w; 117
Whitney blocks in the .
hyperspace of a finite graph

Alejandro Illanes

Tech. Rept. I-92-6 (CIMAT/MB)
: 1

i
{

nadks
ki
a:,q

i

Received: July 15, 1992 Approved: August 28, 1992







WHITNEY BLOCKS IN THE HYPERSPACE OF A FINITE GRAPH. '

Aiejandro Ilianes

ABSTRAbT. Let X be a finite graph. Let C(X) be the hyperspacé bf
all ndnempty subcontinua of X and let p : C(X) — R be a Whitney
map;TWe prove that -there exist numbers 0 < To < Tt < T2 < ... ? TM
= p(X) such that if T e (Ti-1,Ti), then the Whitney block
IJ._l(Ti—l,Ti) is homeomorphic to the product u'l(T) "X (Ti-1,Ti). We
also show that there exist only a finite nuﬁber:of topologizally

different Whitney levels for C(X).

AMS (MOS) Subj. Class.: 54B20

Keywords: Hyperspaces, Whitney 1levels, Whitney blocks, Fin.te

graphs.

INTRODUCTION. Throughout this paper' X denotes a finite graph,
i.e., a compact connected ﬁetric space which is the union of
finitely many segments joined by'tﬁeir end points. Akgggment.of"x
is one of those segments. A subgraph of X is'a‘graph”ﬁéntainad iﬁi
X formed by some of those éegments. Let SG(X) = { A c X-: A is a .

éubgraph of X }.
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The hyperspace of subcontinua of X is C(X) = { A ¢ X : A is a
nonempty, -closed cohnected subéet- of X } metrized with the
Hausdorff metric. Let Fi(X) = { {x} ekC(X)': x € X }. A map is a
‘continuous function. A Whitney map‘for C(X) (see [8, 0.50]) is a
map M : C(X) — R such that p({x}) = 0 for every Xx € X,
H(A) < u(B) if A ¢ B # A and p(X) = i. A Whitney level is a set of
the form uq(t), where t € [0,1]. A Whitney block is a set of the
form p '(t,s), where 0 s t < s s 1. From now on, 4 will dennte a

Whitney map for C(X).

In [1], R. Duda made a detailed study of the polyhedral structure
of C(X) by giving a good decomposition of C(X) into balls. In [2],

he gave a charaterization of those polyhedra which are hyperspaces

Q
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acyclic finite graphs.

Whitney levels of finite graphs have besen studied by H. Katon. In
(4] he showed that they are always poyhedra and that if to =
min { M(A) : A is a simple closed curve contained in X L and
0 = t < to, then ud(t) is homotopically equivalent to X. In [4]
and [6] he gave bounds for the fundamental dimension of Whitney
levels of finite graphs and, in [5] he proved that Whitnéy levels
of finite graphs admit all homotopy types of compact connected

ANRs.

This paper was motivated by the following result of I. Puga
(10, Thm. 2.5]): "There exists t e [0,1) and there exists a

homeomorphism ¢ : (Cone over ud(t)) —> ud([t,l]) such that
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9(A,0) = A, ¢p(A,1) = X and s < t implies that ¢(A,s) < p(A,t) for
each A e uq(t)".'she'expressed this property by saying that the

hyperspace of subcontinua of a finite graph is conical pointed.

In this paper, we prove:

THEOREM 1. Suppose that p(SG(X)) v {0} = {To, Ti, ..., Tx}, where

0 = To < Tt < ... < T =1, If 1 = i =M and T € (Ti-1,Ti), then

there exists a homeomorphism ¢ : p '(T) x (Ti-1,Ti) — p (Ti-1,T1)

such that ¢(aA,T) = A and ¢(A,s) < ¢(A,t) if s < t fer every

A e u'l(T) ‘and, for each t e (Ti-1,Ti), wlu“l(T) x {t} is a

homeomorphism from u ' (T) x {t} onto uq(t).

THEOREM 2. There are only a finite number of topologically

different Whitney levels for C(X).

1. PRELIMINARIES,

‘The vertices of X are the end points of the segments of X. Notice . ...

that the set SG(X) ofisﬁbgraphs of X depends on the choice of the

segments. We are interested in.'having as less 'subgraphsA as

possible, so we will suppose that X is not a simple Ciosed curve

and each vertex of X is either an end point of X or a ‘ramification.

point of X. With this restriction two extremes of a segment of X.7v

may coincide and then such a "segment" would be a.simﬁie closed .

curve. The set of segments of ¥ isvdenoted by 5. For each J € S,

we fix an orientation and then we identify J with a ‘closed
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interval [(-1)J,(1)J]. thiCe:thét, it is possible that (-1)s =
(1)J. We write =1 (resp. 1) insﬁead:of (-1)J (xesp. (1)3) if no

. . |
confusion arrives.

- n order to define the map ¢ in Theorem 1, we will describe. its
action in each J € S. For each A e uq(T), we consider A n J and
we enlarge or shrink this set. To! ilustrate how the shrinking of A

n J must be defined, let us consider the following diagram:

DIAGRAM

Since A1, A2 and A3 are very close, A2 n J can not be shrinked and .
the shrinking of A1' n J and A3 n J must be almost imperceptible

compared with the shrinking of A1 n L and As n L.

2. AUXILIARY MAPS,

Consider the map £ : (-1,1) — R given by f£(t) = tg(tm/2) and let
g : R — (-1,1) be the inverse map of f. Then f(-t) = =-f(t) for
every t € (-1,1), g(-s) = -g(s):for every s € R and -g is the

inverse map of -f. Define CV(X) = C(X) = (SG(X) v F1(X)).
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Define F : CV(X) x R — CV(X) by
F(A,t) =U { Fs(A,t) : TS}, where Fs : C'(X) xR — { E : E is

a closed subset of J } is defined as follows:

’

(a) AnJ if AnJ =g, {-1}, {1}, {-1,1} or J,

(b) [-1,g(f(b)+t)] if A n J = [-1,b] and -1 < b <1,

(c¢) [g(f(a)-t),1] ifAnJ = [a,l].and -1 < a <1,
. b
(d) [at+e(m-a),bte(m-b)], where m = zi;_b and
Fi(a,t) = { e = 1+2IECAFE) ¢ 5 (5 = [a,b] ana
| -l <a<b<x<l and,'
g - : a+b
(e) [-1,a+te(m-a)] v [b+e(m—b),1], where @ = 57a-B and

e =_i+1{g(f(b—a-l)—t

a-b

if AnJ=[-1,a] v [b,1],
_1;£“a><7b'é i and -1 < éfor b < 1.‘ ' . '

In case (e),.a(l.+ a).s b(l.+.a).and.a(l.~ b).= b(l = b), then -~

2a+a -ab=a+b=2b+ab=-Db°, soaz=m=2hb, where a < m or

b < m. Notice that e is a strictly incfeasing function of €. If

t — »w, e > 1, a + e(m- a) — m and b + e(m - b) — n. If
t— =, e — 1+ g—%—gl a+em-a) —- -land b + e(m -~ b) — 1,

" Thus FJ(A,t) is a ?rober subset of J, {-1,1} < FJ(A,t).= {=1,1};

if t < s, then Fs(A,t) < Fi(A,s) = Fi(A,t), Fs(A,t) — T as

t — w» and Fs(A,t) — {-1,1} as t — -w.

Similarly, in case (d), Fs(A,t) 1is a. prdper‘ sﬁbéétmqurfJ,x

-1, 1¢ Fs(A,t), m e Fs(A,t); 4f t < s, then Fi(A,t) c Fy(A,s) =

Fs(A,t), Fs(A,t) — J as t — o.and Fsj(A,t) — {m} as t — ~x.-




'! .
In all the cases, if A n J is a %Onempty*pré?er"subset of J, then
FJ(A,t) is a'nonempty‘proper subéeﬁiof J.'Moreover, -1 (resp. 1)
belongs to A if and only if -1 kresﬁ.fl).beiongs to Fs(A,t). It
follows that, for each t, a vertex p of X belongs to A if and only
~if p belongs to F(A,t) and F(A,t)‘e‘CVOQ. Therefore F is well

defined.
We will need the following properties of function F:

I. If £t < s, then F(A,t) < F(A,s) # F(A,t).
It follows from the fact that in cases (b), (¢), (d) and (e), if .t

< s, then FJ(A,t) ¢ Fs(A,s) = Fs(A,t) .-

II. For a fixed A e cC'(X), if t — =-w, F(A,t) tends to a
one-point set or to a subgraph of X which is contained in A and,

if t — w, then F(A,t) tends to a subgraph of X which contains A .

IIT. F is continuous.

Let ((An,tn))n be a sequence in CV(X) x R which converges to an
element (A,t) in CV(X) x R. We may suppose that if J € § and A B J
= g, then An nJd =@ for every n. Let S* = { J € 8§ ¢t AndJd =o }.
Since F(A,t) has no isolated points, 1if we can find a finite set E
such thét F(An,tn) v E — F(A,t), then we will have that
F(An,tn) — F(A,t). In order to find such a set E, it is enough-to
show that, for each J € S*, there exists a finite set Es such that
FU(An,tn) v EJ — FJ(A,t). Then take J‘e S*, Here it is necessary

to consider the following cases:



] AnJ=J,

2. AnJ = [-1,b] with -1 < b < 1,

3. AnJ=[a,1] with -1 < a < 1,

4 AnJ = [a,b] with -1 < a < b < 1,

5. AnJ=[-1,a] v [b,;1] with -1 < a < b <1,
6. AnJd=[-1,a] v {1} with ~1 < a < 1,

7. AnJ={-1} v [a,1] with -1 < a < 1,

8. AnJ = {-1},

9. AnJd = {1} and,

10. And = {-1,1}.

We only check cases 1. and €. the others are similar. For case 1.,

the sedquence (Aﬁ)n can be partioned into subsegquences (Bk)k whare

each (Bk)k lies in one of the following subcases:

(a) B, nJ =J. Then Fi(B,t ) = J — Fi(A,t).

k .
(b) Bk ﬁ Jd = [—1,bk] W}th -1 < bk < 1. Slgcg Bk — A, bk — 1,
'then.FJ(Bk,‘tnk) = [-1,g(f(bk)+tnk)} — [-1,1] = Fs(A,t).

(c) B nJ = [a,1] with -1 < a_ < 1. It is similar to (b).

X

(@) B, n J = [a,b ] with -1 < a_ < b_< 1. Then a, — -1 and

k k k , k
bk—e 1, so & = 1+ [1+ g(f(bk - ap - 1) + tn}{_)_J/(ak f bk) _9_0.
Thus by + ey (m = by) = (a + ep(m - a)) = (B — &) (1 = e) —

2. Therefore FU(Bk,tnk) = [ak + ek(mk - ak)),bk + ek(mk - bk)] —»

[-1,1] = Fs(A,t).
{e) B_nJ= [-1,2,3 v [b,1], with -1 < a, < b <1 and -1 < ay

“ 1 ! - s ) 1 . - -
or . by < 1. Then bk Qe > 0. Thus bk + ek(mk bk) (ak + ek(mk




- ap)) = (b - a)(l - e) = (b - ak)(["1 + g(£(b, - a, ~ 1) +

tnk)]/(ak - bk)) — 0. Thus FJ(B

k’tnk) — J = FJ(A,t).

Therefore FJ(A tn) -— Fu(A,Lt).

n’

In case 6., define Es = {1}. Note that Fs(A,t) = [-1,g(f(a) + t)]

v {1}. We must consider the following subcases:

(a) B nJ = [-l,bk] with -1 < bk < 1. Since B — A, bk — a,

then FJ(Bk,tnk) v EJ = [—l,g(f(bk)+tn])] v {1} — [-1,9(f(a) + 1]
<

v {1} = FJ(A,t).

(b) By nJ = [ak,bk] with -1 < a, < b, < 1. Then a, — =1 and

k k k
bk—a a. This implies that m = (ak + bk)/(z +oa, - bk) — =1 and

e — 1 + [1 + g(f(a) + t)3}/(-1 - a). Thus Fv(Bk,tn ) v By =
k

ay + ep(mye = a)),/byp + e (m - )] v E — [-1,g(f(a) + )] v
{1} = Fs(A,t).

(¢) B, nJ = [-1,ay] v [bk'l]’ with -1 = a, < b

= 1 and -1 < a
k

k k
or bk < 1. Then a, — a,‘bk — 1, m, — 1 and e, — (a - g(£(a) +

k

t))/(a - 1). Thus FJ(Bk,tnk) v Iy = [-1,(ak + ek(mk - ak)] v}

[by + & (m_ - bi{),l] —s [-1,g9(f(a) + t)] v {1} = Fi(A,t).
Hence FJ(An, tn) v Es — FJ(A,t).

Therefore F is continuous.



From (1

then (1 - e)(a - b) = (1 :we1)(a1 - b1) (4). Using“ (3) we

have, s

Let r =

Then ¢ = 1 + r/(a - b) and e1 = 1 + r/(a1 - b1). So, (1) and (2)
imply:'m'+ r(m - a)/(a - b) = m + r(m - at)/(at - bi1) and m +
r(m - b)/(a - b) = m + r(mi-; bi)/(a1 - b1). Using definitiomns of

) and (2), (L - e) a = (1 - er1)ar = (1 - e)b = (1 - e1)b,
+ £(b —‘a -1) =t + £f(b1t - a1 - 1) ... (5).

1 + g(f(b - e -1 - t) = 1 + g(f(bt - a1 - 1) - s) > 0.

mand mi, m - r(1 + a)/(2 + a - b) = m - r(l + ai1) /(2 + ar - b1)

‘and m +
Then m

Hence m

bt). While, from deflnltlons of m and mi,

r(l -b)/(2 + a - b)s= m + r(l - b1)/(2 + a1 - b1) ..; (6).

-m = r{(L + a)/(2 + a - b) - (1 + ai)/(2 + a1 - b1)]'.

- m = r(a - a1+ b - bt - ab1 + ba1)/(2 + a - b)(2 +ar -

m-m1=2(a-a1+b-b1—ab1+ba1)/(2+a—b)(2+a1 -'b1)

Since r-

bi) = 0.

Therefore m = mi.

. From (6) we have, (1'+'a)/(2 + a - b)'# (1 + a1)/(2 + ai = b1)‘

and (1 - b)/(2 + a - b) =(1 - b1)/(2 + a1 - bl)

Since p
case, 1

< fkb1

second case, t < s.

(¢) A nJ = [a,b] with -1 < a < b < 1. This case is similar to -

case (4).

e (A n J) —.(B n J), then a1 < a or b < bi. In ‘the fifst

+ai <1+ a, so 2 + a - b > 2 + a1 - b1 and f(b —a-

- a1 - 1), then (5) 1mp11es t < s. ‘Analogously,

Then t < s.

-10
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From (1) and (2), (L - e) a - (1'- en)at = (1 - e)b - (i - 1)1,

then (1 - e)(a -.b) = (1 - et)(ar - b1) ... (4). Using (3) we

!

have, s + f(b - a - 1) =t + £(bt ~ a1 = 1) ... (5).

|
i

Let r =1 4+ g(f(b - a - 1) - t) = 1L + g(f(b1. - a1 -~ 1) - s8) > 0.

Then e = 1 + r/(a - b) and e1 = 1 + x/(a1 - h1). So, (1) and (2)

imply: m + r(m - a)/(a - by = m + r(m - ai)/(ar - bt) ancd m -+
r(m - b)/(a - b) = m + r(m - b1)/(ar - b1). Using definitiois of
mand mi, m - r(l + a)/(2 + a - b) = m - r(l + a1)/(2 + a1 - b1)

and m + (1l - b)/(2 +a -Db) =m + xr(l - bt)/(2 + a1 - b1) ... (6).
Then m - m1 = r{(1 + a)/(2 + a - b) - (1L + a1)/(2 + ar + b1)].
Hence m - m1 = r(a - a1 + b - b1 - abt + bat)/(2 + a - b)(2 + a1 -~

. b1). While, from definitions of m and mi,

mo-m = 2(a - ar + b - b ~ ab + bhar)/(2 + a - hH)(2 + ar ~ bi).
Gince r < 2, (a - a1 4+ b - b1 -~ abt + ba) /(2 + a - B)Y(2 + at -
M) = 0, Tharefore m = mi.

I'ron (6) we have, (L + a)/(2 + a « b) = (L + a1)/(2 + a1 ~ b1)

and (L - b)/(2 +a~Db) = (L ~M)/(2 + ar - b1).

Since p e (A n J) - (B n J), then a1 < a or b < b1, In the first

case, 1 + a1 <1 +a, so2 +a->b>2+a -~ b and £(b - a - 1)

< f(b1 - a1 - 1), then (5) implies t < s. Analogously, in the
second case, t < s.
(¢) A n J = [a,b] with -1 < a < b < 1. This case is similar to

caze (d). Then t < s.

10
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This completes the proof of property IV.

Define ¢ : C'(X) x R — C'(X) by

VG(B,t) =U { G(B,t) : J eS8 }, where GJ : c'(X) xR — { E : E is

a closed subset of J } is defined as follows:

r

(a) BnJd ifBnJ =2, {-1}, {1}, {-1,1} or J,

(b) [-1,9(f(b)-t)] if B n J = [-1,b] and -1 < b < 1,

(c¢) [g(f(a)+t),1] if BnJd = [a,1] and -1 < a < 1,
| (d) [(a-e’m)/(1-e’), (b-e’m)/(1-e’)], where m = ;212
Gi(B,t) = 4 and e’ = 1+ b-a if Bn J = [a,b] and

"=1+g(t-f(b-a-1))
-1 < a<b<1and,
(e) [-1,(a-e’m)/(l-e’)] v [(b-e’m)/(1l-e’),1], where

_ a+b. . . b-a
= 33a-p 2N ' = Mg eoFbmaniy)

[-1,a] v [b,1], -1 = a <Db=1and -1 < a or b < 1I.

if BnJd=

In casé-(e); let a: =-(é -e'm)/(1 - e’) aﬁa b; = (b’—gg’m)/(l - e’),
then a1 < bi. Note thatée’ is an increasing continuous function of
t. vat —é m,'e’vfaA(z + a - b)/z, if £t — -0, e/ — -on. Then
e’ < (2.+ a - b)/2 for every t e R. Thus e’(1 + m) = e’2(1 + 3)/(2
+ a=-D>b) =1+ a and é’(l -m) = e’2(1 -b)/(2 +a-Db) =1-b.
This implies that -1 = (a - e'm)/(1 - e’) = a1 (equality_holds.if
and only if -1 = a) and b1 = (b - efm)/(1 - e’) = 1 (equality
holds.if and only if b=1). If t — o, a1 — -1-anduﬁxf—+ lr;iwa;W¥v
t — -», aa — m and b1 — m. Since a + b - 2e’'m = m(2 + a :Wb:¥
2e¢’), m= (a -e'n+ b ~-e'm)/(2(1 - e’') + a - b) = (a1t + b1)/(2 +
L at + bi o :

at - bh1). Thergfore n = A —B Define e = 1 .+ -

11
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Lt g(fbrzat= 1) * B, Note that bi - at - 1 = (b - a - (L -
e’))/(1 - e’) = -g(~t -f(b - a ~ 1)). This implies that e = e’,

Thus a1 + e(m -~ a1) = a and b1 + e(m - b1) = b.

Therefore, GJ(B,t) is a continuous function of t, GJ(B,t) — J as
t - ~-», GJ(B,t) — {-1,1} as t — «, GJ(B,0) = B n J and
supposing that G(B,t) € C'(X), we have that Fs(G(B,t),t) = [-1,a]

VvV [b,1] = BnJ for every t € R.

The analysis of cases (a), (b), (c) and (d) is similar and we
conclude that G(B,t) € C'(X) for each t e€ R, FJ(G(B,t),t) = B n J
for every t € R, then F(G(B,t),t) = B for every t e R, G(B,t)
depends continuously on t, G(B,t) tends to a one-point set or to a
subgraph of X which is contained in B as t — «» and G(B,t) tends

to a subgraph of X which contains B as t — - o.

3. PROOF OF -THEOREM 1.

Define 4 = u™(T) ¢ ¢'(X) and B = u'(Ti-1,T1) For each A e 2, let
r(A) = inf { t e R : F(A,t) ¢ B} and R(A) = sup { t € R : F(A,t)'
€ B }. Since Fi(A,0) = A n J for every J € S, we have that F(A,0)
= A € B for each A € A. Then r(A) and R(A) are defined and -w =
r(A) < 0 < R(A) = w. Let C = { (A,t) e A xR : r(A) <t < R(A) }.
We will prove that the function Fo = F|C is a homeomorphism from C

onto B.

12



Property I. implies that Fo(A,t) € B for every (A,t) € C. 1In
order to prove that Fo 'is -injective, suppose that Fo(A,t) =
Fo(B,’S).F If A # B, since u(A) = u(B), then A - B # » and B - A =
é. Property 1IV. impiies that £t < s and s < t. This contradiction
implies that A = B. Thus, by property I., (A,t) = (B,s). Therefore
Fo is injective. To prove that Fo is onto, let B € B ¢ CV(X).
Since G(B,t) tends to a oné-point set or to a subgraph of X which
is contained in B t — « and G(B,t) tends to a subgraph of X ‘which
contains B as t — =0, Then %Egm R(G(B,t)) = T1—1 and
%1-13—60 L(G(B,t)) =z Ti. Thus there exists t € R such that A = G'(B,t)

€ A. The continuity of F implies that r(a) < t < R(A). Then

Fo(A,t) = B. Therefore Fo is surjective.

Let K : B — C be the inverse function of Fo. We will show that K

is continuous. It is enough to prove that if (Bn)ln is a segquence

in B which is convergent to an element B ¢ B .and the sequence
(K(Bh))n converges to an element (Ro,to) € 4 x [-w,»], then

(R0, to) = K(B).

Let (A,t) = K({(B) and, for each n,  let (An,tr;) = K(B_). Then

(At ) — (Bo,to). If r(As) < to < R(Ao), then Fo(A,t) = B =
ling By = Lim Fo(A,t)) = Fo(Ro,to), SO (Ro,te) =-K(B). If to = . .

r(Re), take a number t* > r(A.). Then there exists N 'such thattn

< t* for each n =2 N. Then B cF(A ,t) < F(An,t*)" for each n 'E'r?No.;‘i'“-‘T”""f"”".'

Thus B ¢ F(Re,t*) for every t* > r(Ao). If r(A.) > -», then B c

 F(Ro,r(Ro)) < F(R0,0) = Ao. Thus Ti-1 < p(B) = B(F(Ro,T(A0))) =

H(Bo) < Ti. Then there exists r < 1r(A.) such that Ti-1 <

13




t(F(Ao,r)) < T which is a contradiction with the definition of
f(Ao). If r(#} = -», then B ¢ rllﬂm F (Ao, -n) which is a subgraph
of X or a cne point-set contained in A.. Thus u(B) = Ti-1 which is
a contradiction. Similar contradictions are thained supposing
that to = R(As}). This completes the proof that (A.,te) = K(B).

Therefore K is continuous.
Hence F is a hcmeomorphism.

In order to define ¢, Let p1 : A x R — A and p2 : A x R — R be
the respective projection maps. Define ¥ : B — A x (Ti-1,T1) by

Y(B) = (p1(E(B))},u(B)). Then ¥ is continuous.

Let (A,t) € 4 x (Ti-1,T1). Since F(A,n) converges to a subgraph of
X which contains A, then %}gm U(F(A,n)) = Ti. Thus there exists mi
> 1 such that u{F(A,nm)) > t. Similarly, there exists nz > 1 such
that p(F(A,-m)) < t. Hence there exists a unique s € R such that

M(F(A,s)) = t. Define p(A,t) = F(A,s).

Property I. implies that if ti1 < tz2,, then ¢(A,t1) c p(A,t2). Note

that ¥ (e (A,t)) = ¥(F(A,s)) = (A,t). Since u(F(Pl(K(B)),PZ(K(B)).)
H(B), then p(y(B)) = p((p1(K(B)),p2(K(B)))) = F(K(B)) = B. Then y
is the inverse map of ¢. Since u(F(A,0)) = u(A) =T, then p(A,T) =

A for every A e A.

To prove that ¢ is continuous, it is enough to prove that If

((An,tn))n is a sequence in A4 x (Ti-1,T1) which converges to an
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K(B) = (A%,r). Then (a*,x) = lin K(p(A_,t))) = lim K(F(A ,s)) =

4 * . * = . i =
%E‘.}m (An,sn). Thus An — A* and s, — T. Hence A A. Since tn

element (A,t) in A x (Ti-1,Ti) and (p(An,tn) convérges ‘to an
element B € C(X), then B = p(A;t)." Set w(Ar;’tn) = F(An,sn), where

;.L(F(An,sn)) = tn and set ¢(A,t) ='F(A,s-) where yu(F(a,s)) = t. Then

tn = u(qo(An,tn)) — u(B), so u(B) =t € (Ti-1,Ti). Thus B € B. Set

u(F(An,sn)) — u(F(A,r)), then t = u(F(A,r)). Hence B =¢p(A,t).
This completes the proof that ¢ is a homeomorphism and the proof

of theorem 1.

COROLLARY. ([10, Thm. 2.5]) C(X) is conical pointed. That is, for
each Whitney map p : C(X) — R there exists T € (0,1) such that

u'l([‘l‘,l]) is homeomorphic to the topological cone of u'i(T) .

3. PROOF OF THEOREM 2.
DEFINITION. Let 2 and B be two Whitney 'le'\'/els for C(X) and let
C € C(X). We say that c ___i_s_iplaced between A and B if there exists» .'

Acldand BeBsuchthat AcCcB=Aor BecCc A # B.

THEOREM. Let A4 and B be two Whitney levels. . Suppose that no ..

element is SG(X) v F1(X) is pléce-é‘,:-i-aetween .4 and B.-'Then 4 ':‘ar_ﬁd B

are’ homeomorphic. B S ' L B

PROOF. Set 2 = u'(t) and B = v'(s) where u, v : C(X) — R are

Whitney maps and t, s e [0,1]. Let A € 4 - B, we will prove that
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there exists a unique r € R such that v(F(A,r)) = s. If v(A) < s,

taking an order arc from A to X (see [8 , ], there exists

Bo € B such that A ¢ Bo # A, then A ¢ SG(X) v Fi1(X). Therefore

A e CV(X). Let D = %}lgw F(A,n). Then D is a subgraph of X which

contains A. If v(D) = s, there exists B e€ B such that D ¢ B. Then

U(A) < u'(B) and A ¢ D ¢ B # A which contradicts our assumption.
Thus v(D) > s. Then vu(F(A,0)) = U(A) < s = %_i_lgw v(F(A,n)). This
proves the existence of r in this case. The case u(A) > s is

similar. In both cases r is unique by property I.

Analogously, for each B € B - A4, B € CV(X) and there exists a

Zz € R such that u(G(B,z)) = t.

Define ¥y : 2 — B by y(A) = A if A e 4 n B and y(A) = F(A,r) € B

if A€ 4 -~ B.

Note that A ¢ y(A) or ¥(A) ¢ A. To prove that y is surjective, 1let
B e€B. If Be 4, then B = y(B). If B € B - 4, let z € R be such
that u(G(B,z)) = t. Then F(G(B,z),z) = B and G(B,z) € A. Thus
7(G(B,2)) = B. Hence 7 1is surjective. To prove that 7 is
injective, let Ai, Az € A with A1 # A2. If A1, A2 € B, then 7 (At)
= A1 # A2 = y(A2). If A1 € B and A2 ¢ B, then A2 c y(A2) # A2 or
¥(A2) ¢ Az # y(A2), so ¥(A2) ¢ A, and 7 (A2) * A1 = Y(A1). If
A1, A2 ¢ B, since A1 - Az * @ and Az - A1 # @, property 1V,
implies that F(A:1,r1) =# F(Az2,r2) for every ri, rz e R. Hence

7 (A1) # y(A2). Therefore 7 is injective.
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Finally, we will prove that y is continuous. It is enough to prove

that if (An)n is a sequence -in -4 which converges to an element

‘A € A and 7(An) — B € B, then ¥(A) = B. We may suppose that

An € B for each n or An ¢ B for each n. The first case is
immediate. In the second case, set 'ar(An) = F(Ah’rn)' We consider
two subcases: (a) A € 4 - B, set ¥(A) = F(A,r}). We suppose, for
example that r = r, for each n. Then F(An,r) C F(An,rn) = V(An),
then ar(A). = F(A,r) :%Em F(A ,r) < %Eﬂm 7(An) = B. Since y(a),

B € B, we have that 7(a) = B. (b) A € B. Since A, < 7(An) or

A’I(An). < An' for every n, them A ¢ B or B c A and A, B € B. Thus A =

"7 B. This completes the proof that 7 is continuous.

Therefore y is a homeomorphism.

PROOF OF THEOREM 2. Let € = { 4 ¢ C(X) : 4 is a Whitney level for

C(X), 4 # F1(X) and 4 = {X} }. Let P = { E : E ¢ SG(X) }. Then-D

is finite.

Define ¢ : @ — P x P x P by: ‘ . S
o(4) = ({ E e S6(X) : there exists A € A such that E ¢ A-# E },
S5G(X) n 4, { E € SG(X) : there exists A € 4 such that A c E # A }).

In order to prove Theorem 2, it is enough to show that if.~o_'r(A’)'~~f=—--_A-~_~:;

o(B), then A is homeomorphic to B.

Suppose then that ¢(4) = o(B). By the previous theorem, it is

enough to prove that no element in SG(X) is placed between A andg T

Suppose, for example, that there exist A e 2, ‘B eB and Eo € 3G (X) .
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such that A ¢ Eo ¢ B # A. If A = Eo, then Eo € SG(X) n A

SG(X) n B ¢ B, so Eo, B € B and Eo ¢ B # Eo which is a

contradiction. If A # Eo, F(4) = F(B) implies that there exists

Bt € B such that Br1 ¢ Eo # Bi. Thus B:1 ¢ B # B1 which is also a

contradiction.

Therefore A is homeomorphic to B.
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