
 

 

 

Guanajuato, Gto., 6 de Noviembre de 2017 

RIGIDITY FOR COMPLEX ACTIONS 
AND ANTI-KÄHLER MANIFOLDS 

 

T    E    S    I     S 
Que para obtener el grado de 

Doctor en Ciencias 
con Orientación en 

Matemáticas Básicas 
 

Presenta 

Emilio Salcedo Martínez 
 

Director de Tesis: 

Dr. Raúl Quiroga Barranco 

Autorización de la versión final 





Agradecimientos

Son tantas las personas que me han brindado su apoyo en cada etapa de mi vida
que no alcanzaría una hoja para incluirlas a todas.

Comienzo por los más importantes: Mis padres. Desde la vida que me
dieron hasta la educación que me inculcaron, les agradezco infinitamente su
amor incondicional. A mi madre por enseñarme a no rendirme aunque las
circunstancias sean adversas y hostiles. A mi padre por enseñarme la virtud de
la paciencia ante situaciones desesperadas.

Agradezco a mi asesor Raúl Quiroga Barranco, porque aunque suene a cliché,
me tuvo mucha paciencia. Más de la que podría esperar, más de la que merecía.
También agradezco su trato amable y cordial a lo largo de todo el proceso y sus
palabras al final de él. Cambiaron mi mundo.

Dedico esta tesis a todos los seres que una vez formaron parte importante
de mi vida y que ahora ya no están. A esos seres que se fueron de este mundo
y no pude despedirme. Les digo adiós y muchas gracias por todo lo bueno que
aprendí de ustedes.

Agradezco a mis maestros de primaria, que me formaron. A los de secun-
daria, que me transmitieron algo más que conocimientos. A los de preparatoria,
que me escucharon y entendieron. A los de licenciatura que me valoraron. A
los de maestría y doctorado que me enseñaron prácticamente todo lo que sé de
matemáticas.

A mis amigos, los cercanos, los lejanos, los que frecuento, los que no. Los de
la infancia, los recientes, todos a su manera me han dicho lo mucho que confían
en mí. Todos han aportado algo en mi vida pero sobre todo momentos felices.
Gracias por su apoyo en todas mis crisis existenciales que no han sido pocas.

Agradezco al Consejo Nacional de Ciencia y Tecnología (CONACYT) que
sin su apoyo esto nunca habría sido posible.

i





Contents

Agradecimientos i

1 Introduction 1
1.1 Rigidity theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Anti-Kähler manifolds . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Geometric structures 5
2.1 Preliminaries of anti-Hermitian metrics . . . . . . . . . . . . . . . 5
2.2 Anti-Hermitian metrics on manifolds . . . . . . . . . . . . . . . . 11

2.2.1 Comparison with holomorphic metrics . . . . . . . . . . . 13
2.3 Jet bundles and geometric structures . . . . . . . . . . . . . . . . 17
2.4 Product of geometric structures . . . . . . . . . . . . . . . . . . . 20
2.5 Killing fields of manifolds . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Anti-Kähler manifolds and their Killing fields . . . . . . . . . . . 28

2.6.1 Anti-Kähler manifolds . . . . . . . . . . . . . . . . . . . . 28
2.6.2 Killing fields of anti-Kähler manifolds . . . . . . . . . . . 33

3 The centralizer of isometric actions 37
3.1 The g-module structure of H . . . . . . . . . . . . . . . . . . . . 37
3.2 The Lie algebra structure of H . . . . . . . . . . . . . . . . . . . 39
3.3 Integrability conditions for TO⊥ . . . . . . . . . . . . . . . . . . 41

4 Actions of Spin(n,C) 47
4.1 Some facts about so(n,C). . . . . . . . . . . . . . . . . . . . . . . 47
4.2 The centralizer of isometric Spin(n,C)-actions . . . . . . . . . . . 50
4.3 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . 53

5 Bibliography 57

iii





Chapter 1

Introduction

It is not an easy task to speak historically about the collection of ideas, theorems,
books, and articles that lead one to a motivation for a work like this one.

Practically speaking, the story begins with Daniel Mostow. His research on
rigidity played an essential role in the work of three Fields medalists, namely
Grigori Margulis, William Thurston, and Grigori Perelman.

In chronological order, Michael Gromov was born twenty years after Mostow.
His contributions are vast and important, we use his generalization of geometric
structures in this thesis. It is written in Section 2.3 of the next chapter.

Two years after Gromov, Grigory Margulis came to the world. Famous for
his (super)rigidity theorem, he was a pioneer in the mixing of three huge areas
of mathematics: ergodic theory, dynamics and Lie groups. Inspired by Mostow,
his work influenced our fourth historical character.

Robert J. Zimmer, only a year younger than Margulis, improved and gener-
alized the results of Margulis in a broader sense. Margulis has agreed that his
later work has been influenced by that of Zimmer.

Raúl Quiroga-Barranco, Ph. D. student of Robert Zimmer, has given par-
tial answers to Zimmer’s Program through many articles, using innovating tech-
niques. Motivated by all these important people this work, with the same flavor
from Quiroga-Barranco’s articles, tries to plant a grain of sand in the Zimmer’s
Program.

1.1 Rigidity theorems

As is usual in the mathematical world, the first results in rigidity were done for
particular cases, as we can see in the work of Selberg, Calabi, and Weil.

However, there was a big gap in the theory when Mostow proved the follow-
ing global theorem on compact quotients, mixing different tools from topology,
differential geometry, group theory and harmonic analysis.

Theorem 1.1 (Mostow [22]). Let X and Y be compact quotients of symmetric
spaces of non-compact type with the same fundamental group. If X has no closed
two dimensional local factor, then X and Y are isometric up to normalizing
constants.
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Going from the particular to the general, as history has shown that modern
mathematics is done, Margulis extended this result, assuming semisimplicty and
other necessary conditions for a stronger theorem.

Theorem 1.2 (Margulis’ superrigidity Theorem). Let Γ be an irreducible lattice
in a connected semisimple Lie group G of real rank at least 2, trivial center, and
without compact factors. Suppose K is a local field. Then any homomorphism π
of Γ into a non-compact K-simple group over K with Zariski dense image either
has precompact image or π extends to a homomorphism of the ambient group
G.

In the context of Lie group actions, Zimmer extended Margulis’ Superrigidity
to a cocycle superrigidity which has shown to be very useful in the study of
actions of semisimple Lie groups without compact factors.

Margulis’ theorem, classifying all linear representations, leads one to believe
that it is possible to classify all homomorphisms to other interesting classes of
topological groups.

Inspired by Margulis’ superrigidity theorem, in the early 1980’s Zimmer
proved a superrigidity theorem for cocycles from which he proved results about
orbit equivalence of higher-rank group actions Motivated by earlier results in
the rigidity of linear representations and the cocycle superrigidity theorem, Zim-
mer proposed studying non-linear representations of lattices in higher-rank sim-
ple Lie groups. That is, given a lattice Γ ⊂ G, rather than studying linear
representations ρ : Γ → GL(n,R), Zimmer proposed studying representations
α : Γ→ Diff(M) where M is a compact Riemannian manifold. The main objec-
tive of the Zimmer program is to show that all such non-linear representations
α are of an “algebraic origin”. In particular, the Zimmer conjecture states that if
the dimension of M is sufficiently small (relative to data associated to G) then
any action α : Γ → Diff(M) should preserve the Riemannian metric or factor
through the action of a finite group.

Let G be a connected non-compact simple Lie group acting isometrically on a
connected analytic manifoldM with a finite-volume pseudo-Riemannian metric.
Following Zimmer’s program, it has been shown that such actions are rigid in
the sense of having distinguished properties that restrict the possibilities for M
(see for example [10], [31], [33]). The general belief is that any such action,
with some additional non-triviality conditions, must essentially be an algebraic
double coset of the formK\H/Γ. More precisely, such coset is given by some Lie
groupH together with a homomorphism G→ H, a lattice Γ ⊂ H and a compact
subgroup K ⊂ H centralizing the image of G in H. The G-action is then given
by the natural left action on K\H/Γ. We note that when H is semisimple
these G-actions are isometric for a metric induced by the Killing form of the Lie
algebra of H. Some results have already been obtained by Quiroga-Barranco in
[26], [4], [28], [24], proving that suitable geometric conditions imply that such
G-actions are of the double coset type.

1.2 Anti-Kähler manifolds

Among the tensor structures on a smooth manifold, one of the most stud-
ied is almost-complex structure, i.e. an endomorphism of the tangent bundle
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whose square, at each point, is minus the identity. The manifold must be even-
dimensional. Usually it is equipped with a Hermitian metric, which is a metric
such that the almost-complex structure acts as an isometry with respect to the
metric. The associated (0, 2)-tensor of the Hermitian metric is a 2-form and
hence one sees the relationship with symplectic geometry.

A relevant counterpart is the case when the almost-complex structure acts
as an anti-isometry regarding a pseudo-Riemannian metric. Such a metric is
known as an anti-Hermitian metric or Norden metric, first studied by an named
after A.P. Norden [23]. These metrics appear naturally in complex Lie groups.

We should note that one of this work’s objective is to study a structure that
the complex Lie algebra of a complex Lie group has: the Killing form. We recall
that a complex Lie group is a complex manifold with group structure such that
its operation of product and inverse are holomorphic maps. As a consequence,
its Lie algebra is complex.

We observe the properties of the complex Killing form and we abstract them
in order to define a more general structure on almost-complex manifolds. This
results in a metric different from the extremely well-studied Hermitian metric.

The first step in order to abstract the properties mentioned above is to define
it in a real vector space with complex structure. The first surprise is that this
metric is not Hermitian, but is rather a symmetric, non-degenerate complex
bilinear form. If we take the real part, then it is an (m,m)-bilinear real form,
where 2m is the dimension of the complex Lie group as a manifold. Moreover,
the complex structure acts as an anti-isometry. That is, the real part is an
anti-Hermitian metric!

However we give a different (but equivalent) definition that suits our work
better. We define an anti-Hermitian metric to be not the real part, but rather
the symmetric non-degenerate complex bilinear form that we can obtain from
it. This kind of metrics has been studied under many names: “Norden”, “pure”,
and “B-metrics”.

The choise of the name (we could have chosen Norden metric instead) is
because we want to reflect the ‘opposite’ properties of Hermitian metrics. Later
on, we realize that we need a stronger ingredient and the notion of anti-Kähler
manifold comes naturally. It is indeed ‘the same’ property as Kähler manifolds:
we ask the almost-complex structure to be parallel with respect to the Levi-
Civita connection of the real part of the anti-Hermitian metric. The results in
previous works show that this is sufficient for our manifold to be complex.

1.3 Main Theorem

One notices that the lemmas, propositions and corollaries from [4], [24] and
[28] are almost the same except for the fact that we need them to be true for
complex maps, functions, spaces, and without much effort we prove this for our
setup.

We recall that a connected pseudo-Riemannian manifold is weakly irre-
ducible if the tangent space at some (and hence any) point has no proper non-
degenerate invariant subspaces under the restricted holonomy group at that
point. In particular, a weakly irreducible pseudo-Riemannian manifold cannot
have a non-trivial product as universal covering space.

Let G be a non-compact simple complex Lie group with Lie algebra g. Let us
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denote by m(g) the real dimension of the smallest non-trivial g-module with an
invariant non-degenerate symmetric real bilinear form. Analogously, let mC(g)
be the complex dimension of the smallest non-trivial g-module with an invariant
non-degenerate symmetric complex bilinear form.

We find this theorem in [4].

Theorem 1.3. Let M be a connected analytic pseudo-Riemannian manifold.
Suppose that M is complete, weakly irreducible, has finite volume and admits
an analytic and isometric S̃O0(p, q)-action with a dense orbit, for some integers
p, q such that p, q ≥ 1 and n = p+ q ≥ 5. In this case we have m(so(p, q)) = n.
If the equality:

dim(M) = dim(S̃O0(p, q) +m(so(p, q)) =
n(n+ 1)

2
,

holds, then for H equal to either S̃O0(p, q + 1) or S̃O(p+ q, q) there exist:

(1) a lattice Γ ⊂ H, and

(2) an analytic finite covering map ϕ : H/Γ→M ,

such that ϕ is S̃O0(p, q)-equivariant, where the S̃O0(p, q)-action on H/Γ is in-
duced by some non-trivial homomorphism S̃O0(p, q)→ H. Furthermore, we can
rescale the metric on M along the S̃O0(p, q)-orbits and their normal bundle to
assume that ϕ is a local isometry for the bi-invariant pseudo-Riemannian met-
ric on H given by the Killing form of its Lie algebra. The result holds for the
case (p, q) = (3, 1) as well if we further assume that X∗ ⊥ Y ∗ on M for all
X ∈ su(2) and Y ∈ isu(2) under the identification so(3, 1) ' sl(2,C).

The above result is very similar to our main theorem:

Theorem 1.4. Let (M,J, g) be a connected anti-Kähler manifold. Let h =
Re(g). Suppose that (M,h) is complete, weakly irreducible, has finite volume and
admits a holomorphic Spin(n,C)-action by isometries of g with a dense orbit, for
some integer n ≥ 3, n 6= 4. Them, in this case we have that mC(so(n,C)) = n.
If the inequality

dim(M) ≤ dim(Spin(n,C)) + n =
n(n+ 1)

2

holds, then for H = Spin(n+ 1,C) there exist:

(1) a lattice Γ ⊂ H, and

(2) a holomorphic finite covering map ϕ : H/Γ→M ,

such that ϕ is Spin(n,C)-equivariant, where the Spin(n,C)-action on H/Γ is
induced by some non-trivial homomorphism Spin(n,C)→ H. Furthermore, we
can rescale the metric onM along the Spin(n,C)-orbits and their normal bundle
to assume that ϕ is a local isometry for the bi-invariant anti-Hermitian metric
on H given by the Killing form of its Lie algebra.

The main theorem provides a rigidity result for Spin(n,C)-actions on anti-
Kähler manifolds. Note that there is no R-rank restriction.

The proof is broken into various lemmas in the last chapter of this work and
is based on the application of representation theory to the Killing vector fields
centralizing the G-action, where the latter are as found in Gromov-Zimmer’s
machinery.
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Chapter 2

Geometric structures and
anti-Hermitian metrics on
manifolds

We begin this work by discussing anti-Hermitian metrics on vector spaces. Sec-
tion 2.1 is about this issue. However, treating these metrics from a different
perspective provides a new powerful tool for rigidity almost-complex manifolds.
This is done on Section 2.2.

Next, in Section 2.3, we remember the basic concepts of geometric structures,
including the concept of rigidity defined by Gromov. We use the same notation
used in [5] throughout this work.

Section 2.4 deals with the product of geometric structures and gives a use-
ful method to determine when certain types of geometric structures are rigid.
Section 2.5 contains a generalization of a proposition found in [27] with the
transversality condition dropped. Finally, Section 2.6 is about the analogous
version of Kähler manifolds in the context of anti-Hermitian manifolds, which
we call anti-Kähler manifolds. It also contains the complex version of the last
proposition but in the category of complex manifolds.

2.1 Preliminaries of anti-Hermitian metrics

In this section we will develop the algebraic tools needed to define anti-Hermitian
metrics on manifolds. The algebraic results of the present section will be applied
to tangent spaces of manifolds later on.

We shall begin with the definition of an anti-Hermitian metric in a vector
space, and its relation to a particular pseudo-Riemannian metric. This is not
the more familiar holomorphic metric that uses the complexified tangent space.
This will be clarified in the next section. Without further preambles we begin
with the basics.

Let V be a finite-dimensional real vector space. Recall that a complex struc-
ture on V is a linear endomorphism J of V such that J2 = −I, where I stands
for the identity transformation of V . A real vector space V with a complex
structure J can be turned into a complex vector space by defining scalar multi-
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plication by complex numbers as follows:

(a+ ib)X = aX + bJX for x ∈ V and a, b ∈ R.

It is clear that the real dimension m of V must be even and
1

2
m is the com-

plex dimension of V . Conversely, given a complex vector space V of complex
dimension n, let J be the linear endomorphism of V defined by

JX = iX for X ∈ V.

If we consider V as a real vector space of real dimension 2n, then J is a complex
structure of V .

Let Cn be the vector space of n-tuples of complex numbers z = (z1, . . . , zn).
If we set

zk = xk + iyk, xk, yk ∈ R, k = 1, . . . , n,

then Cn can be identified with the real vector space R2n: given the canonical ba-
sis of Cn, {e1, . . . , en}, the ordered real basis {e1, . . . , en, ie1, . . . , ien} identifies
z with (x1, . . . , xn, y1, . . . , yn) ∈ R2n.

From now on, the identification of Cn with R2n will be as above. The com-
plex structure of R2n induced from Cn (multiplication by i) maps
(x1, . . . , xn, y1, . . . , yn) into (−y1, . . . ,−yn, x1, . . . , xn) and is called the canon-
ical complex structure of R2n. It is given by the matrix

J0 =

(
0 −In
In 0

)
,

where In denotes the identity matrix of degree n.
To motivate the definition of an anti-Hermitian metric on vector spaces and

subsequently on manifolds, let us begin with the case V = R2n. We identify Cn

with R2n as above. We consider H(z, w) =

n∑
j=1

zjwj and g0(z, w) =

n∑
j=1

zjwj .

The function H is the Hermitian metric, and its properties are well known:
it is nondegenerate, linear in the first slot, anti-linear in the second one, and
positive definite but not symmetric.

In contrast, g0 is complex bilinear, symmetric, and nondegenerate. With this
metric we gain complex linearity and symmetry but we lose positive definiteness.
However, we are interested precisely in the properties that g0 has.

Given a symmetric nondegenerate F-bilinear form B on V , where F = R or
C, and an F-basis e1, . . ., en, the matrix representation of B in that basis is
(Bαβ) where Bαβ = B(eα, eβ). The matrix will be symmetric and non singular.

For our case, we have that this matrix is the complex matrix (g0(ej , ek)) = I,
thus g0(z, w) = zT Iw = zTw. If zj = xj + iyj , wj = uj + ivj , then g0(z, w) =
n∑
j=1

(xjuj − yjvj) +

n∑
j=1

i(xjvj + yjuj). If we take the real and the imaginary

parts, then in the real basis {e1, . . . , en, ie1, . . . , ien} we get

Re(g0) =

(
In 0
0 −In

)
, Im(g0) =

(
0 In
In 0

)
.

Let us denote these matrices by In,n and S respectively. It is important to
note that S = −In,nJ0. Thus given Re(g0), and the complex structure J0,
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we can recover g0 again by making g0(z, w) = Re(g0)(z, w) − iRe(g0)(J0z, w).
It must be pointed out that the real part is a pseudo-Riemannian metric in
R2n of signature (n, n) that is compatible with the complex structure, i.e.
Re(g0)(iz, w) = Re(g0)(J0z, w) = Re(g0)(z, J0w) = Re(g0)(z, iw). After this
analysis we are ready to generalize these ideas.

Definition 2.1. Let V be a real vector space with complex structure J . An
anti-Hermitian metric on V , compatible with J , is a symmetric nondegenerate
bilinear form g : V × V → C such that

g(JX, Y ) = g(X, JY ) = ig(X,Y ) for all X,Y ∈ V.

In other words, if V is considered as a complex vector space via J as above,
then g is a symmetric nondegenerate bilinear form over C.

Remark. The complex bilinear form g0 of Cn compatible with the canonical
complex structure J0 will be called the canonical anti-Hermitian metric of Cn
from now on.

Let us point out that the compatibility of a complex Riemannian metric is
equivalent to saying that

g(JX, JX) = −g(X,Y )

in other words, the complex structure J can be thought of as an anti-isometry
of the metric g.

For the purpose of reference, we state the well known result of Sylvester’s
law of inertia for the real and complex cases.

Proposition 2.2. Let V a finite-dimensional vector space over the field of com-
plex numbers. Let f be a symmetric bilinear form on V which has rank r. Then
there is an ordered basis B = {β1, . . . , βn} for V such that the matrix of f in
the ordered basis is diagonal and

f(βj , βj) =

{
1, j = 1, . . . , r

0, j > r.

Proposition 2.3. Let V an n-dimensional vector space over the field of real
numbers. Let f be a symmetric bilinear form on V which has rank r. Then
there is an ordered basis B = {β1, . . . , βn} for V in which the matrix of f is
diagonal and such that

f(βj , βj) =

{
±1, j = 1, . . . , r

0, j > r.

Furthermore, the number of basis vectors βj for which f(βj , βj) = 1 is indepen-
dent of the choice of basis.

Considering V as a complex vector space, as we mentioned g is a symmetric
nondegenarate bilinear form, so it is clear from Proposition 2.2 that g is equiv-
alent to the identity matrix. However, we have an interesting property for the
real and imaginary parts.
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Proposition 2.4. Let h =
1

2
(g + ḡ) = Re(g). Then h is a real, symmetric,

nondegenerate bilinear form of V of signature (n, n) such that

h(u, Jv) = h(Ju, v) for all u, v ∈ V. (2.1)

Conversely, if h is a real symmetric nondegenerate bilinear form on V that
satisfies equation (2.1), then there exists a unique anti-Hermitian metric g such
that h = Re(g). In particular, h has signature (n, n) and rather one should have
Im(g)(u, v) = −ih(Ju, v) for all u, v ∈ V .

Proof. It is clear that g and ḡ are symmetric, nondegenereate bilinear real forms,
so it is h. Moreover,

h(Ju, v) =
1

2
(g(Ju, v) + g(Ju, v))

=
1

2
(g(u, Jv) + g(u, Jv))

= h(u, Jv)

Let us note that for such h, if {e1, . . . , e2n} is a real basis as in Proposi-
tion 2.3, then {Je1, . . . , Je2n} is another real basis for V and h(Jej , Jek) =
−h(ej , ek), which shows that the signature of h must be (n, n). The latter
follows from equation (2.1). Now, let us suppose that such g exists, so that
g = h+ i Im(g). Then

ig = ih− Im(g).

But by Definition 2.1,

ig(u, v) = g(Ju, v) = h(Ju, v) + i Im(g)(Ju, v),

so we conclude that Im(g)(u, v) = −h(Ju, v), and then

g(u, v) = h(u, v)− ih(Ju, v).

Then g is completely determined by h and J .

Remark. Modifying the proof of Proposition 2.4 we get that Im(g) is a symmetric
nondegenerate bilinear real form compatible with J , so it has signature (n, n),
and Re(g)(u, v) = Im(g)(Ju, v) for all u, v ∈ V . Also, by the compatibility, J
plays the role of an anti-isometry for both Re(g) and Im(g).

Re(g) and Im(g) are known as twin metrics. However, even though they
have been studied, we lack information for our setup which in turn provides a
potential area for future research although we will not develop it in this thesis.

Now, if we have a linear transformation T : V → V ′ between two vector
spaces V , V ′ with complex structures J , J ′ respectively, we might wonder when
it is a linear transformation of complex vector spaces.

Proposition 2.5. A real-linear map T : V → V ′ is a linear transformation
between complex vector spaces if and only if J ′ ◦ T = T ◦ J .

Proof. The result follows from the identities

J ′(T (u)) = iT (u) = T (iu) = T (Ju).

This only shows the “only if” part, although the “if” part is similar.
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So far, we have not considered other structures on V . Since studying repre-
sentations of Lie algebras is one of our main tools it worths to analyze it. If V
has a real Lie algebra structure, then it is well known that V is a complex Lie
algebra via J if and only if

[X, JY ] = J [X,Y ]; for all X, Y ∈ V.
By the antisymmetry of the Lie bracket we have [JX, Y ] = −[Y, JX] =

−J [Y,X] = J [X,Y ] for all X, Y ∈ V . If gl(V,C) denotes the set of complex
linear maps from V to V with Lie bracket defined by the commutator [A,B] =
AB −BA, then it has the structure of a complex Lie algebra via J ∈ gl(V,C),

J : gl(V,C)→ gl(V,C)

A→ J ◦A.

Then ad : V → gl(V,C) is complex linear since ad(JX)(Y ) = [JX, Y ] =
J [X,Y ] = J ad(X)(Y ). Furthermore, if V is semisimple, its Killing form K
is nondegenerate, symmetric and satisfies

K(JX, Y ) = tr(ad(JX) ◦ ad(Y )

= tr(J ◦ ad(X) ◦ ad(Y ))

= tr(ad(X) ◦ J ◦ ad(Y ))

= tr(ad(X) ◦ ad(JY ))

= K(X, JY ).

Thus it is an anti-Hermitian metric and we have proved the following result:

Proposition 2.6. If (V, J) is a semisimple complex Lie algebra, then its Killing
form is an anti-Hermitian metric.

We see that anti-Hermitian metrics arise naturally on complex semisimple
Lie algebras.

For this work, the isometries of anti-Hermitian metrics are more important
that the metrics themselves. What follows is the definition of these metrics
isometries.

Definition 2.7. Let be V , V ′ real vector spaces with complex structures J , J ′

and anti-Hermitian metrics g, g′ compatible with J and J ′, respectively. An
isometry between V and V ′ is a R-linear isomorphism T : V → V ′ such that
g′(Tu, Tv) = g(u, v) for all u, v ∈ V . When V ′ = V , J ′ = J and g′ = g, the set
of all isometries of V will be denoted by O(g).

Lemma 2.8. With the notation of the above definition, if T : V → V ′ is an
isometry, then T is C-linear.

Proof. Given u, v ∈ V we have that

g′(J ′Tu, Tv) = ig′(Tu, Tv)

= ig(u, v)

= g(Ju, v)

= g′(TJu, Tv).
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Since T is an isomorphism, its range is all V ′. Furthermore, g′ is nonde-
generate, so we conclude that J ′Tu = TJu. But u was taken arbitrarily, so
J ′T = TJ , and by Proposition 2.5 T is complex linear.

It is well known that the unitary group can be expressed asU(n) = O(2n,R)∩
Sp(2n,R) ∩GL(n,C), and we have a similar result for anti-Hermitian metrics.

Proposition 2.9. Let be V a real vector space with complex structure J and an
anti-Hermitian metric g compatible with J . Let GL(V, J) = {T ∈ GL(V ) | JT = TJ},
and O(h,R) = {T ∈ GL(V,R) | h(Tu, Tv) = h(u, v)∀u, v ∈ V } for any real sym-
metric nondegenerate bilinear form h, then

O(g) = GL(V, J) ∩O(Re(g),R) ∩O(Im(g),R).

Furthermore, it is the intersection of any two of these three. Thus a com-
patible pseudo-Riemannian metric and a complex structure give the third one,
and so forth.

In particular, if g0 is the usual anti-Hermitian metric on Cn, then we get

O(n,C) = GL(n,C) ∩O(n, n) ∩O(S,R),

where O(S,R) =
{
T ∈ GL(2n,R) | TTST = S

}
, and S =

(
0 In
In 0

)
.

At the level of equations

Complex TJ0 = J0T

Real part TT In,nT = In,n
Imaginary part TTST = S

Proof. We take T ∈ O(g), by the lemma above, T ∈ GL(V, J). Given u, v ∈ V ,

Re(g)(Tu, Tv) =
1

2
(g(Tu, Tv) + g(Tu, Tv))

=
1

2
(g(u, v) + g(u, v))

= Re(g)(u, v)

and the proof is analogous for Im(g), so we have one inclusion.
If T ∈ GL(V, J) ∩O(Re(g),R) ∩O(Im(g),R), then

g(Tu, Tv) = Re(g)(Tu, Tv) + i Im(g)(Tu, Tv)

= Re(g)(u, v) + i Im(g)(u, v)

= g(u, v).

(2.2)

It only remains to prove that the intersection of any two implies the third
one.

If T ∈ GL(V, J) ∩O(Re(g),R), then using Proposition 2.4,

Im(g)(Tu, Tv) = −Re(g)(JTu, Tv)

= −Re(g)(TJu, Tv)

= −Re(g)(Ju, v)

= Im(g)(u, v),
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thus T ∈ O(Im(g),R).
If T ∈ GL(V, J)∩O(Im(g),R), we first note that by Proposition 2.4 we can

conclude that Re(g)(u, v) = Im(g)(Ju, v), so

Re(g)(Tu, Tv) = Im(g)(JTu, Tv)

= Im(g)(TJu, Tv)

= Im(g)(Ju, v)

= Re(g)(u, v),

thus T ∈ O(Re(g),R).
If T ∈ O(Re(g),R) ∩O(Im(g),R), then by equation (2.2) T ∈ O(g), so by

the lemma above, T ∈ GL(V, J).
The last statement comes easily from the relation J0In,n = S.

We end this section an analogous proposition for skew-symmetric linear maps
that will be useful in the last sections of this chapter, but first, we give some
notation. In the rest of this work, for a complex (real) vector space W , and
a complex (real) symmetric bilinear form g, we will denote with so(W, g) the
real (complex) Lie algebra of linear maps on W that are skew-symmetric with
respect to g.

Proposition 2.10. Let V be a vector space with complex structure J and g
an anti-Hermitian metric compatible with J . Then f ∈ so(V, g) if and only if
J ◦ f = f ◦ J and f ∈ so(V, h), where h = Re(g).

Proof. If f ∈ so(V, g) then f is complex linear and so, by Proposition 2.5, it
must commute with J . Let u, v ∈ V . Then

h(fu, v) = Re(g(fu, v)) = Re(−g(u, fv)) = −h(u, fv).

Conversely, if f ∈ so(V, h) and commutes with J , then, using Proposition 2.4,

g(fu, v) = h(fu, v)− ih(Jfu, v)

= −h(u, fv)− ih(fJu, v)

= −h(u, fv) + ih(Ju, fv)

= −g(u, fv)

2.2 Anti-Hermitian metrics on manifolds
Let us remember the concept of an almost-complex structure. An almost-
complex structure on a real manifold M is a (1, 1)-tensor field J which is, at
every point x ∈M , an endomorphism of TxM such that J2

x = −I. A fixed pair
(M,J) is called an almost-complex manifold. It is well known that every almost
complex manifold is even dimensional and orientable.

Let (M,J) be an almost-complex manifold. Let us recall that J equips TM
with a complex vector bundle structure. In this work we will refer to TMC as
the complex vector bundle and let TM refer to the same set considered as a
real vector bundle.
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At the risk of being overly pedantic, let us point out that here TMC is not
the complexification of TM , which we denote by TM ⊗C, because the fibers of
TM ⊗ C are TxM ⊗ C and the fibers of TMC are TxM considered as complex
vector spaces via Jx. Thus, if M has a complex structure J , then TM∗C is the
complex dual, that is, each fiber is the complex vector space of complex linear
functions TxM → C.

Let M be a smooth manifold. A Riemannian metric g on M is classically
defined as a nondegenerate, symmetric, covariant 2-tensor which assigns an inner
product to each tangent space. This definition is equivalent to saying that a
Riemannian metric is a section g of Sym2(TM∗) which restricts to each fiber as
a positive-definite symmetric quadratic form.

So, if M is an almost-complex manifold, our objective is to find a definition
of a ‘complex metric’ that resembles the bilinear and symmetric properties of
the Riemannian metric. But thanks to the discussion of the previous section
this is now an easy task.

Definition 2.11. An anti-Hermitian metric g on an almost-complex manifold
(M,J) with almost-complex structure J is a smooth section of the complex
vector bundle Sym2(TM∗C) that restricts to each fiber as an anti-Hermitian
metric.

We use the notation (M,J, g) or just M when no confusion arises.

Remark. By Proposition 2.4 we could define an anti-Kähler metric in terms of its
real part, i.e. we could say that an anti-Kähler metric is a pseudo-Riemannian
metric h such that

h(JX, Y ) = h(X,JY )

for all X, Y ∈ X(M), and by the same proposition h must has signature (n, n).
But the definitions are equivalent and the one we give here is best suited for our
purposes.

The definition of an anti-Hermitian metric is not related with the more
popular Hermitian metrics. This is because there is an identification between
the usual definition of Hermitian metrics and sections of the vector bundle
TM

∗ ⊗ TM∗ that restricts to each fiber as an Hermitian product.
Let us point out that anti-Hermitian metrics do not have a signature. This

is consequence of the Sylvester’s law of inertia, as seen in Proposition 2.2, and
thus there is no difference between the Riemannian and the pseudo-Riemannian
cases. However, we are interested in taking the real part of a complex metric.

As we saw in the remark above, if (M,J) is an almost-complex manifold of
complex dimension n with an anti-Hermitian metric g, then h = Re(g) gives
M the structure of a pseudo-Riemannian metric (with signature (n, n) as a real
manifold that) satisfies

h(JX, Y ) = h(X, JY ) (2.3)

for each X, Y ∈ X(M). We say that h is compatible with J when equality (2.3)
holds.

Conversely, given a pseudo-Riemannian metric h compatible with an almost-
complex structure J , we obtain a complex Riemannian metric by setting

g(X,Y ) = h(X,Y )− ih(JX, Y ).
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Since we can define an anti-Hermitian metric from a pseudo-Riemannian
metric of signature (n, n) that is compatible with J , we have the following
proposition.

Proposition 2.12. Every Lie group G with a left-invariant complex structure
J , admits a left-invariant anti-Hermitian metric.

Proof. We can always find a left-invariant complex structure by defining a com-
plex structure Je on the Lie algebra g and extending it by translations. Let
e ∈ G be the identity element. It is enough to find a symmetric nondegenerate
form of signature (n, n) compatible with Je on g, because we can extend it to
TM by translations. We obtain a pseudo-Riemannian metric compatible with
Je by taking a complex base e1, . . ., en as in Proposition 2.2, and considering
the real basis e1, . . ., en, Jee1, . . ., Jeen, and define B(ei, ej) = δij , B(ei, Jej) =
B(Jei, ej) = 0, B(Jeei, Jeej) = −δij , and extend by bilinearity. The result is
a left invariant pseudo-Riemannian metric h on M of signature (n, n). Finally,
for X, Y ∈ X(M) we define

g(X,Y ) = h(X,Y )− ih(JX, Y ),

and we are done.

Corollary 2.13. Every semisimple complex Lie group admits an anti-Hermitian
metricvia the Killing form.

Proof. This is a consequence of the previous proposition and Proposition 2.6.

After defining an object, the following step is to define the isomorphisms
between those objects.

Definition 2.14. An isometry between anti-Hermitian manifolds (M,J, g) and
(M ′, J ′, g′) is a diffeomorphism

f : M →M ′

such that gx(X,Y ) = g′f(x)(dfxX, dfxY ) for all x ∈M and X, Y ∈ TxM .

A demanding reader should have noticed that we are not asking that f be a
complex mapping. However, this comes for free thanks to Proposition 2.9.

Corollary 2.15. If f is an isometry of anti-Hermitian manifolds, then f is an
almost-complex mapping. Furthermore, f is an isometry for both the real and
imaginary parts of g.

2.2.1 Comparison with holomorphic metrics

In the literature there exists a similar concept that we now discuss. Let us
briefly review the results of complex manifolds as in [18], again without proofs.
IfM is a complex manifold, then, by definition, the coordinate charts have range
in Cn and overlap holomorphically. This is not necessarily true for an almost-
complex manifolds in general. A complex manifold has a natural almost-complex
structure. To show this we consider (z1, . . . , zn) ∈ Cn with zj = xj + iyj ,
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j = 1, . . . , n. With respect to the coordinate system (x1, . . . , xn, y1, . . . , yn) we
define an almost-complex structure J on Cn by

J(∂/∂xj) = ∂/∂yj , J(∂/∂yj) = −∂/∂xj , j = 1, . . . , n.

The holomorphic overlapping property provides a complex structure on M , via
the coordinate charts and independent of them.

For each x ∈ M , if we extend Jx to the complexification of TxM it will
have two eigenvalues i and −i and TxM ⊗ C will split into two eigenspaces
TxM ⊗ C = T (1,0)

x M ⊕ T (0,1)
x M . The i-eigenspace T (1,0)

x M is the holomorphic

tangent space with basis
∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
, j = 1, . . . , n and T (0,1)M

is the anti-holomorphic tangent space with basis
∂

∂z̄j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
, j =

1, . . . , n,
A holomorphic vector field Z on a complex manifold (M,J) is a complex

vector field of type (1, 0), i.e. Zx ∈ T (1,0)
x M for all x ∈ M , such that Zf is

holomorphic for every locally-defined holomorphic function f : U ⊂ M → C. If
we write

Z =

n∑
j=1

f j(∂/∂zj)

in terms of z1, . . . , zn, then Z is holomorphic if and only if the components f j

are all holomorphic functions.
A holomorphic metric on a complex manifold (M,J) can be defined either

as a holomorphic section g : M → Sym2(T (1,0)M) or a holomorphic assigna-
tion x 7→ gx where gx is a symmetric nondegenerate complex bilinear form on
T (1,0)
x M . Locally this kind of metric looks like

g =
∑

gjkdzj ⊗ dzk, (2.4)

where gjk = g

(
∂

∂zj
,
∂

∂zk

)
are C-valued holomorphic functions and are the en-

tries of a non-singular, symmetric matrix. It is worth mentioning that holomor-
phic metrics are defined on complex manifolds via the almost-complex structure,
but use the full power as complex manifold (the Cauchy-Riemann equations).

Anti-Hermitian metrics generalize this idea in the sense that they are de-
fined for almost-complex manifolds and ‘almost coincide’ with the holomorphic
metrics. We now make this precise.

Let h be an the real part of anti-Hermitian metric g on (M,J), as we have
seen above, it is a pseudo-Riemannian metric that satisfies:

h(JX, JY ) = −h(X,Y )

or equivalently:
h(JX, Y ) = h(X, JY )

Then, by Section 2.1 the metric h necessarily has a neutral (Kleinian) signature
(n, n). We recall that g = h − ih(J ·, ·) is the anti-Hermitian metric induced
by h. Let be X,Y ∈ X(M) and (x1, . . . , xn, y1, . . . , yn) a coordinate system as
above, thus locally, ∂/∂x1, . . . , ∂/∂xn, ∂/∂y1, . . . , ∂/∂yn form a real basis for
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the tangent space at each point. If Xj = ∂/∂xj and Y j = ∂/∂yj then, using
the Einstein notation, we write

g = g(Xj , Xk)dxj ⊗ dxk + g(Xj , Y k)dxj ⊗ dyk

+ g(Y j , Xk)dyj ⊗ dxk + g(Y j , Y k)dyj ⊗ dyk

= g

(
1

2
(Xj − iY j), 1

2
(Xk − iY k)

)
(dxj + idyj)⊗ (dxk + idyk)

= g

(
∂

∂zj
,
∂

∂zk

)
dzj ⊗ dzk.

In the last expression, g
(

∂

∂zj
,
∂

∂zk

)
are complex-valued smooth functions, in

contrast with the holomorphic metrics where the functions must necessarily be
holomorphic.

The previous calculations seem to be tricky since we are not using the com-
plexified vector bundle TM ⊗C and complex vector fields, but rather TM con-
sidered as a complex vector bundle via J and real vector fields. Let us analyze
the complexified case.

Let (M,J) be an almost-complex manifold, h and g as above. We extend
h in the well-known way by C-linearity to the complexification of the tangent
bundle TM ⊗C. Let us fix a (real) basis

{
X1, . . . , Xn, JX1, . . . , JXn

}
in each

tangent space TxM . Then the set
{
Zj , Z j̄

}
, where Zj =

1

2
(Xj − iY j), Z j̄ =

1

2
(Xj + iY j), forms a basis for each complexified tangent space TxM ⊕ C. We

set hjk = h(Zj , Zk). Then the following holds:

Proposition 2.16. Let (M,J) be an almost-complex manifold and h the real
part of an anti-Hermitian metric g on M . Then the complex extended pseudo-
Riemannian metric h (in the complex basis introduced above) satisfies the fol-
lowing conditions

hjk̄ = hj̄k = 0 (2.5)

hj̄k̄ = hjk. (2.6)

Conversely, if the complex extended metric h satisfies (2.5)-(2.6) then the
initial metric must be the real part of an anti-Hermitian metric.

Proof. In the basis
{
Zj , Z j̄

}
4h(Zj , Z k̄) = h(Xj − iJXj , Xk + iJXk)

= h(Xj , Xk) + h(JXj , JXk) + i(h(Xj , JXk)− h(JXj , Xk))

= h(Xj , Xk)− h(Xj , Xk) + i(h(JXj , Xk)− h(JXj , Xk))

= 0.

In the third equality we are using the compatibility between h and J . The proof
for h(Z j̄ , Zk) is analogous.
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4h(Z j̄ , Z k̄) = h(Xj + iJXj , Xk + iJXk)

= h(Xj , Xk)− h(JXj , JXk) + i(h(Xj , JXk) + h(JY j , Xk))

= h(Xj , Xk)− h(JXj , JXk)− i(h(Xj , JXk) + h(JY j , Xk))

= h(Xj − iJXj , Xk − iJXk)

= 4h(Zj , Zk)

Conversely, we can always express h as

h = hjkdzj ⊗ dzk + hjk̄dzjdz̄k + hj̄kdz̄j ⊗ dzk + hj̄k̄dz̄j ⊗ dz̄k.

Hence if the complex extended metric h satisfies (2.5)-(2.6) and hjk are the
entries of nondegenerate symmetric matrix, we get

h = hjkdzj ⊗ dzk + hjkdz̄j ⊗ dz̄k. (2.7)

It is straightforward to prove the symmetry, nondegeneracy and bilinearity. To
check the compatibility with J , let X, Y be complex vector fields. Then

X = ajZj + bjZ j̄ ,

Y = ckZk + dkZ k̄,

where aj , bj , cj , dj are local smooth complex functions. One has

JZj =
J

2
(Xj − iJXj)

1

2
(JXj − iJ2Xj)

1

2
(iXj + JXj)

=
1

1
(iXj − i2JXj)

= iZj ,

and similarly JZ j̄ = −iZ j̄ . It is enough to prove the result for dzj ⊗ dzk and
dz̄j ⊗ dz̄k:

dz̄j ⊗ dz̄k(JX, Y ) = dz̄j ⊗ dz̄k(J(ajZj + bjZ j̄), ckZk + dkZ k̄)

= dz̄j ⊗ dz̄k(iajZj − ibjZ j̄), ckZk + dkZ k̄)

= −ibjdk

= dz̄j ⊗ dz̄k(ajZj + bjZ j̄), ickZk − idkZ k̄)

= dz̄j ⊗ dz̄k(ajZj + bjZ j̄ , J(ckZk + dkZ k̄))

= dz̄j ⊗ dz̄k(X, JY )

For dzj ⊗ dzk is similar.

To end this subsection, we emphasize the difference between the expressions
(2.4) and (2.7):

g =
∑

gjkdzj ⊗ dzk and h = hjkdzj ⊗ dzk + hjkdz̄j ⊗ dz̄k.
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2.3 Jet bundles and geometric structures
Let us review the basic concepts of jets and geometric structures. Propositions
and assertions are stated without proof because they are contained in [13].

The concept of the germ of a function is extensively used in the mathematical
world. A notion of ‘differential’ germs of functions rises naturally in the category
of smooth manifolds and depending on the degree of the derivative we called
them r-jets.

Definition 2.17. LetM and Q be smooth manifolds and f, g : M → Q smooth
maps. We say that f and g define the same r-jet at x if f(x) = g(x) and they
have the same partial derivatives up to order r at x with respect to some choice of
smooth coordinates around x and f(x). The equivalence relation determined by
f at x is called the r-jet of f and does not depend on the choice of coordinates.
We denote it by jrx(f).

Let Jrn(Q) denote the set of r-jets at the origin of smooth maps f : Rn → Q.
For simplicity in notation the r-jet of a smooth map f : Rn → Q at the origin
0 ∈ Rn will be denoted simply by jr(f) when no confusion can arise.

There is a natural smooth manifold structure on Jrn(Q) given by the following
identification: if φ : U → Rm is a diffeomorphism from an open subset U of Q,
then φ̃ : Jrn(U) → Jrn(Rm) is a homeomorphism induced by φ, where Jrn(Rm)

is canonically isomorphic to
r∏

k=0

Sk(Rn;Rm). Here Sk(Rn;Rm) stands for the

vector space of symmetric Rm-valued k-multi-linear transformations on Rn.
It is important to note that if Q is a Lie group, then Jrn(Q) inherits a group

structure defined by jr(g1)jr(g2) = jr(g1g2).
Let Gl(k)(n) denote the group of k-jets at 0 of diffeomorphisms of Rn that

fix 0. As a manifold:

Gl(k)(n) = {(A,L2, . . . , Lk) | A ∈ GL(n), Lj ∈ Sj(Rn;Rn), for every j ≥ 2} .

Gl(k)(n) is in fact a Lie group. Gl(1)(n) is the general linear group GL(n,R)
and, for any pair of integers k ≤ l, there is a canonical homomorphism

πlk : Gl(l)(n)→ Gl(k)(n).

Let gl(k)(n) denote the space of k-jets at 0 of vector fields on Rn that vanish at
0. The bracket of two elements jk(X), jk(Y ) ∈ gl(k)(n) is defined by[

jk(X), jk(Y )
]

= −jk([X,Y ]).

This provides a Lie algebra structure on gl(k)(n). It is not surprising that
gl(k)(n) is the Lie algebra of Gl(k)(n).

To define a geometric structure on a manifold we need an important ingre-
dient. We start with a smooth manifold M of dimension n and let L(k)(M)
denote the kth-order frame bundle of M , that is the collection of k-jets at
the origin 0 ∈ Rn of diffeomorphisms from a neighborhood of 0 ∈ Rn into M
(frames). It has a natural structure of a smooth manifold as a submanifold
of Jrn(M). L(k)(M) has an additional structure: it is in fact a locally-trivial
principal fiber bundle over M with structure group Gl(k)(n). The bundle map
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π : L(k)(M) → M is the obvious base point projection, that is, given jk(ϕ) we
associate to it the point ϕ(0). The natural right action of Gl(k)(n) is given by

(jk(ϕ), jk(f)) 7→ jk(ϕ) ◦ jk(f) = jk(ϕ ◦ f).

Remark. Let us note that L(M) = L(1)(M) is isomorphic to the frame bundle.

Definition 2.18. Let Q be a manifold on which Gl(k)(n) acts smoothly on the
left. A geometric structure of order k and type Q onM is a Gl(k)(n)-equivariant
map σ : L(k)(M)→ Q.

Remark. By the same arguments as in [17], there exists a natural correspondence
of Gl(k)(n)-equivariant maps L(k)(M) → Q and sections of the fiber bundle
Qk(M) over M , which is the quotient of L(k)(M)×Q by the action of Gl(k)(n)
given by (α, q)g = (αg, g−1q). However we will only take into consideration the
above definition.

A geometric structure will be called of algebraic type Q, or just of algebraic
type, if Q is a real algebraic variety and the action of Gl(k)(n) is algebraic.

Before defining rigidity as Gromov did, we need some of the concepts pro-
vided below. One of them is the prolongation of a geometric structure. For
this we will require the homomorphic embedding of Gl(k+r)(n) into Gl(r)(n) n
Jrn(Gl(k)(n)).

Let a : Gl(k+r)(n)→ Jrn(Gl(k)(n)) be defined as follows. If g ∈ Gl(k+r)(n) is
of the form g = jk+r(f), let fk : Rn → Gl(k)(n) be the map given by

fk(x) = jk(τ−x ◦ f ◦ τf−1(x)),

where τv(y) = y + v is the translation by v in Rn, and set a(g) = jr(fk). The
map a satisfies a(g1g2) = a(g1)a(g2) ◦ πk+r

r (g−1
1 ) where πk+r

r is the natural
projection as mentioned above. Let Gl(r)(n) n Jrn(Gl(k)(n)) be the semi-direct
product with group multiplication (g, h)(g′, h′) = (gg′, h(h′ ◦ g−1)). Then the
map

(πk+r
r , a) : Gl(k+r)(n)→ Gl(r)(n) n Jrn(Gl(k)(n))

is a homomorphism of Lie groups.
Therefore, if Q is a smooth manifold which admits a smooth left action of

Gl(k)(n), then Jr(Q) admits a natural smooth action of Gl(r)(n) n Jrn(Gl(k)(n)
given by (g, h)q = h·(q◦g−1), where the dot product is defined by jr(f1)·jr(f2) =
jr(f1f2). With the above discussion of a, this induces a canonical action

Gl(k+r)(n)× Jrn(Q)→ Jrn(Q)

given by gq = a(g) · (q ◦ πk+r
r (g−1)).

From now on, let σ : L(k)(M)→ Q be the Gl(k)(n)-equivariant map that de-
fines a geometric structure on a smooth manifoldM . Then the rth prolongation
of σ is the geometric structure whose associated Gl(k+r)(n)-equivariant map is
given by

σr : L(k+r)(M)→ Jrn(Q)

jk+r(ϕ) 7→ jr(σ(jk(ϕ ◦ τ•))),
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where σr(jk(ϕ ◦ τ•)) denotes the map Rn 3 v 7→ σ(jk(ϕ ◦ τv)) ∈ Q.
A smooth diffeomorphism f of the manifold M induces a bundle diffeomor-

phism f(k) on L(k)(M) by setting f(k)(j
r(ϕ)) = jr(f ◦ ϕ). If g ∈ Gl(k)(n) and

α ∈ L(k)(M) then f(k)(αg) = f(k)(α)g, so that f(k) is an automorphism of the
principal Gl(k)(n)-bundle L(k)(M).

Definition 2.19. A (local) diffeomorphism f : M →M is called a (local) auto-
morphism of σ if it (locally) satisfies σ ◦ f(k) = σ. If this happens, we say that
f preserves σ. The group of diffeomorphisms of M that preserve σ is denoted
by Aut(σ) and is called the group of automorphisms (or isometries) of σ. Sim-
ilarly, Autloc(σ) denotes the pseudogroup of local diffeomorphisms of M which
preserve σ.

For x, y ∈M , let D(k)
x,y(M) denote the space of k-jets at x of diffeomorphisms

from a neighborhood of x ∈ M into M and which send x to y. The group
D(k)
x (M) = D(k)

x,x(M) has a Lie group structure under which it is isomorphic to
Gl(k)(n). Its Lie algebra is D(k)

x (M), the space of k-jets of vector fields on M
vanishing at x.

If jkx(f) ∈ D(k)
x,y(M), then f(k) maps the fiber of L(k)(M) over x onto the

fiber over y so that the Gl(k)(n)-equivariant map which it defines on such fiber
depends only on the jet jkx(f). In particular, the Lie group D(k)

x (M) acts tran-
sitively on the fiber of L(k)(M) over x, which we denote by L(k)(M)x, and this
action commutes with the action of Gl(k)(n).

Even though we have the concept of local automorphism we need an in-
finitesimal version for defining rigidity, essentially motivated by the discussion
of the previous paragraph.

Definition 2.20. Let σ be a geometric structure of order k and type Q on M .
For x, y ∈M and jk+r

x (f) ∈ D(k+r)
x,y (M), we say that f preserves σ up to order

r if σr(fk+r(α)) = σr(α) for every α in the fiber of L(k+r)(M) above x. The set

Autk+r(σ, x, y) =
{
jk+r
x (f) ∈ D(k+r)

x,y (M) |f preserves σ up to order r
}

is called the set of infinitesimal automorphisms of σ of order k + r taking x to
y. For simplicity, let Autk+r(σ, x) denote Autk+r(σ, x, x).

Definition 2.21. Let r be a nonnegative integer. A geometric structure σ of
order k on M is said to be r-rigid if, for every x ∈M , the canonical projection

πk+r+1
k+r : Autk+r+1(σ, x)→ Autk+r(σ, x)

is injective.

It is worth mentioning that most of the classical geometric structures that
we know are generalized by these concepts, in particular the ones we use in this
work, i.e. pseudo-Riemannian metrics (0-rigid geometric structures of order
1 of algebraic type [5]) and almost-complex structures, which are geometric
structures (in the above sense) of order 1, but not rigid.

Next we make a precise identification of both, letting aside the technical
proofs for the properties (as smoothness) of the objects and maps involved.

First, let us remember that a pseudo-Riemannian metric h onM is a smooth
assignation x 7→ hx where hx : TxM × TxM → R is a symmetric bilinear non-
degenerate form of constant signature.
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Proposition 2.22. Let

pp,q =

{
B : Rn × Rn → R

∣∣∣∣ B is a symmetric, nondegenerate
bilinear form of order p, q

}
.

If the action of GL(n,R) on p is given by A ·B = B(A−1, A−1), then there exists
a correspondence between pseudo-Riemannian metrics h onM of signature (p, q)
and GL(n,R)-equivariant maps σ : L(M)→ pp,q.

Let us recall that L(M) = L(1)(M) is isomorphic to the frame bundle, if the
reader finds it more convenient. Given an element α ∈ L(M) we can think of
it as a linear isomorphism α : Rn → TxM that depends on π(α) = x. If h is a
pseudo-Riemannian metric on M , we define σh : L(M) → pp,q in the following
fashion: given α ∈ L(M) we set σh(α)(u, v) := hπ(α)(α(u), α(v)). This result
in an algebraic GL(n,R)-equivariant map. Conversely, if σ : L(M) → pp,q is
a GL(n,R)-equivariant map of constant signature, then we define hσx(X,Y ) =
σ(α)(α−1X,α−1Y ) for any α such that π(α) = x, which does not depend of the
election. Then we get a pseudo-Riemannian metric. It is worth mentioning that
Iso(M,h) = Aut(M,σh).

Now we do the same analysis for almost-complex manifolds. Let (M,J) be
an almost-complex manifold of complex dimension n. Let J be the space of
linear automorphisms T of Rn such that T 2 = −I (this forces n to be even),
and the GL(n,R)-action on J given by A · T = ATA−1. Then there exists
a correspondence between almost-complex structures J on M and GL(n,R)-
equivariant maps σ : L(M)→ J. We give the correspondence now. Fixing J , we
obtain a geometric structure σJ : L(M)→ J by doing σJ(α) = α−1Jπ(α)α. Con-
versely, given a geometric structure σ : L(M) → J, we define Jσx = ασ(α)α−1

where α is such that π(α) = x. Again, we have that Aut(M,σJ) is the set of
almost-complex diffeomorphisms of (M,J).

Complete parallelisms, linear connections, volume forms, (r, s)-tensor fields
(in particular pseudo-Riemannian metrics and complex structures), symplectic
structures, contact structures, A-geometric structures (in the sense of Cartan)
are all geometric structures in the sense we defined above If clarification is
needed, we will refer it as ‘the sense of Gromov’.

2.4 Product of geometric structures

All the material comes from [7], except the last part, which will be clear when
we arrive there.

Remark. Given an action of a closed subgroup H < L on a space X, we can
induce an action of L. The space acted upon is (L×X)/H where the H-action
we quotient by is given by (l, x)h = (lh, h−1x). The L-action on the space is
defined by the left L action on the first factor, which is well-defined on the
quotient since it commutes with the H-action defined above. Note that this
definition only works for left actions of H on X: analogous definitions allow us
to induce right actions to right actions. If the action of H on X is algebraic and
H is an algebraic subgroup of an algebraic group L, then the induced action is an
algebraic action on an algebraic variety. Also, if F : X → Y is an H-equivariant
map, then F ′ : (L×X)/H → (L× Y )/H is an L-equivariant map.
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Let M and N be differentiable manifolds of dimensions m and n respec-
tively, Q1, Q2 algebraic varieties acted upon by Gl(k1)(m) and Gl(k2)(n), and
σ1 : L(k1)(M) → Q1 and σ2 : L(k2)(N) → Q2 geometric structures. If we con-
sider prolongations of the structures, we may suppose that k = k1 = k2. To
define a geometric structure on M ×N , we begin with the map

σ1 × σ2 : L(k)(M)× L(k)(N)→ Q1 ×Q2

and, using the inclusion Gl(k)(n)×Gl(k)(m) < Gl(k)(n+m), induce to a map

(σ1 × σ2)′ : (Gl(k)(n+m)× L(k)(M)× L(k)(N))/(Gl(k)(n)×Gl(k)(m))→ V

where V = (Gl(k)(n + m) × Q1 × Q2)/(Gl(k)(n) × Gl(k)(m)) is an algebraic
variety provided that Q1 and Q2 are algebraic. We are using the above remark
as follows: L = Gl(k)(n+m), H = Gl(k)(n)×Gl(k)(m), X = L(k)(M)×L(k)(N)
and Y = Q1 ×Q2.

Let us note that (Gl(k)(n+m)×L(k)(M)×L(k)(N))/(Gl(k)(n)×Gl(k)(m))
may be canonically identified with L(k)(M ×N), if we define

Gl(k)(n+m)× L(k)(M)× L(k)(N)→ L(k)(M ×N)(
jk(ϕ), jk(f), jk(g)

)
7→ jk((f × g) ◦ ϕ),

where f × g : Rm × Rn → M × N is the map (x1, x2) 7→ (f(x1), g(x2)), and
finally pass to the quotient (it is constant on the fibers).

About the rigidity of the product, we have the next result that we state
without proof because is in the reference mentioned above.

Proposition 2.23. If σ1 : L(k)(M) → Q and σ2 : L(l)(N) → Q2 are r-rigid
geometric structures, then the product structure (σ1×σ2)′ : L(max(k,l))(M×N)→
V is also r-rigid.

Now, if we have two different geometric structures on the same manifold M ,
σj : L(kj)(M) → Qj , j = 1, 2, then we can consider the product as above, and
then restrict to the diagonal (M ↪→ M ×M) or try to make them work as a
single one in the next fashion. As above, taking into account prolongations, we
may suppose k = max(k1, k2), and then we consider the map

σ1 × σ2 : L(k)(M)→ Q1 ×Q2

In this case, we do not need to go through the quotient and we have a better
condition for rigidity.

Proposition 2.24. If σj : L(kj)(M) → Qj, j = 1, 2, are geometric structures,
and σ1 is r-rigid, then the product structure

σ1 × σ2 : L(max(k1,k2))(M)→ Q1 ×Q2

is also r-rigid.

Proof. By passing to a prolongation of one structure, it suffices to consider
k = max(k1, k2). A k-jet of a diffeomorphism of M fixing a point x leaves
σ1 × σ2 invariant if and only if it leaves invariant σ1 and σ2. We conclude that

Autk(σ1 × σ2, x) = Autk(σ1, x) ∩Autk(σ2, x), (2.8)
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so if σ1 is r-rigid, that is Autk+r+1(σ1, x) → Autk+r(σ1, x) is injective for all
x ∈ M , then Autk+r+1(σ1 × σ2, x) → Autk+r(σ1 × σ2, x) is injective for all
x ∈M .

Returning to the anti-Hermitian metric, let (M,J) be an almost-complex
manifold of real dimension 2n. By abuse of notation J would mean both the
complex structure and the geometric structure induced, as was seen in Sec-
tion 2.3. Let us suppose that M accepts an anti-Hermitian metric g. Let
C denote the set of B : R2n × R2n → C such that B is bilinear, symmet-
ric, nondegenerate, and compatible with some complex structure on R2n, i.e.
an anti-Hermitian metric on R2n. Then we can think of g as a geometric
structure σ : L(M) → C by defining σ(α) : R2n × R2n → C as σ(α)(X,Y ) =
gπ(α)(α(X), α(Y )), And conversely, given a geometric structure σ : L(M) → C,
it is the same as asking for an anti-Hermitian metric on R2n and a struc-
ture J(α) on R2n, namely the one that is compatible with g(α). We define
gx(X,Y ) = σ(α)(α−1X,α−1Y ) where α ∈ L(M) is any element such that
π(α) = x. This establishes a one-to-one correspondence between anti-Hermitian
metrics and smooth geometric structures σ : L(M)→ C. It is worth mentioning
that the automorphisms of σ are precisely the isometries of g so again by abuse
of notation we make σ = g and use them interchangeably.

If we take the real part of g, we saw at the end of Section 2.2 that h = Re(g)
gives M the structure of a pseudo-Riemannian manifold. If p = {B : R2n ×
R2n → R | B is bilinear, symmetric and nondegenerate} and the action of
GL(n,R) on p is given by A · B = B(A−1, A−1) then h can be thought of as a
GL(n,R) equivariant map h : L(M)→ p. We can recover g from h pretty much
as in Section 2.2: g(α)(·, ·) = h(α)(·, ·)− ih(α)(J(α)·, ·)

But we are interested in the automorphisms of g. The next corollary shows
an important relation.

Corollary 2.25. A diffeomorphism f : M → M is an automorphism of g, if
and only if is an automorphism of h and J (and Im(g)).

Moreover, we have that Aut(g) = Aut(h) ∩Aut(J), Autloc(g) = Autloc(h) ∩
Autloc(J) and Aut1+r(g, x) = Aut1+r(h, x) ∩Aut1+r(J, x).

Proof. This a consequence of Proposition 2.9.

Then by equation (2.8) we conclude that study of the automorphisms of g is
the same as the study of the automorphisms of h× J (with an extra condition:
the compatibility of h and J .) By Proposition 2.24 we have the next corollary.

Corollary 2.26. The anti-Hermitian metric g is rigid because h is.

2.5 Killing fields of manifolds
Let us leave the anti-Hermitian metrics aside for a moment. The content of this
section is based on the results obtained in [5] and [27].

For the sake of completeness we write the definitions and properties of Killing
fields from [5].

Definition 2.27. Let M be a manifold and σ a geometric structure on M . A
(local) Killing field of σ on M is a smooth vector field on M whose (local) flow
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acts on M by (local) automorphisms of σ. The space of Killing fields an local
Killing fields of a geometric structure σ are denoted by Kill(σ) and Killloc(σ),
respectively.

If X is a vector field on M , its local flow lifts to a local flow on the bundle
L(k)(M), and this defines a vector field X(k) on L(k)(M), which is called the lift
of X to L(k)(M). But if we also take X to be the Killing field of a geometric
structure σ, an easy-to-prove property is that, dσα(X(k)(α)) = 0 for all α ∈
L(k)(M), which suggests the next definition.

Definition 2.28. Let σ be a geometric structure of order k on M . An in-
finitesimal Killing field X ∈ X(M) of order k + r at x for σ is a (k + r)-jet
jk+r
x (X) of a germ at x of a vector field X so that dσrα(X(k+r)) = 0 for every
α ∈ L(k+r)(M) that lies in the fiber of x. Let Killk+r(σ, x) denote the space of
infinitesimal Killing fields for σ of order k+ r at x, and let Killk+r

0 (σ, x) denote
the subspace consisting of those vanishing at x.

We use the special notation Kill(σ, x) for the Lie algebra of germs at x of
local vector Killing fields defined in a neighborhood of x and Kill0(σ, x) for the
Lie subalgebra consisting of those vanishing at x.

The above definition does not depend on the choice of the vector field because
for a given vector fieldX, the value of dσα(X(k+r)(α)) depends only on jk+r

x (X).
Just as we have the generalization of germs of functions, we have tangents

bundles of higher order. Let M be any manifold and

T (k)
x M =

{
jk−1
x (X) | X ∈ X(M)

}
which is the vector space of (k− 1)-jets of vector fields at x ∈M . Then the set
T (k)
x M =

⋃
x∈M

T (k)
x M has the structure of a smooth vector bundle over M , and

we call it the tangent bundle of order k of M .
We recall that D(k)

x (M) denotes the group of k-jets at x of local diffeomor-
phisms fixing x, whose group structure is induced by the composition of maps.
Any jet jk0 (ϕ) ∈ L(k)(M) defines a linear isomorphism T

(k)
0 Rn → T

(k)
ϕ(0)M . With

respect to vector fields, we denote by D(k)
x (M) the space of k-jets at x of vector

fields vanishing at x, and we use the special notation gl(k)(n) when M = Rn
and x = 0. If M carries a geometric structure σ, the next result provides a
natural representation of D(k)

x (M) from which the Lie algebra of this group and
the Lie algebra of Autk(σ, x) are described in terms of D(k)

x (M) and Killk0(σ, x),
respectively; the proof is elementary, but it is detailed in Sections 2 and 4 of [5].

Lemma 2.29. For a smooth manifold M and any given point x ∈ M the
following properties hold for every k ≥ 1:

(1) The map

Θx : D(k)
x (M)→ GL(T (k)

x M)

Θx(jkx(ϕ))(jk−1
x (X)) = jk−1

x (dϕ(X))

is a Lie group monomorphism.

(2) The assignment [jkx(X), jkx(Y )]k = −jkx([X,Y ]) yields a well defined Lie
algebra structure on D(k)

x (M).
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(3) The map:

θx : D(k)
x (M)→ gl(T (k)

x M)

θx(jkx(X))(jk−1
x (Y )) = −jk−1

x ([X,Y ])

is a Lie algebra monomorphism for the Lie algebra structure on Dx(M)
given by [·, ·]k. Furthermore, θx(D(k)

x (M)) = Lie(Θx(D(k)
x (M))).

(4) If M has a rigid geometric structure σ, then we have

θx(Killk0(σ, x)) = Lie(Θx(Autk(σ, x))).

In particular, with respect to the homomorphisms Θx and θx, the Lie algebra
of Autk(σ, x) is realized by Killk0(σ, x) with the Lie algebra structure given by
[·, ·]k.

For the rest of this work we need a notion of a Zariski measure that we define
now.

Definition 2.30. A measure on an analytic manifold M is called a Zariski
measure if every proper analytic variety of a connected open subset of M is a
null set.

Now, let G be a connected noncompact simple Lie group acting on M . We
recall that an action is locally free if its stabilizers are discrete. When the
manifold and the action are analytic, if the action is not trivial and leaves
invariant a finite Zariski measure, then, by Proposition 3.8 of [5], it is locally
free on a conull, open, dense subset and so the orbits define a foliation that we
denote with O. From [27] and the subsequent articles [4] and [24], we observe
that is crucial to understand the properties of the transverse to the G-orbits.

If g is the Lie algebra of G and X ∈ g then the vector field induced by the
one-parameter group of diffeomorphisms exp(tX) ·x will be denoted by X∗, i.e.

g→ X(M)

X 7→ X∗

and if evx : G → M denotes the map evx(a) = a · x for all a ∈ G (evaluate the
diffeomorphism a on x), then

X∗x =
d

dt

∣∣∣∣
t=0

(exp(tX) · x)

=
d

dt

∣∣∣∣
t=0

evx (exp(tX))

= (evx)∗

(
d

dt

∣∣∣∣
t=0

exp(tX)

)
= (evx)∗(X)

(2.9)

It is well known that the bundle TO tangent to the foliation O is a trivial
vector bundle isomorphic to M × g, under the isomorphism given by:

M × g→ TO
(x,X) 7→ X∗x
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for every x ∈ M . This induces an isomorphism between the fiber TxO and g,
which we will refer to as the natural isomorphism. We denote by La : M →M
the diffeomorphism x 7→ a·x induced by the action of G. The following two well-
known results are of fundamental importance when one considers the isotropy
of left actions of groups on manifolds.

Lemma 2.31. (La)∗(X
∗) = (AdaX)∗La

for all X ∈ g and a ∈ G.

Lemma 2.32. [X∗, Y ∗] = − [X,Y ]
∗ for all X, Y ∈ g.

The next result is a generalization found in [27].

Proposition 2.33. Let G be a connected non-compact simple Lie group, σ a
geometric structure on M of order k and type Q. Suppose that Q is algebraic,
M and σ are analytic and G acts on M by automorphisms of σ. Assume that
the G-action on M has a dense orbit and preserves a finite Zariski measure.
Consider the G̃-action on M̃ lifted from the G-action on M and σ̃ the lifted
geometric structure. Then, there exists a dense subset S ⊂ M̃ such that for
every x ∈ S the following properties are satisfied.

(1) There is a homomorphism of Lie algebras ρx : g → Kill(σ̃, x) which is an
isomorphism onto its image ρx(g) = g(x).

(2) g(x) ⊂ Kill0(σ̃, x), i.e. every element of g(x) vanishes at x.

(3) For every X,Y ∈ g we have:

[ρx(X), Y ∗] = [X,Y ]∗ = −[X∗, Y ∗]

in a neighborhood of x.

Proof. For every k ≥ 1, let us denote with σk : L(k)(M) → Qk the Gl(k)(n)-e-
quivariant map that defines the kth order extension of the geometric structure
σ. By Proposition 3.8 of [5], there exists a G-invariant dense open subset U of
M such that the action of G is locally free on U . Consider the set:

Gk =
{
jk−1
x (X∗) : X ∈ g, x ∈ U

}
which, by the local freeness of the G-action, is a smooth subbundle of T (k)U .
In fact, we have G = G1 = TO, and as with this bundle there is a trivialization
given by:

U × g→ Gk

(x,X) 7→ jk−1
x (X∗).

The corresponding trivialization of the frame bundle of Gk is given by:

U ×GL(g)→ L(Gk)

(x,A) 7→ Ax.

where Ax(X) = jk−1
x ((AX)∗). Note that we have taken g as the standard fiber

of the bundle Gk.
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Choose a subspace G0 of T (k)
0 Rn isomorphic to g. We will fix such a subspace

as well as an isomorphism with g through which we will identify these two spaces.
Let us now consider:

L(k)(U,Gk) =
{
α ∈ L(k)(U) : α(G0) = Gkx if α ∈ L(k)(U)x

}
where L(k)(U)x stands for the fiber over x. L(k)(U,Gk) is a smooth reduction
of L(k)(U) to the subgroup of GL(k)(n) that preserves the subspace G0; we
will denote this subgroup by GL(k)(n,G0). Recall from the remarks preceding
Lemma 2.29 that for every jk0 (ϕ) ∈ L(k)(U) we obtain a linear isomorphism:

T
(k)
0 Rn → T kϕ(0)U

jk−1
0 (X) 7→ jk−1

ϕ(0)(dϕ(X)).

In particular, if we let:

fk : L(k)(U,Gk)→ L(Gk)

jk0 (ϕ) 7→ jk0 (ϕ) |G0 ,

then, by the identification between G0 and g, we can consider fk as a well-defined
smooth principal bundle morphism that covers the identity. The associated
homomorphism of structure groups for fk is given by:

πk : GL(k)(U,G0)→ GL(g)

jk0 (ϕ) 7→ jk0 (ϕ) |G0 ,

which is clearly surjective. Note that we have used again our identification
between g and G0.

Fix µ an arbitrary ergodic component for the G-action on U for the volume.
Then, there is a measurable reduction P of L(k)(U,Gk) so that σk(P ) is (µ-a.e.
over U) a single point q0 ∈ Qk. Furthermore, the structure group of P is the
subgroup of GL(k)(n,G0) that stabilizes q0, and in particular it is algebraic.
This claim is a consequence of the fact that the GL(k)(n,G0)-action on Qk is
algebraic; we refer to Section 4 and the proof of Proposition 8.4 of [5] for further
details.

On the other hand, since πk is a surjection and fk is G-equivariant, by
Proposition 8.2 of [5], there exist reductionsQ1 andQ2 of L(k)(U,Gk) and L(Gk),
respectively, to subgroups L1 ⊂ GL(k)(n,G0) and Ad(G)

Z
⊂ GL(g), such that

fk(Q1) ⊂ Q2 (µ-a.e. over U) and such that πk(L1) is a finite index subgroup
of Ad(G)

Z
. Here L1 can be chosen to be the algebraic hull of L(k)(U,Gk) for

the G-action on U with respect to the ergodic measure µ. This claim uses the
well known fact that Ad(G)

Z
is the algebraic hull of U ×GL(g) for the product

action.
It is not difficult to see that this can be chosen so that Q2 = U × Ad(G)

Z

(µ-a.e. over U) with respect to the above identification U × GL(g) ∼= L(Gk).
We can also assume that Q1 ⊂ P , µ-a.e. over U , because the reduction Q1 is
the smallest one to an algebraic subgroup. The above discussion ensures that
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for µ-a.e. x ∈ U , we have the following relations:

fk((Q1)x) ⊂ (Q2)x = {x} ×Ad(G)
Z

(Q1)x ⊂ (P )x ⊂ L(k)(U,Gk)x

σk((P )x) = {q0} .

Let us now fix a point x such that these conditions hold. Choose αx ∈ (Q1)x

and let fk(αx) = (x, kx) where kx ∈ Ad(G)
Z
. Since πk is surjective, there exists

k̂x ∈ GL(k)(n,G0) such that πk(k̂x) = kx. In particular, by the πk-equivariance
of fk we have fk(αxk̂

−1
x ) = (x, e). We also have by the same reason:

fk(αxgk̂
−1
x ) = fk(αxk̂

−1
x k̂xgk̂

−1
x ) = (x, kxπk(g)k−1

x ),

for every g ∈ L1. Also, the inclusion (Q1)x ⊂ L(k)(M,Gk)x implies that, for
every g ∈ L1, the k-jets of diffeomorphisms αxk̂−1

x , αxgk̂−1
x considered as linear

isomorphisms T (k)
0 Rn → T (k)

x M map G0 onto Gkx. Hence, from the definition of
fk it follows that αxgα−1

x = (αxgk̂
−1
x )(αxk̂

−1
x )−1 is a k-jet of local diffeomor-

phism of M at x whose associated isomorphism T (k)
x M → T (k)

x M maps Gx onto
itself by the assignment:

jk−1
x (X∗) 7→ jk−1

x ((kxπk(g)k−1
x X)∗).

for which we have used the above trivialization U × GL(g) ∼= L(Gk). Since
πk(L1) has finite index in Ad(G)

Z
it contains the identity component Ad(G),

and because kx ∈ Ad(G)
Z

the group kxπk(L1)k−1
x also contains Ad(G). It

follows that αxL1α
−1
x is a subgroup of D(k)

x (U) for which the homomorphism
from Lemma 2.29 (1) induces a homomorphism:

Hx : αxL1α
−1
x → GL(Gkx)

αxgα
−1
x 7→ Θx(αxgα

−1
x )|Gk

x

whose image contains Ad(G) ⊂ GL(g) with respect to the identification between
g and Gkx given by the above isomorphism U × g ∼= Gkx . This implies that the
induced Lie algebra homomorphism:

hx : Lie(αxL1α
−1
x )→ gl(Gkx)

has image ad(g), again with respect to the referred identification between g and
Gkx .

On the other hand, we have for every g ∈ L1:

σk((αxgα
−1
x )αx) = σk(αxg) = σk(αx)

because σk((Q1)x) ⊂ σk((P )x) = {q0} is a single point. But this identity proves
that every such k-jet αxgα−1

x preserves the volume up order k (see [5]). In other
words, αxL1α

−1
x is a subgroup of Autk(σ, x) and by Lemma 2.29 we also have

that Lie(αxL1α
−1
x ) is a Lie subalgebra of Killk0(σ, x).

From the above remarks, it follows that there is a Lie algebra homomorphism
ρ̂kx : g→ Killk0(σ, x) such that:

Θx(ρ̂kx(X))(jk−1
x (Y ∗)) = jk−1

x ([X,Y ]∗) for every X,Y ∈ g. (2.10)
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For k fixed, the existence of the homomorphism ρ̂kx has been established for
µ-a.e. x ∈ U , where µ is an arbitrary ergodic component of the volume of U .
Thus, for k fixed, it follows that the homomorphism ρ̂kx exists for every x ∈ Sk,
where Sk is some subset of U which is conull with respect to the volume of U .

Finally, if we let S0 =

∞⋂
n=1

Sk, then S0 is conull with respect to the volume and for

every x ∈ S0 and every k ≥ 1 there exist a homomorphism ρ̂kx : g → Killk0(σ, x)
satisfying (2.10).

By Theorem 2, Proposition 6 and Proposition 7 of [3], we can conclude that
for x ∈ U there is some integer k(x) ≥ 1 so that, for k ≥ k(x), every element of
Killk0(σ, x) extends uniquely to an element of Kill0(σ, x). This property use the
analyticity assumption.

The upshot of these remarks is that for every x ∈ U , there is some k(x) ≥ 1
so that the map:

Jkx : Kill0(σ, x)→ Killk0(σ, x)

X 7→ jkx(X),

is a linear isomorphism for every k ≥ k(x). Note that in this case, for the usual
brackets in Kill0(σ, x) and the brackets [·, ·]k in Killk0(σ, x) considered above, the
map Jkx is a Lie algebran anti-isomorphism. For S0 and U as above, consider
the dense subset S = S0 ∩ U ⊂ M . Next choose x ∈ S and k ≥ max(k(x), 2).
Then, the map Jkx is a Lie algebran anti-isomorphism, and there exists a Lie
algebra homomorphism ρkx : g → Killk0(M,x) satisfying (2.10). If we let ρx =
−(Jkx )−1 ◦ ρkx : g → Kill0(σ, x), then ρx defines a Lie algebra homomorphism
such that: jk−1

x ([ρx(X), Y ∗]) = jk−1
x ([X,Y ]∗), for every X,Y ∈ g. For this, we

have used (2.10) and the definition of θx from Lemma 2.29. Since k−1 ≥ 1 and
because germs of Killing fields are determined by any jet of order at least 1, we
conclude that, at our chosen point x, ρx satisfies (from our statement) (1), (2)
and the identity in (3) in a neighborhood of x with M replaced with M̃ . It is
important to mention that in statement (1) we are using the analyticity of M
and σ and that M̃ is simply connected, because Proposition 7 of [3] asserts this.
The identity in (3) now proves that every element of g(x) preserves the tangent
bundle to O in a neighborhood of x: i.e. the corresponding Lie derivatives map
sections of TO into sections of TO. This completes the proof of our statement
for the dense subset S ⊂M and forM replaced with M̃ in (1)–(3). Finally, this
yields the statement for M for the dense subset which is the inverse image of S
under the covering map since such map is a local isometry.

2.6 Anti-Kähler manifolds and their Killing fields

2.6.1 Anti-Kähler manifolds
We have the analogous definition of Kähler manifold but in the context of anti-
Hermitian manifolds.

Definition 2.34. Let (M,J, g) be an anti-Hermitian manifold and let ∇ be the
Levi-Civita connection of h = Re(g). We say thatM is an anti-Kähler manifold
if J is parallel with respect to ∇, that is, ∇J = 0.
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As in the Hermitian case, by [2] an anti-Hermitian manifold is anti-Kähler
if and only J is integrable. J being parallel will give us a strong conclusion on
the set of Killing fields.

Let us remember that a Killing vector field of g is a vector field X such that
its 1-parameter group ϕt acts by local isometries of g. By Corollary 2.25 this
occurs if and only if ϕt acts by local isometries of both h = Re(g) and J , so that
X is a Killing vector field of h and J . We conclude that Kill(g) = Kill(h)∩Kill(J)
and Killloc(g) = Kill(h)loc ∩Killloc(J).

Remark. We recall from [25] or [17] that

∇Y ◦ J = ∇Y J + J ◦ ∇Y ,

so M is an anti-Kähler manifold if and only if

∇Y ◦ J = J ◦ ∇Y . (2.11)

Proposition 2.35. If M is an anti-Kähler manifold, then Kill(g), Killloc(g)
and Kill0(g, x) are complex Lie algebras.

Proof. It is enough to prove that Kill(g) is a complex vector space. Let X ∈
Kill(g) be a Killing field of g. By the discussion above, X ∈ Kill(J) and X ∈
Kill(h). Then the following equations hold:

[X, JY ] = J [X,Y ] (2.12)

h(∇YX,Z) + h(Y,∇ZX) = 0 (2.13)

for all Y , Z ∈ X(M) (See [25]).
SinceM is a complex manifold, JX ∈ Kill(J) (See [18]), and furthermore by

the torsion-free property of the Levi-Civita connection, and the commutativity
of J and ∇,

∇JYX = ∇XJY − [X,JY ] Torsion-free property
= J∇XY − J [X,Y ] (2.11) and (2.12)
= J(∇XY − [X,Y ])

= J(∇YX) Torsion-free property

(2.14)

for all Y ∈ X(M). Thus

h(∇Y JX,Z) + h(Y,∇ZJX) = h(J∇YX,Z) + h(Y, J∇ZX) by (2.11)
= h(∇JYX,Z) + h(JY,∇ZX) by (2.14) and (2.3)
= 0 by (2.13).

for all Y , Z ∈ X(M), and thus JX ∈ Kill(h) and by Corolarry 2.25, JX ∈
Kill(g). This proves that Kill(g) is a complex vector space.

We just defined a new object, and it is important because it lead us to a
whole new category of things, but we need some examples to help us understand
the importance of these concepts. Instead of giving only one, we give many
examples through the following results.

Proposition 2.36. Every complex Lie group is an anti-Kähler manifold.
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Proof. Let be G a complex Lie group with complex Lie algebra g. If ge is
the Killing form on g and we extend it by translations, the resulting pseudo-
Riemannian metric g is a bi-invariant anti-Hermitian metric for G. The Levi-
Civita connection is

∇XY =
1

2
[X,Y ]

(See [11]) so ∇J = 0. Thus G is an anti-Kähler manifold.

Corollary 2.37. Every quotient of a complex Lie group over a discrete subgroup
is an anti-Kähler manifold.

A natural question arise motivated for what happen in the real case, that
is: Does the isometires (automorphisms) of an anti-Hermitian manifold form a
complex Lie group? The answer in general is uncertain, and with high proba-
bility for being negative, but by the Lemma above we can answer this question
for anti-Kähler manifolds.

Proposition 2.38. Let (N, J, g) be a connected complete anti-Kähler manifold
(all the Killing fields of g are complete). The set of isometries of g, Iso(N, g) =
Aut(g) has the structure of complex Lie group. If Iso(N, g) denotes the Lie
algebra of Iso(N, g), then the map:

Iso(N, g)→ Kill(g), X 7→ X∗,

is an anti-isomorphism of complex Lie algebras. In particular, [X,Y ]
∗

= − [X∗, Y ∗]
for every X, Y ∈ Iso(N, g). Furthermore, the isometry group Iso(N, g) acts
holomorphically on N .

Proof. Similarly to [25] we conclude that the Lie algebra Iso(N, g) is anti-
isomorphic to the subalgebra of complete Killing fields of g via the anti-isomorphism
mentioned in the statement of this proposition. and from Proposition 2.35 we
know that the latter is a complex Lie subalgebra. Then by Theorem 3.1 of [16],
the group of diffeomorphisms of N that are isometries of the anti-Hermitian
metric has a unique structure of real Lie group, but in [18] we find that a real
Lie group is complex if and only if its Lie algebra is complex. We conclude
that Iso(N, g) is a complex Lie group. The action is holomorphic because the
isomorphism X 7→ −X∗ is complex.

The above implies that on a complete manifold every Lie algebra of Killing
fields can be realized from an isometric right action. The details can be found
in [4] or [19].

Lemma 2.39. Let (N, J, g) be a complete anti-Kähler manifold and H a simply-
connected complex Lie group with complex Lie algebra h. If ψ : h → Kill(N, g)
is a homomorphism of complex Lie algebras, then there exists an isometric right
H-action N × H → N such that ψ(X) = X∗, for every X ∈ h. Furthermore,
the H-action is holomorphic.

The next lemma will be very useful throughout this work.

Lemma 2.40. Let N be an anti-Kähler manifold with an almost-complex struc-
ture J , an anti-Hermitian metric g and x ∈ N . Then the map:

λx : Kill0(g, x)→ so(TxN, gx)

λx(Z)(v) = [Z, V ]x,
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where V is any vector field such that Vx = v, is a well defined homomorphism
of complex Lie algebras.

Proof. By Proposition 2.35 Kill0(g, x) has the structure of a complex Lie algebra.
Let Z be in Kill0(g, x); by the above discussion, Z ∈ Kill0(h, x), and thus
λx(Z) ∈ so(TxN,hx) (See [27]). Since Z ∈ Kill0(J, x) as well, for every vector
field V we have

J [Z, V ]x = [Z, JV ]x

by equation (2.12), which implies that λx(Z) commutes with Jx, so by Propo-
sition 2.10 we conclude that λx(Z) ∈ Kill0(g, x).

The objective is to study a complex Lie group acting smoothly on an anti-
Kähler manifold by isometries of a anti-Hermitian metric. But we need some
compatibility between the complex structures of G and M . By placing some
conditions on G, M , and the action we get a surprising result.

This will we done by requiring the map evx, from the previous section, to
be a complex map between G and M . If Jg stands for the complex structure
on g that comes from the one in G, asking evx to be complex for each x ∈ M ,
equation (2.9) implies

(JgX)∗x = (evx)∗(JgX) = Jx(evx)∗(X) = JxX
∗
x . (2.15)

Moreover, the orbits would be complex submanifolds of M . Since G acts by
holomorphic automorphisms of M , the whole action G ×M → M would be
holomorphic. Assuming either of the above, by equation (2.15) we conclude
that JxX∗x ∈ TxO for every X ∈ g and x ∈M . We will assume the action to be
holomorphic from now on.

As in [29], we will prove some interesting facts. Let be X, Y ∈ g, we define
Φ1 : M → g∗ ⊗ g∗ by Φ1(x)(X,Y ) = hx(X∗, Y ∗), that is, Φ1(x) = ev∗x(h). In
the article mentioned above, it is proved that Φ1 is G-equivariant via the coad-
joint action in g∗ ⊗ g∗, which is defined for all φ ∈ g∗ ⊗ g∗ by a · φ(X,Y ) =
φ(Ada−1 X,Ada−1 Y ); afterwards, it is proved that if G is semisimple with-
out compact factors acting by isometries on a connected finite-volume pseudo-
Riemannian manifold M and preserving this volume, then Φ1 is G-invariant.
This is done by pushing forward the metric of M to g∗ ⊗ g∗ and using the next
well-known lemma.

Lemma 2.41. Let G be a connected semisimple Lie group without compact
factors and let V be a real finite-dimensional representation of G. If ν is a G-
invariant Borel probability measure on V , then supp(ν) ⊂ V G, where V G stands
for the points fixed by the action of G.

Finally, it is concluded that Φ1 is constant assuming that the action has a
dense orbit. In other words, we can pull back the pseudo-Riemannian metric of
M to a nondegenerate bilinear form in g.

We will repeat these ideas for the complex structure J . As we discussed in
Section 2.5, there is an isomorphism

αx : TxO → g

αx(X∗x) = X
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We use the notation αx following that of [28]. Now, as in [29] we define a map
Φ2 : M → g∗ ⊗ g by Φ2(x)(X) = αx(JxX

∗
x). Since by hypothesis JxX∗x ∈ TxO,

and αx is an isomorphism, Φ2 is well defined. We note that

Φ2(x)(Φ2(x)(X)) = αxJx(αxJxX
∗
x)∗x

= αxJxJxX
∗
x

= −αxX∗x = −X

for all X ∈ g, i.e. Φ2
2(x) = −1, and this defines a complex structure on g for

each x ∈ M . In addition to its left action on M , the group G acts on g∗ ⊗ g
from the left via the adjoint action, which is defined for all a ∈ G, X ∈ g and
φ ∈ g∗ ⊗ g by a · φ(X) = Ada φ(Ada−1 X). The following Lemma shows that
the map Φ2 is equivariant for this action.

Lemma 2.42. For all a ∈ G and x ∈M , Φ2(a · x) = a · Φ2(x).

Proof. Since G acts by automorphisms of J , then Jax ◦ (La)∗ = (La)∗ ◦ Jx for
all a ∈ G, x ∈M . From Lemma 2.31 we know (La)∗(X

∗
x) = (AdaX)∗ax ∈ TaxO

and so

αax ◦ (La)∗(X
∗
x) = αax(AdaX)∗ax

= AdaX

= Ada αx(X∗x).

Thus, αax ◦ (La)∗ = Ada ◦αx. Finally we have

Φ2(a · x)(X) = αax(JaxX
∗
ax)

= αax(Jax(Ada Ada−1 X)∗ax)

= αax(Jax(La)∗(Ada−1 X)∗x)

= αax((La)∗Jx(Ada−1 X)∗x)

= Ada(αx(Jx(Ada−1 X)∗x))

= Ada Φ2(x)(Ada−1 X)

= a · Φ2(x)(X).

Now we consider the Borel measure ψ on M with supp(ψ) = M induced
by the pseudo-Riemannian metric h. By assumption, ψ is G-invariant and
ψ(M) < +∞. By multiplying the metric by a constant if necessary, we may
assume that ψ is a probability measure.

Proposition 2.43. Let be G a connected semisimple complex Lie group with-
out compact factors acting holomorphically by isometries of an anti-Hermitian
manifoldM with finite volume. Then for all a ∈ G and x ∈M , Φ2(ax) = Φ2(x).

Proof. Consider the measure ν = (Φ2)∗(ψ). Since ψ is a G-invariant probability
measure and Φ2 is G-equivariant by Lemma 2.42, ν is a G-invariant probability
measure. By Lemma 2.41, supp(ν) ⊂ (g∗⊗g)G. It follows that Φ2(a·x) = Φ2(x)
for all x ∈M and a ∈ G.

Proposition 2.44. Let G and M as in the above Proposition. If the G-action
has a dense orbit, then the map Φ2 is constant.
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Proof. By the above Proposition, Φ2 is constant on G orbits. Since Φ2 is con-
tinuous and M is connected, Φ2 must be constant on M .

By equation (2.15), we conclude that Φ2 ≡ Jg.
Remark. The proofs were made only assuming that G was acting by isometries
of h and J and that JxX∗x ∈ TxO for (almost) all x ∈ M . So, if A is a
(1, s)-tensor, h a pseudo-Riemannian metric, Ax((X1)∗x, . . . , (Xs)

∗
x) ∈ TxO and

G acts by automorphisms of h and A, it can be proved that if G is connected,
semisimple, without compact factors, and has a dense orbit then a Φ defined
in the same fashion as Φ2, is constant. In other words, we can pull back the
structure of M to G via Φ.

2.6.2 Killing fields of anti-Kähler manifolds

For this subsection it is necessary to assume the integrability of a complex
structure. From now on to the end we ask (M,J) to be a complex manifold.
The induced complex structure (as we saw in section 2.2) will be called J , as
usual.

We repeat the definitions of previous sections in the context of complex
manifolds because we need new notation. The proof of all the assertions are
omitted but they are essentially the same as in the real case.

Let Gl(k)(n,C) denote the group of k-jets at 0 of biholomorphisms of Cn
that fix 0. As a manifold:

Gl(k)(n,C) =

{
(A,L2, . . . , Lk)

∣∣∣∣ A ∈ GL(n,C),
Lj ∈ Sj(Cn;Cn), for every j ≥ 2

}
.

Gl(k)(n,C) is in fact a complex Lie group. Gl(1)(n,C) is the general linear group
GL(n,C) and, for any pair of integers k ≤ l, there is a canonical homomorphism

πlk : Gl(l)(n,C)→ Gl(k)(n,C).

Let gl(k)(n,C) denote the space of k-jets at 0 of holomorphic vector fields on
Cn that vanish at 0. The bracket of two elements jk(X), jk(Y ) ∈ gl(k)(n,C)
is defined the same as in the real case. Defining Jjk(X) = jk(J0X) provides
a complex Lie algebra structure on gl(k)(n). Moreover, gl(k)(n,C) is the Lie
algebra of Gl(k)(n,C).

Let (M,J) be a complex manifold of dimension n and let L(k)
J (M) denote

the kth order complex frame bundle of M . This is the collection of k-jets at
the origin 0 ∈ Cn of biholomorphisms at a neighborhood of 0 ∈ Cn into M , and
it has a natural structure of a complex manifold. L

(k)
J (M) has an additional

structure; it is indeed a locally-trivial complex principal fiber bundle over M
with structure group Gl(k)(n,C). The bundle map π : L

(k)
J (M) → M is the

obvious base point projection. The natural right action of Gl(k)(n,C) is as in
Section 2.3.

TxM is a complex vector space via Jx, as is T (k)
x M , by defining a complex

structure Jx by Jx(jkx(X)) = jkx(JX). It is well defined because just depends on
the k-jets of X since locally J is just a shuffle of the partial derivatives. Then
T (k)M has a structure of complex bundle.
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Remark. We note that the Gl(k)(n,C)-principal fiber bundle L(k)
J (M) is a re-

duction of the Gl(k)(n)-principal fiber bundle L(k)(M).
From now on to the end of this section, (M,J) is a complex manifold and g

an anti-Hermitian metric on M . We assume that there is no confusion with the
election of J , so we write L(k)

C (M) = L
(k)
J (M). As a geometric structure in the

sense of Gromov, thanks to the holomorphicity we can improve the definition
of g by restricting it to LC(M) and considering the identification of Cn with
R2n. We take C0 = {B : Cn × Cn → C} ⊂ C, where B is compatible with the
complex structure J0. We recall that C is the set of B : R2n×R2n → C bilinear,
symmetric and nondegenerate, compatible with some complex structure on R2n.
So, g as a geometric structure is a Gl(k)(n,C)-equivariant map

g : L
(k)
C (M)→ C0.

It is worth mentioning that C and C0 are algebraic.
To end this section, we want to adapt the ideas found in [4] and [27] to the

complex case, in particular, to give a complex version of Proposition 2.33.
If M is an anti-Kähler manifold, then M is complex and the vector space of

Killing vector fields of J , Kill(J), has the structure of a complex Lie algebra via
J itself ([18]). As we saw in the previous section, Kill(g) has the structure of a
complex Lie algebra.

Proposition 2.45. Let G be a connected noncompact complex simple Lie group
acting isometrically and with a dense orbit on a connected finite volume anti-
Kähler manifold (M,J, g). Consider the G̃-action on M̃ lifted from the G-
action on M , J̃ and g̃ the lifted complex structure and anti-Hermitian metric,
respectively. Assume that the G-action on M is holomorphic. Then there exists
a conull subset S ⊂ M̃ such that for every x ∈ S the following properties are
satisfied:

(1) There is a homomorphism of complex Lie algebras ρx : g → Kill(g̃, x)
which is an isomorphism onto its image ρx(g) = g(x).

(2) g(x) ⊂ Kill0(g̃, x), i.e. every element of g(x) vanishes at x.

(3) For every X,Y ∈ g we have:

[ρx(X), Y ∗] = [X,Y ]∗ = −[X∗, Y ∗]

in a neighborhood of x.
In particular, the elements in g(x) and their corresponding local flows
preserve both O and TO⊥ in a neighborhood of x.

(4) The homomorphism of complex Lie algebras λx ◦ ρx : g → so(TxM̃, g̃x)

induces a g-module structure on TxM̃ for which the subspaces TxO and
TxO⊥ are g-submodules

Proof. The proof of (1) - (3) is similar to that in Proposition 2.33, so we write
just the differences. First, we consider the restriction of g : LC(M) → C0 and
gk : L

(k)
C (M) → Qk the Gl(k)(n,C)-equivariant map that defines the kth order

extension of g. Then we take G0 complex isomorphic to g and

L
(k)
C (U,Gk) =

{
α ∈ L(k)

C (U) : α(G0) = Gkx if α ∈ L(k)
C (U)x

}
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that is not empty because M is a complex manifold.
Second, by [14] we can adapt what is found in [30] and choose P to be a

complex reduction of L(k)
C (U,Gk).

Third, since M is an anti-Kähler manifold every subspace and function in-
volved turns out to be complex, and Ad(G)

Z
results in the algebraic complex

hull of G×GL(g). It ends with ρx being a complex map.
For (4), the identity in (3) proves that every element of g(x) preserves the

tangent bundle to O in a neighborhood of x: i.e. the corresponding Lie deriva-
tives map sections of TO into sections of TO. By Proposition 2.2 of [21] we
conclude that the local flows of the elements of g(x) preserve O as well in a
neighborhood of x. Since the elements of g(x) are Killing fields, we conclude
that they (and their local flows) also preserve the normal bundle TO⊥ in a
neighborhood of x.
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Chapter 3

The centralizer of isometric
actions

We continue considering G andM satisfying the conditions of Section 2.6. From
now on H will be the subalgebra of Kill(g̃) consisting of the fields that centralize
the G̃-action on M̃ , that is, the global Killing fields X on M̃ such that

[X,Y ∗] = 0

for all Y ∈ g (here g is the Lie algebra of G̃ which is the same as that of G). We
recall that Y ∗ refers to the vector field on M such that its flow on each point
y ∈ X is given by (exp(tY )y)t through the G-action on M .

It is important to mention that H is a complex Lie algebra via J . Since M
is a complex manifold, given X ∈ H and Y ∈ g, we have

[JX, Y ∗] = [X,JY ∗] = J [X,Y ∗] = 0.

This chapter is dedicated to analyzing the properties of H and it is organized
in a similar fashion as that of [28].

3.1 The g-module structure of H
We start with a well-known local homogeneity result which is a particular case
of Gromov’s open dense orbit theorem. For its proof we refer to [10] and [32]
(See also [1], [20]).

Proposition 3.1. For G and M satisfying the above conditions, there is an
open dense conull subset U ⊂ M̃ such that for every x ∈ U the evaluation map

evx : H → TxM̃

Z 7→ Zx

is surjective.

Remark. Thanks to the complex structures of the vector spaces above, evx is a
complex Lie homomorphism. Indeed

evx(JX) = (JX)x = JxXx = Jxevx(X).
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Remark. The map evx : G → M of Section 2.6 and evx : X(M) → TxM̃ are
different maps and we distinguish them by using a different typography.

The next result provides an embedding of g into H that allows us to ap-
ply representation theory to study the structure of H. We observe that this
statement is at the core of Gromov-Zimmer’s machinery on the study of actions
preserving geometric structures (see [10, 33]).

Lemma 3.2. Let S be as in Proposition 2.45. Then, for every x ∈ S and for
ρx given as in Proposition 2.45, the map ρ̂x : g→ Kill(M̃, g̃) given by:

ρ̂x(X) = ρx(X) +X∗,

is an injective homomorphism of complex Lie algebras whose image G(x) lies in
H. In particular, G(x) ∼= g as complex Lie algebras and the Lie brackets of H
turn it into a g-module.

Proof. First, observe that the identity in Proposition 2.45 (3) is easily seen to
imply that the image of ρ̂x lies in H.

To prove that ρ̂x is a homomorphism of Lie algebras we apply Proposi-
tion 2.45(3) as follows for X, Y ∈ g:

[ρ̂x(X), ρ̂x(Y )] = [ρx(X) +X∗, ρx(Y ) + Y ∗]

= [ρx(X), ρx(Y )] + [ρx(X), Y ∗] + [X∗, ρx(Y )] + [X∗, Y ∗]

= ρx([X,Y ]) + [X,Y ]
∗

+ [X,Y ]
∗

+ [X∗, Y ∗]

= ρx([X,Y ]) + [X,Y ]
∗

= ρ̂x([X,Y ]).

For the injectivity of ρ̂x we observe that ρ̂x(X) = 0 implies X∗x = (ρx(X) +
X∗)x = 0, which in turns yields X = 0 because the G-action is locally free. The
last claim is now clear.

To see that is complex, we just notice that it is a sum of complex linear
mappings.

Proposition 3.1 allows us to define a G(x)-module structure on TxM̃ . Fur-
thermore, this can be done so that de natural evaluation map intertwines the
G(x)-module structure on H and TxM̃ . Note that by Lemma 3.2 the map ρ̂x(X)
provides a particular realization of the isomorphism G(x) ∼= g. The latter al-
lows us to describe the isomorphism types of G(x)-modules in therm of known
g-modules. We will make use of this in the rest of the work.

Some of the constructions have already been developed in Lemma 2.40, [24]
and [28]. However, we present the proofs in our set up because we lack a proof
for the complex part.

Lemma 3.3. For G and M as above, let S and U be as in Proposition 2.45
and 3.1, respectively. Fix some point x ∈ S ∩U . Then, the following properties
hold.

(1) The map λx : G(x) → so(TxM̃, g̃x) given by λx(Z)(v) = [Z, V ]x, where
V ∈ H is such that Vx = v, is a well defined homomorphism of complex
Lie algebras.
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(2) The evaluation map evx : H → TxM̃ is a homomorphism of complex G(x)-
modules, and it satisfies evx(G(x)) = TxO. In particular, TxO is a complex
G(x)-module isomorphic to the complex g-module g.

(3) The complex subspace TxO⊥ is a complex G(x)-submodule of TxM̃ .

Proof. By the choice of x, for every v ∈ TxM̃ there exists V ∈ H such that Vx =
v. If Z ∈ G(x) is given, then there are some X ∈ g such that Z = ρx(X) +X∗.
With these choices we have

[Z, V ] = [ρx(X) +X∗, V ] = [ρx(X), V ],

where the second identity follows from the fact that V centralizes the G-action.
Since ρx(X) vanishes at x, this shows that the dependence of [Z, V ]x on V is
only on Vx = v. In particular, the map given above is well defined. That λx is
a homomorphism of Lie algebras into gl(TxM̃) follows from the Jacobi identity
and the fact H is a G(x)-module.

Next, for h̃ the real part of the anti-Hermitian metric of M̃ and J̃ the complex
structure, for every X ∈ g, we have

h̃x([ρx(X), V ]x, V
′
x) + h̃x(Vx, [ρx(X), V ′]x) = 0,[

ρx(X), J̃V
]
x

= J̃x [ρx(X), V ]x

for every pair of vector fields V , V ′ ∈ H. This is a consequence of the fact that
ρx(X) is a Killing vector field of h̃ and J̃ that vanishes at x. Hence, for V ,
V ′ ∈ H and X ∈ g, the previous computations show that

h̃x([ρx(X) +X∗, V ]x), V ′x) + h̃x(Vx, [ρx(X) +X∗, V ′]x) = 0,[
ρx(X) +X∗, J̃V

]
x

= J̃x [ρx(X) +X∗, V ]x

thus proving that for every Z ∈ G(x) and every v, v′ ∈ TxM̃ we have

h̃x(λx(Z)(v), v′) + h̃x(v, λx(Z)(v′)) = 0,

λx(Z)(J̃xv) = J̃xλx(Z)(v).

We conclude that λx(Z) ∈ so(TxM̃, g̃x) for every Z ∈ G(x), thus completing
the proof of (1).

On the other hand, from the definitions involved, it is clear that evx is a
complex homomorphism of G(x)-modules and that evx(G(x)) = TxO. That
TxO is isomorphic to g as g-module is a consequence of the above expressions
and of Proposition2.45(3). This yields (2). Finally, that TxO⊥ is a complex
G(x)-submodule now follows from (1) and (2).

3.2 The Lie algebra structure of H
For x ∈ S ∩ U , in the rest of this work we consider H and TxM̃ endowed with
the G(x)-module structures defined in Lemmas 3.2 and 3.3, respectively. We
now introduce a Lie subalgebra of H that is very useful to study the structure
of H.
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Lemma 3.4. For G and M as above, let S and U be as in Propositions 2.45
and 3.1, respectively. Fix some point x ∈ S ∩ U . Then, the subspace H0(x) =

ker(evx) is a complex Lie subalgebra of both H and Kill0(M̃, x), as well as a
complex G(x)-submodule of H. Furthermore, the sum G(x) + H0(x) is direct
and it is a complex Lie subalgebra of H that contains H0(x) as an ideal. In
particular, H is a complex G(x) +H0(x)-module.

Proof. In fact, we have H0(x) = H ∩ Kill0(M̃, x), which implies that it is a
complex Lie subalgebra of H. That H0(x) is a G(x)-submodule follows from the
fact that evx is a complex homomorphism of G(x)-modules.

Next assume that Z = ρx(X) + X∗ ∈ G(x) vanishes at x, where X ∈ g.
Hence, we have X∗x = 0 and the local freeness of the G-action implies that
X = 0. Hence, we conclude that G(x) ∩ H0(x) = 0 and the sum G(x) +H0(x)
is direct. The rest of the statement follows directly from the properties proved
so far.

The constructions considered up to this point yield the following module
structure over G(x) +H0(x) together with some useful properties.

Proposition 3.5. For G and M as above, let S and U be as in Propositions
2.45 and 3.1, respectively. For a fixed point x ∈ S ∩ U , let G(x) and H0(x) be
the complex Lie subalgebras of H defined in Lemmas 3.2 and 3.4, respectively.
Consider the map defined by

λx : G(x) +H0(x)→ so(TxM̃, g̃x)

λx(Z)(v) = [Z, V ]x

where for a given v ∈ TxM̃ we choose V ∈ H such that Vx = v. Then, the
following properties are satisfied.

(1) The map λx is a well defined homomorphism of complex Lie algebras. In
particular, TxM̃ is a G(x) +H0(x)-module.

(2) The evaluation map evx : H → TxM̃ is a homomorphism of complex
G(x) + H0(x)-modules for the module structures on H and TxM̃ defined
by Lemma 3.4 and (1), respectively.

(3) The subspaces TxO and TxO⊥ are complex G(x) + H0(x)-submodules of
TxM̃ .

Proof. Claim (1) is proved with arguments similar to those used in the proof of
Lemma 3.3. Hence, (2) is an immediate consequence of the definition of λx.
By (1) and Lemma 3.3 (2) to prove (3) it is enough to show that H0(x) leaves
invariant TxO. For this we observe that, from the previous results we have
TxO = evx(G(x)), [H0(x),G(x)] ⊂ H0(x) and evx is a complex homomorphism
of H0(x)-modules; these imply that λx(H0(x))(TxO) = 0. In particular, TxO is
a trivial H0(x)-module.

Using Proposition 3.5, we define the homomorphism of complex Lie algebras

λ⊥x : G(x) +H0(x)→ so(TxO⊥, g̃x)

λ⊥x (Z) = λx(Z)|TxO⊥ .
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The following result proves that H0(x) is completely determined by the rep-
resentation λ⊥x when TxO ∩ TxO⊥ = 0.

Proposition 3.6. For G andM as above, let S and U be as in Propositions 2.45
and 3.1, respectively. For a fixed point x ∈ S ∩U assume that TxO∩TxO⊥ = 0.
Then, the homomorphism of complex Lie algebras

λ⊥x : H0(x)→ so(TxO⊥, g̃x)

is injective. Furthermore, λ⊥x (H0(x)) is a complex Lie subalgebra and a λ⊥x (G(x))-
submodule of so(TxO⊥, g̃x).

Proof. We recall that every Killing field is completely determined by its 1-jet
at x. If we fix Z ∈ H0(x), then Zx = 0, and so Z is completely determined
by [Z, V ]x where V varies in a set of vector fields A such that evx(A) = TxM̃ .
From the above, we already know that evx(G(x)) = TxO and [Z, V ]x = 0 for
every V ∈ G(x). Hence, given the condition TxO ∩ TxO⊥ = 0, we further have
that every Z ∈ H0(x) is completely determined by [Z, V ]x where V varies in a
set of vector fields A such that evx(A) = TxO⊥, which implies the injectivity
of λ⊥x on H0(x). The rest of the claims now follow easily using that λ⊥x is a
complex homomorphism and that H0(x) is an ideal in G(x) +H0(x).

With the above Lie subalgebras of H we now provide a first description of
the structure of H.

Proposition 3.7. For G andM as above, let S and U be as in Propositions 2.45
and 3.1, respectively. For a fixed point x ∈ S ∩U assume that TxO∩TxO⊥ = 0.
Then there exists a G(x)-submodule V(x) of H such that

H = G(x)⊕H0(x)⊕ V(x)

TxO⊥ = evx(V(x)).

Proof. We know that evx(G(x) +H0(x)) = TxO. Hence, the simplicity of G(x)
and Proposition 3.5 (2) and (3) imply the existence of a G(x)-submodule V(x)
of H with the required properties.

We will now consider the integrability of the normal bundle TO⊥ for the case
where TxO ∩ TxO⊥ = 0 at every point x. The next result provides a necessary
condition for this to hold. It is a consequence of Lemma 2.7 from [27] (see also
Lemma 1.4 from [4]).

Lemma 3.8. Let G and M be as above. If dimR(M) < 2 dimRG, then TO and
TO⊥ have non-degenerate fibers with respect to the metric of M . In particular,
we have TM = TO ⊕ TO⊥, a sum of analytic vector subbundles.

3.3 Integrability conditions for TO⊥

Assume from now on that TxO ∩ TxO⊥ = 0 at every point x, in other words,
that we have TM = TO ⊕ TO⊥ as well as the corresponding property for M̃ .
As a consequence we obtain an analytic map of vector bundles

ω : TM̃ → TO
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given by the orthogonal projection onto TO. Note that by our assumptions this
map is complex linear. We also recall from 2.6 that there is an isomorphism

αx : TxO → g

αx(X∗x) 7→ X

that varies analytically with respect to x. This yields the analytic g-valued
1-form ω on M̃ defined by the expression

ωx = αx ◦ ωx

where x ∈ M̃ . This is complex too. Next, we consider the analytic g-valued
2-form Ω defined by

Ωx = dωx|∧2TxO⊥ ,

for every x ∈ M̃ . If X, Y are smooth sections of TO⊥, then ω(X) = ω(Y ) = 0
and from Proposition 3.11 of [17] we have

2Ω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]) = −ω([X,Y ]),

which implies the following result (see [10, 27]).

Lemma 3.9. For G, M and S as above, assume that TM̃ = TO⊕TO⊥. Then,

(1) for every x ∈ S the maps ωx and Ωx are both homomorphisms of complex
g-modules, for the g-module structure from Proposition 2.45.

(2) The normal bundle TO⊥ is integrable if and only if Ω ≡ 0.

Let us continue to assume that TM̃ = TO ⊕ TO⊥, which implies that for
every x ∈ M̃ the subspace TxO⊥ is non-degenerate with respect to the scalar
product of TxM̃ .

By the next lemma, we obtain from the linear map Ωx : ∧2 TxO⊥ → g a
corresponding map so(TxO⊥, g̃x)→ g given by

Ωx ◦ ϕ−1
x

where ϕx : ∧2TxO⊥ → so(TxO⊥, g̃x) is the isomorphism defined by the following
elementary property.

Lemma 3.10. Let E be a finite dimensional (complex) real vector space with
(complex) real scalar product (anti-Hermitian metric) 〈·, ·〉 Then, the assignment

u ∧ v 7→ 〈·, u〉v − 〈·, v〉u,

defines an isomorphism ϕ : ∧2 E → so(E, 〈, 〉) of so(E, 〈, 〉)-modules. In partic-
ular, ϕ yields an isomorphism of (complex) g-modules for every Lie subalgebra
g of so(E, 〈, 〉).

This does not change the so(TxO⊥, g̃x)-module structure on the domain.
Hence, we will denote with the same symbol Ωx the linear map given by the
2-form Ω when considered as a map so(TxO⊥, g̃x)→ g. We notice that the map
is complex.

It turns out that the forms ωx and Ωx have intertwining properties with
respect to the module structure over G(x) +H0(x).
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Proposition 3.11. For G and M as above, let S and U be as in Proposi-
tions 2.45 and 3.1, respectively. Assume that TM̃ = TO ⊕ TO⊥. For a fixed
point x ∈ S ∩ U , the following properties hold.

(1) For every X ∈ g and Y ∈ X(M̃) we have

ωx([ρx(X), Y ]x) = [X,ωx(Y )].

(2) The linear map Ωx : ∧2 TxO⊥ → g intertwines the homomorphism of
complex Lie algebras ρ̂x : g → G(x) for the actions of g on g and of G(x)
on TxO⊥ via λ⊥x . More precisely, we have

[X,Ωx(u ∧ v)] = Ωx(λ⊥x (ρ̂x(X))(u ∧ v))

for every X ∈ g and u, v ∈ TxO⊥.

(3) The complex linear map Ωx : so(TxO⊥, g̃x)→ g is H0(x)-invariant via λ⊥x .
More precisely, we have

Ωx([λ⊥x (Z), T ]) = 0,

for every Z ∈ H0(x) and T ∈ so(TxO⊥, g̃x). In other words, we have

[λ⊥x (H0(x)), so(TxO⊥, g̃x)] ⊂ ker(Ωx).

Proof. In what follows, for any vector field Y we will denote with Y > and Y ⊥ the
sections of TO and TO⊥, respectively, such that Y = Y > + Y ⊥. To prove (1),
fix x ∈ g and Y ∈ X(M̃). Since ρx(X) preserves both TO and TO⊥, it follows
that [ρx(X), Y ⊥] and [ρx(X), Y ] are sections of TO and TO⊥, respectively. We
also note that Y >x = ωx(Y )∗x. On the other hand, ρx(X) vanishes at x and the
dependence of [ρx(X), Y >]x with respect to Y > is only on Y >x . Hence, we have
the following identities

ωx([ρx(X), Y ]x) = ωx([ρx(X), Y >]x)

= ωx([ρx(X), ωx(Y )∗]x)

= ωx([X,ωx(Y )]∗x)

= [X,ωx(Y )],

where we have used in the third equality Proposition 2.45(3).
For (2), we consider the interpretation of Ωx as a bilinear form and prove

that [X,Ωx(u, v)] = Ωx(λ⊥x (ρ̂(X))(u), v)+Ωx(u, λ⊥x (ρ̂x(X))(v)) for every X ∈ g

and u,v ∈ TxO⊥. Let Y1, Y2 ∈ H such that Y1(x) = u and Y2(x) = v. Then, by
definition we have

λ⊥x (ρ̂x(X))(u) = [ρx(X), Y1]x = [ρx(X) +X∗, Y1]x = [ρx(X), Y1]x

and similarly we have

λ⊥(ρ̂x(X))(v) = [ρx(X), Y2]x .

We now choose Ŷ1, Ŷ2 sections of TO⊥ such that Ŷ1(x) = u and Ŷ2(x) = v.
As remarked above, since ρx(X) vanishes at x we have

λ⊥x (ρ̂x(X))(u) = [ρx(X), Y1]x = [ρx(X), Ŷ1]x,

λ⊥x (ρ̂x(X))(v) = [ρx(X), Y2]x = [ρx(X), Ŷ2]x.
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Using the above we now compute

Ωx(λ⊥x (ρ̂x(X))(u), v) + Ωx(u, λ⊥x (ρ̂x(X))(v))

= Ωx([ρx(X), Ŷ1]x, Ŷ2(x)) + Ωx(Ŷ1(x), [ρx(X), Ŷ2]x)

= −ωx([[ρx(X), Ŷ1], Ŷ2]x)− ωx([Ŷ1, [ρx(X), Ŷ2]]x)

= −ωx([ωx(X), [Ŷ1, Ŷ2]]x)

= −[X,ωx([Ŷ1, Ŷ2])]

= [X,Ωx(Ŷ1(x), Ŷ2(x))]

= [X,Ωx(u, v)],

where we have used (1) in the fourth equality.
To prove (3) we observe that it is enough to show that

Ωx(λ⊥x (Z)(u), v) + Ωx(λ⊥x (Z)(v)) = 0,

for any given Z ∈ H0(x), u,v ∈ TxO⊥, i.e. we can consider Ωx as a linear map
∧2TxO⊥ → g. This is the case by the above remarks on Lemma 3.10, which
imply that ϕx : ∧2 TxO⊥ → so(TxO⊥, g̃x) is an isomorphism of H0(x)-modules
via the representation λ⊥x : G(x) + H0(x) → so(TxO⊥, g̃x). Given Z ∈ H0(x)

and u,v ∈ TxO⊥, we start by choosing vector fields Y1, Y2, Ŷ1, Ŷ2 as above: Y1,
Y2 belong to H, Ŷ1 Ŷ2 are sections of TO⊥, Y1(x) = Ŷ1(x) = u and Y2(x) =

Ŷ2(x) = v. As in the proof of (2), since Zx = 0, we have

λ⊥x (Z)(u) = [Z, Y1]x = [Z, Ŷ1]x,

λ⊥x (Z)(v) = [Z, Y2]x = [Z, Ŷ2]x,

and more generally, for any pair of vector fields Ŵ and W whose value at x are
the same we have [Z, Ŵ ]x = [Z,W ]x.

Next, we observe that for any vector field Ŵ ∈ X(M̃) if we let W ∈ H be
such that Wx = Ŵ>, then

ωx([Z, Ŵ ]x) = ωx([Z, Ŵ>]x)

= ωx([Z,W ]x)

= ωx(λx(Z)(Wx))

= λx(Z)(ωx(Wx)) = 0,

where we have used that ωx is a homomorphism of H0(x)-modules and that
TxO is a trivial H0(x)-module. This relation in the case Ŵ = [Ŷ1, Ŷ2] implies
that

0 = ωx

(
[Z, [Ŷ1, Ŷ2]]x

)
= ωx

(
[[Z, Ŷ1], Ŷ2]x

)
+ ωx

(
[Ŷ1, [Z, Ŷ2]]x

)
and applying αx we obtain

0 = ωx

(
[[Z, Ŷ1], Ŷ2]x

)
+ ωx

(
[Ŷ1, [Z, Ŷ2]]x

)
= −ωx

(
[Z, Ŷ1]x, Ŷ2(x)

)
− ωx

(
Ŷ1(x), [Z, Ŷ2]x

)
= −ωx

(
λ⊥x (Z)(u), v

)
− ωx ((Z)(v)) ,

44



thus proving our last claim. Note that we have used in the second equality that,
for i = 1,2, the vector fields Ŷi and [Z, Ŷi] are sections of TO⊥, and in the third
identity the above formulas for λx(Z) applied to u,v.

For our subsequent analysis, we will consider the two cases given by the
following result.

Proposition 3.12. Let G and M be as above, and assume that TM̃ = TO ⊕
TO⊥. Then, one of the following conditions is satisfied.

(1) The normal bundle TO⊥ is integrable.

(2) There is a dense conull subset S0 ⊂ M̃ contained in S ∩ U , where S and
U are given by Propositions 2.45 and 3.1, respectively, such that for every
x ∈ S0 the following properties are satisfied.

(a) The linear map Ωx : ∧2 TxO⊥ → g is surjective.

(b) The G(x)-module structure on TxO⊥ is non-trivial.

(c) The homomorphism of Lie algebras λ⊥x : H0x) → so(TxO⊥, g̃x) is
injective. Furthermore, λ⊥x (H0(x)) is a λ⊥x (G(x))-submodule and a
Lie subalgebra of so(TxO⊥, g̃x) that satisfies[

λ⊥x (H0(x)), so(TxO⊥, g̃x)
]
⊂ ker(Ωx).

In particular, if (2) holds, then TO⊥ is not integrable.

Proof. Let us assume that TO⊥ is not integrable. By Lemma 3.9 we have
Ω 6= 0, and since Ω is analytic, the set S′ of points x ∈ M̃ where Ωx 6= 0 is
the complement of a proper analytic subset. In particular, S′ is an open dense
conull subset of M̃ . Then, we take S0 = S′ ∩ S ∩ U . Hence, (a) follows from
Proposition3.11(2) and the fact that g is simple. Now (b) follows from (a). Also,
(c) is a restatement of Proposition 3.6 and Proposition 3.11(3). Finally, if (2)
holds, then from its part (a) it follows that Ω 6= 0 for every x ∈ S0 and so that
TO⊥ is not integrable.

Case (1) of Proposition 3.12 has already been considered in [27]. With this
respect, the following is a consequence of Theorem 1.1 of [27].

Proposition 3.13. Let G and M be as above such that TM̃ = TO⊕TO⊥, and
assume that M is geodesically complete. If case (1) of Proposition 3.12 holds,
then there exist

(1) an isometric finite covering map M̂ →M to which the G-action lifts,

(2) a simply connected pseudo-Riemannian manifold N ,

(3) and a discrete subgroup Γ ⊂ G× Iso(N), such that M̂ is G-equivariantly
isometric to (G×N)/Γ for a product metric on G×N where G carries a
bi-invariant metric.

Hence, to complete the study of the structure of M it remains to consider
case (2) of Proposition 3.12.
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Chapter 4

Actions of Spin(n,C)

We want to apply the results of the previous chapters when we have in particular
the Lie group G = SO(n,C) acting holomorphically on an anti-Kähler manifold
M by isometries of some anti-Hermitian metric. Then G̃ = Spin(n,C) and we
know some properties about this Lie group.

Instead of working directly with SO(n,C) and Spin(n,C) we first investigate
the algebraic properties of so(n,C), mainly its irreducible representations.

As in [8] and [15], we recall that SO(n,C) is the Lie group of matrices
A ∈ Mn(C) such that S = ATSA where

S =

(
0 In
In 0

)
if n is even or S =

 0 In 0
In 0 0
0 0 1

 if n is odd.

and so(n,C) is the correspondingly Lie algebra of matrices X ∈ Mn(C) such
that XTS + SX = 0.

Some topological properties about the Lie group SO(n,C) are well known,
such as that it is connected (indeed it is the connected component of the identity
matrix), it is non-compact for n ≥ 2 and is not simply connected.

4.1 Some facts about so(n,C).
We state some well known properties about the complex Lie algebra so(n,C),
which can be found in the classical literature such as [8], [11] or [12].

The first one is that so(n,C) is simple for n ≥ 3, except for n = 4 which is
semisimple. Second, we establish some isomorphisms in low dimension.

so(3,C) ∼= sl(2,C) ∼= sp(2,C)

so(4,C) ∼= sl(2,C)× sl(2,C)

so(5,C) ∼= sp(4,C)

so(6,C) ∼= sl(4,C)

We recall that the dimension of so(n,C) is n(n−1)/2 over C. Since so(n,C)
is semisimple, any finite dimensional representation decomposes as a sum of
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irreducible representations, so it is of particular interest to study the irreducible
representations of so(n,C). We make a difference between even n = 2m and
odd n = 2m + 1 representations. The following results are consequence of the
theory developed in [9] and [15].

Lemma 4.1. Let $1, . . . , $m be the fundamental weights of so(2m+ 1,C).

(1) The representation of so(2m+ 1,C) on
∧l

C2m+1 is irreducible for l < m

with highest weight $l, and the dimension of the irreducible representation

is
(

2m+ 1

l

)
.

(2) The irreducible representation attached to $m is the spin representation
with dimension 2m.

Lemma 4.2. Let $1, . . . , $m be the fundamental weights of so(2m,C).

(1) The representation of so(2m,C) on
∧l

C2m is irreducible for l < m − 1

with highest weight $l and the dimension of the irreducible representation

is
(

2m

l

)
.

(2) The irreducible representations attached to $m−1 and $m are the spin
representations with dimension 2m−1.

However, we know (from [15] or [8]) that not every representation of so(n,C)
can be “integrated” to one of the Lie group SO(n,C) as the following lemmas
state.

Lemma 4.3. Let $1, . . . , $m be the fundamental weights of so(2m + 1,C).
Then the fundamental weights of SO(m,C) are $1, . . . , $m−1, 2$m.

(1) The representation of SO(2m+1,C) on
∧l

C2m+1 is irreducible for l < m

with highest weight $l, and the dimension of the irreducible representation

is
(

2m+ 1

l

)
.

(2) The irreducible representation attached to 2$m is the spin representation
with dimension 2m.

Lemma 4.4. Let $1, . . . , $m be the fundamental weights of so(2m,C). Then,
the fundamental weights of SO(2m,C) are $1, . . . , $m−2, 2$m−1, 2$m.

(1) The representation of so(2m,C) on
∧l

C2m is irreducible for l < m − 1

with highest weight $l and the dimension of the irreducible representation

is
(

2m

l

)
.

(2) The irreducible representations attached to 2$m−1 and 2$m are the spin
representations with dimension 2m−1.
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Since we are interested to work with the universal covering we can avoid
possible problems using the Spin groups. So, for Spin(n,C), the fundamental
weights are the same of so(n,C).

Let us denote by mC(g) the lowest complex dimension of a non-trivial com-
plex g-module with an invariant anti-Hermitian metric. Using the information
of the previous lemmas and that the Weyl dimension formula is non decreasing
with respect to the fundamental weights, we conclude that, for large n, the first
fundamental weight has the lowest dimension. For n small, what is found in [9]
and the discussion of 2.1 we state a more precise result.

Lemma 4.5. Let n ≥ 3, n 6= 4, then mC(so(n,C)) = n, i.e. there is no
non-trivial so(n,C)-module with dimension less than n and carrying an invari-
ant anti-Hermitian metric. Moreover, the only non-trivial irreducible so(n,C)-
module of dimension ≤ n is Cn, except for the complex Lie algebras so(3,C),
so(5,C), so(6,C) and so(8,C). For these last complex Lie algebras, there also
exist the following irreducible modules:

• C2 corresponding to so(3,C) ' sl(2,C).

• C4 corresponding to so(5,C) ' sp(4,C).

• C4 corresponding to so(6,C) ' sl(4,C).

• so(8,C)-invariant forms of the half spin representations of so(8,C), both
8 dimensional.

As a consequence of Lemma 3.10 but rewritten in our setup, i.e. E = Cn
and 〈, 〉 = g0 we have

Lemma 4.6. Let n ≥ 3, n 6= 4. Then for every c ∈ C, the map Tc : ∧2 Cn →
so(n,C) given by

Tc(u ∧ v) = cg0(·, u)v − cg0(·, v)u

for every u, v ∈ Cn, is a well defined homomorphism of so(n,C)-modules. Also,
Tc is an isomorphism of so(n,C)-modules if and only if c 6= 0. If n 6= 4 then
these maps exhaust all the so(n,C)-module homomorphisms ∧2Cn → so(n,C).

The only non trivial part is the last statement, but the proof becomes easy
using the simplicity of so(n,C) (n 6= 4) and Schur’s Lemma. For further details
we refer to [27].

From Theorem 1.2 of [6] we conclude the maximality of so(n,C) in so(n +
1,C).

Theorem 4.7. Assume that n ≥ 3 and n 6= 4, and let g = so(n + 1,C).
Suppose that ρ : so(n,C) ↪→ g is an injective Lie algebra homomorphism and let
h = ρ(so(n,C)). If g, h 6' so(2,C)× so(2,C), then h is a maximal subalgebra of
g.

Next, we establish a decomposition of so(n+ 1,C) as a so(n,C)-module.

Lemma 4.8. For n ≥ 3, n 6= 4 let

[·, ·]c : so(n,C)⊕ Cn × so(n,C)⊕ Cn → so(n,C)⊕ Cn

be given by:
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• [X,Y ]c = XY − Y X for X, Y ∈ so(n,C).

• [X,u]c = − [u,X]c = X(u) for X ∈ so(n,C) and u ∈ Cn.

• [u, v]c = Tc(u∧v) for u, v ∈ Cn, where Tc is the map defined in Lemma 4.6.

Then, [·, ·]c defines a Lie algebra structure on so(n,C)⊕Cn, which satisfies:

(so(n,C)⊕ Cn, [·, ·]c) ' so(n+ 1,C)

as so(n,C)-modules.

Proof. Using Lemma 4.6 it is an easy exercise to prove that [·, ·] defines a Lie
algebra structure. An isomorphism is easily seen to be given by:

(X,u)→
(
X u
u∗ 0

)
where u ∈ Cn is considered as a column vector and u∗ = −uTS.

We state a uniqueness property for so(n,C)-invariant anti-Hermitian metric
related to the constructions of the previous lemma. Its proof follows easily from
Schur’s Lemma and the uniqueness (up to a multiple) of the Killing form of
complex simple Lie algebras.

Lemma 4.9. Assume that n ≥ 3 and n 6= 4. Let 〈·, ·〉1 and 〈·, ·〉2 be some
anti-Hermitian metrics on so(n,C) and Cn, respectively. Assume that 〈·, ·〉1
and 〈·, ·〉2 are so(n,C)-invariant, in other words:

• 〈[X,Y ] , Z〉1 = −〈Y, [X,Z]〉1 for every X, Y , Z ∈ so(n,C), and

• 〈X(u), v〉2 = −〈u,X(v)〉2 for every X ∈ so(n,C) and u, v ∈ Cn.

If c ∈ C \ {0} is given, then there exist a1, a2 ∈ C such that a1 〈·, ·〉1 + a2 〈·, ·〉2
is the Killing form of (so(n,C)⊕ Cn, [·, ·]c).

So far, we have established some facts about the Lie algebra so(n,C).
To end this section, we consider the following lemma about the center of

SO(n,C). Its proof is essentially the same of that in [4].

Lemma 4.10. Suppose that G is a connected Lie group locally isomorphic to
SO(n,C), where n ≥ 3 and n 6= 4, and consider ρ : SO(n,C)→ G a non-trivial
homomorphism of Lie groups. Assume that so(n,C) satisfy the same conditions
as in Theorem 4.7. Then, the centralizer ZG(ρ(SO(n,C))) of ρ(SO(n,C)) in G
contains Z(G) (the center of G) as a finite index subgroup.

4.2 The centralizer of isometric Spin(n,C)-actions
In the rest of this work we will assume that G = SO(n,C). More precisely, we
assume that we are given an holomorphic isometric SO(n,C)-action on a finite
volume, complete anti-Kähler manifold M with a dense SO(n,C)-orbit. Hence,
all the result from Chapter 3 hold. In particular, the results of Section 2.6 apply
for this set up. We will also assume that dimCM ≤ n(n+1)/2 and n ≥ 3, n 6= 4.
Observe that our bound is precisely the complex dimension of SO(n+ 1,C).
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Given the above assumptions, we observe that by Lemma 3.8 we have a
fiberwise orthogonal decomposition TM = TO ⊕ TO⊥. On the other hand, if
case (1) from Proposition 3.12 holds, then Proposition 3.13 describes the struc-
ture of the manifold M . Hence, we can assume that case (2) from Proposition
3.12 is satisfied.

We note that for our setup we have G(x) ' so(n,C), and so we can describe
G(x)-modules in terms of so(n,C)-modules. We denote by C+ and C− the
so(8,C)-modules given by the two half spin representations. We start with a
lemma that tell us the structure of TxO⊥.

Lemma 4.11. For a SO(n,C)-action onM as above, assume that case (2) from
of Proposition 3.12 holds, let S0 ⊂ M̃ be given by such case and n ≥ 3, n 6= 4.
We choose a fixed x ∈ S0. Consider TxO⊥ endowed with the so(n,C)-module
structure given by Proposition 2.45(4). Then, for every x ∈ S0:

(1) If n 6= 8 then dimC(M) = n(n+ 1)/2 and V(x) ' Cn as so(n,C)-modules.
In particular, TxO⊥ ' Cn as so(n,C)-modules and so(TxO⊥, g̃x) is iso-
morphic to so(n,C) as a Lie algebra

(2) If n = 8, the so(n,C)-module TxO⊥ is isomorphic to either C8, C+ or
C−.

Proof. Let us choose and fix x ∈ S0 such that Ωx 6= 0. Since case (2) from
Proposition 3.12 holds for x, this can be done and the map Ωx : ∧2 TxO⊥ →
so(n,C) is a homomorphism of so(n,C)-modules, we conclude that TxO⊥ is a
non-trivial G(x)-module whose dimension is at most n. Since dimC(TxO⊥) ≤ n
then so(n,C) is an irreducible module, it follows that Ωx is an isomorphism.
Then, the irreducibility of so(n,C) implies that TxO⊥ is irreducible as well.
Lemma 4.5 implies that TxO⊥ must be n-dimensional and isomorphic to Cn as
so(n,C)-module except for the case given by the Lie algebra so(8,C). For this
Lie algebra the other possibilities are C8 and forms C+ and C− of the two half
spin representations of so(8,C).

Finally, the construction of V(x) in Proposition 3.7 implies that evx restricted
to G(x)⊕ V(x) is injective and TxO⊥ = ev(V(x)).

The previous results allow us to obtain the following conclusion about H0(x)
that helps realizing the description of the centralizer H as a Lie algebra.

Lemma 4.12. Let S0 be as in Propositions 2.45, 3.1 and 3.12. Then, for every
x ∈ S0, n ≥ 3, n 6= 4, H0(x) is either 0 or a Lie subalgebra of H isomorphic to
so(n,C). In the latter case, H0(x) is also isomorphic to so(n,C) as a so(n,C)-
module.

Proof. In our setup, g(x) = so(n,C)(x). We claim that

λ⊥x (so(n,C))(x) = so(TxO⊥, g̃x).

By Proposition 2.45 (4) the vector space TxO⊥ has a so(n,C)-module structure
induced from the homomorphism λ⊥x ◦ ρx. By our choice of x and Lemma 4.11
such module structure is in fact non-trivial. Hence, λ⊥x ◦ρx : so(n,C)→ so(TxO⊥, g̃x)
is non-trivial as well and so it is injective. But then it has to be surjective be-
cause the domain and target have the same dimensions.
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Let Z ∈ H0(x) and T ∈ so(TxO⊥, g̃x) be given. Then, by the above claim
there is some X ∈ so(n,C) such that T = λ⊥x (ρx(X)). For every local vector
field V such that Vx ∈ TxO we have:[

T, λ⊥x (Z)
]

(Vx) =
[
λ⊥x (ρx(X)), λ⊥x (Z)

]
(Vx)

= [ρx(X), [Z, V ]]x − [Z, [ρx(X), V ]]x
= [[ρx(X), Z] , V ]x
= [[ρx(X) +X∗, Z] , V ]x
= [[ρ̂x(X), Z] , V ]x .

Since the so(n,C)-module structure on H is defined by ρ̂x and H0(x) is a sub-
module of such structure, we have [ρ̂x(X), Z] ∈ H0(x), and so the last formula
proves that

[
T, λ⊥x (Z)

]
= λ⊥x ([ρ̂x(X), Z]), thus showing that λ⊥x (H0(x)) is an

ideal in so(TxO⊥).
Proposition 3.6 shows that H0(x) is a Lie algebra isomorphic to its image

in so(TxO⊥, g̃x) under λ⊥x . Such image is, by above, an ideal of so(TxO⊥, g̃x).
By our choice of x and Lemma 4.11, the Lie algebra so(TxO⊥, g̃x) is isomorphic
to so(n,C), which is simple since n ≥ 3 and n 6= 4. This implies that H0(x) is
either 0 or isomorphic to so(n,C) as a Lie subalgebra of H.

On the other hand, for X ∈ so(n,C) and Z ∈ H0(x), considering the defini-
tions of the so(n,C)-module structures involved we have:

λ⊥x (X · Z) = λ⊥x ([ρ̂x(X), Z]) = λ⊥x (
[
ρx(X), λ⊥x (Z)

]
) = X · λ⊥x (Z),

where the second identity holds by the definiton of ρ̂x in terms of ρx and because
H0(x) centralizes the Spin(n,C)-action. But this of last relation shows that λ⊥x
restricted to H0(x) is a homomorphism of so(n,C)-modules. By Lemma 4.11
we conclude that H0(x) is either 0 or isomorphic to so(n,C) as a so(n,C)-
module.

Finally, we rule out one of the possibilities for H0(x) and we obtain a de-
scription of the Lie algebra structure of the centralizer H.

Lemma 4.13. Let S0 as in Propositions 2.45, 3.1 and 3.12. With the notation
from 3.7, for x ∈ S0 we have that H0(x) = {0} and H = G(x) ⊕ V(x) is
isomorphic as a complex Lie algebra to so(n+ 1,C).

Proof. By Propositions 3.6 and 3.11, the Lie subalgebra H0(x) is completely de-
termined by its image λ⊥x so that λ⊥x (H0(x)) is a Lie subalgebra and a λ⊥x (G(x))-
submodule of so(TxO⊥, g̃x) so that[

λ⊥x (H0(x)), so(TxO⊥, g̃x)
]
⊂ ker(Ωx).

On the other hand, by Lemma 4.11 we know that V(x) ' Cn , as G(x)-
modules, and by Lemma 4.6 the scalar product on evx(V(x)) inherited from
TxO⊥ is (a nonzero multiple of) the canonical complex Riemannian product in
Cn.

Furthermore, since this conclusion is obtained from the G(x)-module struc-
ture, it also shows that we can assume that the embedding λ⊥x : G(x)→ so(TxO⊥, g̃x)
is equivalent to the restriction to so(n,C) of one of the embeddings in Lemma 4.8.
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Hence, Lemma 4.8 provides the G(x)-module and Lie algebra structure of
so(TxO⊥, g̃x). From this we see that ker(Ωx) is the sum of the submodules
complementary to λ⊥x (G(x)). In particular, we have

ker(Ωx) ' Cn.

Considering the above restrictions on λ⊥x (H0(x)) and the bracket identities from
Lemma 4.8, we conclude that the only possibility for H0(x) is to be 0.

4.3 Proof of the main theorem
In this last section we will assume the hypotheses of the Main Theorem 1.4
and use the notation from the previous section. More precisely, we assume that
M is a connected holomorphic anti-Kähler manifold which is complete weakly
irreducible and has finite volume. We also assume thatM admits a holomorphic
and isometric Spin(n,C)-action with a dense orbit for some integer n ≥ 3, n 6= 4.
Finally we are assuming that dimC(M) ≤ n(n+ 1)/2.

Instead of proving the theorem directly, we have broken the proof in many
lemmas to make the readability easier.

Lemma 4.14. There is an isomorphism

ψ : so(n,C)⊕ Cn → H = G(x0)⊕ V(x0)

of Lie algebras that preserves the summands in that order, where the domain has
the Lie algebra structure given by [·, ·]c for some c 6= 0 as defined in Lemma 4.8.
In particular, ψ is an isomorphism of so(n,C)-modules as well.

Proof. The result follows from the arguments in the second to last paragraph
in the proof of Lemma 4.13 when V(x0) ' Cn as so(n,C)-modules and n ≥ 3,
n 6= 4. Hence, by Lemma 4.11 we can assume that n = 8 in the rest of the
proof.

By Lemma 4.13 there is an isomorphism ψ : h → H, for h = so(9,C),
The restriction of this homomorphism to ψ−1(G(x0)) yields a representation of
G(x0) ' so(8,C) on the 9-dimensional space C9. Since so(8,C) is split and using
Weyl’s dimension formula we find that so(8,C) does not admit 9-dimensional
irreducible representations. We conclude the existence of a line L ⊂ V which is
a G(x0)-submodule.

This yields an orthogonal decomposition V = L ⊕ L⊥ into non-degenerate
subspaces which is clearly a decomposition into G(x0)-submodules. Hence, ψ
induces an isomorphism so(L⊥, g̃x0) → G(x0). In particular, so(L⊥, g̃x0) '
so(n,C) as Lie algebras under ψ. With respect to the corresponding so(n,C)-
module structure, it is easily seen that so(L⊥, g̃x0

) has a complementary module
in h isomorphic to Cn. This provides an isomorphism h ' so(n,C) ⊕ Cn so
that the Lie algebra structure on h corresponds to the one given by [·, ·]c on
so(n,C)⊕Cn for some c 6= 0. Hence, under the identification h ' so(n,C)⊕Cn
of Lie algebras, ψ is the required isomorphism.

Let us fix an isomorphism of Lie algebras ψ : so(n,C)⊕Cn → H = G(x0)⊕
V(x0) as in Lemma 4.14. We will identify h = so(n,C) ⊕ Cn with so(n + 1,C)
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through the appropriate isomorphism as considered in Lemma 4.8. Also, we will
denote with H the Lie group Spin(n+ 1,C), chosen so that Lie(H) = h.

By Lemma 2.39, there is a holomorphic isometric right H-action on M̃ such
that ψ(X) = X∗ for every X ∈ h. As in the previous lemmas, we now consider
the orbit map:

f : H → M̃, h 7→ x0h

which satisfies dfI(X) = X∗x0
= ψ(X)x0

for every X ∈ h. By the choice of ψ
and Lemma 4.12 it follows that dfI is an isomorphism that maps so(n,C) onto
Tx0O and Cn onto Tx0O⊥. Since f is H-equivariant for the right action on its
domain, we conclude that it is an holomorphic local diffeomorphism.

Lemma 4.15. Let g be the metric on h = so(n,C)⊕Cn defined as the pullback
under dfI of the metri gx0 on Tx0M̃ . Then, g is so(n,C)-invariant.

Proof. By the above expression of dfI and since ψ is an isomorphism of Lie
algebras with ψ(so(n,C)) = G(x0), it is enough to show that the metric on H
defined as the pullback of gx0 with respect to the evaluation map:

H → Tx0M̃, X 7→ Xx0 ,

is G(x0)-invariant. For simplicity, will denote with g such metric on H. Let X,
Y , Z ∈ H be given withX ∈ G(x0). In particular, there existX0 ∈ so(n,C) such
that X = ρx0

(X0) +X∗0 , where ρx0
is the homomorphism from Proposition 2.45

and X∗0 is the vector field on M̃ induced by the left Spin(n,C)-action. Then,
the following proves the required invariance:

g([X,Y ], Z) = gx0([X,Y ]x0 , Zx0) = g([X,Y ], Z)|x0

= g([ρx0(X0) +X∗0 , Y ], Z)|x0 = g([ρx0(X0), Y ]Z)|x0

= ρx0(X0)(g(Y,Z))|x0 − g(Y, [ρx0(X0), Z])|x0

= −g(Y, [ρx0(X0), Z])|x0 = −g(Y, [ρx0(X0) +X0, Z])|x0

= −g(Y, [X,Z])|x0 = −g(Y, [X,Z]).

We have used in lines 2 and 4 that H centralizes X∗0 . To obtain the third line
we used that ρx0(X0) is a Killing field for the metric g. And the first identity
in line 4 uses the fact that ρx0(X0) vanishes at x0.

From the previous result and Lemma 4.9, for n ≥ 3, n 6= 4, we can rescale
the metric along the bundles TO and TO⊥ in M so that the new metric ĝ on
M̃ satisfies (dfI)

∗(ĝx0
) = K, the Killing form on h.

Note that since the elements of H preserve the decomposition TO ⊕ TO⊥,
then H ⊂ Kill(M̃, g). In other words, the elements of H are Killing vector fields
for the metric ĝ rescaled as above. In particular, ĝ is invariant under the right
H-action. Similarly, the left Spin(n,C)-action on M̃ , from the hypotheses of
the Main Theorem, preserves the rescaled metric ĝ. Also note that the metric
ĝ is the lift of a correspondingly rescaled metric ĝ in M .

Consider the bi-invariant metric on H induced by the Killing form K, which
we will denote with the same symbol. The previous discussion implies that the
local diffeomorphism f : (H,K) → (M̃, ĝ) is a local isometry. Then, Corollary
29 in page 202 of [25], the completeness of (H,K) and the simple connectedness
of M̃ imply that f is an isometry.

Hence, from the previous discussion we obtain the following result.
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Lemma 4.16. Let M be as in the statement of the Main Theorem 1.4 If
dimC(M) = n(n + 1)/2, then for H = Spin(n,C), there exists an holomor-
phic diffeomorphism f : H → M̃ and a holomorphic isometric right H-action
on M̃ such that:

(1) on M̃ , the left Spin(n,C)-action and the right H-action commute with
each other,

(2) f is H-equivariant for the right H-action on its domain,

(3) for an anti-Hermitian metric ĝ in M obtained by rescaling the original
one on the summands of TM = TO⊕TO⊥, the map f : (H,K)→ (M̃, ĝ)
is an isometry where K is the bi-invariant metric on H induced from the
Killing form of its Lie algebra.

If we consider H endowed with the bi-invariant pseudo-Riemannian metric
K induced by the Killing form of its Lie algebra, then Lemma 4.16 allows to
consider (H,K) as the isometric universal covering space of (M, ĝ). We will use
this identification in the rest of the arguments.

The isometry group Iso(H) for the pseudo-Riemannian manifold (H,K) has
finitely many connected components (see for example Section 4 of [26]). Further-
more, the connected component of the identity is given as Iso0(H) = L(H)R(H),
the subgroup generated by L(H) and R(H), the left and right translations, re-
spectively.

Let ρ : Spin(n,C) → Iso(H) be the homomorphism induced by isometric
left Spin(n,C)-action on H. With respect to the natural covering H × H →
L(H)R(H), this yields homomorphisms ρ1, ρ2 : Spin(n,C)→ H such that:

ρ(g) = Lρ1(g) ◦Rρ2(g)−1 ,

for every g ∈ Spin(n,C). By Lemma 4.16 we have ρ(g) ◦ Rh = Rh ◦ ρ(g)
for every g ∈ Spin(n,C) and h ∈ H. In particular, ρ2(Spin(n,C)) lies in the
center Z(H) and so (being connected) it is trivial. We conclude that ρ = Lρ1
which implies that the Spin(n,C)-action on H is induced by the homomorphism
ρ1 : Spin(n,C)→ H and the left action of H itself. Note that ρ1 is necessarily
non-trivial.

By Lemma 4.16, we have π1(M) ⊂ Iso(H), and from the above remarks
Γ1 = π1(M) ∩ Iso(H) is a finite index subgroup of π1(M). In particular, every
γ ∈ Γ1 can be written as γ = Lh1

◦Rh2
for some h1, h2 ∈ H.

On the other hand, since the left Spin(n,C) onH is the lift of an action onM ,
it follows that it commutes with the Γ1-action. Applying this property to γ =
Lh1 ◦Rh2 we conclude that Lh1 ◦Lρ1(g) = Lρ1(g) ◦Lh1 , for every g ∈ Spin(n,C),
which implies Γ1 ⊂ L(Z)R(H), where Z is the centralizer of ρ1(Spin(n,C)) in
H. By Lemma 4.10, the center of Z(H) has finite index in Z, which implies
that R(H) has finite index in L(Z)R(H). In particular, Γ = Γ1 ∩ R(H) is a
finite index subgroup of Γ1, and so has finite index in π1(M) as well.

Hence, the natural identification R(H) = H realizes Γ as a discrete subgroup
of H such that H/Γ is a finite covering space of M . Furthermore, if ϕ : H/Γ→
M is the corresponding covering map, and for the left Spin(n,C)-action on H/Γ
given by the homomorphism ρ1 : Spin(n,C), then the above constructions show
that ϕ is Spin(n,C)-equivariant. We also note that ϕ is a local isometry for the
metric ĝ on M considered in Lemma 4.16.
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To complete the proof in the Main Theorem it only remains to show that
Γ is a lattice in H. For this it is enough to prove that M has finite volume in
the metric ĝ. The following result provides proofs of these facts since we are
assuming that M has finite volume in its original metric.

Lemma 4.17. Let us denote with vol and volĝ the volume elements on M for
the constant original on M and the rescaled metric ĝ, respectively. Then, there
is some constant C > 0 such that volĝ = C vol.

Proof. Clearly, it suffices to verify this locally, so we consider some coordinates
(x1, . . . , xm) of M in a neighborhood U of a given point such that (x1, . . . , xr)
defines a set of coordinates of the leaves of the foliation O in such neighborhood.
For the original metric g on M , consider as above the orthogonal bundle TO⊥
and a set of 1-forms θ1, . . . , θm−r that define a basis for its dual (TO⊥)∗ at
every point in U . Hence, in U the metric g has an expression of the form:

g =

r∑
i,j=1

hijdx
i ⊗ dxj +

m−r∑
i,j=1

kijθ
i ⊗ θj .

From this and the definition of the volume element as an m-form, its is easy to
see that:

vol =
√
|det(hij) det(kij)|dx1 ∧ · · · ∧ dxr ∧ θ1 ∧ · · · ∧ θm−r.

On the other hand, the metric ĝ is obtained by rescaling g along the bundles
TO and TO⊥, and so it has an expression of the form:

ĝ =

r∑
i,j=1

c1hijdx
i ⊗ dxj +

m−r∑
i,j=1

c2kijθ
i ⊗ θj ,

for some constants c1, c2 6= 0. Hence, the volume element of ĝ satisfies:

volĝ =
√
|det(c1hij) det(c2kij)|dx1 ∧ · · · ∧ dxr ∧ θ1 ∧ · · · ∧ θm−r

=

√
|cr1c

m−r
2 | vol .
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