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Introduction

The main topic of this thesis is the spectral analysis of graphs. We are interested particularly
in the spectral analysis of large graphs or growing graphs. In this work we focus mainly in
the study of two huge families of graphs: distance-k graphs of graph products and distance-
regular graphs applying the quantum decomposition method.

The study of deterministic (or random) growing combinatorial objects like partitions,
permutations, walks, trees, maps, etc, has been increasing in recent years. In particular,
graphs have been studied deeply, motivated by the recent trend of complex network theory.

Non-commutative Probability Theory was iniciated by Hudson and Parthasarathy [28]
and began to develop since the 80’s in order to settle down mathematical bases for Quantum
Physics. It started with the ideas of Von Neumann [49]. From this theory, various concepts
of independence have been introduced thanks to various kinds of non-commutative moment
relations. It was proved by Muraki [38], that there are essentially four notions of indepen-
dence: tensorial, free, Boolean and monotone.

Tensorial independence is derivated from the usual independence in classical probabil-
ity theory. The notion of free independence (freeness) was introduced by Voiculescu [47].
Boolean independence was presented by Speicher and Wourodi [45], and it is implicitly used
in Bozejko’s work [10]. Finally, the notion of monotone independence was introduced by
Muraki [37].

The above mentioned notions of independence also correspond to widely studied graph
products. The relation between classical convolution and cartesian product of graphs was ob-
served by Polya [43]. Later, in works by Accardi, Ghorbal and Obata [2], Accardi, Lenczewski
and Salapata [3], and others, they found that very well-known graph products are related
to convolutions in non-commutative probability. The free product of graphs corresponds to
Voiculescu’s free convolution [47]. The star product of graphs, studied in Woess [51] corre-
sponds to Boolean convolution, which was studied by Obata [41]. The monotone product
of graph is related to monotone convolution, studied by Krishnapur and Peres [30], this last
fact was observed by Accardi, Ghorbal and Obata [2]. In this thesis we focus on three of
these graph products: cartesian, Boolean and free.
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As we said above, one of the objectives of this thesis is the study of distance-k graph
of graph products. The distance-k graphs were introduced in 1989 by Brower, Cohen and
Neumaier [12], and in particular, the study of distance-k graph of graph products was de-
veloped by Kurihara [31], Obata et. al. [23], and others. The spectrum of the distance-k
graph of the Cartesian product of graphs was first studied by Kurihara and Hibino [32] where
they consider the distance-2 graph of K2 × · · · ×K2 (the n-dimensional hypercube). More
recently, in a series of papers [17, 23, 31, 32, 33, 40] the asymptotic spectral distribution
of the distance-k graph of the N -fold power of the Cartesian product was studied. These
investigations, finally lead to Theorem 4.1.2, which generalizes the central limit theorem
for Cartesian product of graphs, and describes the asymptotic spectral distribution of the
distance-k graph of the N -fold Cartesian power (as N → ∞). In fact, they found that the
distribution (in the normalized trace) of the normalized adjacency matrix of the distance-k
graph (for k fixed) of the N -fold Cartesian power converges in moments to the probability
distribution of (

2|E|
|V |

)k/2
1

k!
H̃k(g),

where H̃k(g) is the monic Hermite polynomial of degree k and g is a random variable obeying
the standar normal distribution.

In the same spirit, the author and Arizmendi consider in [6] the analog of Theorem 4.1.2
by changing the Cartesian product by the star product. There, we establish that the asymp-
totic distribution in the vacuum state of the normalized adjacency matrix of the N -fold
Boolean power of a graph converges (as N → ∞) in distribution, to a centered Benoulli
distribution. The limit distribution above is universal in the sense that it is independent of
the details of a factor G, but also in this case the limit does not depend on k. The proof
of this theorem is based in a fourth moment lemma for convergence to a centered Bernoulli
distribution.

On the other hand, the d-regular tree is the d-fold free product graph of K2, the complete
graph with two vertices. We study the distance-k graph of a d-regular tree for fixed d and
k. This is an example where we can find the distribution with respect to the vacuum state
in a closed form. Moreover, this example sheds light on the general case of the d-fold free
product of graphs, in the same way as the d-dimensional cube was the leading example for in-
vestigations of the distance-k graph of the d-fold Cartesian product of graphs (Kurihara [31]).

Then, we consider two related problems which are in the asymptotic regime. On one
hand, we show that the asymptotic distributions of distance-k graphs of d-fold free product
graphs, as d tends to infinity, are given by the distribution of

Pk(s),

where s is a semicircular random variable and Pk is the k-th Chebychev polynomial. These
polynomials are orthogonal with respect to semicircle distribution (see Chihara [13]). The
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idea to prove this result is to find a recurrence formula for homogenous tree and notice
that the adjacency matrix of the distance-k graph of the free product fullfills the same re-
currence formula plus negligible matrices. Therefore we calculate mixed moments between
these matrices and the adjacency matrix of distance-k graph, and we realize that these mixed
moments go to zero.

Apart of this, we find the asymptotic spectral distribution of the distance-k graph of a
random d-regular graph of size n, as n tends to infinity. In the original paper by McKay [35],
he proved that the asymptotical spectral distributions of d-regular random graph are exactly
the distribution of the d-regular tree. Heuristically, the reason is that, locally, large random
d-regular graphs look like the d-regular tree and thus asymptotically their spectrum should
coincide. This turns out to remain true for the distance-k graph and thus we shall expect
to get a similar result. In Section 4.3.4 we formalize this intuition. These results related
to distance-k graphs of free product are collected in the published paper by the author and
Arizmendi [7].

Although in the above results we use the moments method, it is not always easy (or
possible) to compute all the moments. Instead this method, we use method of quantum
decomposition.

The term of quantum decomposition was first introduced by Hashimoto [20] in a study
of an adjacency matrix of a large Cayley graph. This idea has been applied also to similar
studies for large Hamming graphs [22, 24], Johnson graphs [21, 24, 25], Odd graphs [27],
Homogeneous trees [19], and others. Most of these distributions were compute with respect
to the vacuum state and deformed vacuum state, except in the case of odd graphs, where
only the vacuum state case was studied. A summary of these results can be found in the
book by Hora & Obata [26].

The method of quantum decomposition describes the distribution of the adjacency matrix
of a graph through the three-term recurrence relation and come to the fundamental link with
an interacting Fock probability space. This method is effective especially for the asymptotic
spectral analysis of growing graphs.

Let us consider a growing family of graphs {G(k) = (V (k), E(k))}k≥1 and the limit

lim
k→∞

Ak
Zk
,

where Ak is the adjacency matrix of G(k) and Zk a normalizing constant. Then we define
a stratification: V (k) = ∪∞n=0V

(k)
n on the basis of the natural distance function of G(k) and

decompose the adjacency matrix Ak into a sum of quantum components:

Ak = A+
k + A−k .
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These operators act asymptotically in the Hilbert space Γ(G(k)) associated with the stratifi-
cation of V (k). Then, there exists an interacting Fock space (Γ, {ωn}, B+, B−) in which the
limits

B̃± = lim
k→∞

A±k
Zk

,

are described, where B̃± is a linear combination of B± and a function of the number operator
N .

In this sense, Igarashi and Obata [27] studied a growing family of odd graphs and the
two-sided Rayleigh distribution appeared in the limit of vacuum spectral distribution of the
adjacency matrix. Our aim in Section 3.4.2 is to calculate an explicit probability measure
describing the limit distribution of the normalized adjacency matrix of the same growing
family as above (odd graphs), but now with respect to deformed vacuum state, using quan-
tum decomposition method.

The thesis is structured as follows. Chapter 1 contains basics on Quantum Probability
Theory. We give preliminaries needed for this thesis. In Chapter 2 we introduce the Quantum
Decomposition Method and give the framework that we need in order to do spectral analysis
of graphs. Chapter 3 is about Distance-Regular Graphs, these are graphs which possess a
significant property from the viewpoint of quantum decomposition. In this chapter we also
treat the particular case of odd graphs and their spectral distributions in the vacuum and
specially, in the deformed vacuum states. Finally, in Chapter 4 we define Distance-k graphs
and studies the spectral distribution of distance-k graph of the Cartesian product, Star and
free products of graphs.



Chapter 1

Quantum Probability Theory

In this chapter we give some basic definitions and results on Quantum Probabilty. We mainly
follow the monograph [26]. We start defining a non-commutative probability space, which
is the appropiate framework for Quantum Probability. Next we introduce the interacting
Fock space and orthogonal polynomials. Later, the notions of independence and their cor-
responding central limit theorems. Finally, we define the Cauchy-Stieltjes transform and its
continued fraction expansion and we present a 4th moment theorem for the distance defined
in equation (1.4.1) to the Bernoulli distribution which appears in [6].

1.1 Non-Commutative Probability Space

Definition 1.1.1 A C∗-probability space is a pair (A, ϕ), where A is a unital C∗-algebra
and ϕ : A → C is a state, i.e. is a positive unital linear functional. The elements of A are
called (non-commutative) random variables. An element a ∈ A such that a = a∗ is called
self-adjoint.

The functional ϕ should be understood as the expectation in classical probability.
For a1, . . . , ak ∈ A, we will refer to the values of ϕ(ai1 · · · ain), 1 ≤ i1, ..., in ≤ k, n ≥ 1,

as the mixed moments of a1, . . . , ak.
For any self-adjoint element a ∈ A there exists a unique probability measure µa (its

spectral distribution) with the same moments as a, that is,∫
R
xkµa(dx) = ϕ(ak), ∀k ∈ N.

We say that a sequence an ∈ An converges in distribution to a ∈ A if µan converges
in distribution to µa. In this setting convergence in distribution is replaced by convergence
in moments. Let (ϕn,An) be a sequence of C∗-probability spaces and let a ∈ (A, ϕ) be a
selfadjoint random variable. We say that the sequence an ∈ (ϕn,An) of selfadjoint random
variables converges to a in moments if

lim
n→∞

ϕn(akn) = ϕ(ak) for all k ∈ N.

6
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If supp {µa} is bounded then convergence in moments implies convergence in distribution.
The following proposition is straightforward and will be used frequently in the paper. A
sequence of polynomials {Pn =

∑l
i=0 cn,ix

i}n>0 of degree at most l ≥ k is said to converge to

a polynomial P =
∑k

i=0 cix
i of degree k if ci,n → ci for 0 ≤ i ≤ k and ci,n → 0 for k < i ≤ l.

Proposition 1.1.2 Suppose that the sequence of random variables {an}n>0 converges in
moments to a and the sequence of polynomials {Pn}n>0 converges to P . Then, the random
variables Pn(an) converge to P (a).

1.2 Interacting Fock Spaces

Definition 1.2.1 A real sequence {ωn}n≥1 is called a Jacobi sequence if

(i) (infinite type) ωn > 0 for all n ≥ 1; or

(ii) (finite type) there exists m0 ≥ 1 such that ω1 > 0, ω2 > 0, . . . , ωm0−1 > 0, ωm0 =
ωm0+1 = · · · = 0.

By definition (0, 0, . . . ) is a Jacobi sequence (m0 = 1).

Given a Jacobi sequence {ωn}, we consider a Hilbert space Γ as follows: If {ωn} is of infinite
type, let Γ be an infinite dimensional Hilbert space with an orthonormal basis {Φ0,Φ1, . . . }.
If {ωn} is of finite type, let Γ be an m0-dimensional Hilbert space with an orthonormal basis
{Φ0,Φ1, . . . ,Φm0−1}.
We next define linear operators B± on Γ by

B+Φn =
√
ωn+1Φn+1, n = 0, 1, . . . ,

B−Φ0 = 0, B−Φn =
√
ωnΦn−1, n = 1, 2, . . . ,

where we understand B+Φm0−1 = 0 when {ωn} is of finite type. We call B− the annihilation
operator and B+ the creation operator.

Definition 1.2.2 (Jacobi coefficient) A pair of sequences ({ωn}, {αn}) is called a Jacobi
coefficient if

(i) {ωn} is a Jacobi sequence of infinite type and {αn} is an infinite real sequence; or

(ii) {ωn} is a Jacobi sequence of finite type with length m0 and {α1, α2, . . . , αm0+1} is a
finite real sequence with m0 + 1 terms.

Given a Jacobi parameter ({ωn}, {αn}) we define the Hilbert space Γ with an orthonormal
basis {Φn}, the annihilation operator B− and the creation operator B+ as above. In addition
we define the conservation operator by

B◦Φn = αn+1Φn, n = 0, 1, 2, . . . .
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Definition 1.2.3 (Interacting Fock space) With each Jacobi parameter ({ωn}, {αn}) we
associate an interacting Fock space

(Γ, {ωn}, B+, B−, B◦),

obtained as above. When {α ≡ 0} is a null sequence, we omit B◦ and {αn}.

Let µ be a probability measure with all moments, that is mn(µ) :=
∫
R |x

n|µ(dx) < ∞.
The Jacobi parameters γm = γm(µ) ≥ 0, αm = αm(µ) ∈ R, are defined by the recursion

xQm(x) = Qm+1(x) + αmQm(x) + γm−1Qm−1(x),

where the polynomials Q−1(x) = 0, Q0(x) = 1 and (Qm)m≥0 is a sequence of orthogonal
monic polynomials with respect to µ, that is,∫

R
Qm(x)Qn(x)µ(dx) = 0 if m 6= n.

Example 1.2.4 The Chebyshev polynomials of the second kind are defined by the recurrence
relation

P0(x) = 1, P1(x) = x,

and
xPn(x) = Pn+1(x) + Pn−1(x) ∀n ≥ 1. (1.2.1)

These polynomials are orthogonal with respect to the semicircular law, which is defined by
the density

dµ =
1

2π

√
4− x2dx.

The Jacobi parameters of µ are αm = 0 and γm = 1 for all m ≥ 0.

1.3 Notions of Independence and Central Limit Theo-

rems

In non-commutative probability, in general we have non-commutative algebras. This allow
us to define new notions of independence. The independence give us a way to calculate
mixed moments of random variables. In this section we define four types of independence
(see Muraki [37]), which will help us to describe asymptotic distribution of growing graphs
and their central limit theorems (CLT).

Definition 1.3.1 (Tensorial independence) Let (A, ϕ) a Non-Commutative Probability
Space. The random variables a, b ∈ (A, ϕ) are tensor independent (or classical inde-
pendent) (with respect to ϕ) if

ϕ (am1bn1 · · · amkbnk) = ϕ
(
a
∑k
i=1mi

)
ϕ
(
b
∑k
i=1 ni

)
,

for all mi, ni ∈ N ∪ {0}, i = 1, 2, . . . , k.
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Definition 1.3.2 (Free independence) Let (A, ϕ) a Non-Commutative Probability Space.
The random variables a, b ∈ (A, ϕ) are free independent (or free) (with respect to ϕ)
if for any polynomials Pi, Qi, i = 1, 2, . . . , n, such that ϕ(Pi(a)) = 0 = ϕ(Qj(b)) for all
i, j = 1, 2, . . . , n, we have that

ϕ(P1(a)Q1(b) · · ·Pn(a)Qn(b)) = 0.

Definition 1.3.3 (Boolean independence) Let (A, ϕ) a Non-Commutative Probability
Space. The random variables a, b ∈ (A, ϕ) are Boolean independent (with respect to
ϕ) if

ϕ (am1bn1 · · · amkbnk) =
k∏
i=1

ϕ (ami)ϕ (bni)

for all mi, ni ∈ N ∪ {0}, i = 1, 2, . . . , k.

Definition 1.3.4 (Monotone independence) Let (A, ϕ) a Non-Commutative Probability
Space. The random variables a, b ∈ (A, ϕ) are monotone independent (with respect to
ϕ) if

ϕ (am1bn1 · · · amkbnk) = ϕ
(
a
∑k
i=1mi

) k∏
i=1

ϕ (bni) ,

for all mi, ni ∈ N ∪ {0}, i = 1, 2, . . . , k.

We can now derive explicit forms of central limit theorems associated with four different
notions of independence.

Theorem 1.3.5 (Classical CLT) Let {an}n≥1 ⊂ (A, ϕ) be a sequence of non-commutative,
classical independent, random variables in a Non-Commutative Probability Space, such that
ϕ(an) = 0 and ϕ(a2

n) = 1, for all n ≥ 1, then we have

lim
n→∞

ϕ

((
1√
n

∞∑
i=1

ai

)m)
=

1√
2π

∫ ∞
−∞

xme−x
2/2dx, m = 1, 2, ...,

where the r.h.s. are the moments of a standard Gaussian distribution.

Theorem 1.3.6 (Free CLT) Let {an}n≥1 ⊂ (A, ϕ) be a sequence of non-commutative, free
independent, random variables in a Non-Commutative Probability Space, such that ϕ(an) = 0
and ϕ(a2

n) = 1, for all n ≥ 1, then we have

lim
n→∞

ϕ

((
1√
n

∞∑
i=1

ai

)m)
=

1

2π

∫ 2

−2

xm
√

4− x2dx, m = 1, 2, ...,

where the r.h.s. are the moments of a Wigner semicircular law.
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Theorem 1.3.7 (Boolean CLT) Let {an}n≥1 ⊂ (A, ϕ) be a sequence of non-commutative,
Boolean independent, random variables in a Non-Commutative Probability Space, such that
ϕ(an) = 0 and ϕ(a2

n) = 1, for all n ≥ 1, then we have

lim
n→∞

ϕ

((
1√
n

∞∑
i=1

ai

)m)
=

1

2

∫ ∞
−∞

xm (δ−1 + δ1) dx, m = 1, 2, ...,

where the r.h.s. are the moments of a Bernoulli distribution.

Theorem 1.3.8 (Monotone CLT) Let {an}n≥1 ⊂ (A, ϕ) be a sequence of non-commutative,
monotone independent, random variables in a Non-Commutative Probability Space, such that
ϕ(an) = 0 and ϕ(a2

n) = 1, for all n ≥ 1, then we have

lim
n→∞

ϕ

((
1√
n

∞∑
i=1

ai

)m)
=

1

π

∫ √2

−
√

2

xm√
2− x2

dx, m = 1, 2, ...,

where the r.h.s. probability measure is an arcsine law.

1.4 Cauchy-Stieltjes Transform and Continued Frac-

tions

We denote by M the set of Borel probability measures on R. The upper half-plane and the
lower half-plane are respectively denoted as C+ and C−.

Definition 1.4.1 For a measure µ ∈ M, the Cauchy transform Gµ : C+ → C− is defined
by the integral

Gµ(z) =

∫
R

µ(dx)

z − x
, z ∈ C+.

The Cauchy transform is an important tool in non-commutative probability. For us, the
following relation between weak convergence and the Cauchy Transform will be important.

Proposition 1.4.2 Let µ1 and µ2 be two probability measures on R and

dL(µ1, µ2) = sup {|Gµ1(z)−Gµ2(z)| ;=(z) ≥ 1} . (1.4.1)

Then d is a distance which defines a metric for the weak topology of probability measures.
Moreover, |Gµ(z)| is bounded in {z : =(z) ≥ 1} by 1.

In other words, a sequence of probability measures {µn}n≥1 on R converges weakly to a
probability measure µ on R if and only if for all z with =(z) ≥ 1 we have

lim
n→∞

Gµn(z) = Gµ(z).
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Definition 1.4.3 The Hilbert transform Hf of a function f is given by the principal value
integral

Hf(x) := lim
ε→+0

1

π

∫
|x−t|≥ε

f(t)

x− t
dt,

whenever the limit exists for a.e. x ∈ R.

Let µ be a compactly supported probability measure on R. Writing z = x + iy then we
have the following decomposition into real and imaginary part of Gµ(z)

Gµ(x+ iy) =

∫ ∞
−∞

x− t
(x− t)2 + y2

dµ(t)− i
∫ ∞
−∞

y

(x− t)2 + y2
dµ(t).

Also, note that t0 ∈ R is an isolated point of the support of µ if and only if z = t0 is a simple
pole of Gµ(z). Moreover, µ({t0}) is the residue of Gµ(z) at t0. When µ has a continuous
derivative f = dµ/dx, we obtain

f(x) = − 1

π
lim
y→+0

ImGµ(x+ iy),

and

Hf(x) =
1

π
lim
y→+0

ReGµ(x+ iy),

due to properties of the Hilbert transform.
One can observe that the limit of the imaginary part of Gµ(x + iy) recovers µ up to a

factor −π. This relation is known as Stieltjes inversion formula.
The Cauchy transform may be expressed as a continued fraction in terms of the Jacobi

parameters, as follows.

Gµ(z) =

∫ ∞
−∞

1

z − t
µ(dt) =

1

z − α0 −
ω0

z − α1 −
ω1

z − α2 − · · ·

An important example for this thesis is the Bernoulli distribution b = 1/2δ1 + 1/2δ1 for
which α0 = 0, ω0 = 1, and αn = ωn = 0 for n ≥ 1. Thus, the Cauchy transform is given by

Gb(z) =
1

z − 1/z
.

In the case when µ has 2n+2-moments we can still make an orthogonalization procedure
until the level n. In this case the Cauchy transform has the form

Gµ(z) =
1

z − α0 −
ω0

z − α1 −
ω1

. . .

z − αn − ωnGν(z)

(1.4.2)
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where ν is a probability measure.
The following lemma which shows that the first, second and fourth moments are enough

to ensure convergence to a Bernoulli distribution was observed in [4] . We present a proof
in terms of Jacobi parameters as in our paper [6].

Lemma 1.4.4 Let {Xn}n≥1 ⊂ (A, ϕ) , be a sequence of self-adjoint random variables in some
non-commutative probability space, such that ϕ(Xn) = 0 and ϕ(X2

n) = 1. If ϕ (X4
n)→ 1, as

n→∞, then µXn converges in distribution to a symmetric Bernoulli random variable b.

Proof. Let ({ωi (µXn)} , {αi (µXn)}) be the Jacobi parameters of the measures µXn . The
first moments {mn}n≥1 are given in terms of the Jacobi Parameters as follows, see [1].

m1 = α0

m2 = α2
0 + ω0

m3 = α3
0 + 2α0ω0 + α1ω0

m4 = α4
0 + 3α2

0α1 + 2α1α0ω0 + α2
1ω0 + ω2

0 + ω0ω1.

Since m1 (µXn) = 0 and m2 (µXn) = 1 we have

α0 (µXn) = 0 and ω0 (µXn) = 1 ∀n ≥ 1,

Hence,
m4 (µXn) = α2

1 (µXn) + 1 + ω1 (µXn) . (1.4.3)

Now, since m4 (µXn)→ 1 and ω1 ≥ 0 we have the convergence

α1 (µXn) →
n→∞

0 and ω1 (µXn) →
n→∞

0.

Let Gµn be the Cauchy transform of µn. By (1.4.2) we can expand Gµ as a continued fraction
as follows

Gµn(z) =
1

z − 1

z − α1 − ω1Gνn(z)

where νn is some probability measure. Now, recall that |Gνn(z)| is bounded by 1 in the set
{z|;=(z) ≥ 1} and thus, since ω1 → 0 and α1 → 0 we see that ωnGνn(z)→ 0. This implies
the point-wise convergence

Gµn(z)→ 1

z − 1

z

in the set {z|;=(z) ≥ 1}, which then implies the weakly convergence µn → b.
From the proof of the previous lemma, we can give a quantitative version in terms of the

distance given in eq (1.4.1).
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Proposition 1.4.5 ([6]) Let µ be a probability measure such that m4 := m4(µ) is finite.
Then

dL

(
µ,

1

2
δ1 +

1

2
δ−1

)
≤ 4
√
m4 − 1, (1.4.4)

where dL is defined in (1.4.1).

Proof.
If m4 − 1 > 1/16 then the statement is trivial since d(µ, 1/2δ1 + 1/2δ−1) ≤ 1 for any

measure µ. Thus we may assume that (m4 − 1) ≤ 1/16.
Denoting by f(z) = α1 − ω1Gνn(z) we have

|Gµ(z)−Gb(z)| =

∣∣∣∣∣∣∣∣
1

z − 1

z

− 1

z − 1

z − f(z)

∣∣∣∣∣∣∣∣ =

∣∣∣∣ f(z)

(z2 − 1)(z2 − 1− f(z)z)

∣∣∣∣ .
From (1.4.3) we get the inequalities

√
m4 − 1 ≥ |α1| and

√
m4 − 1 ≥ m4−1 ≥ ω1. Since,

for Im(z) > 1, we have that, |Gν(z)| < 1 we see that |f(z)| = |α1− γ1Gν(z)| ≤ 2
√
m4 − 1 ≤

1/2., from where we can easily obtain the bound
∣∣∣ 1
z2−1−f(z)z

∣∣∣ ≤ 2. Also, for =(z) > 0 we

have the bound
∣∣∣ 1

(z2−1)

∣∣∣ < 1. Thus we have

|Gµ(z)−Gb(z)| =

∣∣∣∣ f(z)

(z2 − 1)(z2 − 1− f(z)z)

∣∣∣∣
= |f(z)|

∣∣∣∣ 1

(z2 − 1)

∣∣∣∣ ∣∣∣∣ 1

z2 − 1− f(z)z

∣∣∣∣
≤ 2|f(z)| ≤ 4

√
m4 − 1.

as desired.

Another quantitative version of the Boolean central limit theorem is given by Arizmendi
& Salazar [8], where instead they use the Lévy distance. However, their estimate is larger
compared to (1.4.4).

Definition 1.4.6 For µ, ν ∈M define the Lévy distance between them to be

L(µ, ν) := inf{ε > 0 : F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε for all x ∈ R},

where F and G are the cumulative distribution functions fo µ and ν respectively.

Theorem 1.4.7 (Arizmendi & Salazar [8]) Let µ be a probability measure with zero mean
and unit variance. Then

L(µ,b) ≤ 7

2
3
√
m4(µ)− 1.



Chapter 2

Quantum Decomposition Method

In this chapter we present the quantum decomposition method and some basics on Graph
Theory. We shall develop the spectral analysis of a graph by regarding the adjacency matrix
as an algebraic random variable. The interest in asymptotic aspects of growing combinatorial
objects has increased in recent years. In particular, the asymptotic spectral distribution of
graphs has been studied from the quantum probabilistic point of view. The term of quantum
decomposition was first introduced by Hashimoto [20] in a study of an adjacency matrix of
a large Cayley graph. This idea has been applied also to similar studies for large Hamming
graphs [22, 24], Johnson graphs [21, 24, 25], Odd graphs [27], Homogeneous tree [19], and so
on. A summary of these results can be found in the book by Hora & Obata [26].

2.1 Graphs and Adjacency Matrices

Definition 2.1.1 By a rooted graph we understand a pair (G, e), where G = (V,E), is a
undirected graph with set of vertices V = V (G), and the set of edges E = E(G) ⊆ {(x, x′) :
x, x′ ∈ V, x 6= x′} and e ∈ V is a distinguished vertex called the root.

For rooted graphs we will use the notation V 0 = V \{e}. Two vertices x, x′ ∈ V are
called adjacent if (x, x′) ∈ E, i.e. vertices x, x′ are connected with an edge. Then we write
x ∼ x′. Simple graphs have no loops, i.e. (x, x) /∈ E for all x ∈ V . A graph is called finite
if |V | < ∞, where |I| stands for the cardinality of I. The degree of x ∈ V is defined by
κ(x) = |{x′ ∈ V : x′ ∼ x}|. A graph is called locally finite if κ(x) < ∞ for every x ∈ V . It
is called uniformly locally finite if sup{κ(x) : x ∈ V } < ∞. Finally, for x, y ∈ V , ∂G(x, y)
denotes the graph distance between x and y, i.e. the length of the shortest walk connecting
x and y.

Definition 2.1.2 The adjacency matrix A = A(G) of G is a 0-1 matrix defined by

Ax,x′ =

{
1 if x ∼ x′

0 otherwise.
(2.1.1)

14
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We identify A with the densely defined symmetric operator on l2(V ) defined by

Aδ(x) =
∑
x∼x′

δ(x′) (2.1.2)

for x ∈ V . Notice that the sum on the right-hand-side is finite since our graph is assumed to
be locally finite. It is known that A(G) is bounded iff G is uniformly locally finite. If A(G)
is essentially self-adjoint, its closure is called the adjacency operator of G and its spectrum
is called the spectrum of G.

The unital algebra generated by A, i.e. the algebra of polynomials in A, is called the
adjacency algebra of G and is denoted by A(G) or simply A.

2.2 Vacuum and Deformed Vacuum States

Definition 2.2.1 Let G = (V,E) be a graph and A(G) its adjacency algebra. The vacuum
state at a fixed origin o ∈ V is defined by

〈a〉o = 〈δo, aδo〉, a ∈ A(G).

It is well known that 〈Am〉o is the number of m-step walks from o ∈ V to itself. More
generally, we have the following:

(Am)xy = 〈δx, Amδy〉,

which coincides with the number of m-step walks connecting y and x.
In this thesis we are also interested in a particular one-parameter deformation of the vacuum
state. For q ∈ R (one may consider q ∈ C though our interesting case happens only when
−1 ≤ q ≤ 1, see [11]), we define a matrix Q = Qq, called the Q-matrix of a graph G = (V,E),
by

Q = Qq = (q∂(x,y))x,y∈V .

For q = 0 we understand that 00 = 1 and Q = 1 (the identity matrix). Then we have

Qδo =
∑
x∈V

q∂(x,o)δx.

We may define

〈a〉q =
∑
x∈V

q∂(x,o)〈δx, aδo〉 = 〈Qδo, aδo〉, a ∈ A(G). (2.2.1)

Definition 2.2.2 A normalized linear function defined in (2.2.1) is called a deformed
vacuum state on A(G).
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2.3 Quantum Decomposition of an Adjacency Matrix

Let G = (V,E) be a graph with a fixed origin o ∈ V . The graph is stratified into a disjoint
union of strata:

V =
∞⋃
n=0

Vn, Vn = {x ∈ V : ∂(o, x) = n}. (2.3.1)

This is called the stratification (distance partition). For ε ∈ {+,−, ◦} we define Aε by

(Aε)xy =

{
1, if x ∼ y and ∂(o, x)− ∂(o, y) = ε,
0, otherwise,

where ε is assigned the numbers +1,−1, 0 according as ε = +,−, ◦. The adjacency matrix
A is decomposed into three parts:

A = A+ + A− + A◦. (2.3.2)

Definition 2.3.1 We call (2.3.2) the quantum decomposition of A associated with the
stratification (2.3.1) and Aε, ε ∈ {+,−, ◦} the quantum components.

For each n = 0, 1, 2, . . . , we define a unit vector in l2(V ) by

Φn = |Vn|−1/2
∑
x∈Vn

δx, (2.3.3)

which is called the n-th number vector. In particular, Φ0 = δ0 is called the vacuum vector.
Let Γ(G) denote the closed subspace spanned by {Φ0,Φ1, . . . }. Although Γ(G) is not always
invariant under the quantum components Aε, the method of quantum decomposition is best
effective in some special cases.

Let Ã(G) be the ∗-algebra generated by the quantum components A+, A−, A◦ of the adja-
cency matrix A. Note that Ã(G) is non-commutative unless the graph G consists of a single
vertex. Except such a trivial case, the quantum decomposition yields a non-commutative
extension of A(G).

Theorem 2.3.2 Let G = (V,E) be a graph with a fixed origin o ∈ V . Let A = A+ +A−+A◦

be the quantum decomposition of the adjacency matrix and Γ(G) the space spanned by {Φn}
defined in (2.3.3). Then we have

A+Φn = |Vn|−1/2
∑

y∈Vn+1

ω−(y)δy, (2.3.4)

A−Φn = |Vn|−1/2
∑

y∈Vn−1

ω+(y)δy, (2.3.5)

A◦Φn = |Vn|−1/2
∑
y∈Vn

ω◦(y)δy. (2.3.6)

where ωε(x) = |{y ∈ V ; y ∼ x, ∂(o, y) = ∂(o, x) + ε}|, ε ∈ {+,−, ◦}.
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It is noted from (2.3.4)-(2.3.6) that Γ(G) is not necessarily invariant under the actions of
the quantum components of A. The method of quantum decomposition will be best effective
when

(i) Γ(G) is invariant under the quantum components or

(ii) Γ(G) is “asymptotically” invariant under the quantum components.

Proposition 2.3.3 Notations being as above, Γ(G) is invariant under the quantum compo-
nents A+, A−, A◦ if an only if ω+(y), ω−(y), ω◦(y) are constant on Vn for all n = 0, 1, 2, . . . .
In that case (Γ(G), {Φn}, A+, A−) becomes an interacting Fock space and A◦ a diagonal op-
erator. The associated Jacobi coefficient is given by

ωn =
|Vn|
|Vn−1|

ω−(y)2, y ∈ Vn, (2.3.7)

αn = ω◦(y), y ∈ Vn−1, n = 1, 2, . . . . (2.3.8)

We note that the vacuum state corresponding to the fixed origin o ∈ V becomes

〈a〉o = 〈δo, aδo〉 = 〈Φ0, aΦ0〉, a ∈ A(G).

Hence, Proposition 2.3.3 says that the theory of an interacting Fock space is directly appli-
cable to the spectral analysis of A = A+ + A− + A◦ in the vacuum state. Finally, for the
case of the deformed vacuum state (Definition 2.2.2), we have an alternative expression:

〈a〉q =
∞∑
n=0

qn|Vn|1/2〈Φn, aΦ0〉, a ∈ A(G).



Chapter 3

Distance-Regular Graphs

This chapter deals with distance-regular graphs which possess a significant property from the
viewpoint of quantum decomposition. We shall establish a general framework for asymptotic
spectral distributions for the adjacency matrix and derive the limit distributions in terms of
intersection numbers. In particular, in Section 3.4 we study an example of distance-regular
graphs: odd graphs, and distribution in vacuum and deformed vacuum states. Most of the
results in this chapter are from Hora & Obata [26]. The results related to distribution in
deformed vacuum state for odd graph are from the author’s manuscript [16].

3.1 Definition and Some Properties

Definition 3.1.1 Let G = (V,E) be a graph. Let i, j, k be non-negative integers. A graph
G = (V,E) is called distance-regular if for any choice of x, y ∈ V such that ∂(x, y) = k,
the number

pkij = |{z ∈ V : ∂(x, z) = i, ∂(y, z) = j}|,

does not depend on x and y. These constants are called the intersection numbers of
G = (V,E).

Remark 3.1.2 A distance-regular graph is regular with degree p0
11.

Let G = (V,E) be a graph, we define the k-th distance matrix (or k-th adjacency matrix)
Ak by

(Ak)xy =

{
1, ∂(x, y) = k,
0, otherwise.

(3.1.1)

We have that, the 0th distance matrix is the identity matrix A0 = 1 and the 1st is the
adjacency matrix so that A1 = A. It is noted that Ak is locally finite for all k = 0, 1, 2, . . . .
Denoting by J the matrix of which entries are all one, we have∑

k

Ak = J.

18
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Moreover, if the graph G is finite, Ak = 0 for all k > diam(G). For a distance-regular graph
these matrices are useful. The following propositions are from [26].

Proposition 3.1.3 The adjacency algebra A(G) of a distance-regular graph G is a linear
space with a linear basis A0 = 1 (the identity matrix), A1 = A (adjacency matrix), A2, . . . .
In particular, if G is finite, we have dimA(G) = diam(G) + 1.

Proposition 3.1.4 A graph G = (V,E) is distance-regular if and only if for any k =
0, 1, 2, . . . , the kth distance matrix Ak is expressible in a polynomial of A of degree k whenever
Ak 6= 0.

We give a simple criterion for a graph to be distance-regular. In general, a graph is
called distance-transitive if for any x, x′, y, y′ ∈ V such that ∂(x, y) = ∂(x′, y′) there exists
α ∈ Aut(G) such that α(x) = x′, α(y) = y′.

Proposition 3.1.5 A distance-transitive graph is distance-regular.

3.2 Spectral Distributions in the Vacuum States

Now, we consider the spectral distribution of A in the vacuum state, i.e., a probabability
measure µ ∈M satisfying

〈δo, Amδo〉 =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . ,

where o ∈ V is a fixed origin of the graph. We apply quantum decomposition method.

Theorem 3.2.1 Let G be a distance-regular graph with intersection numbers {pkij} and A
the adjacency matrix. Then Γ(G) is invariant under the action of the quantum components
Aε, ε ∈ {+,−, ◦}. Moreover

A+Φn =
√
pn+1

1,n p
n
1,n+1Φn+1, n = 0, 1, 2, . . . , (3.2.1)

A−Φ0 = 0, A−Φn =
√
pn1,n−1p

n−1
1,n Φn−1, n = 1, 2, . . . , (3.2.2)

A◦Φn = pn1,nΦn, n = 0, 1, 2, . . . . (3.2.3)

According with last theorem (Γ(G), {Φn}, A+, A−) is an interacting Fock space associated
with a Jacobi sequence

ωn = pn1,n−1p
n−1
1,n , n = 1, 2, . . . , (3.2.4)

and the quantum component A◦ is the diagonal operator defined by the sequence

αn = pn−1
1,n−1, n = 1, 2, . . . . (3.2.5)

Now, we may state the following result.
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Theorem 3.2.2 Let G = (V,E) be a distance-regular graph and A its adjacency matrix.
Let µ be a spectral distribution of A in the vacuum state at an origin o ∈ V fixed arbitrarily.
Then the pair of sequences ({ωn}, {αn}) given in (3.2.4) and (3.2.5) is the Jacobi coefficient
of µ.

We see from (3.2.4) and (3.2.5) that

ω1 = p0
11 = κ, α1 = 0.

Thus the spectral distribution of A in the vacuum state has mean zero and variance p0
11.

3.3 Spectral Distributions in the Deformed Vacuum

States

We next consider the deformed vacuum state defined by

〈a〉q = 〈Qδo, Aδo〉 =
∞∑
n=0

qn|Vn|1/2〈Φn, aΦ0〉, a ∈ A(G),

where Q =
(
q∂(x,y)

)
with q ∈ R. In order to normalize the adjacency matrix in the deformed

vacuum state we use the following:

Lemma 3.3.1 Then mean and the variance of the adjacency matrix A in the deformed
vacuum state are respectively given as follows:

〈A〉q = qκ, (3.3.1)

Σ2
q(A) = 〈(A− 〈A〉q)2〉q = κ(1− q)(1 + q + qp1

11). (3.3.2)

Theorem 3.3.2 Let G = (V,E) be a distance-regular graph. If Q =
(
q∂(x,y)

)
is a positive

definite kernel on V , the deformed vacuum state 〈·〉q is positive (i.e., a state in a strict sense)
on the adjacency algebra A(G).

Now, let us consider a growing distance-regular graph G(ν) = (V (ν), E(ν)). Suppose that each
G(ν) is given a deformed vacuum state 〈·〉q, where q may depend on ν. The normalized
adjacency matrix in which we are interested is given by

Aν − 〈Aν〉q
Σq(Aν)

.

Taking the quantum decomposition Aν = A+
ν + A−ν + A◦ν into account, we obtain

Aν − 〈Aν〉q
Σq(Aν)

=
A+
ν

Σq(Aν)
+

A−ν
Σq(Aν)

+
A◦ν − qκ(ν)

Σq(Aν)
.
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For n = 1, 2, . . . we set

ω̄n(ν, q) =
pn1,n−1(ν)pn−1

1,n (ν)

Σ2
q(Aν)

and ᾱn(ν, q) =
pn−1

1,n−1(ν)− qκ(ν)

Σq(Aν)
.

From Theorem 3.2.1 we have

A+
ν

Σq(Aν)
Φn =

√
ω̄n+1(ν, q)Φn+1, n = 0, 1, 2, . . . ,

A−ν
Σq(Aν)

Φ0 = 0, A−ν
Σq(Aν)

Φn =
√
ω̄n(ν, q)Φn−1, n = 1, 2, . . . ,

A◦ν−qκ(ν)
Σq(Aν)

Φn = ᾱn+1(ν, q)Φn, n = 0, 1, 2, . . . .

We consider the following limits:

ωn = lim
ν,q

ω̄n(ν, q) = lim
ν,q

pn1,n−1(ν)pn−1
1,n (ν)

Σ2
q(Aν)

, (3.3.3)

αn = lim
ν,q

ᾱn(ν, q) = lim
ν,q

pn−1
1,n−1(ν)− qκ(ν)

Σq(Aν)
, (3.3.4)

when they exist under a good scaling balance of ν and q. We consider the condition (DR):

(i) for all n = 1, 2, . . . the limits ωn and αn exist with ωn > 0 or

(ii) there exists n = 1, 2, . . . such that the limits ω1, . . . , ωn and α1, . . . , αn exist with

ω1 = 1, ω2 > 0, . . . , ωn−1 > 0, ωn = 0.

If (DR) is fulfilled for (3.3.3) and (3.3.4), we obtain a Jacobi coefficient ({ωn}, {αn}). Let
Γ{ωn} = (Γ, {Ψn}, B+, B−) be an interacting Fock space associated with {ωn} and B◦ the
diagonal operator defined by {αn}. We set

Ã±ν = A±ν , Ã◦ν = A◦ν − qκ(ν),

and we can now establish the Quantum Cental Limit Theorem for a growing distance-regular
graph in the deformed vacuum state.

Theorem 3.3.3 Let G(ν) = (V (ν), E(ν)) be a growing distance-regular graph with Aν being
the adjacency matrix, and each A(G(ν)) be a given deformed vacuum state 〈·〉q. Assume that
condition (DR) is fulfilled for (3.3.3) and (3.3.4), and that the limit

cn = lim
ν,q

qn|V (ν)
n |1/2 = lim

ν,q
qn
√
p0
nn(ν), (3.3.5)

exists for all n for which {αn} is defined. Let Γ{ωn} = (Γ, {Ψn}, B+, B−) be an interacting
Fock space associated with {ωn}, B◦ the diagonal operator defined by {αn}, and Υ the formal
sum of vectors defined by

Υ =
∞∑
n=0

cnΨn.
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Then, we have

lim
ν,q

〈
Ãεmν

Σq(Aν)
. . .

Ãε1ν
Σq(Aν)

〉
q

= 〈Υ,Bεm · · ·Bε1Ψ0〉,

for any ε1, . . . , εm ∈ {+,−, ◦} and m = 1, 2, . . . .

3.4 Odd Graphs

The idea of quantum decomposition has been applied to similar studies for large Hamming
graphs [22, 24], Johnson graphs [21, 24, 25], Odd graphs [27], Homogeneous tree [19], and so
on. Most of these distributions were computed with respect to vacuum state and deformed
vacuum state, except in the case of odd graphs, where only the vacuum state case was
studied. In this section we focus on the study of the asymptotic spectral distribution of
growing odd graphs in vacuum and deformed vacuum state.

Definition 3.4.1 Let k ≥ 2 be an integer and set S = {1, 2, . . . , 2k − 1}. The pair

V = {x ⊂ S : |x| = k − 1}, E = {(x, y) : x, y ∈ V, x ∩ y = ∅},

is called the odd graph and is denoted by Ok.

Obviously, Ok is a regular graph of degree k.
The distance between two vertices of an odd graph is characterized by the cardinality of
their intersection. Set

In =

{
k − 1− n

2
, if n is even,

n−1
2
, if n is odd,

where n = 0, 1, . . . , k − 1. Then, for a pair of vertices x, y of the odd graph Ok, we have

|x ∩ y| = In ⇐⇒ ∂(x, y) = n.

As a direct consequence of this fact we have that odd graphs are distance-transitive, therefore
distance-regular.

3.4.1 Distribution in Vacuum States

In order to apply quantum probabilistic techniques to obtain the asymptotic spectral dis-
tribution of the adjacency matrix Ak as k → ∞, Igarashi and Obata [27] computed the
intersection numbers of Ok.

Proposition 3.4.2 Let {phij} be the intersection numbers of the odd graph Ok, k ≥ 2. For
1 ≤ n ≤ k − 1,

pn1,n−1 =

{
n
2
, if n is even,

n+1
2
, if n is odd.
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For 0 ≤ n ≤ k − 2,

pn1,n+1 =

{
k − n

2
, if n is even,

k − n+1
2
, if n is odd.

For 0 ≤ n ≤ k − 1,

pn1,n =


0, if 1 ≤ n ≤ k − 2,
k+1

2
, if n = k − 1 and k is odd,

k
2
, if n = k − 1 and k is even.

From the last proposition they obtain the following quantum central limit theorem for
odd graphs (w.r.t. vacuum state).

Theorem 3.4.3 Let Ak be the adjacency matrix of the odd graph Ok and Aεk its quantum
components, ε ∈ {+,−, ◦}. Let Γ{ωn} = (Γ, {Ψn}, B+, B−) be the interacting Fock space
associated with a Jacobi sequence defined by

{ωn} = {1, 1, 2, 2, 3, 3, 4, 4, . . . }.

It then holds that

lim
k→∞

A±k√
k

= B±, lim
k→∞

A◦k√
k

= 0,

in the sense of stochastic convergence.

In [27] they proved that there exists a unique Borel probability measure µ on R such that

〈Ψ0, (B
+ +B−)mΨ0〉 =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .

Therefore we have the following:

Proposition 3.4.4 Let Ak be the adjacency matrix of the odd graph Ok. Then there exists
a unique probability measure µ ∈M such that

lim
k→∞

〈(
Ak√
k

)m〉
o

=

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .

The Jacobi coefficient of µ is given by

{ωn} = {1, 1, 2, 2, 3, 3, 4, 4, . . . }, {α ≡ 0}.

In particular, µ is symmetric.

After using Stieltjes inversion method they obtained an explicit description of the Borel
probability measure µ in Proposition 3.4.3

Theorem 3.4.5 (Igarashi & Obata [27]) For the adjacency matrix Ak of the odd graph
Ok we have

lim
k→∞

〈(
Ak√
k

)m〉
o

=

∫ ∞
−∞

xm|x| exp (−x2)dx, m = 1, 2, . . . .
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3.4.2 Distribution in Deformed Vacuum States

Now, we shall compute asymptotic spectral distribution of growing odd graphs in deformed
vacuum state. In order to obtain a normalization, we calculate the mean and the variance
in the deformed vacuum state of the adjacency matrix Ak:

〈Ak〉q = qk, Σ2
q(Ak) = k(1− q2),

due to the fact that Ok has degree k and p1
11 = 0. Then, the normalized adjacency matrix

becomes
Ak − 〈Ak〉q

Σq(Ak)
=

Ak − qk√
k(1− q2)

,

and we are interested in the asymptotic distribution in deformed vacuum state. In order to
obtain that distribution we need three sequences {ωn}, {αn}, {cn} defined in (3.3.3), (3.3.4)
and (3.3.5), respectively.
First to obtain (3.3.3), if n is even, then we have

ωn = lim
k,q

(
n
2

) (
k − n

2

)
k(1− q2)

,

and if n is odd

ωn = lim
k,q

(
n+1

2

) (
k − n−1

2

)
k(1− q2)

.

In the case of (3.3.4) we have

αn = lim
k,q

pn−1
1,n−1(k)− qk

Σq(Ak)
= lim

k,q

−qk√
k(1− q2)

= lim
k,q

−q
√
k√

1− q2
.

Here we remind that q may depend on k, therefore we need to find a suitable balance between
q and k. An appropiate situation is

lim
k→∞

q = 0, lim
k→∞

q
√
k = γ, (3.4.1)

where γ ∈ R can be arbitrarily chosen. Therefore, under these circunstances we have

{ωn}n≥1 = {1, 1, 2, 2, 3, 3, 4, . . . }, {αn}n≥1 = {−γ,−γ,−γ, . . . }.

We still need to compute the limit (3.3.5), whereby we need to compute p0
nn(k). Let n be

even, we recall that ∂(x, y) = n⇔ |x ∩ y| = n
2
− 1 + k, hence

p0
nn =

(
k − 1

k − 1− n
2

)(
k
n
2

)
=

(
k − 1
n
2

)(
k
n
2

)
,
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therefore

cn = limk,q q
n

√(
k − 1
n
2

)(
k
n
2

)
= limk,q

qn

(n2 )!

√(
1− 1

k

)
· · ·
(

1− n/2
k

)
(1)
(

1−
n
2

+1

k

)
k
n
2

+n
2

= γn

(n2 )!
.

If n is odd, we have ∂(x, y) = n⇔ |x ∩ y| = n−1
2

, then

p0
nn(k) =

(
k − 1
n−1

2

)(
k

k − 1− n−1
2

)
=

(
k − 1

k − 1− n−1
2

)(
k

k − 1− n−1
2

)
,

therefore

cn = limk,q q
n

√(
k − 1

k − 1− n−1
2

)(
k

k − 1− n−1
2

)
= limk,q q

n

√(
1− 1

k

)
· · ·
(

1− n/2
k

)
(1)
(

1−
n
2

+1

k

)
k
n−1
2 +n−1

2 +1

(n−1
2

+1)(n−1
2 )!(n−1

2 )!

= γn√
n−1
2

+1(n−1
2 )!

.

The corresponding (formal) sum of vectors is given by

Ωγ =
∞∑
n=0

cnΨn, where cn =


γn

(n2 )!
if n is even

γn√
n−1
2

+1(n−1
2 )!

if n is odd,

which is the coherent state of the Fock space Γ{ωn}. Now we are in a position to write a
partial description of the asymptotic distribution of odd graphs in the deformed vacuum
state.

Theorem 3.4.6 ([16]) Let Ak be the adjacency matrix of the odd graph Ok, k ≥ 2. Let
Γ{ωn} = (Γ, {Ψn}, B+, B−) be the interacting Fock space associated with {ωn} = {1, 1, 2, 2, 3, 3, 4, . . . }.
Then taking the limits as in (3.4.1) we have

lim
k,q

A±k
Σq(Ak)

= B±, lim
k,q

A◦k − 〈Ak〉q
Σq(Ak)

= −γ,

in the sense of stochastic convergence, where the left-hand sides are in the deformed vacuum
state 〈·〉q and the right-hand sides in the coherent state 〈·〉Ωγ . In particular, for m = 1, 2, . . . ,

lim
k,q

〈(
Ak − 〈Ak〉q

Σq(Ak)

)m〉
q

=
〈(
B+ +B− − γ

)m〉
Ωγ
. (3.4.2)
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Calculating the limit measure

In this section our goal is to obtain a probability measure µ such that〈(
B+ +B− − γ

)m〉
Ωγ

=

∫ ∞
−∞

tmµ(dt), m = 1, 2, . . . .

Throughout the rest of this section, let Γ{ωn} = (Γ, {Ψn}, B+, B−) be the interacting Fock
space associated with {ωn} = {1, 1, 2, 2, 3, 3, 4, . . . }. We recall that Ωγ is a coherent state
with parameter γ ∈ R, therefore combining Proposition 4.17 in [26] and (3.4.2) we obtain〈

Ωγ, (B
+ +B− − γ)mΨ0

〉
=
〈
Ψ0, (B

+ +B− − γB+B−)mΨ0

〉
.

Now, we need to find µ such that〈
Ψ0, (B

+ +B− − γB+B−)mΨ0

〉
=

∫ ∞
−∞

tmµ(dt), m = 1, 2, . . . . (3.4.3)

Note that −γB+B− is a diagonal defined by the sequence {0,−γ,−γ,−γ, . . . }. Hence the
Jacobi coefficient of µ in (3.4.3) is ({ωn}, {0,−γ,−γ,−γ, . . . }). The Cauchy transform of µ
is given by

Gµ(z) =

∫ ∞
−∞

µ(dt)

z − t
=

1

z − 1

z + γ − 1

z + γ − 2

z + γ − · · ·

,

where z ∈ {Im z 6= 0}.
Let ν a measure such that ν(dt) = |t|e−t2dt, which has Jacobi coefficient is ({ωn}, {αn ≡ 0}).
Then we have

Gµ(z − γ) =
1

z − γ − 1

z − 1

z − 2

z − · · ·

=
1

z − γ −Kν(z)
,

where Kν(z) = z − 1/Gν(z). We shall apply Stieltjes inversion formula to r.h.s. in last
equation, i.e. we need to compute

− 1
π

limy→+0 Im Gµ(x+ iy − γ) = − 1
π

limy→+0
Im Gν(x+iy)

‖−γGν(x+iy)+1‖2

= fν(x)
‖−γ limy→+0Gν(x+iy)+1‖2 ,

(3.4.4)

where fν = dν/dx. Due to the fact that ν is symmetric, we have that Gν(z) = zGρ(z
2) (see

[5]), where ρ(dx) = e−xdx. Then, we have

limy→+0Gν(z) = limy→+0 zGρ(z
2)

= limy→+0 Re zGρ(z
2) + i limy→+0 Im zGρ(z

2)
= πxHfρ(x

2) + iπ|x|fρ(x2),
(3.4.5)
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where Hfρ(x) = e−xEi(x) is the Hilbert transform (see Chapter 3 in [18]) of fρ(x) = e−x and
Ei(x) is the special function on the complex plane called exponential integral defined by

Ei(x) = −
∫ ∞
−x

e−t

t
dt.

Combining (3.4.4) and (3.4.5) we obtain

− 1

π
lim
y→+0

Im Gµ(x+ iy − γ) =
|x|e−x2

(−γπxe−x2Ei(x2) + 1)2 + (γπ|x|e−x2)2
.

Now we are in position to rephrase Theorem 3.4.6.

Theorem 3.4.7 ([16]) For the adjacency matrix Ak of the odd graph Ok we have

lim
k,q

〈(
Ak − 〈Ak〉q

Σq(Ak)

)m〉
q

=

∫ ∞
−∞

xmµ(dx), m = 1, 2, . . . ,

where the explicit form of µ is given as follows:

µ(dx) =
|x− γ|e−(x−γ)2

(−γπ(x− γ)e−(x−γ)2Ei((x− γ)2) + 1)2 + (γπ|x− γ|e−(x−γ)2)2
dx.

In Figure 3.1 we show the density appearing in the above theorem.

Remark 3.4.8 The case γ = 0 in Theorem 3.4.7 is the Theorem 6.1 in [27], and corresponds
to the two-sided Rayleigh distribution.
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Figure 3.1: µ(dx) with γ = 0, 1/3, 1/6, 1 (Theorem 3.4.7)



Chapter 4

Distance-k Graphs

The study of the asymptotic spectral distribution of distance-k graph of product of graphs
was iniciated by Kurihara & Hibino [32]. This chapter contains results related to the spectral
distribution of distance-k graph of cartesian, Boolean and free product of graphs. The
Boolean and free cases were published by the author in joint works with Arizmendi [6, 7].

Definition 4.0.1 For a given graph G = (V,E), its distance-k graph G[k] = (V,E[k]) is
defined by

E[k] = {(x, y) : x, y ∈ V, ∂G(x, y) = k}.

By definition, the adjacency matrix of G[k] coincides with the k-th distance matrix Ak
of G defined in (3.1.1). Clearly, the distance-1 graph G[1] coincides with G itself. Note that
the distance-k graph of a connected graph is not necessarily connected.

4.1 Distance-k Graphs of Cartesian Product

The spectrum of the distance-k graph of the Cartesian product of graphs was first studied
by Kurihara and Hibino [32] where they consider the distance-2 graph of K2× · · · ×K2 (the
n-dimensional hypercube). More recently, in a series of papers [17, 23, 31, 32, 33, 40] the
asymptotic spectral distribution of the distance-k graph of the N -fold power of the Cartesian
product was studied. These investigations, finally lead to Theorem 4.1.2 which generalizes
the central limit theorem for Cartesian products of graphs.

Definition 4.1.1 Let G1 = (V1, E1) and G2 = (V2, E2) be two graph. The cartesian prod-
uct graph of G1 with G2 is the graph G1×G2 = (V1 × V2, E) such that for (v1, w1) , (v2, w2) ∈
V1 × V2 the edge e = (v1, w1) ∼ (v2, w2) ∈ E if and only if one of the following holds:

1. v1 = v2 and w1 ∼ w2

2. v1 ∼ v2 and w1 = w2.

Theorem 4.1.2 (Hibino, Lee and Obata [23]) Let G = (V,E) be a finite connected
graph with |V | ≥ 2. For N ≥ 1 and k ≥ 1 let G[N,k] be the distance-k graph of GN =

29
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G × · · · × G (N-fold Cartesian power) and A[N,k] its adjacency matrix. Then, for a fixed
k ≥ 1, the eigenvalue distribution of N−k/2A[N,k] converges in moments as N → ∞ to the
probability distribution of (

2|E|
|V |

)k/2
1

k!
H̃k(g), (4.1.1)

where H̃k is the monic Hermite polynomial of degree k and g is a random variable obeying
the standard normal distribution N (0, 1).

Remark 4.1.3 It is known that the probability distributions of H̃k(g) is the solution to a
determinate moment problem for k = 1, 2. It is highly expected that the uniqueness does not
hold for k ≥ 3, as is suggested by Berg [9].

4.2 Distance-k Graphs of Star Product

In this section we study the distribution in the vacuum state of the star product of graphs.
That is, we prove the analog of Theorem 4.1.2 by changing the cartesian product by the
star product. The results in this section were published by the author in joint work with
Arizmendi [6].

Definition 4.2.1 Let G1 = (V1, E1) and G2 = (V2, E2) be two graph with distinguished
vertices o1 ∈ V1 and o2 ∈ V2, the star product graph of G1 with G2 is the graph G1 ?G2 =
(V1 × V2, E) such that for (v1, w1) , (v2, w2) ∈ V1×V2 the edge e = (v1, w1) ∼ (v2, w2) ∈ E if
and only if one of the following holds:

1. v1 = v2 = o1 and w1 ∼ w2

2. v1 ∼ v2 and w1 = w2 = o2.

Theorem 4.2.2 ([6]) Let G = (V,E, e) be a locally finite connected graph and let k ∈ N
be such that G[k] is not trivial. For N ≥ 1 and k ≥ 1 let G[?N,k] be the distance-k graph of
G?N = G ? · · · ? G (N-fold star power) and A[?N,k] its adjacency matrix. Furthermore, let

σ = V
[k]
e be the number of neighbours of e in the distance-k graph of G, then the distribution

with respect to the vacuum state of (Nσ)−1/2A[?N,k] converges in distribution as N → ∞ to
a centered Bernoulli distribution. That is,

A[?N,k]

√
Nσ

−→ 1

2
δ−1 +

1

2
δ1,

weakly.

The limit distribution above is universal in the sense that it is independent of the details
of a factor G, but also in this case the limit does not depend on k. The proof of Theorem
4.2.2 is based in a fourth moment lemma for convergence to a centered Bernoulli distribution
(see Lemma 1.4.4).
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Lemma 4.2.3 Let G = (V,E, e) be a connected finite graph with root e and k such that G[k]

is a non-trivial graph. Let G?N [k]
be the distance-k graph of the N-th star product of G, then

G?N [k]
admits a decomposition of the form.

G?N [k]
= (G[k])?N ∪ Ĝ,

where Ĝ is a graph with same vertex set as G and ∂G(z, e) < k for all z ∈ Ĝ.

Proof. Let G1, G2, . . . , GN be the N copies of G, that form the star product graph G?N

by gluing them at e. For x, y ∈ Gi, the distance between x and y is given by

∂G?N (x, y) = ∂Gi (x, y) = ∂G (x, y) ,

hence
(x, y) ∈ E

(
G

[k]
i

)
if and only if (x, y) ∈ E

((
G?N

)[k]
)
,

therefore we have
(
G[k]

)?N ⊆ (G?N
)[k]

.
Now, if x ∈ Gi and y ∈ Gj with j 6= i, by definition all the paths in G?N from x to y

must pass throw e, then we have

∂G?N (x, y) = ∂Gi (x, e) + ∂Gj (y, e) ,

thus
(x, y) ∈ E

((
G?N

)[k]
)

if and only if ∂Gi (x, e) + ∂Gj (y, e) = k.

Since ∂Gi (x, e) , ∂Gj (y, e) > 0, we obtain the desired result.
Now, we are in position to prove the main theorem of this section.

Proof of Theorem 4.2.2.
Consider the non-commutative probability space (A, φ1) with φ1 (M) = M11, for M ∈ A.

Then, recall that, if A is an adjacency matrix, φ1

(
Ak
)

equals the number of walks of size k
starting and ending at the vertex 1.

Since G is a simple graph, it has no loops and then G?N is also a simple graph. Thus,

φ1

 A[?N,k]√
N |V [k]

e |

 = 0.

Now, observe that since the graph G?N has no loops, the only walks in G of size 2 which

start in e and end in e are of the form (exe), where x is a neighbor of e in
(
G?N

)[k]
. The

number of neighbors of e is exactly N |V [k]
e |, thus

φ1

 A[?N,k]√
N |V [k]

e |

2 =
1

N |V [k]
e |

φ1

((
A[?N,k]

)2
)

=
1

N |V [k]
e |

N |V [k]
e | = 1.
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Thus we have seen that φ(AN) = 0 and φ(A2
N) = 1. Hence, it remains to show that

φ(A4
N)→ 1 as N →∞.
We are interested in counting the number of walk of size 4 that start and finish at e in(

G?N
)[k]

. We will divide this walks in two types.

Figure 4.1: Types of walks of size 4

Type 1. The first type of walk is of the form exeye. That is, the walk starts at e, then
visits a neighbor x of e to then come back to e, this can be done in N |V [k]

e | ways. After
this, he again visits a a neighbour y (which could be again x) of e to finally come back to e.

Again, this second step can be done in N |V [k]
e | different ways , so there is

(
N |V [k]

e |
)2

walks

of this type.

Type 2. Let G
[k]
x be the copy of G[k] in the distance-k graph of the star product

(
G[k]

)?N
which contains x. The second type of walks is as follows. From e it goes to some x ∈ V [k]

e

(which can be chosen in N |V [k]
e | different ways), and then from x then he goes to some y 6= e.

This y should belong to G
[k]
x . Indeed, since ∂(G?N ) (e, x) = k, if y would be in another copy

of G[k] the distance ∂(G?N ) (y, x) , between y and x would be bigger than k. The number of

ways of choosing y is bounded by the number of neighbours of x in G[k].
For the next step of the walk, from y we can only go to a neighbor of e, say z ∈ V

[k]
e

(since in the last step it must come back to e). This z indeed must also belong to G
[k]
x ,. If

this wouldn’t be the case and z /∈ G[k]
x , then we would have that ∂(G?N ) (e, z) 6= k, which is a

contradiction because of Lemma 4.2.3.
Finally, let M = maxx∈V |V [k]

x |. Then, from the above considerations we see that the

number of walks of Type 2 is bounded by M
(
N |V [k]

e

)(
|V [k]
e |
)
, from where

φ1

 A[?N,k]√
N |V [k]

e |

4 ≤

(
N |V [k]

e |
)2

(
N |V [k]

e |
)2 +

N |V [k]
e |M |V [k]

e |(
N |V [k]

e |
)2

= 1 +
M

N
−→
N→∞

1,
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Figure 4.2: Obstructions

since M does not depend on N. Thanks to Lemma 1.4.4 we obtain the desired result.

4.3 Distance-k Graphs of Free Product

In this section we consider three problems on the distance-k graphs, which generalize results
of Kesten [31] (on random walks on free groups), McKay [35] (on the asymptotic distribution
of d-regular graphs) and the free central limit theorem of Voiculescu [47]. The first one is
finding for fixed d, the distribution w.r.t. the vacuum state of the distance-k graphs of a
d-regular tree. Then we consider two related problems which are in the asymptotic regime.
On one hand, we show that the asymptotic distributions of distance-k graphs of d-fold free
product graphs, as d tends to infinity, are given by the distribution of Pk(s), where s is a
semicircle distribution and Pk is the k-th Chebychev polynomial. On the other hand, we find
the asymptotic spectral distribution of the distance-k graph of a random d-regular graph of
size n, as n tends to infinity. The results in this section were published by the author in
joint work with Arizmendi [7].

We define the free product of the rooted vertex sets (Vi, ei), i ∈ I, where I is a countable
set, by the rooted set (∗i∈IVi, e), where

∗i∈IVi = {e} ∪ {v1v2 · · · vm : vk ∈ V 0
ik
, and i1 6= i2 6= · · · 6= im, m ∈ N},

and e is the empty word.

Definition 4.3.1 The free product of rooted graph (Gi, ei), i ∈ I, is defined by the
rooted graph (∗i∈IGi, e) with vertex set ∗i∈IVi and edge set ∗i∈IEi, defined by

∗i∈IEi := {(vu, v′u) : (v, v′) ∈
⋃
i∈I

Ei and u, vu, v′u ∈ ∗i∈IVi}.

We denote this product by ∗i∈I(Gi, ei) or ∗i∈IG if no confusion arises. If I = [n], we denote
by G∗n = (∗i∈IG, e).

Notice that for a fixed word u = v1v2 · · · vm with j ∈ I with v1 /∈ Vj the subgraph of
(∗i∈IGi, e) induced by the vertex set {wu : w ∈ Vj} is isomorphic to Gj. This motivates the
following definition
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Definition 4.3.2 If x, y ∈ ∗i∈IVi, we say that x and y are in the same copy of Gi if x = vu
and y = v′u for some u ∈ ∗i∈IVi and v, v′ ∈ Vj for some j ∈ I.

For the rest of this section we define an order which will become handy when estimating
vanishing terms in Sections 4.3.2 and 4.3.3.

Definition 4.3.3 Let A and B be matrices (possibly infinite), we define the order A � B if
Aij ≥ Bij for all entries ij.

Remark 4.3.4 For A,B,C,D with nonnegative entries we have:
1) ϕ1(Ak) ≥ ϕ1(Bk) if A � B.
2) For G1 and G2 graphs with n vertices, G2 is a subgraph of G1 iff AG1 � AG2.
3) If A � B and C � D implies AC � BD.

4.3.1 Distance-k graph of d-regular trees

As we know, from the free central limit theorem, if we have a sequence of d-regular trees, then
the limiting spectral distribution of the sequence, as d→∞, converges to a semicircular law.
However, if d is fixed, and we consider a sequence of d-regular graphs, such that the number
of vertices tends to infinity, then the limiting spectral distribution is not semicircular. These
limiting spectral distributions, which are known as the Kesten-McKay distributions, were
found by McKay [35] while studying properties of d-regular graphs and by Kesten [29] in his
works on random walk on (free) groups.

Let d ≥ 2 be an integer, we define Kesten-McKay distribution, µd, by the density

dµd =
d
√

4(d− 1)− x2

2π(d2 − x2)
dx. (4.3.1)

The orthogonal polynomials and the Jacobi parameters of these distributions are well known.
More precisely, for d ≥ 2, the polynomials defined by

T0(x) = 1, T1(x) = x,

and the recurrence formula

xTk(x) = Tk+1(x) + (d− 1)Tk−1(x), (4.3.2)

are orthogonal with respect to the distribution µd. Thus, it follows that the Jacobi parame-
ters of µd are given by

αm = 0, ∀m ≥ 0 and ω0 = d, ωn = d− 1 ∀n ≥ 1.

Remark 4.3.5 If we define the following polynomials

T̃k(x) =

{
1, k = 0√

d−1
d
Pk(x)− 1√

d(d−1)
Pk−2(x), k = 1, 2, 3, . . . ,

then, Tk(x) = T̃k(x/2
√
d− 1).
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The d-regular tree is the d-fold free product graph of K2, the complete graph with two
vertices. Before we consider asymptotic behavior of the general case of the free product
of graphs, we study the distance-k graph of a d-regular tree for fixed d and k. This is an
example where we can find the distribution with respect to the vacuum state in a closed
form. Moreover, this example sheds light on the general case of the d-fold free product of
graphs, in the same way as the d-dimensional cube was the leading example for investigations
of the distance-k graph of the d-fold Cartesian product of graphs (Kurihara [31]).

As a warm up and base case, we calculate the distribution of the distance-2 graph with
respect to the vacuum state.

For d ≥ 2, let A
[k]
d be the adjacency matrix of distance-k graph of d-regular tree. We

will sometimes omit the subindex d in the notation and write A[1] = A . Then we have
the following equality, which expresses A2 in terms of the distance-2 graph and the identity
matrix:

A2 = A
[2]
d + dI. (4.3.3)

Since A
[2]
d = A2− dI then the distribution is given by the law of x2− d, where x is a random

variable obeying the Kesten-McKay distribution of parameter d, µd.
For k ≥ 2 we have the following recurrence formula.

Lemma 4.3.6 Let d ≥ 1 fixed, then A[1] = A, A[2] = A2 − dI, and

AA[k] = A[k+1] + (d− 1)A[k−1] k = 2, . . . , d− 1. (4.3.4)

Proof. Let i and j be vertices of the d-regular tree, Yd. We have the following three cases.
Case 1. If ∂(i, j) = k + 1 then (A[k]A)ij = 1, that is because, in this case, there is only one
way to get from vertex j to vertex i. Indeed, since this Yd is a tree there is only one walk
from i to j of size k + 1 in Yd. Thus, there is exactly one neighbor l of j at distance k from
i and thus the only way to go across the distance-k graph and after across Yd to reach j is
trough l.
Case 2. When we have ∂(i, j) = k− 1, then (A[k]A)ij = d− 1. In fact, for the vertex i there
are d − 1 ways to arrive to j from a neighbor of j at distance k from i. Thus, if we are in
vertex i, there are d− 1 ways to travel across the distance-k graph and finally go down one
level in the d-regular tree to vertex j, .
Case 3. Suppose |∂(i, j)− k| 6= 1, then (A[k]A)ij = 0. To see this, we just note that, in the
d-regular tree we can go up one-level or go down one-level, after going across the distances-k
graph, this means that the distance between i and j would be k − 1 or k + 1, which is a
contradiction. Therefore if |∂(i, j) − k| 6= 1, there is no way to go from the vertex i to the
vertex j, going across the distance-k graph and after, across the d-regular tree in one step.
Thanks to the above, we obtain the following recurrence formula

A[k]A = A[k+1] + (d− 1)A[k−1]. (4.3.5)

Since all involved matrices in 4.3.5 are symmetric, by taking the adjoint we can rewrite
equation (4.3.5) in the more convenient way as follows

AA[k] = A[k+1] + (d− 1)A[k−1],
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as we desired.
Now we can calculate the distribution of the distance-k graph of the d-regular tree, for d

fixed.

Theorem 4.3.7 For d ≥ 2, k ≥ 1, let A
[k]
d be the adjacency matrix of distance-k graph of

the d-regular tree. Then the distribution with respect to the vacuum state of A
[k]
d is given by

the probability distribution of

Tk(b) =

√
d− 1

d
Pk

(
b

2
√
d− 1

)
− 1√

d(d− 1)
Pk−2

(
b

2
√
d− 1

)
,

where Pk is the Chebyshev polynomial of order k and b is a random variable with Kesten-
McKay distribution, µd.

Proof. From equation (4.3.4) we can see that A
[k]
d fulfills the same recurrence formula than

Tk in (4.3.2). Since A is distributed as the Kesten-McKay distribution µd, we arrive to the
conclusion.

To end this section we observe that from the considerations above, by letting d approach
infinity, we may find the asymptotic behavior of the distribution fo the distance-k graph of
the d-regular tree. The same behavior is expected when changing the d-regular tree with the
d-fold free product of any finite graph. We will prove this in Section 4.3.3.

Theorem 4.3.8 For d ≥ 2, let A
[k]
d be the adjacency matrix of the distance-k graph of the

d-regular tree. Then the distribution with respect to the vacuum state of d−k/2A
[k]
d converges

in moments as d→∞ to the probability distribution of

Pk(s), (4.3.6)

where Pk(s) is the Chebychev polynomial of degree k and s is a random variable obeying the
semicircle law.

Proof. If we divide the equation (4.3.4) by d(k+1)/2 we obtain

Ad
d1/2

A
[k]
d

dk/2
=

A
[k+1]
d

d(k+1)/2
+

A
[k−1]
d

d(k−1)/2
− 1

d

A
[k−1]
d

d(k−1)/2

We write X = Ad
d1/2

, then we have

P (1)(X) = X, P (2)(X) = X2 − I,

and the recurrence

XP (k)(X) = P (k+1)(X) + P (k−1)(X)− 1

d
P (k−1)(X),

which when d→∞ becomes the recurrence formula

XP (k)(X) = P (k+1)(X) + P (k−1)(X).

Thus P (k)(x) and Pk(x) satisfy the same recurrence formula asymptotically and thanks to
the free central limit theorem for graphs we have the convergence, X

m−→ s. Consequently,
combining these two observations and using Proposition 1.1.2 we obtain the proof.
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4.3.2 Distance-2 graph of free products

In this subsection we derive the asymptotic spectral distribution of the distance-2 graph of
the n-free power of a graph when n goes to infinity.

In order to analyze the distance-2 graphs we give a simple, but useful, decomposition of
the square of the adjacency matrix.

Lemma 4.3.9 Let G be a simple graph with adjacency matrix A, we have the following
decomposition of A2:

A2 = Ã[2] +D + ∆, (4.3.7)

where D is diagonal with (D)ii = deg(i), (∆)ij = |triangles in G with one side (i, j)| and
(Ã[2])ij = |paths of size 2 from i to j|, whenever (A[2])ij = 1.

Proof. Indeed (A2)ij is zero if the distance between i and j is greater than 2. So (A2)ij > 0
implies that ∂(i, j) = 0, 1 or 2. If ∂(i, j) = 0 then i = j and since (A2)ii = deg(i) we
get D, a diagonal matrix with (D)ii = deg(i). Next, if ∂(i, j) = 1 then each path of size
2 which forms a triangle with side (i, j) will contribute to (A2)ij = (∆)ij where (∆)ij =
|triangles in G with one side (i, j)|. Finally if ∂(i, j) = 2 then (A2)ij equals the number of
paths of size 2 from i to j, which is non-zero exactly when (Ã[2])ij > 0.

Remark 4.3.10 Notice in Lemma 4.3.9, that when G is a tree then ∆ = 0, Ã[2] = A[2],
therefore A[2] = A2 −D.

Let G = (V,E, e) be a rooted graph, An = AG∗N and define Dn and ∆n by the decompo-
sition (4.3.9) applied to G∗N = G ∗ · · · ∗G, i.e.

A2
n = Ã[2]

n +Dn + ∆n. (4.3.8)

We will describe the asymptotic behavior of each of these matrices. First, we consider the
diagonal matrix Dn.

Lemma 4.3.11 Dn/n→ Ideg(e) entrywise and in distribution w.r.t. the vacuum state.

Proof. For any i ∈ Gn (Dn)ii = degGn(i) = ci+(n−1)deg(e) for some 0 < ci < maxdeg(G).
Thus,

(Dn)ii
n

=
ci
n

+
(n− 1)deg(e)

n
→ deg(e).

In order to consider the other matrices in the decomposition we will use the order � from
Definition 4.3.3.

Lemma 4.3.12 The mixed moments of A2
n/n and ∆n/n asymptotically vanish.
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Proof. Note that the free product does not generate new triangles other than the ones in
copies of the original graph. Thus there exist c ≥ 0 not depending on n such that cAn � ∆n.
Hence, for m1, m2, . . . , ms, l1, l2, . . . , ls ∈ N\{0} from Remark 4.3.4, we have that

ϕ1

[(
A2
n

n

)m1
(

∆n

n

)l1
· · ·
(
A2

n

)ms (∆n

n

)ls]

≤ c
∑
i liϕ1

[(
A2
n

n

)m1
(
A

n

)l1
· · ·
(
A2

n

)ms (A
n

)ls]
,

from free central limit theorem for graphs we have that A2/n and A/n1/2 converge, then the
right hand side of the preceding inequality converges to zero as n goes to infinity.

Since Ã
[2]
n and Dn are subgraphs of A2

n we have the following.

Corollary 4.3.13 The mixed moments of the pairs (Ã
[2]
n /n, ∆/n, ) and (Dn/n, ∆/n, )

asymptotically vanish.

Finally, we consider the matrix Ã[2].

Lemma 4.3.14 Ã
[2]
n converges to A

[2]
n as n goes to infinity.

Proof. Observe that we can write A
[2]
n as

Ã[2]
n = A[2]

n + �n,

where for (i, j) at distance 2 in G∗n, the entry (�n)ij exceeds in one the number of vertices
k such that i ∼ k and k ∼ j.

We will extend G in the following way. For each (i, j) such that �ij is positive we put
the edge ij and call this new graph G(ext). Now notice that, by construction, ∆G(ext)∗n � �
and AG(ext)∗n � AG∗n . Finally, by the previous lemma the mixed moments of ∆G(ext)∗n and

A2
G(ext)∗n asymptotically vanish. But A2

G(ext)∗n � A
[2]
n , so the mixed moments of A

[2]
n and �n

also vanish in the limit. This of course means that Ã
[2]
n and A

[2]
n are asymptotically equal in

distribution.

We have shown that asymptotically Dn/n approximates I, Ã
[2]
n approximates A

[2]
n and

that the joint moments between Ã
[2]
n or Dn and ∆n vanish. Thus, we arrive to the following

theorem.

Theorem 4.3.15 The asymptotic distributions of distance-2 graph of the n-fold free product
graph, as n tends to infinity, is given by the distribution of s2 − 1, where s is a semicircle.

Proof. From the equation (4.3.8), and thanks to Lemmas 4.3.11, 4.3.14, Corolary 4.3.13,
free central limit theorem for graph and Proposition 1.1.2 we have

A[2]
n

D−→ Ã[2]
n

D−→ A2
n −Dn −∆n

D−→ A2
n − I

D−→ s2 − 1.
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4.3.3 Distance-k graphs of free products

This subsection contains a result describing the asymptotic behavior of the distance-k graph
of the d-fold free power of graphs. We will show that the adjacency matrix satisfies in the
limit the recurence formula (1.2.1). We want to point out that, while the strategy of proving
this theorem is similar to the one used bye Hibino, Lee and Obata [23] for the cartesian
product, new technical difficulties appear since in this case the state ϕ1 is not tracial (i.e.
not necessarily ϕ1(ab) = ϕ1(ba), for all a, b). In particular, the main tool to deal with the
estimates, Proposition 2.1 from [23], does not apply here.
We start by showing a decomposition similar to the one seen above for d-regular trees which
plays the role of Lemma 4.3.9 in the last section.

Theorem 4.3.16 Let G be a simple finite graph, let N, k ∈ N with N ≥ 2 and k ≥ 3 and
let A = AN denote the adjacency matrix of G∗N . Then, we have de following recurrence
formula

A[k]A = Ã[k+1] + (N − 1)deg(e)A[k−1] +D
[k−1]
N + ∆

[k]
N , (4.3.9)

where (Ã[k+1])ij = |{l ∼ j : ∂(i, l) = k}| whenever ∂(i, j) = k + 1, (D
[k−1]
N )ij = |{l ∼ j :

∂(i, l) = k, and l is in the same copy of G that j}| if ∂(i, j) = k − 1 and (∆
[k]
N )ij = |{l ∼ j :

∂(i, l) = k}| when ∂(i, j) = k.

Proof. It’s easy to see that (A[k]A)ij is zero if |∂(i, j) − k| ≥ 2. So (A[k]A)ij > 0 implies
that ∂(i, j) = k − 1, k or k + 1.

Notice that for each neighbor l of j at distance k from i, there is one edge from i to l in
A[k] and one from l to j in A. Thus each of these neighbors adds 1 to (A[k]A)ij and there is
no further contribution.

First, if ∂(i, j) = k− 1 there are two types of neighbors l at distance k in G∗N . The first
ones come from the (N − 1) copies of G in G∗N which have j as a root and contribute to the
matrix A[k−1] by (N − 1)deg(e) and the second ones in which j is in the same copy that l,

which contribute to D
[k−1]
N .

Secondly, if ∂(i, j) = k and (A[k]A)ij > 0 is the number of neighbors of j which are at

distance k from i, then we get ∆
[k]
N .

Finally, if we have ∂(i, j) = k + 1, so there exists at least one minimal path from i to
j, which contains itself a neighbor of j which is at distance k from i, therefore this path
contributes to Ã[k+1]. Hence we obtain the claim.

We are now in position to establish the main theorem of this section.

Theorem 4.3.17 ([7]) Let G = (V,E, e) be a finite connected graph and let k ∈ N. For
N ≥ 1 and k ≥ 1 let G[∗N,k] be the distance-k graph of G∗N = G ∗ · · · ∗G (N-fold free power)
and A[∗N,k] its adjacency matrix. Furthermore, let σ be the number of neighbors of e in the
graph G. Then the distribution with respect to the vacuum state of (Nσ)−k/2A[∗N,k] converges
in moments (and then weakly) as N →∞ to the probability distribution of

Pk(s), (4.3.10)
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where Pk is the Chebychev polynomial of order k and s is a random variable obeying the
semicircle law.

Now in order to prove Theorem 4.3.17 we proceed in various steps. While the steps are
very similar as the one for the case k = 2 there are some non trivial modifications to be done
for the general case.
We will use induction over k. First, observe that for k = 2, we obtained the conclusion in
the last section. Now, suppose that the fact holds for all l ≤ k. In order to complete the
proof we need the following Lemmas and Corollaries.

Lemma 4.3.18 The mixed moments of A[k]A/N
k+1
2 and ∆

[k]
N /N

k+1
2 asymptotically vanish.

Proof. By definition we have that

∆
[k]
N � max deg(G)A[k],

then we have that

ϕ1

((
A[k]A

N
k+1
2

)m1
(

∆
[k]
N

N
k+1
2

)n1

· · ·
(
A[k]A

N
k+1
2

)ml ( ∆
[k]
N

N
k+1
2

)nl
)

≤ (max deg)
∑
i niϕ1

((
A[k]A

N
k+1
2

)m1 (
A[k]

N
k+1
2

)n1

· · ·
(
A[k]A

N
k+1
2

)ml ( A[k]

N
k+1
2

)nl)
,

by the induction hypothesis
(
A[k]A

N
k+1
2

)
and

(
A[k]

N
k
2

)
converge. Hence, the right hand side of the

last inequality goes to zero.
Since Ã[k+1] and D

[k−1]
N are also subgraphs of A[k]A, we obtain the following result as a

consequence of the previous lemma.

Corollary 4.3.19 The mixed moments of
(
Ã[k+1]/N

k+1
2 , ∆

[k]
N /N

k+1
2

)
and(

∆
[k]
N /N

k+1
2 , D

[k−1]
N /N

k+1
2

)
asymptotically vanish.

Corollary 4.3.20 The matrices ∆
[k]
N /N

k+1
2 and D

[k−1]
N /N

k+1
2 converge to zero as N tends to

infinity.

Proof. In the proof of Lemma 4.3.18 we proved the conclusion for ∆
[k]
N /N

k+1
2 . Analogously,

using A[k−1] instead A[k] we obtain the same result for D[k−1]/N
k+1
2 .

In the proof of the next lemma, we shall use the following extension of a graph G. For
k ≥ 2 we define Gext(k) as the graph which contains the graph G, and if G has a cycle of
even length smaller than 2k, we add all the possible edges between the vertices of this cycle.
It is important to notice the fact that

(Gext(k))∗N = (G∗N)ext(k).

Otherwise, note that if k = 2, so we have Gext(2) = Gext.
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Lemma 4.3.21 Let k ≥ 2, then limN→∞
Ã[k+1]

N
k+1
2

= limN→∞
A[k+1]

N
k+1
2

.

Proof. Let i, j ∈ ∗
s∈[N ]

V be such that
(
Ã[k+1]

)
ij
> 0. Let

Ck+1
ij = {cycles of even length in a path of length k + 1 from i to j},

notice that
|Ck+1

ij | ≤ (max deg(G))k+1.

Here, is important to observe that the right side bound does not depend on i, j neither N ,
because the free product of graph does not produce new cycles. Then we can write

Ã[k+1] − A[k+1] � (max deg(G))k+1
(
A

[k]
Gext(k+1) + A

[k−1]
Gext(k+1) + · · ·+ AGext(k+1)

)
. (4.3.11)

Then, we obtain from (4.3.11)(
Ã[k+1] − A[k+1]

N (k+1)/2

)

� (max deg(G))k+1

(
A

[k]
Gext(k+1)

N (k+1)/2
+
A

[k−1]
Gext(k+1)

N (k+1)/2
+ · · ·+

AGext(k+1)

N (k+1)/2

)

= (max deg(G))k+1

(
A

[k]
Gext(k+1)

N
k
2

1

N1/2
+
A

[k−1]
Gext(k+1)

N
k−1
2

1

N
+ · · ·+

AGext(k+1)

N
1
2

1

N
k
2

)
.

By the induction hypothesis we have that
(
A

[i]
Gext(k)/N

i/2
)

converges for all i ≤ k. Therefore

we have (
Ã[k+1] − A[k+1]

N (k+1)/2

)
−→
N→∞

0,

which completes the proof.
Finally, from (4.3.9) we have that

A
[k+1]
N

(deg(e)N)
k+1
2

=
A

[k]
N AN

(deg(e)N)
k+1
2

− A
[k−1]
N

(deg(e)N)
k−1
2

− C(N, k + 1), (4.3.12)

where

C(N, k + 1) =
deg(e)A

[k−1]
N + ∆

[k]
N +D

[k−1]
N −

(
Ã[k+1] − A[k−1]

)
(deg(e)N)

k+1
2

.

Due to the induction hypothesis we have, deg(e)A
[k−1]
N /(deg(e)N)

k+1
2 converging to zero,

furthermore by Corollary 4.3.20 and Lemma 4.3.21

∆
[k]
N +D

[k−1]
N −

(
Ã[k+1] − A[k−1]

)
(deg(e)N)

k+1
2

,
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converges to zero. Hence
C(N, k + 1) −→ 0. (4.3.13)

Otherwise, using the induction hypothesis we can see that

A
[k]
N AN

(deg(e)N)
k+1
2

− A
[k−1]
N

(deg(e)N)
k−1
2

−→ Pk(s)s− Pk−1(s) = Pk+1(s), (4.3.14)

where the last equality is given by (1.2.1). Thus, mixing (4.3.12) with (4.3.13) and (4.3.14)
we obtain that

A
[k+1]
N

(deg(e)N)
k+1
2

−→ Pk+1(s).

4.3.4 d-Regular Random Graphs

Apart from the Erdos-Renyi models [14, 15], possibly, the random d-regular graphs are
possibly the most studied and well understood random graphs.

In the original paper by McKay [35], he proved that the asymptotical spectral distri-
butions of d-regular random graph are exactly the ones appearing in (4.3.1). Heuristically,
the reason is that, locally, large random d-regular graphs look like the d-regular tree and
thus asymptotically their spectrum should coincide. This turns out to remain true for the
distance-k graph and thus we shall expect to get a similar result. In this section we formalize
this intuition.

Let X be a d-regular graph with vertex set {1, 2, . . . , n(X)}. For each i ≥ 3 let ci(X)
be the number of cycles of length i. Let A[k](X) be the adjacency matrix of the distance-k
graph of X. The following is a generalization of the main theorem in McKay [35].

Theorem 4.3.22 ([7]) For d ≥ 2 fixed, let X1, X2, . . . be a sequence of d-regular graphs
such that n(Xi)→∞ and cj(Xi)/n(Xi)→ 0 as i→∞ for each j ≥ 3. Then the distribution
with respect to the normalized trace of A[k](Xi) converges in moments, as i → ∞, to the

distribution of A
[k]
d with respect to the vacuum state.

Proof. We follow the original proof of McKay[35] with simple modifications. Let nr(Xi)
denote the number of vertices v of Xi such that the subgraph of Xi induced by the vertices
at distance at most r = mk, where m ∈ N, from v is acyclic. By hypothesis we have that
nr(Xi)/n(Xi) → 1 as i → ∞. The number of closed walks of length m in the distance-k

graph of the d-regular graph starting at each such vertex is ϕ
(

(A
[k]
d )m

)
. For each of the

remaining vertices the number of closed walks of length m is certainly less than dr. Then,
for each m, there are numbers ϕ̂m(Xi) such that 0 ≤ ϕ̂m(Xi) ≤ dr, and

ϕtr

((
A[k](Xi)

)m)
=
ϕ1

(
(A

[k]
d )m

)
nr(Xi)

n(Xi)
+

(n(Xi)− nr(Xi))ϕ̂m(Xi)

n(Xi)

−→ ϕ1

(
(A

[k]
d )m

)
as i→∞.
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Fix d > 0. Let s1 < s2, < .. be the sequence of possible cardinalities of regular graphs
with degree d. For each n define Rn to be the set of all labeled regular graphs with degree
n and order si.

In order to consider the d-regular uniform random graphs we use the following lemma of
Wormald [52].

Lemma 4.3.23 For each k > 3 define ck,n to be the average number of k-cycles in the
members of Rn. Then for each k, ck,n → (d− 1)k/2k as n→∞.

Theorem 4.3.24 Let d, k be fixed integers and, for each n, let Fn(x) be the expected eigen-
value distribution of the distance-k graph of a random regular graph with degree d and order
2n. Then, as n tends to infinity, Fn(x) converges to the distribution of A

[k]
d with respect to

the vacuum state, described in Theorem 4.3.7.

Proof. Consider a graph Gn which consist a disjoint union of the all the labelled graphs of
size sn. The eigenvalue distribution of Gn coincides with the expected eigenvalue distribution
of Rn. Now by Lemma 4.3.23, G satisfies the assumptions of Theorem 4.3.22 and thus we
arrive to the theorem.
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