Whitney blocks in the hyperspace of a finite graph
 Alejandro Illanes

Tech. Rept. I-92-6 (CIMAT/MB)
117

WHITMEY BLOCKS TN THE HYPERSPACE OF A FINITE GRAPH. ${ }^{1}$
Alejandro Illanes

ABSTRACT. Let X be a finite graph. Let $C(X)$ be the hypersparee of all nonempty subcontinua of X and let $\mu: C(X) \rightarrow \mathbb{R}$ be a Whitney map. We prove that there exist numbers $0<\mathrm{T}_{0}<\mathrm{T}_{1}<\mathrm{T}_{2}<\ldots<\mathrm{Tm}_{\mathrm{m}}$ $=\mu(X)$ such that if $T \in\left(T_{i-1}, T_{i}\right)$, then the Whitney block $\mu^{-1}\left(T_{i-1}, T_{i}\right)$ is homeomorphic to the product $\mu^{-1}(T) \times\left(T_{i-1}, T_{i}\right)$. We also show that there exist only a finite number of topologiaally different whitney levels for $C(X)$.

AMS (MOS) Subj. Class.: 54B20
Keywords: Hyperspaces, Whitney levels, Whitney blocks, Finite graphs.

INTRODUCTION. Throughout this paper X denotes a finite graph, ; i.e., a compact connected metric space which is the unirm of finitely many segments joined by their end points. A segment of X is one of those segments. A subgraph of X is a graph contained in X formed by some of those segments. Let $S G(X)=\{A \subset X: A$ is a subgraph of $X\}$.
${ }^{1}$ This paper was partially supported by CONACYT, 1085-E9201, MEXICO.

The hyperspace of subcontinua of X is $C(X)=\{A \subset X: A$ is a nonempty, closed connected subset of X \} metrized with the Hausdorff metric. Let $\mathrm{F}_{1}(\mathrm{X})=\{\{\mathrm{x}\} \in \mathrm{C}(\mathrm{X}): \mathrm{x} \in \mathrm{X}\}$. A map is a continuous function. A whitney map for $C(X)$ (see [8, 0.50]) is a $\operatorname{map} \mu: C(X) \rightarrow \mathbb{R}$ such that $\mu(\{x\})=0$ for every $x \in X$, $\mu(A)<\mu(B)$ if $A \subset B \neq A$ and $\mu(X)=1$. A Whitney level is a set of the form $\mu^{-1}(t)$, where $t \in[0,1]$. A Whitney block is a set of the form $\mu^{-1}(t, s)$, where $0 \leq t<s \leq 1$. From now on, μ will denvte a Whitney map for $\mathrm{C}(\mathrm{X})$.

In [1], R. Duda made a detailed study of the polyhedral structure of $C(X)$ by giving a good decomposition of $C(X)$ into balls. In [2], he gave a charaterization of those polyhedra which are hyperspaces of acyclic finite graphs.

Whitney levels of finite graphs have been studied by H. Kato. In [4] he showed that they are always poyhedra and that if to $=$ min $\{\mu(A): A$ is a simple closed curve contained in X \} and $0 \leqslant t<t_{0}$, then $\mu^{-1}(t)$ is homotopically equivalent to X. In [4] and [6] he gave bounds for the fundamental dimension of whitney levels of finite graphs and, in [5] he proved that Whitney levels of finite graphs admit all homotopy types of compact connected ANRs.

This paper was motivated by the following result of I. puga [10, Thm. 2.5]): "There exists $t \in[0,1)$ and there exists a homeomorphism $\varphi:$ (Cone over $\left.\mu^{-1}(t)\right) \rightarrow \mu^{-1}([t, 1])$ such that
$\varphi(A, 0)=A, \varphi(A, 1)=X$ and $s<t$ implies that $\varphi(A, s) \subset \varphi(A, t)$ for each $A \in \mu^{-1}(t)$. . She expressed this property by saying that the hyperspace of subcontinua of a finite graph is conical pointed.

In this paper, we prove:
THEOREM 1. Suppose that $\mu(S G(X)) \cup\{0\}=\left\{T_{0}, T_{1}, \ldots, T M\right\}$, where $0=T_{0}<T_{1}<\ldots<T_{M}=1$. If $1 \leq i \leq M$ and $T \in\left(T_{i-1}, T_{i}\right)$, then there exists a homeomorphism $\varphi: \mu^{-1}(\mathrm{~T}) \times\left(\mathrm{T}_{\mathrm{i}-1}, \mathrm{~T}_{1}\right) \rightarrow \mu^{-1}\left(\mathrm{~T}_{\mathrm{i}-1}, \mathrm{~T}_{1}\right)$ such that $\varphi(A, T)=A$ and $\varphi(A, s) \subset \varphi(A, t)$ if $s<t$ for every $A \in \mu^{-1}(T)$ and, for each $t \in\left(T_{1-1}, T_{i}\right), \varphi \mid \mu^{-1}(T) \times\{t\}$ is a homeomorphism from $\mu^{-1}(T) \times\{t\}$ onto $\mu^{-1}(t)$.

THEOREM 2. There are only a finite number of topologically different Whitney levels for $C(X)$.

1. PRELIMINARIES.

The vertices of X are the end points of the segments of X. Notice that the set $S G(X)$ of subgraphs of X depends on the choice of the segments. We are interested in having as less subgraphs as possible, so we will suppose that X is not a simple closed curve and each vertex of X is either an end point of X or a ramification point of X. With this restriction two extremes of a segment of X may coincide and then such a "segment" would be a simple closed curve. The set of segments of X is denoted by S. For each $J \in S$, we fix an oxientation and then we identify J with a closed
interval $[(-1) \mathrm{J},(1) \mathrm{J}]$. Notice that, it is possible that $(-1) \mathrm{J}=$ (1) J. We write -1 (resp. 1) instead of (-1) J (resp. (1)J) if no confusion arrives.
n order to define the map φ in Theorem 1, we will describe its action in each $J \in S$. For each $A \in \mu^{-1}(T)$, we consider $A \cap J$ and we enlarge or shrink this set. To ilustrate how the shrinking of A \cap J must be defined, let us consider the following diagram:
DIAGRAM

Since A_{1}, A_{2} and A_{3} are very close, $A_{2} \cap J$ can not be sḥrinked and the shrinking of $A 1^{\prime} \cap J$ and $A 3 \cap J$ must be almost imperceptible compared with the shrinking of $A_{1} \cap L$ and $A_{3} \cap L$.

2. AUXILIARY MAPS.

[^0]
-
-

Define $F: C^{\vee}(X) \times \mathbb{R} \rightarrow C^{V}(X)$ by
$F(A, t)=U\{F J(A, t): J \in S\}$, where $F J: C^{V}(X) \times \mathbb{R} \rightarrow\{E: E$ is a closed subset of $J\}$ is defined as follows:

$$
\operatorname{FJ}(A, t)=\left\{\begin{array}{l}
\text { (a) } A \cap J \quad \text { if } A \cap J=\varnothing,\{-1\},\{1\},\{-1,1\} \text { or } J, \\
\text { (b) }[-1, g(f(b)+t)] \quad \text { if } A \cap J=[-1, b] \text { and }-1<b<1, \\
\text { (c) }[g(f(a)-t), 1] \quad \text { if } A \cap J=[a, 1] \text { and }-1<a<1, \\
\text { (d) }[a+e(m-a), b+e(m-b)], \text { where } m=\frac{a+b}{2+a-b} \text { and } \\
e=1+\frac{1+g(f(b-a-1)+t)}{a-b} \text { if } A \cap J=[a, b] \text { and } \\
-1<a<b<1 \text { and, } \\
\begin{array}{l}
\text { (e) }[-1, a+e(m-a)] \cup[b+e(m-b), 1], \text { where } m=\frac{a+b}{2+a-b} \text { and } \\
e=1+\frac{1+g(f(b-a-1)-t)}{a-b} \text { if } A \cap J=[-1, a] \cup[b, 1], \\
-1 \leq a<b \leq 1 \text { and }-1<a \text { or } b<1 .
\end{array}
\end{array}\right.
$$

In case $(e), a(1+a) \leq b(1+a)$ and $a(1-b) \leq b(1-b)$, then $2 a+a^{2}-a b \leq a+b \leq 2 b+a b-b^{2}$, so $a \leq m \leq b$, where $a<m$ or $b<m$. Notice that e is a strictly increasing function of t. If $t \rightarrow \infty, e \rightarrow 1, a+e(m-a) \rightarrow m$ and $b+e(m-b) \rightarrow m$. If $t \rightarrow-\infty, e \rightarrow 1+\frac{2}{a-b}, a+e(m-a) \rightarrow-1$ and $b+e(m-b) \rightarrow 1$. Thus $\operatorname{FJ}(A, t)$ is a proper subset of $J,\{-1,1\} \subset F J(A, t) \neq\{-1, I\}$; if $t<s$, then $\operatorname{FJ}(A, t) \subset \operatorname{FJ}^{\prime}(A, s) \neq \operatorname{FJ}(A, t), \operatorname{FJ}(A, t) \rightarrow J$ as $t \rightarrow \infty$ and $\operatorname{FJ}(A, t) \rightarrow\{-1,1\}$ as $t \rightarrow-\infty$.

Similarly, in case (d), $F J(A, t)$ is a proper subset of J, $-1 ; 1 \notin F J(A, t), m \in \operatorname{FJ}(A, t)$; if $t<s$, then $\operatorname{FJ}(A, t) \subset F J(A, s) \neq$ $\mathrm{FJ}_{J}(\mathrm{~A}, \mathrm{t}), \mathrm{FJ}_{\mathrm{J}}(\mathrm{A}, \mathrm{t}) \rightarrow \mathrm{J}$ as $\mathrm{t} \rightarrow \infty$ and $\mathrm{FJ}_{\mathrm{J}}(\mathrm{A}, \mathrm{t}) \rightarrow\{\mathrm{m}\}$ as $\mathrm{t} \rightarrow-\infty$.

In all the cases, if $A \cap J$ is a nonempty proper subset of J, then $F_{J}(A, t)$ is a nonempty proper subset of J. Moreover, -1 (resp. 1) belongs to A if and only if -1 (resp. 1) belongs to $F J(A, t)$. It follows that, for each t, a vertex p of x belongs to A if and only if p belongs to $F(A, t)$ and $F(A, t) \in C^{V}(X)$. Therefore F is well defined.

We will need the following properties of function F :
I. If $t<s$, then $F(A, t) \subset F(A, s) \neq F(A, t)$.

It follows from the fact that in cases (b), (c), (d) and (e), if.t $<s$, then $\mathrm{FJ}_{J}(\mathrm{~A}, \mathrm{t}) \subset \mathrm{FJ}_{\mathrm{J}}(\mathrm{A}, \mathrm{s}) \neq \mathrm{F}_{J}(\mathrm{~A}, \mathrm{t})$.
II. For a fixed $A \in C^{V}(X)$, if $t \rightarrow-\infty, F(A, t)$ tends to a one-point set or to a subgraph of X which is contained in A and, if $t \rightarrow \infty$, then $F(A, t)$ tends to a subgraph of X which contains A.
III. Fis continuous.

Let $\left(\left(A_{n}, t_{n}\right)\right) n$ be a sequence in $C^{y}(X) \times \mathbb{R}$ which converges to an element (A, t) in $C^{V}(X) \times \mathbb{R}$. We may suppose that if $J \in S$ and A in J $=\varnothing$, then $A_{n} \cap J=\varnothing$ for every n. Let $S *=\{J \in S: A \cap J \neq \varnothing\}$. Since $F(A, t)$ has no isolated points, if we can find a finite set E such that $F\left(A_{n}, t_{n}\right) \cup E \rightarrow F(A, t)$, then we will have that $F\left(A_{n}, t_{n}\right) \rightarrow F(A, t)$. In order to find such a set E, it is enough to show that, for each $J \in S *$, there exists a finite set EJ such that $F^{\prime}\left(A_{n}, t_{n}\right) \cup E J \rightarrow F J(A, t)$. Then take $J \in S *$. Here it is necessary to consider the following cases:

1. $A \cap J=J$,
2. $A \cap J=[-1, b]$ with $-1<b<1$,
3. $A \cap J=[a, 1]$ with $-1<a<1$,
4. A $\cap J=[a, b]$ with $-1<a<b<1$,
5. $A \cap J=[-1, a] \cup[b ; 1]$ with $-1<a<b<1$,
6. $A \cap J=[-1, a] \cup\{1\}$ with $-1<a<1$,
7. $A \cap J=\{-1\} \cup[a, 1]$ with $-1<a<1$,
8. $A \cap J=\{-1\}$;
9. $A \cap J=\{1\}$ and,
10. $A \cap J=\{-1,1\}$.

We only check cases 1. and 6 . the others are similar. For case 1., the sequence $\left(A_{n}\right) n$ can be partioned into subsequences $\left(B_{k}\right) k$ where each $\left(B_{k}\right) k$ lies in one of the following subcases:
(a) $B_{k} \cap J=J$. Then $F J\left(B_{k_{k}}, t_{r_{k}}\right)=J \rightarrow F J(A, t)$.
(b) $B_{k} \cap J=\left[-1, b_{k}\right]$ with $-1<b_{k}<1$. Since $B_{k} \rightarrow A, b_{k} \rightarrow 1$, then $\operatorname{FJ}\left(B_{k^{\prime}}, t_{n_{k}}\right)=\left[-1, g\left(f\left(b_{k}\right)+t_{n_{k}}\right)\right] \rightarrow[-1,1]=\operatorname{FJ}(A, t)$.
(c) $B \cap J=\left[a_{k}, 1\right]$ with $-1<a_{k}<1$. It is similar to (b).
(d) $B_{k} \cap J=\left[a_{k!} b_{k}\right]$ with $-1<a_{k}<b_{k}<1$. Then $a_{k} \rightarrow-1$ and $b_{k} \rightarrow 1$, so $e_{k}=1+\left[1+g\left(f\left(b_{k}-a_{k}-1\right)+t_{n_{k}}\right)\right] /\left(a_{k}-b_{k}\right) \rightarrow 0$. Thus $b_{k}+e_{k}\left(m_{k}-b_{k}\right)-\left(a_{k}+e_{k}\left(m_{k}-a_{k}\right)\right)=\left(b_{k}-a_{k}\right)\left(1-e_{k}\right) \rightarrow$ 2. Therefore $\left.\operatorname{FJ}\left(B_{k}, t_{n_{k}}\right)=\left[a_{k}+e_{k}\left(m_{k}-a_{k}\right)\right), b_{k}+e_{k}\left(m_{k}-b_{k}\right)\right] \rightarrow$ $[-1,1]=\operatorname{FJ}(A, t)$.
(e) $B_{k} \cap J=\left[-1, a_{k k}\right] \cup\left[b_{k}, 1\right]$, with $-1<a_{k}<b_{k}<1$ and $-1<a_{k}$. or $b_{k}<1$. Then $b_{k}-a_{k} \rightarrow 0$. Thus $b_{k}+e_{k}\left(m_{k}-b_{k}\right)-\left(a_{k}+e_{k}\left(m_{k}\right.\right.$
$\left.\left.-a_{k}\right)\right)=\left(b_{k}-a_{k}\right)\left(1-e_{k}\right)=\left(b_{k}-a_{k}\right)\left(\left[1+g\left(f\left(b_{k}-a_{k}-1\right)+\right.\right.\right.$ $\left.\left.\left.t_{n_{k}}\right)\right] /\left(a_{k}-b_{k}\right)\right) \rightarrow 0$. Thus $F_{J}\left(B_{k}, t_{n_{k}}\right) \rightarrow J=\operatorname{FJ}(A, t)$.

Therefore $F_{J}\left(A_{n}, t_{n}\right) \rightarrow P_{j}(A, t)$.

In case 6., define $E_{J}=\{1\}$. Note that $\mathrm{FJ}_{\mathrm{J}}(\mathrm{A}, \mathrm{t})=[-1, \mathrm{~g}(\mathrm{f}(\mathrm{a})+\mathrm{t})]$
$u\{1\}$. We must consider the following subcases:
(a) $B_{k} \cap J=\left[-1, b_{k}\right]$ with $-1<b_{k}<1$. Since $B \rightarrow A, b_{k} \rightarrow a$, then $\operatorname{FJJ}^{\prime}\left(\mathrm{B}_{\mathrm{k}}, \mathrm{t}_{\mathrm{n}_{\mathrm{K}}}\right) \cup \mathrm{EJ}^{\prime}=\left[-1, g\left(\mathrm{~F}\left(\mathrm{~b}_{\mathrm{K}}\right)+\mathrm{t}_{\mathrm{n}_{\mathrm{K}}}\right)\right] \cup\{1\} \rightarrow[-1, g(\mathrm{f}(\mathrm{a})+\mathrm{t}]$ $u\{1\}=\operatorname{FJ}(\mathrm{A}, \mathrm{t})$.
(b) $B_{k} \cap J=\left[a_{k}, b_{k}\right]$ with $-1<a_{k}<b_{k}<1$. Then $a_{k} \rightarrow-1$ and $b_{k} \rightarrow$ a. This implies that $m_{k}=\left(a_{k}+b_{k}\right) /\left(2+a_{k}-b_{k}\right) \rightarrow-1$ and $e_{k} \rightarrow 1+[1+g(f(a)+t)] /(-1-a)$. Thus $\operatorname{FJ}\left(B_{k}, t_{n_{k}}\right) \cup E_{J}=$ $\left.\left[a_{k}+e_{k}\left(m_{k}-a_{k}\right)\right), b_{k}+e_{k}\left(m_{k}-b_{k k}\right)\right] \cup E J \rightarrow[-1, g(f(a)+t)] u$ $\{1\}=\operatorname{FJ}(A, t)$.
(c) $B_{k} \cap J=\left[-1, a_{k}\right] \cup\left[b_{k}, 1\right]$, with $-1 \leq a_{k}<b_{k} \leq 1$ and $-1<a_{k}$ or $\mathrm{b}_{\mathrm{k}}<1$, Then $\mathrm{a}_{\mathrm{k}} \rightarrow \mathrm{a}, \mathrm{b}_{\mathrm{k}} \rightarrow 1, \mathrm{~m}_{\mathrm{k}} \rightarrow 1$ and $\mathrm{e}_{\mathrm{k}} \rightarrow(\mathrm{a}-\mathrm{g}(\mathrm{f}(\mathrm{a})+$ $t)) /(a-1)$. Thus $F J\left(B_{k}, t_{n_{k}}\right) \cup E J=\left[-1_{r}\left(a_{k}+e_{k}\left(m_{k}-a_{k}\right)\right] v\right.$ $\left[b_{k}+e_{k}\left(m_{j k}-b_{k}\right), 1\right] \rightarrow[-1, g(f(a)+t)] \cup\{1\}=\operatorname{FJ}(A, t)$.

Hence $F J\left(A_{n}, t_{n}\right) \cup E J \rightarrow \operatorname{FJ}(A, t)$.

Therefore F is continuous.

From (1) and (2), (1-e) a-(1-e1)a1 $=(1-e) b-(1-e 1) b_{1}$, then $(1-e)(a-b)=\left(1-e_{1}\right)\left(a_{1}-b_{1}\right) \ldots(4) \cdot \operatorname{Using}{ }^{p}(3)$ we have, $s+f(b-a-1)=t+f\left(b_{1}-a_{1}-1\right) \ldots$ (5).

Let $r=1+g(f(b-a-1)-t)=1+g\left(f\left(b_{1}-a_{1}-1\right)-s\right)>0$. Then $e=1+r /(a-b)$ and $e_{1}=1+r /\left(a_{1}-b_{1}\right)$. So, (1) and (2) imply: $m+r(m-a) /(a-b)=m 1+r\left(m 1-a_{1}\right) /\left(a_{1}-b_{1}\right)$ and $m+$ $r(m-b) /(a-b)=m_{1}+r\left(m_{1}-b_{1}\right) /\left(a_{1}-b_{1}\right)$. Using definitions of m and $m 1, m-r(1+a) /(2+a-b)=m 1-r(1+a 1) /\left(2+a 1-b_{1}\right)$ and $m+r(1-b) /(2+a-b)=m 1+r\left(1-b_{1}\right) /\left(2+a 1-b_{1}\right) \ldots$ (6). Then $m-m_{1}=r\left[(1+a) /(2+a-b)-\left(1+a_{1}\right) /\left(2+a_{1}-b_{1}\right)\right]$. Hence $m-m 1=r\left(a-a 1+b-b 1-a b_{1}+b a_{1}\right) /(2+a-b)(2+a 1-$ bi). While, from definitions of m and $m 1$,
$m-m_{1}=2\left(a-a 1+b-b_{1}-a b_{1}+b a_{1}\right) /(2+a-b)\left(2+a 1-b_{1}\right)$. since $r<2,\left(a-a 1+b-b 1-a b_{1}+b a_{1}\right) /(2+a-b)(2+a 1-$ $\left.\mathrm{b}_{1}\right)=0$. Therefore $\mathrm{m}=\mathrm{m}$.

From (6) we have, $(1+a) /(2+a-b)=(1+a 1) /(2+a 1-b 1)$ and $(1-b) /(2+a-b)=\left(1-b_{1}\right) /\left(2+a_{1}-b_{1}\right)$.

Since $p \in(A \cap J)-(B \cap J)$, then $a 1<a$ or $b<b 1$. In the first case, $1+a_{1}<1+a$, so $2+a-b>2+a 1-b_{1}$ and $f(b-a-1)$ $<f\left(b_{1}-a_{1}-1\right)$, then (5) implies $t<s$. Analogously, in the second case, $t<s$.
(e) $A \cap J=[a, b]$ with $-1<a<b<1$. This case is similar to case (d). Then $t<s$.

From (I) and (2), (1-e) a-(1-e1)a1 = (1-e)b-(1-a1) b1, then $(1-e)(a-b)=\left(1-e_{1}\right)\left(a 1-b_{1}\right) \ldots(4)$. Using (3) we have, $s+f(b-a-1)=t+f\left(b_{1}-a_{1}-1\right) \ldots(5)$.

Let $\mathrm{r}=1+\mathrm{g}(\mathrm{f}(\mathrm{b}-\mathrm{a}-1)-\mathrm{t})=1+\mathrm{g}\left(\mathrm{f}\left(\mathrm{b}_{1}-\mathrm{ar}-1\right)-\mathrm{s}\right)>0$. Then $e=1+r /(a-b)$ and $e_{1}=1+r /\left(a_{1}-b_{1}\right)$. So, (1) and (2) imply: $m+r(m-a) /(a-b)=m 1+r(m 1-a 1) /(a 1-b 1)$ and $m+$ $r\left(x_{1}-b\right) /(a-b)=m_{1}+r\left(m_{1}-b_{1}\right) /\left(a_{1}-b_{1}\right)$. Using definitions of m and $m_{1}, m-r(1+a) /(2+a-b)=m 1-r\left(1+a_{1}\right) /\left(2+a_{1}-b_{1}\right)$ and $m+r(1-b) /(2+a-b)=m 1+r(1-b 1) /\left(2+a 1-b_{1}\right) \ldots(6)$ 。 Then $m-m_{1}=r\left[(1+a) /(2+a-b)-\left(1+a_{1}\right) /\left(2+a 1-b_{1}\right)\right]$ 。 Hence $m-m_{1}=x\left(a-a_{1}+b-b_{1}-a b_{1}+b_{1}\right) /(2+a-b)(2+a 1-$ bs). While, from definitions of m and m,
 Bincer r a, $(a-a 1+b-b 1-a b 1+b a 1) /(2+a-b)(2+a 1-$ $\mathrm{m})=0$. Thaiefore $\mathrm{m}=\mathrm{m}$.

Erom (5) we have, $(1+a) /(2+a \cdot b)=(1+a 1) /\left(2+a 1-b_{1}\right)$ and $(1-b) /(2+a-b)=\left(1-b_{1}\right) /\left(2+a 1-b_{1}\right)$.

Since $p \in(A \cap J)-(B \cap J)$, then $a 1<a$ or $b<b 1$. In the first case, $1+\mathrm{a}_{1}<1+\mathrm{a}$, so $2+\mathrm{a}-\mathrm{b}>2+\mathrm{a} 1-\mathrm{bi}$ ant $\mathrm{f}(\mathrm{b}-\mathrm{a}-1)$ $<f\left(b_{1}-a_{1}-1\right)$, then (5) implies $t<s$. Analogously, in the second case, $t<s$.
(e) $A \cap J=[a, b]$ with $-1<a<b<1$. This case is similar to case (d). Then $t<s$.

This completes the proof of property IV.

Define $G: C^{V}(X) \times \mathbb{R} \rightarrow C^{V}(X)$ by
$G(B, t)=U\{G J(B, t): J \in S\}$, where $G J: C^{\vee}(X) \times \mathbb{R} \rightarrow\{E: E$ is a closed subset of $J\}$ is defined as follows:

In case (e), let $a_{1}=\left(a-e^{\prime} m\right) /\left(1-e^{\prime}\right)$ and $b_{1}=\left(b-e^{\prime} m\right) /\left(1-e^{\prime}\right)$, then $a_{1}<b_{1}$. Note that e^{\prime} is an increasing continuous function of t. If $t \rightarrow \infty, e^{\prime} \rightarrow(2+a-b) / 2$, if $t \rightarrow-\infty, e^{\prime} \rightarrow-\infty$. Then $e^{\prime}<(2+a-b) / 2$ for every $t \in \mathbb{R}$. Thus $e^{\prime}(1+m)=e^{\prime} 2(1+z) /(2$ $+a-b) \leq 1+a$ and $e^{\prime}(1-m)=e^{\prime} 2(1-b) /(2+a-b) \leq 1-b$. This implies that $-1 \leq\left(a-e^{\prime} m\right) /\left(1-e^{\prime}\right)=a_{1}$ (equality holds if and only if $-1=a)$ and $b_{1}=\left(b-e^{\prime} m\right) /\left(1-e^{\prime}\right) \leq 1$ (equality holds if and only if $b=1$). If $t \rightarrow \infty, a_{1} \rightarrow-1$ and $b_{1} \rightarrow$. If $t \rightarrow-\infty$, $\mathrm{a}_{1} \rightarrow \mathrm{~m}$ and $\mathrm{b}_{1} \rightarrow \mathrm{~m}$. Since $\mathrm{a}+\mathrm{b}-2 \mathrm{e}^{\prime} \mathrm{m}=\mathrm{m}(2+\mathrm{a}-\mathrm{b}-$ $\left.2 e^{\prime}\right), m=\left(a-e^{\prime} m+b-e^{\prime} m\right) /\left(2\left(1-e^{\prime}\right)+a-b\right)=\left(a 1+b_{1}\right) /(2+$ a_{1} - b_{1}. Therefore $m=\frac{a_{1}+b_{1}}{2+a_{1}-b_{1}}$. Define $\mathrm{e}=1+$
$\frac{1+g\left(f\left(b_{1}-a_{1}-1\right)+t\right)}{a_{1}-b_{1}}$. Note that $b_{1}-a_{1}-1=(b-a-(1-$ $\left.\left.e^{\prime}\right)\right) /\left(1-e^{\prime}\right)=-g(-t-f(b-a-1))$. This implies that $e=e^{\prime}$. Thus $a_{1}+e\left(m-a_{1}\right)=a$ and $b_{1}+e\left(m-b_{1}\right)=b$.

Therefore, $G J(B, t)$ is a continuous function of $t, G J(B, t) \rightarrow J$ as $t \rightarrow-\infty, \operatorname{GJ}(B, t) \rightarrow\{-1,1\}$ as $t \rightarrow \infty, G J(B, 0)=B \cap J$ and supposing that $G(B, t) \in C^{\vee}(X)$, we have that $\operatorname{FJ}(G(B, t), t)=[-1, a]$ $u[b, 1]=B \cap J$ for every $t \in \mathbb{R}$.

The analysis of cases (a), (b), (c), and (d) is similar and we conclude that $G(B, t) \in C^{\vee}(X)$ for each $t \in \mathbb{R}, \operatorname{FJ}(G(B, t), t)=B \cap J$ for every $t \in \mathbb{R}$, then $F(G(B, t), t)=B$ for every $t \in \mathbb{R}, G(B, t)$ depends continuously on $t, G(B, t)$ tends to a one-point set or to a subgraph of X which is contained in B as $t \rightarrow \infty$ and $G(B, t)$ tends to a subgraph of X which contains B as $t \rightarrow-\infty$.

3. PROOF OF THEOREM 1.

Define $A=\mu^{-1}(T) \subset C^{\vee}(X)$ and $B=\mu^{-1}\left(T_{1-1}, T_{1}\right)$ For each $A \in A$, let $r(A)=\inf \{t \in \mathbb{R}: F(A, t) \in B\}$ and $R(A)=\sup \{t \in \mathbb{R}: F(A, t)$ $\in B$ \}. Since $F J(A, 0)=A \cap J$ for every $J \in S$, we have that $F(A, 0)$ $=A \in B$ for each $A \in A$. Then $r(A)$ and $R(A)$ are defined and $-\infty \leq$ $r(A)<0<R(A) \leq \infty$. Let $C=\{(A, t) \in A \times \mathbb{R}: r(A)<t<R(A)\}$. We will prove that the function $\mathrm{Fo}_{0}=\mathrm{FlC}$ is a homeomorphism from C onto B.

Property I. implies that $F_{o}(A, t) \in B$ for every $(A, t) \in C$. In order to prove that F_{0} is injective, suppose that $F \circ(A, t)=$ Fo (B, s). If $A \neq B$; since $\mu(A)=\mu(B)$, then $A-B \neq \varnothing$ and $B-A \neq$ ø. Property IV. implies that $t<s$ and $s<t$. This contradiction implies that $A=B$. Thus, by property $I .,(A, t)=(B, s)$. Therefore Fo is injective. To prove that F_{0} is onto, let $B \in B \subset C^{V}(X)$. Since $G(B, t)$ tends to a one-point set or to a subgraph of X which is contained in $B t \rightarrow \infty$ and $G(B, t)$ tends to a subgraph of X shich contains B as $t \rightarrow-\infty$, Then $\lim _{t \rightarrow \infty} \mu(G(B, t)) \leq T_{i-1}$ and $\lim _{t \rightarrow-\infty} \mu(G(B, t)) \geq T_{1}$. Thus there exists $t \in \mathbb{R}$ such that $A=G(B, t)$ $\in A$. The continuity of F implies that $r(A)<t<R(A)$. Then $F_{0}(A, t)=B$. Therefore F_{0} is surjective.

Let $K: B \rightarrow C$ be the inverse function of F. We will show that K is continuous. It is enough to prove that if $\left(B_{n}\right) n$ is a sequence in B which is convergent to an element $B \in B$ and the sequence $\left(K\left(B_{n}\right)\right) n$ converges to an element (Ao, to $\in A \times[-\infty, \infty]$; then $\left(A_{0}, t_{0}\right)=K(B)$.

Let $(A, t)=K(B)$ and, for each n, let $\left(A_{n}, t_{n}\right)=K\left(B_{n}\right)$. Then $\left(A_{n}, t_{n}\right) \rightarrow\left(A_{0}, t_{0}\right)$. If $r\left(A_{0}\right)<t_{0}<R\left(A_{0}\right)$, then $F_{0}(A, t)=B=$ $\lim _{n \rightarrow \infty} B_{n}=\lim _{n \rightarrow \infty} F_{0}\left(A_{n}, t_{n}\right)=F_{0}\left(A_{0}, t_{0}\right)$, so (Ao, $\left.t_{0}\right)=K(B)$. If $t_{0} \leq$ $r\left(A_{0}\right)$, take a number $t *>r\left(A_{0}\right)$. Then there exists N such that t_{n} $<t *$ for each $n \geq N$. Then $B_{n} \subset F\left(A_{n}, t_{n}\right) \subset F\left(A_{n}, t *\right)$ for each $n \geq N$. Thus $B \subset F\left(A_{0}, t *\right)$ for every $t *>r\left(A_{0}\right)$. If $r\left(A_{0}\right)>-\infty$, then $B \subset$ $F\left(A_{0}, r\left(A_{0}\right)\right) \subset F\left(A_{0}, 0\right)=A_{o}$. Thus $T_{i-1}<\mu(B) \leq \mu\left(F\left(A_{o}, r\left(A_{o}\right)\right)\right) \leq$ $\mu\left(A_{0}\right)<T_{i}$. Then there exists $r<r\left(A_{0}\right)$ such that Ti-i <
$\mu\left(F\left(A_{0}, r\right)\right)<T$ which is a contradiction with the definition of $r\left(A_{0}\right)$. If $r\left(A_{0}\right)=-\infty$, then $B \subset \lim _{n \rightarrow \infty} F\left(A_{0},-n\right)$ which is a subgraph of X or a one point-set contained in Ao. Thus $\mu(B) \leq T i-1$ which is a contradiction. Similar contradictions are obtained supposing that $t_{0} \geq \mathbb{R}\left(A_{n}\right)$. This completes the proof that $\left(A_{0}, t_{0}\right)=K(B)$. Therefore K is continuous.

Hence F is a homeomorphism.

In order to define φ, Let $\rho_{1}: A \times \mathbb{R} \rightarrow A$ and $\rho_{2}: A \times \mathbb{R} \longrightarrow \mathbb{R}$ be the respective projection maps. Define $\psi: B \rightarrow A \times\left(T_{i-1}, T_{1}\right)$ by $\psi(B)=\left(\rho_{1}(K(B)), \mu(B)\right)$. Then ψ is continuous.

Let $(A, t) \in A \times\left(T_{1-1}, T_{1}\right)$. Since $F(A, n)$ converges to a subgraph of X which contains A, then $\lim _{n \rightarrow \infty} \mu(F(A, n)) \geq T i$. Thus there exists $n 1$ >1 such that $\mu(F(A, n 1))>t . S i m i l a r l y$, there exists $n 2>1$ such that $\mu(F(A,-n a))<t$. Hence there exists a unique $s \in \mathbb{R}$ such that $\mu(F(A, S))=t$. Define $\varphi(A, t)=F(A, s)$.

Property I. implies that if $t_{1}<t_{2}$, , then $\varphi\left(A, t_{1}\right) c \varphi\left(A, t_{2}\right)$. Note that $\psi(\varphi(A, t))=\psi(F(A, s))=(A, t)$. Since $\mu(F(\rho 1(K(B)), \rho 2(K(B)))=$ $\mu(B)$, then $(\psi(B))=\varphi\left(\left(\rho_{1}(K(B)), \rho_{2}(K(B))\right)\right)=F(K(B))=B$. Then ψ is the inverse sap of φ. Since $\mu(F(A, 0))=\mu(A)=T$, then $\varphi(A, T)=$ A for every $A \in A$.

To prove that is continuous, it is enough to prove that If $\left(\left(A_{n}, t_{n}\right)\right) n$ is a sequence in $A \times(T i-1, T i)$ which converges to an
element (A, t) in $A \times\left(T_{i-1}, T_{i}\right)$ and $\varphi\left(A_{n}, t_{n}\right)$ converges to an element $B \in C(X)$, then $B=\varphi(A, t)$. Set $\varphi\left(A_{n}, t_{n}\right)=F\left(A_{n}, s_{n}\right)$, where $\mu\left(F\left(A_{n^{\prime}} S_{n}\right)\right)=t_{n}$ and set $\varphi(A, t)=F(A, s)$ where $\mu(F(A, s))=t$. Then $t_{n}=\mu\left(\varphi\left(A_{n}, t_{n}\right)\right) \rightarrow \mu(B)$, so $\mu(B)=t \in\left(T_{1-1}, T_{i}\right)$. Thus $B \in B$. Set $K(B)=(A *, r)$. Then $(A *, r)=\lim _{n \rightarrow \infty} K\left(\varphi\left(A_{n}, t_{n}\right)\right)=\lim _{n} \lim _{\infty} K\left(F\left(A_{n^{\prime}} s_{n}\right)\right)=$ $\lim _{n \rightarrow \infty}\left(A_{n}, s_{n}\right)$. Thus $A_{n} \rightarrow A *$ and $s_{n} \rightarrow r$. Hence $A *=A$. since $t_{n}=$ $\mu\left(F\left(A_{n}, S_{n}\right)\right) \rightarrow \mu(F(A, r))$, then $t=\mu(F(A, r))$. Hence $B=\varphi(A, t)$. This completes the proof that φ is a homeomorphism and the proof of theorem 1.

COROLLARY. ([10, Thm. 2.5]) $C(X)$ is conical pointed. That is, for each Whitney map $\mu: C(X) \rightarrow \mathbb{R}$ there exists $T \in(0,1)$ such that $\mu^{-1}([T, 1])$ is homeomorphic to the topological cone of $\mu^{-1}(T)$.

3. PROOF OF THEOREM 2.

DEFINITION. Let A and B be two Whitney levels for $C(X)$ and let $C \in C(X)$. We say that C is placed between A and B if there exists $A \in A$ and $B \in B$ such that $A \subset C \subset B \neq A$ or $B \subset C \subset A \neq B$.

THEOREM. Let A and B be two Whitney levels. Suppose that no element is $S G(X) \cup F_{1}(X)$ is placed between A and B. Then A and B are homeomorphic.

PROOF. Set $A=\mu^{-1}(t)$ and $B=v^{-1}(s)$ where $\mu, v: C(X) \rightarrow \mathbb{R}$ are Whitney maps and $t, s \in[0,1]$. Let $A \in A-B$, we will prove that
there exists a unique $r \in \mathbb{R}$ such that $U(F(A, r))=s$. If $v(A)<s$, taking an order arc from A to X (see [$8, \quad$, there exists Bo $\in B$ such that $A \subset B_{0} \neq A$, then $A \notin S G(X) \cup F_{1}(X)$. Therefore $A \in C^{V}(X)$. Let $D=\lim _{n \rightarrow \infty} F(A, n)$. Then D is a subgraph of X which contains A. If $v(D) \leq s$, there exists $B \in B$ such that $D \subset B$. Then $v(A)<v(B)$ and $A \subset D \subset B \neq A$ which contradicts our assumption. Thus $v(D)>s$. Then $v(F(A, 0))=v(A)<s=\lim _{n \rightarrow \infty} v(F(A, n))$. This proves the existence of r in this case. The case $u(A)>s$ is similar. In both cases r is unique by property I.

Analogously, for each $B \in B-A, B \in C^{\vee}(X)$ and there exists a $z \in \mathbb{R}$ such that $\mu(G(B, z))=t$.

Define $\gamma: A \rightarrow B$ by $\gamma(A)=A$ if $A \in A \cap B$ and $\gamma(A)=F(A, r) \in B$ if $A \in A-B$.

Note that $A \subset \gamma(A)$ or $\gamma(A) \subset A$. To prove that γ is surjective, let $B \in B$. If $B \in A$, then $B=\gamma(B)$. If $B \in B-A$, let $z \in \mathbb{R}$ be such that $\mu(G(B, z))=t$. Then $F(G(B, z), z)=B$ and $G(B, z) \in A$. Thus $\gamma(G(B, z))=B$. Hence γ is surjective. To prove that γ is injective, let $A_{1}, A_{2} \in A$ with $A_{1} \neq A_{2}$. If $A_{1}, A_{2} \in B$, then $\gamma\left(A_{1}\right)$ $=A_{1} \neq A_{2}=\gamma\left(A_{2}\right)$. If $A_{1} \in B$ and $A_{2} \notin B$, then $A_{2} \subset \gamma\left(A_{2}\right) \neq A_{2}$ or $\gamma\left(A_{2}\right) \subset A_{2} \neq \gamma\left(A_{2}\right)$, so $\gamma\left(A_{2}\right) \notin A_{1}$, and $\gamma\left(A_{2}\right) \neq A_{1}=\gamma\left(A_{1}\right)$. If $A_{1}, A_{2} \notin B_{1}$ since $A_{1}-A_{2} \neq \varnothing$ and $A_{2}-A_{1} \neq \varnothing$, property IV. implies that $F\left(A_{1}, r_{1}\right) \neq F\left(A_{2}, r_{2}\right)$ for every $r_{1}, r_{2} \in \mathbb{R}$. Hence $\gamma\left(A_{1}\right) \neq \gamma\left(A_{2}\right)$. Therefore γ is injective.

Finally, we will prove that γ is continuous. It is enough to prove that if $\left(A_{n}\right) n$ is a sequence in A which converges to an element $A \in A$ and $\gamma\left(A_{n}\right) \rightarrow B \in B$, then $\gamma(A)=B$. We may suppose that $A_{n} \in B$ for each n or $A_{n} \notin B$ for each n. The first case is immediate. In the second case, set $\gamma\left(A_{n}\right)=F\left(A_{n}, r_{n}\right)$. We consider two subcases: (a) $A \in A-B$, set $\gamma(A)=F(A, r)$. We suppose, for example that $r \leq r_{n}$ for each n. Then $F\left(A_{n}, r\right) \subset F\left(A_{n}, r_{n}\right)=\gamma\left(A_{n}\right)$, then $\gamma(A)=F(A, r)=\lim _{n} F\left(A_{n}, r\right) \subset \lim _{n} \gamma\left(A_{n}\right)=B$. since $\gamma(A)$, $B \in B$, we have that $\gamma(A)=B$. (b) $A \in B$. Since $A_{n} \subset \gamma\left(A_{n}\right)$ or $\gamma\left(A_{n}\right) \subset A_{n}$ for every n, then $A \subset B$ or $B \subset A$ and $A, B \in B$. Thus $A=$ B. This completes the proof that γ is continuous.

Therefore γ is a homeomorphism.

PROOF OF THEOREM 2. Let $\mathcal{G}=\{A \subset C(X): A$ is a Whitney level for $C(X), A \neq F_{1}(X)$ and $\left.A \neq\{X\}\right\}$. Let $P=\{E: E \subset S G(X)\}$. Then p is finite.

Define $\sigma: \mathbb{Z} \rightarrow p \times p \times p$ by:
$\sigma(A)=(\{E \in S G(X):$ there exists $A \in A$ such that $E \subset A \neq E\}$, $S G(X) \cap A,\{E \in S G(X):$ there exists $A \in A$ such that $A \subset E \neq A\})$. In order to prove Theorem 2, it is enough to show that if $\sigma(A)=$ $\sigma(B)$, then A is homeomorphic to B.

Suppose then that $\sigma(A)=\sigma(B)$. By the previous theorem, it is enough to prove that no element in $S G(X)$ is placed between A and B. Suppose, for example, that there exist $A \in A, B \in B$ and $E_{0} \in \operatorname{JG}(X)$

Abstract

such that $A \subset E o c B \neq A$. If $A=E o$, then Eo $\in S(X) \cap A=$ $S G(X) \cap B \subset B$, so Eo, $B \in B$ and Eo $\subset B \neq$ Eo which is a contradiction. If $A \neq E_{0}, F(A)=F(B)$ implies that there exists $B_{1} \in B$ such that $B_{1} \subset E_{0} \neq B_{1}$. Thus $B_{1} \subset B \neq B_{1}$ which is also a contradiction.

Therefore A is homeomorphic to B.
[1] R. Duda On the hyperspace of subcontinua of a finite graph, I. Fund. Math. 62 (1968) 265-286.
[2] R. Duda on the hyperspace of subcontinua of a finite graph, II. Fund. Math. 63 (1968) 225-255.
[3] R. Duda Correction to the paper "On the hyperspace of subcontinua of a finite graph, $I^{\prime \prime}$. Fund. Math. 69 (1970) 207-211.
[4] H. Kato Whitney continua of curves Trans. Amer. Math. Soc. 300 (1987) 367-381.
[5] H. Kato Whitney continua of graphs admit all homotopy types of compact connected ANRs Fund. Math. 129 (1988) 161-166.
[6] H. Kato A note on fundamental dimensions of whitney continua of graphs J. Math. Soc. Japan 41 (1989) 243-250.
[7] I. Montejano-Peimbert and I. Puga-Espinosa Shore points in dendroids and conical pointed hyperspaces To appear in Top. Appl.
[8] S. B. Nadler, Jr. Hyperspaces of sets Marcel Dekker (1978) New york and Basel.
[9] S. B. Nadler, Jr. Continua whose hyperspace is a product Fund. Math. 108 (1980) 49-66.
[10] I. Puga-Espinosa Hiperespacios con punta de cono Tesis doctoral, Facultad de Ciencias, Universidad Nacional Autónoma de México, (1989)

Centro de Investigación en Matemáticas, A. C. (CIMAT) Apdo. 402, Guanajuato 36000, Guanajuato, MEXICO

Permanent Address:
Universidad Nacional Autónoma de México, Instituto de Matemáticas, Circuito Exterior, Ciudad Universitaria, México, 04510, D. F. México.

[^0]: Consider the map $f:(-1,1) \rightarrow \mathbb{R}$ given by $f(t)=\operatorname{tg}(t \pi / 2)$ and let $g: \mathbb{R} \rightarrow(-1,1)$ be the inverse map of f. Then $f(-t)=-f(t)$ for every $t \in(-1,1), g(-s)=-g(s)$ for every $s \in \mathbb{R}$ and $-g$ is; the inverse map of $-f$. Define $C^{V}(X)=C(X)-\left(S G(X) \cup F_{1}(X)\right)$.

