the base case.
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In Fig. 5.6 top, we observe that the median of the percentage of iterations in conflict,
for all the configurations of the comfort radius, shows a value of 0%. Intuitively, by in-
creasing the comfort radius of the robot, its space of non-conflicting velocities is more
restricted, since V Os of greater dimension are generated. But, when taking into account
the uncertainty, the robot acts in a more prudent way, causing a smaller number of itera-
tions with collision.

The average time per iteration, in configurations of comfort radius greater than the
radius of the robot, are practically invariant and slightly greater than in the deterministic
case. See fig. 5.6 center.

The size of the comfort radius influences, in much the same way as for the determin-
istic model, the total number of iterations to reach the goal, as seen in Fig. 5.6 bottom.

Variation of the parameter RestAccScale

Fig. 5.7 shows the behavior of the three performance metrics by altering the parameter
RestAccScale. The values in which the parameter RestAccScale was varied are the fol-
lowing: 1.0; 1.2; 1.5; 1.8 (base case); 2.0.

The median percentage of iterations in collision, using configurations of 1.0 and 1.5
for this parameter are slightly better than in the deterministic case. In Fig. 5.7 top it can
be seen that, in all configurations, the median percentage of iterations in collision is equal
to 0%.
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Figure 5.7: Performance metrics by varying the parameter RestAccScale. The x axis
shows the scale of maximum accelerations for the robot with respect to its maximum
control velocities. With 1.8 in the base case.

Both the average time per iteration, and the total number of iterations, are not very
affected, as in the deterministic model, see Fig. 5.7 center, bottom.

Variation of the parameter Segments

Higher numbers of segments (chords) in which the predicted trajectories for dynamic ob-
stacles are divided, generate better approximations of the V Os for non-linear trajectories.
Intuitively, by having more segments, we can have a better estimation for voptA . However,
because it gradually increases the complexity of the calculation, it is convenient to use
a conservative approximation that does not compromise the average time per iteration.
Fig. 5.8 shows the behavior of the three performance metrics by altering the parameter
Segments. The values in which the parameter Segments was varied are the following: 1
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(conventional V O); 2; 3; 4; 5 (base case); 6; 7; 8; 9; 10.
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Figure 5.8: Performance metrics by varying the parameter Segments. The x axis shows
the number of segments (chords) used for the predictions. With 5 in the base case.

The percentage of iterations in collision is not greatly affected by the number of seg-
ments in which the trajectories are discretized. The median of all configurations has the
value of 0%, except in the 10 − segment configuration. In that case, it takes a value of
around 1%, although the increase is very small. It occurs because, having a greater num-
ber of segments, the relaxation of the constraints considers, in its last step, for the base
case, a time of prediction of only 0.5 seconds, i.e., the time corresponding to less than two
iterations. See fig. 5.8 top.

The average time per iteration is gradually affected by the number of segments. This is
because the number of steps in the constraint relaxation process is equal to Segments− 1.
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Moreover, each step increases the execution time considerably, when the number of cells
is large. Unlike the deterministic model, the outliers, in the base case, never exceed, and
are even much lower than, ∆t. This is very important because it gives us greater certainty
that the calculation of voptA will be done on time, which, in the deterministic model, we
only achieve with Segments ≤ 5. See fig. 5.8 center.

The variation of the number of segments is interesting in this case, since for Segments =
1 (conventional V O) and Segments = 2, the model does not reach its goal in most exper-
iments, but it does reach it for 3 or more. For these configurations, the behavior is very
similar to that of the deterministic model, since a tendency to increase the number of seg-
ments is not clear. See fig. 5.8. The cases in which the robot does not reach the goal are
caused by the duration in which a segment is traced, as well as by the process of relax-
ation of the constraints. In this approach, no relaxation is performed on nO, only in time,
by removing the furthest segments of the predicted trajectory. In the case of conventional
V O, the restrictions are never relaxed, and for the case of 2 segments, the duration of
the predictions, after relaxation, is 2.5 seconds. In both cases, it is not enough to find a
velocity that brings the robot closer to its goal, so it prefers to take a safe velocity.

Variation of the parameter τ

Fig. 5.9 shows the behavior of the three performance metrics when altering the parameter
τ . The values in which the parameter τ was varied are the following: 2.5 s; 3.5 s; 5.0 s
(base case); 7.5 s; 10 s.
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Figure 5.9: Performance metrics by varying the parameter τ . The x axis shows the dura-
tion in seconds of predictions. With 5.0 s in the base case.

The percentage of iterations in collision, for the different configurations of τ , shows a
mean of 0%, i.e., it is not a crucial parameter for this metric, as seen in. Fig. 5.9 top.

Unlike the deterministic model, a tendency in the average time per iteration is clearly
visible when the parameter τ varies. The larger it is, the slower the calculation of voptA .
Although the average time per iteration is greater with this model, the outliers remain
below the value of ∆t, contrary to the first. Also, the total number of iterations increases
as the value of τ increases, see fig. 5.9 center, bottom.
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Variation of the parameter ∆t

Fig. 5.10 shows the behavior of the three performance metrics by altering the parameter
∆t. The values in which the parameter ∆twas varied are the following: 0.1 s; 0.25 s; 0.35 s
(base case); 0.5 s; 0.75 s.
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Figure 5.10: Performance metrics by varying the parameter ∆t. The x axis shows the
duration in seconds of this parameter. With 0.35 s in the base case.

Fig. 5.10 top shows that, when varying ∆t, the median percentage of iterations in con-
flict is not affected, taking the value of 0% in all configurations.

In all cases of variation of this parameter, in the deterministic model, the maximum
outliers are always below the value of ∆t, that is, the average time per iteration is always
acceptable. Now, for the probabilistic model, the distributions are very similar, but the
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outliers remain relatively close to the medians, contrary to the deterministic case. See fig.
5.10 center.

Finally, in Fig. 5.10 bottom, one can see that smaller ACV s, caused by lower ∆ts,
cause a higher number of total iterations. The distributions of both the deterministic and
the probabilistic models are very similar, even in their outliers, when varying ∆t.

Variation of the parameters columns and rows

In all the configurations for the experiments, we use the same value for the number
of rows and for the columns. The values in which those parameters were varied, and
the number of cells generated, are the following: 20; 400; 50; 2500; 100; 10000 (base case);
140; 19600; 200; 40000.
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Figure 5.11: Performance metrics by varying the parameters columns and rows. The x
axis shows the number of cells in the grid. With 10000 in the base case.

The percentage of iterations in collision, and the total number of iterations, is not af-
fected by the fineness of the grid, using these values. The first of these metrics shows, in
all configurations, medians equal to 0%. Meanwhile, the number of iterations, also in all
configurations, stays roughly around a single value, which is around 230 iterations. See
fig. 5.11 top, bottom.

The average time per iteration is affected by increasing the number of cells. Because
the dimensions of the ACV are invariable to these parameters, when the discretization
is so fine, adjacent cells represent very similar velocities, and this precision may not be
significant. See fig. 5.11 center.
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Variation of the parameter samples

This parameter allows us to handle the uncertainty of the distribution of the prediction
models. The more samples we draw, the more accurate the distribution estimate will
be. As the sampling process is the most computationally intensive part of the algorithm,
greater precision means also increasing the average time per iteration. The values in
which the parameter samples was varied are the following: 50; 75; 100 (base case); 125;
150.
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Figure 5.12: Performance metrics by varying the parameter samples. The x axis shows
the number of samples. With 100 in the base case.

The number of samples used in the experiments does not affect the median of the dis-
tributions of the results obtained for the first metric. As when varying other parameters,
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the medians take the value of 0% of iterations in conflict. See Fig. 5.12 top.

Fig. 5.12 center shows a linear trend between the average time per iteration, and the
number of samples, which is logical, since the number of generated velocity obstacles per
iteration is samples ∗ segments ∗ nO.

When varying the number of samples, no significant variation in the total number of
iterations is seen. The means of the results obtained for each configuration are roughly
the same, around 210 iterations, as shown in fig. 5.12 bottom.

Variation of the parameter threshold

With the threshold parameter, we choose how risky the robot decisions should be, i.e., the
maximum collision probability that we allow the robot to consider when choosing voptA .
The values in which the parameter threshold was varied are the following: 0.2; 0.2 (base
case); 0.3; 0.4; 0.5.
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Figure 5.13: Performance metrics by varying the parameter threshold. The x axis shows
the value of this parameter. With 0.2 in the base case.

The percentage of iterations in collision in all the configurations of this parameter re-
sults in similar distributions. All of these show medians with 0% of iterations in collision.
Again, this metric is not affected by the variation of the parameters on the base case. See
fig. 5.13 top.

The average time per iteration has no clear trend when the threshold is varied, See
fig. 5.13 center. However, there is a slight increase in the median of the data sets of the
results. Although in theory this metric should decrease if the threshold is increased, the
difference between the means of when threshold takes the values of 0.1 and 0.5, is approx-
imately 5 ms, a very small value to be considered significant.

The total number of iterations does clearly improve when larger threshold values are
used, see fig. 5.13 bottom. This is because the robot acts in a less prudent way when
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choosing voptA , i.e., the search process is more permissive and finds the optimum faster.

Variation of the parameter timeToCollision

The time to collision, in combination with the magnitude of the maximum achievable ve-
locity by the robot, is the parameter we use to quickly and lightly (but imprecisely), dis-
card the V Os that might not have an intersection with the ACV. The higher this parame-
ter, the greater the test acceptance radius. If we configure this parameter with a very low
value, many of the V Os could be discarded incorrectly, causing collisions. The values
in which the parameter timeToCollision was varied are the following: 0.5; 1.5; 2.5 (base
case); 3.5; 5.0.
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Figure 5.14: Performance metrics by varying the parameter timeToCollision. The x axis
shows the duration in seconds of this parameter. With 2.5 s in the base case.
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In fig. 5.14 top, we can see that, with a value of 0.5 seconds in this parameter, it results
in a distribution with a median of approximately 5% of iterations in conflict. That is, this
parameter affects the first metric to some extent, since the other configurations of it show
very similar distributions, all with a median of 0% of iterations in collision.

The average time per iteration shows a linear relationship with the time to collision
chosen. This is because, by increasing the acceptance radius of the test, the number of
velocity obstacles that will be processed increases. The generated velocity obstacles in-
crease their dimensions as they move away from the robot, i.e., they represent velocities
of greater magnitude, and their centroids move away with the same proportion. Assum-
ing that mobile obstacles are evenly distributed, the relationship tends to be linear. See
fig. 5.14 top.

The fig. 5.14 bottom shows an interesting behavior according to the percentage of it-
erations in conflict. When using a value of 0.5, the number of iterations is relatively low,
compared with the other configurations, which present very similar distributions, with a
median of approximately 210 total iterations.

Some additional experiments, with a new base case

In the base case configuration described above, to compare both models, we have used
values that, in our opinion, are very high and do not provide a considerable improve-
ment, due to the iterative calculation of the optimal velocity. Hence, we decided to ex-
ecute some additional experiments, varying these parameters, as well as the threshold,
in order to achieve an improvement in the execution time, and to determine whether a
smaller number of cells and samples could still not compromise the evasion of obstacles.

1000 executions of the algorithm were performed with each of these configurations.
For the base case that we consider now, we use the same values of most parameters as in
the already discussed experiments, and for the parameters that we vary, we consider the
following configuration:

threshold: The maximum collision probability value that we are willing to accept when
choosing the optimal velocity, (0.005).

samples: The number of samples to estimate the probability of collision induced by a
Velocity Obstacle, (20).

rows, columns: The dimensions of the grid. (20 and 20, resulting on 400 cells).
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Variation of the parameter threshold

The values in which the parameter threshold was varied are the following: 0.005 (base
case); 0.01; 0.05; 0.1; 0.15.
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Figure 5.15: Performance metrics by varying the parameter threshold. The x axis shows
the value of this parameter. With 0.005 in the base case.

The variation of threshold, using this new base case, shows a slight improvement in
the distribution of the results. Quartiles Q3 show values close to half a percentage point,
while the median remains at 0%. The most important metric in these comparisons is the
average time per iteration, which presents a considerable improvement in the calculation
of voptA , with respect to the original base case. The original base case showed medians
around 80 ms of time per iteration and, for this new configuration, it is around 4 ms. This
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represents an improvement of 20x the computation speed.

The third metric shows higher values in the medians, compared to the original base
case, with approximately twice the total number of iterations until reaching the goal.

Variation of the parameter samples

The values in which the parameter samples was varied are the following: 10; 20 (base
case); 30; 40; 50.
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Figure 5.16: Performance metrics by varying the parameter samples. The x axis shows
the number of samples. With 100 in the base case.

The performance shown by varying this parameter are very similar to the original base
case. The medians in the first metric show values of 0% iterations in collision. In both base
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cases, an apparently linear relationship can be seen between the number of samples and
the average time per iteration.

The total number of iterations to reach the goal presents medians around 400, which
is approximately double the one of the original base case.

Variation of the parameters columns and rows

In all the configurations for these experiments, we use the same value for the number
of rows and for the columns. The values in which those parameters were varied, and
the number of cells generated, are the following: 10(100); 20(400) (base case); 30(900);
40(1600); 50(2500).
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Figure 5.17: Performance metrics by varying the parameters columns and rows. The x
axis shows the number of cells in the grid. With 1000 in the base case.
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In the same way that varying the other mentioned parameters, the medians of the
resulting data take values of 0% of iterations in collision. The average time per iteration,
and the total number of iterations show distributions very similar to the original base
case, the former being approximately 20x faster than in the original base case, and the
latter showing values approximately equivalent to twice the results with the original case.
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Chapter 6

Conclusions

In this thesis, the problem of robot navigation in crowds has been addressed by using
an approach based on the well known concept ot velocity obstacles. The modeling of
velocity obstacles using what we call Quadrilateral Velocity Ostacles (QV Os) gives us a
conservative approach that does not compromise the behavior of the robot to avoid colli-
sions, because although it unnecessarily restricts some portions of the velocity space, this
is not critical because these portions are small in size. As it is represented by a polygon of
four points in the velocity space, it is very easy and quick to evaluate whether a candidate
for optimal velocity is inside or outside the set of restricted velocities.

The assumed prior knowledge of the trajectory that a mobile obstacle will follow,
within a time span τ , allows the robot to foresee a better strategy to avoid collisions with
that mobile obstacle. Two approaches dealing with the navigation problem have been
proposed, using a deterministic fashion and a probabilistic fashion. In the deterministic
model, it is assumed that the trajectory of the mobile obstacles is really traced as pre-
dicted. In the real world, of course, this is not the case, because mobile obstacles, be they
human or other robots, can change their trajectory unexpectedly. With the deterministic
model that we have proposed, it depends on the capacity of reaction of the robot to prop-
erly handle these situations.

In general, the performance of the deterministic model shows good results, since in
most of the experiments, the median percentage of iterations in collision resulted in 0%,
although some outliers were up to 20%, for the more difficult configurations of the execu-
tion parameters.

The density of obstacles (simulated humans) in the environment greatly affects the
average time by iteration. In the experiments configured with a density of 0.5 humans

m2 , or
when nO, the number of obstacles that the robot can see, is high, i.e., greater than 80% of
the number of humans, the value of the median of the average time by iteration results
just at an acceptable value, i.e., less than or equal to ∆t. It presents, sometimes, outliers
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that are too large and that could slow down the decision making of the robot. This is
one of the most important aspects, because the robot must always be able to calculate an
optimal speed within the duration of the control sampling rate ∆t. Despite these limita-
tions, the deterministic model results in a good approach to solve the problem of collision
avoidance among crowds. It is important to mention that, in the execution of the experi-
ments, the behavior of the robot does not show oscillations like the ones shown using the
conventional V O approach and RV O [9].

The probabilistic model does not present oscillations, since it represents non-binary
values for the choice of voptA , because the probability of collision distribution shows a
smoothed function. This approach presents improvements in the metric of average per-
centage of iterations in collision, in comparison with the deterministic model. This is
because with this approach, the robot has the ability to act while considering the uncer-
tainty in the trajectory predictions of the mobile obstacles.

When looking for the optimal velocity over a simplified representation of the entire
search space, using a grid in the set of attainable cartesian velocities ACV (dynamically
feasible velocities), it is possible to choose velocities not only depending on the preferred
one, but also, if necessary, to prioritize choosing velocities that keep the robot away from
probable collisions.

As previously mentioned, most of the parameters of the probabilistic approach were
adjusted to those of the deterministic model, with 1

3
of the humans used in that model,

resulting in the same number of predicted trajectories. This is to achieve a similar average
time by iteration in both approaches, which allows fairer comparisons in the base case.
After the comparisons, we can observe that the distributions in this metric are practically
the same, differing only in the dimension of the outliers.

One might think that it is not very important to consider the outliers, but sometimes,
in the deterministic case, they show unacceptable values. For example, when varying
the number of segments, we can observe outliers of up to 4 sec of magnitude, when in
this case ∆t = 0.35 seg. In these cases, it is likely that an iteration will not be calculated
within the duration of ∆t, which would cause a chain reaction of delays in computation
time. This is because when applying the calculated velocity, the environment would not
correspond anymore to the one observed before the calculation. Contrary to this, the
probabilistic model does not show outliers with magnitude greater than ∆t, i.e., the cal-
culation of the optimal velocity is always made on time.

The greater the number of cells in the grid, the greater the precision of the choice of
the optimum velocity, and likewise, the estimation of the distribution of the V Os will be
more accurate with a greater number of samples.
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With our second base case, the combination of the parameters threshold, samples,
rows and columns, results in a slightly higher percentage of collision iterations, although
the median distributions remain at 0% and the value of the quartiles Q3 is slightly greater
than 0%. The greatest impact caused by these configurations is the average time per itera-
tion, showing in most cases, a speed-up of 20x. In contrast, the total number of iterations
is, in general, approximately twice the number obtained with the original base case.

A recommended configuration should make a balance between the three metrics,
firstly minimizing the percentage of iterations in conflict, then ensuring that the average
time per iteration is less than ∆t (in all the results this is fulfilled), and third, minimizing
the total number of iterations to reach the goal. Based on the data obtained, a proposal
could be to use threshold between 0.005 and 0.05, to minimize the first metric; rows and
columns with values between 20 and 40, to minimize the number of iterations; finally a
value of 50 in samples, also to minimize the first metric.

6.1 Future work
The work to be done in the future consists of implementing the algorithm in experiments
in the real world. So far, some experiments have been carried out with the help of the
Simulator class using OpenFrameworks. Experiments were also carried out with simu-
lated Turtlebot robots in Gazebo [25], integrating our library with a control based on ROS.

In order to carry out experiments in a real environment, an OptiTrack motion capture
system will be used to measure the robots’ poses in real time and the position of other ob-
stacles within the environment, through an array of 13 cameras that capture the positions
of markers mounted on the robots and obstacles. See Fig 6.1

The ROS (Robot Operating System) framework is used to communicate the calculated
velocities to the robot and to tell the robot perform them. Fig. 6.2 shows the communica-
tion diagram. The communication node receives the poses of the mobile agents/obstacles
as well as the pose of the robot. Then, these data are processed and sent to the Prediction
Node, where they are processed, and as a result, we obtain predicted trajectories in a time
horizon, which are received by the node responsible for calculating the optimal veloc-
ity. Then this velocity is transmitted to the communicator node, which is responsible for
transforming it into control inputs according to the dynamics of the robot (no holonomic
in this case), and finally, the result is sent to the robot for its execution.

It is also intended that, as future work, we implement a version of both approaches,
the determinist and the probabilistic, in 3d environments. The main idea would be the
same: use simple polyhedra to inscribe the V Os, more specifically hexahedra, see fig. 6.3.
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Figure 6.1: The first image shows the real environment of an experiment and one of the
robots. Also, five cameras of the motion capture system are observed. The second image
shows the virtualization of the environment. At the top, we can see the arrangement of
13 cameras, and below four markers: R1 corresponds to a robot and Hi to each human
simulated in this experiment. The third and fourth images shows one of the markers that
are mounted on each moving obstacle and more detailed diagram of TurtleBot 2.
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Communication node

Data stream~330Hz

Prediction node
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Predictions stream~20Hz

Velocity calculation node

Velocity stream ~20Hz

Communicator nodeRobot controller~20Hz
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Figure 6.2: Diagram of communication between motion capture, velocity calculation and
its application on the robot.
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Figure 6.3: Modeling a V O in 3d using a hexahedron, bounded by two times, the red
sphere represents the upper bound, and the blue sphere the lower bound.

In the same way, we would draw samples for the probabilistic model and intersect the
hexahedrons with the ACV , now discretized in cuboids.
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Appendix A

Trajectory Generator

To carry out the experiments, we use synthetic datasets created from a trajectory gener-
ator. Mobile obstacle trajectories are generated that do not interact with each other nor
have defined goals, but instead trace random routes. These trajectories are used as input
data and are complemented with simulated robots with the Simulator class, which interact
with each other using Algorithms 1 and 2 depending on the case.

To generate the trajectory of each simulated mobile obstacle, the environment must
first be set, i.e., the parameters with which the experiment will be carried out must be
established, being the following:

simT : The duration of the simulation.

min∆t: The minimum expected duration between iterations.

max∆t: The maximum expected duration between iterations.

nO: The number of mobile obstacles that are to be simulated.

minX : The lower limit of the x coordinate of the environment.

maxX : The upperr limit of the x coordinate of the environment.

minX : The lower limit of the y coordinate of the environment.

maxY : The upper limit of the y coordinate of the environment.

Given the aforementioned parameters, we can deduce ∆t, the average duration be-
tween iterations. To make the generation of data a bit more realistic, we do not set
∆t(ti) = ∆t, but in each iteration this value is obtained randomly with a uniform dis-
tribution, bounded between min∆t and max∆t, we try to simulate a reading of observed
data from a real environment, which in theory would be obtained with a frequency of ∆t,
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but in practice the duration between iterations fluctuates.

Once the environment has been configured, the nO mobile obstacles are set. Each of
these has the following parameters:

minτc: The minimum expected duration between each change of trajectory.

maxτc: The maximum expected duration between each change of trajectory.

ω: The initial angular velocity.

minω: The minimum angular velocity physically achievable.

maxω: The maximum angular velocity physically achievable.

minω̇: The minimum angular acceleraion physically achievable.

maxω̇: The maximum angular acceleration physically achievable.

`: The initial linear velocity.

min`: The minimum linear velocity physically achievable.

max`: The maximum linear velocity physically achievable.

min ˙̀: The minimum linear acceleraion physically achievable.

max ˙̀: The maximum linear acceleraion physically achievable.

ID: The identifier of the mobile obstacle.

To make the trajectories generated more realistic, τc is established randomly with a
uniform distribution bounded between minτc and maxτc, this value corresponds to the
length of time in which the mobile obstacle will maintain its ω(t) and `(t) speeds, before
it changes its direction. Once that time has elapsed, ω(t) and `(t) are altered, and τc is
calculated again.

The new speeds are then established as: ω(ti+1) = ω(ti) + ∆ω(ti) and `(ti+1) = `(ti) +

∆`(ti). Where ∆ω(ti) = ω̇(ti) ∗ ∆t(ti) and ∆`(ti) = ˙̀(ti) ∗ ∆t(ti). Similarly, the acceler-
ations are obtained at random from uniform distributions bounded between the maxi-
mum and minimum accelerations that are physically achievable by mobile obstacle, i.e.,
minω̇ ≤ ω̇(ti) ≤ maxω̇ and min ˙̀ ≤ ˙̀(ti) ≤ max ˙̀. Both speeds are limited between their
extreme values, i.e., minω ≤ ω(ti+1) ≤ maxω and min` ≤ `(ti+1) ≤ max`.

As a result, the trajectory generator throws a data stream with plain text format, which
contains all the positions and timestamps that every mobile obstacle has throughout the
simulation, labeled by its ID.
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