117 Whitney blocks in the hyperspace of a finite graph

Alejandro Illanes

(CIMAT/MB) Tech. Rept. I-92-6

117

j

2011년 11년 11년

Received: July 15, 1992 Approved: August 28, 1992

WHITNEY BLOCKS IN THE HYPERSPACE OF A FINITE GRAPH.¹

Alejandro Illanes

ABSTRACT. Let X be a finite graph. Let C(X) be the hyperspace of all nonempty subcontinua of X and let μ : $C(X) \rightarrow \mathbb{R}$ be a Whitney map. We prove that there exist numbers $0 < T_0 < T_1 < T_2 < \ldots < T_M$ $= \mu(X)$ such that if $T \in (T_{1-1},T_1)$, then the Whitney block $\mu^{-1}(T_{1-1},T_1)$ is homeomorphic to the product $\mu^{-1}(T) \times (T_{1-1},T_1)$. We also show that there exist only a finite number of topologically different Whitney levels for C(X).

AMS (MOS) Subj. Class.: 54B20

Keywords: Hyperspaces, Whitney levels, Whitney blocks, Finite graphs.

INTRODUCTION. Throughout this paper X denotes a finite graph, i.e., a compact connected metric space which is the union of finitely many segments joined by their end points. A *segment* of X is one of those segments. A *subgraph* of X is a graph contained in X formed by some of those segments. Let $SG(X) = \{A \in X : A \text{ is a} \}$ subgraph of X }.

1

This paper was partially supported by COMACYT, 1085-E9201, MEXICO.

The hyperspace of subcontinua of X is $C(X) = \{A \in X : A \text{ is a} nonempty, closed connected subset of X \} metrized with the Hausdorff metric. Let <math>F_1(X) = \{\{x\} \in C(X) : x \in X\}$. A map is a continuous function. A Whitney map for C(X) (see [8, 0.50]) is a map μ : $C(X) \longrightarrow \mathbb{R}$ such that $\mu(\{x\}) = 0$ for every $x \in X$, $\mu(A) < \mu(B)$ if $A \subset B \neq A$ and $\mu(X) = 1$. A Whitney level is a set of the form $\mu^{-1}(t)$, where $t \in [0,1]$. A Whitney block is a set of the form $\mu^{-1}(t,s)$, where $0 \le t < s \le 1$. From now on, μ will denote a Whitney map for C(X).

In [1], R. Duda made a detailed study of the polyhedral structure of C(X) by giving a good decomposition of C(X) into balls. In [2], he gave a charaterization of those polyhedra which are hyperspaces of acyclic finite graphs.

Whitney levels of finite graphs have been studied by H. Kato. In [4] he showed that they are always poyhedra and that if $t_0 =$ min { $\mu(A)$: A is a simple closed curve contained in X } and $0 \le t < t_0$, then $\mu^{-1}(t)$ is homotopically equivalent to X. In [4] and [6] he gave bounds for the fundamental dimension of Whitney levels of finite graphs and, in [5] he proved that Whitney levels of finite graphs admit all homotopy types of compact connected ANRs.

This paper was motivated by the following result of I. Puga [10, Thm. 2.5]): "There exists t \in [0,1) and there exists a homeomorphism φ : (Cone over $\mu^{-1}(t)$) $\longrightarrow \mu^{-1}([t,1])$ such that

 $\varphi(A,0) = A$, $\varphi(A,1) = X$ and s < t implies that $\varphi(A,s) < \varphi(A,t)$ for each $A \in \mu^{-1}(t)$ ". She expressed this property by saying that the hyperspace of subcontinua of a finite graph is conical pointed.

In this paper, we prove:

THEOREM 1. Suppose that $\mu(SG(X)) \cup \{0\} = \{T_0, T_1, \ldots, T_M\}$, where $0 = T_0 < T_1 < \ldots < T_M = 1$. If $1 \le i \le M$ and $T \in (T_{i-1}, T_i)$, then there exists a homeomorphism $\varphi : \mu^{-1}(T) \times (T_{i-1}, T_i) \longrightarrow \mu^{-1}(T_{i-1}, T_i)$ such that $\varphi(A,T) = A$ and $\varphi(A,S) < \varphi(A,t)$ if s < t for every $A \in \mu^{-1}(T)$ and, for each $t \in (T_{i-1}, T_i), \ \varphi|\mu^{-1}(T) \times \{t\}$ is a homeomorphism from $\mu^{-1}(T) \times \{t\}$ onto $\mu^{-1}(t)$.

THEOREM 2. There are only a finite number of topologically different Whitney levels for C(X).

1. PRELIMINARIES.

The vertices of X are the end points of the segments of X. Notice that the set SG(X) of subgraphs of X depends on the choice of the segments. We are interested in having as less subgraphs as possible, so we will suppose that X is not a simple closed curve and each vertex of X is either an end point of X or a ramification point of X. With this restriction two extremes of a segment of X may coincide and then such a "segment" would be a simple closed curve. The set of segments of X is denoted by S. For each $J \in S$, we fix an orientation and then we identify J with a closed

interval $[(-1)_J, (1)_J]$. Notice that, it is possible that $(-1)_J = (1)_J$. We write -1 (resp. 1) instead of $(-1)_J$ (resp. (1)_J) if no confusion arrives.

n order to define the map φ in Theorem 1, we will describe its action in each $J \in S$. For each $A \in \mu^{-1}(T)$, we consider $A \cap J$ and we enlarge or shrink this set. To illustrate how the shrinking of A \cap J must be defined, let us consider the following diagram:

DIAGRAM

Since A1, A2 and A3 are very close, A2 \cap J can not be shrinked and the shrinking of A1 \cap J and A3 \cap J must be almost imperceptible compared with the shrinking of A1 \cap L and A3 \cap L.

2. AUXILIARY MAPS.

Consider the map $f : (-1,1) \to \mathbb{R}$ given by $f(t) = tg(t\pi/2)$ and let $g : \mathbb{R} \to (-1,1)$ be the inverse map of f. Then f(-t) = -f(t) for every $t \in (-1,1)$, g(-s) = -g(s) for every $s \in \mathbb{R}$ and -g is the inverse map of -f. Define $C^{\vee}(X) = C(X) - (SG(X) \cup F_1(X))$.

•

Define F : $C^{\vee}(X) \times \mathbb{R} \longrightarrow C^{\vee}(X)$ by $F(A,t) = \bigcup \{ F_J(A,t) : J \in S \}$, where $F_J : C^{\vee}(X) \times \mathbb{R} \longrightarrow \{ E : E \text{ is}$ a closed subset of J } is defined as follows:

	(a) $A \cap J$ if $A \cap J = \emptyset$, $\{-1\}$, $\{1\}$, $\{-1,1\}$ or J ,
	(b) $[-1,g(f(b)+t)]$ if $A \cap J = [-1,b]$ and $-1 < b < 1$,
	(c) $[g(f(a)-t),1]$ if $A \cap J = [a,1]$ and $-1 < a < 1$,
	(d) $[a+e(m-a),b+e(m-b)]$, where $m = \frac{a+b}{2+a-b}$ and
$F_J(A,t) = \langle$	$e = 1 + \frac{1 + g(f(b-a-1) + t)}{a-b} \text{if } A \cap J = [a,b] \text{ and}$
•	-1 < a < b < 1 and,
	(e) $[-1,a+e(m-a)] \cup [b+e(m-b),1]$, where $m = \frac{a+b}{2+a-b}$ and
	$e = 1 + \frac{1 + g(f(b-a-1)-t)}{a-b}$ if $A \cap J = [-1,a] \cup [b,1]$,
	$-1 \le a < b \le 1$ and $-1 < a$ or $b < 1$.

In case (e), $a(1 + a) \leq b(1 + a)$ and $a(1 - b) \leq b(1 - b)$, then $2a + a^2 - ab \leq a + b \leq 2b + ab - b^2$, so $a \leq m \leq b$, where a < m or b < m. Notice that e is a strictly increasing function of t. If $t \rightarrow \infty$, $e \rightarrow 1$, $a + e(m - a) \rightarrow m$ and $b + e(m - b) \rightarrow m$. If $t \rightarrow -\infty$, $e \rightarrow 1 + \frac{2}{a - b}$, $a + e(m - a) \rightarrow -1$ and $b + e(m - b) \rightarrow 1$. Thus $F_J(A,t)$ is a proper subset of J, $\{-1,1\} \in F_J(A,t) \neq \{-1,1\}$; if t < s, then $F_J(A,t) \subset F_J(A,s) \neq F_J(A,t)$, $F_J(A,t) \rightarrow J$ as $t \rightarrow \infty$ and $F_J(A,t) \rightarrow \{-1,1\}$ as $t \rightarrow -\infty$.

Similarly, in case (d), $F_J(A,t)$ is a proper subset of J, -1, 1 \notin F_J(A,t), m \in F_J(A,t); if t < s, then F_J(A,t) c F_J(A,s) \neq F_J(A,t), F_J(A,t) \rightarrow J as t $\rightarrow \infty$ and F_J(A,t) \rightarrow {m} as t $\rightarrow -\infty$.

A CARLES SALVES

In all the cases, if $A \cap J$ is a nonempty proper subset of J, then $F_J(A,t)$ is a nonempty proper subset of J. Moreover, -1 (resp. 1) belongs to A if and only if -1 (resp. 1) belongs to $F_J(A,t)$. It follows that, for each t, a vertex p of X belongs to A if and only if p belongs to F(A,t) and $F(A,t) \in C^V(X)$. Therefore F is well defined.

We will need the following properties of function F:

I. If t < s, then $F(A,t) < F(A,s) \neq F(A,t)$. It follows from the fact that in cases (b), (c), (d) and (e), if t < s, then $F_J(A,t) < F_J(A,s) \neq F_J(A,t)$.

II. For a fixed $A \in C^{\vee}(X)$, if $t \to -\infty$, F(A,t) tends to a one-point set or to a subgraph of X which is contained in A and, if $t \to \infty$, then F(A,t) tends to a subgraph of X which contains A.

III. F is continuous.

Let $((A_n, t_n))n$ be a sequence in $C^{\vee}(X) \times \mathbb{R}$ which converges to an element (A, t) in $C^{\vee}(X) \times \mathbb{R}$. We may suppose that if $J \in S$ and $A \cap J = \emptyset$, then $A_n \cap J = \emptyset$ for every n. Let $S^* = \{ J \in S : A \cap J \neq \emptyset \}$. Since F(A, t) has no isolated points, if we can find a finite set E such that $F(A_n, t_n) \cup E \longrightarrow F(A, t)$, then we will have that $F(A_n, t_n) \longrightarrow F(A, t)$. In order to find such a set E, it is enough to show that, for each $J \in S^*$, there exists a finite set EJ such that $F_J(A_n, t_n) \cup E_J \longrightarrow F_J(A, t)$. Then take $J \in S^*$. Here it is necessary to consider the following cases: 1. $A \cap J = J$,

2. $A \cap J = [-1,b]$ with -1 < b < 1,

3. $A \cap J = [a, 1]$ with -1 < a < 1,

4. $A \cap J = [a,b]$ with -1 < a < b < 1,

5. A \cap J = [-1,a] \cup [b,1] with -1 < a < b < 1,

6. $A \cap J = [-1, a] \cup \{1\}$ with -1 < a < 1,

7.
$$A \cap J = \{-1\} \cup [a,1] \text{ with } -1 < a < 1,$$

8. $A \cap J = \{-1\},\$

9. $A \cap J = \{1\}$ and,

10. $A \cap J = \{-1, 1\}$.

We only check cases 1. and 6. the others are similar. For case 1., the sequence $(A_n)n$ can be particulated into subsequences $(B_k)k$ where each $(B_k)k$ lies in one of the following subcases:

(a)
$$B_k \cap J = J$$
. Then $F_J(B_k, t_{n_k}) = J \rightarrow F_J(A, t)$.
(b) $B_k \cap J = [-1, b_k]$ with $-1 < b_k < 1$. Since $B_k \rightarrow A$, $b_k \rightarrow 1$,
then $F_J(B_k, t_{n_k}) = [-1, g(f(b_k) + t_{n_k})] \rightarrow [-1, 1] = F_J(A, t)$.
(c) $B \cap J = [a_k, 1]$ with $-1 < a_k < 1$. It is similar to (b).
(d) $B_k \cap J = [a_k, b_k]$ with $-1 < a_k < b_k < 1$. Then $a_k \rightarrow -1$ and
 $b_k \rightarrow 1$, so $e_k = 1 + [1 + g(f(b_k - a_k - 1) + t_{n_k})]/(a_k - b_k) \rightarrow 0$.
Thus $b_k + e_k(m_k - b_k) - (a_k + e_k(m_k - a_k)) = (b_k - a_k)(1 - e_k) \rightarrow$
2. Therefore $F_J(B_k, t_{n_k}) = [a_k + e_k(m_k - a_k)), b_k + e_k(m_k - b_k)] \rightarrow$
 $[-1,1] = F_J(A,t)$.
(e) $B_k \cap J = [-1, a_k] \cup [b_k, 1]$, with $-1 < a_k < b_k < 1$ and $-1 < a_k$
or $b_k < 1$. Then $b_k - a_k \rightarrow 0$. Thus $b_k + e_k(m_k - b_k) - (a_k + e_k(m_k - b_k)) = (a_k + e_k(m_k - b_k))$.

 $\begin{array}{l} -a_{k} \end{pmatrix} = (b_{k} - a_{k})(1 - e_{k}) = (b_{k} - a_{k})([1 + g(f(b_{k} - a_{k} - 1) + t_{n_{k}})]/(a_{k} - b_{k})) \longrightarrow 0. \ \text{Thus } F_{J}(B_{k}, t_{n_{k}}) \longrightarrow J = F_{J}(A, t). \end{array}$

Therefore $F_J(A_n, t_n) \rightarrow F_J(A,t)$.

In case 6., define $E_J = \{1\}$. Note that $F_J(A,t) = [-1,g(f(a) + t)] \cup \{1\}$. We must consider the following subcases:

(a) $B_k \cap J = [-1, b_k]$ with $-1 < b_k < 1$. Since $B \to A$, $b_k \to a$, then $F_J(B_k, t_{n_k}) \cup E_J = [-1, g(f(b_k) + t_{n_k})] \cup \{1\} \to [-1, g(f(a) + t] \cup \{1\} = F_J(A, t).$ (b) $B_k \cap J = [a_k, b_k]$ with $-1 < a_k < b_k < 1$. Then $a_k \to -1$ and $b_k \to a$. This implies that $m_k = (a_k + b_k)/(2 + a_k - b_k) \to -1$ and $e_k \to 1 + [1 + g(f(a) + t)]/(-1 - a)$. Thus $F_J(B_k, t_{n_k}) \cup E_J = [a_k + e_k(m_k - a_k)), b_k + e_k(m_k - b_k)] \cup E_J \to [-1, g(f(a) + t)] \cup \{1\} = F_J(A, t).$ (c) $B_k \cap J = [-1, a_k] \cup [b_k, 1]$, with $-1 \le a_k < b_k \le 1$ and $-1 < a_k$ or $b_k < 1$. Then $a_k \to a$, $b_k \to 1$, $m_k \to 1$ and $e_k \to (a - g(f(a) + t))/((a - 1))$. Thus $F_J(B_k, t_{n_k}) \cup E_J = [-1, (a_k + e_k(m_k - a_k))] \cup [b_k + e_k(m_k - a_k)] \cup E_J = [-1, (a_k + e_k(m_k - a_k)] \cup [b_k + e_k(m_k - a_k)] \cup E_J = [-1, (a_k + e_k(m_k - a_k)] \cup [b_k + e_k(m_k - b_k)] \cup E_J = [-1, (a_k + e_k(m_k - a_k)] \cup [b_k + e_k(m_k - b_k)] \cup E_J = [-1, (a_k + e_k(m_k - a_k)] \cup [b_k + e_k(m_k - b_k)] \cup E_J = [-1, (a_k + e_k(m_k - a_k)] \cup [b_k + e_k(m_k - b_k)] \cup E_J = [-1, (a_k + e_k(m_k - a_k)] \cup [b_k + e_k(m_k - b_k)] \cup E_J$

Hence $F_J(A_n, t_n) \cup E_J \longrightarrow F_J(A,t)$.

Therefore F is continuous.

From (1) and (2), $(1 - e) = (1 - e_1)a_1 = (1 - e_1)b_1 - (1 - e_1)b_1$, then $(1 - e)(a - b) = (1 - e_1)(a_1 - b_1) \dots (4)$. Using (3) we have, $s + f(b - a - 1) = t + f(b_1 - a_1 - 1) \dots (5)$.

Let $r = 1 + g(f(b - a - 1) - t) = 1 + g(f(b_1 - a_1 - 1) - s) > 0$. Then e = 1 + r/(a - b) and $e_1 = 1 + r/(a_1 - b_1)$. So, (1) and (2) imply: $m + r(m - a)/(a - b) = m_1 + r(m_1 - a_1)/(a_1 - b_1)$ and $m + r(m - b)/(a - b) = m_1 + r(m_1 - b_1)/(a_1 - b_1)$. Using definitions of m and m_1 , $m - r(1 + a)/(2 + a - b) = m_1 - r(1 + a_1)/(2 + a_1 - b_1)$ and $m + r(1 - b)/(2 + a - b) = m_1 + r(1 - b_1)/(2 + a_1 - b_1)$... (6). Then $m - m_1 = r[(1 + a)/(2 + a - b) - (1 + a_1)/(2 + a_1 - b_1)]$. Hence $m - m_1 = r(a - a_1 + b - b_1 - a_{b_1} + b_{a_1})/(2 + a - b)(2 + a_1 - b_1)$. Since r < 2, $(a - a_1 + b - b_1 - a_{b_1} + b_{a_1})/(2 + a - b)(2 + a_1 - b_1)$. Since r < 2, $(a - a_1 + b - b_1 - a_{b_1} + b_{a_1})/(2 + a - b)(2 + a_1 - b_1)$.

From (6) we have, $(1 + a)/(2 + a - b) = (1 + a_1)/(2 + a_1 - b_1)$ and $(1 - b)/(2 + a - b) = (1 - b_1)/(2 + a_1 - b_1)$.

Since $p \in (A \cap J) - (B \cap J)$, then $a_1 < a$ or $b < b_1$. In the first case, $1 + a_1 < 1 + a$, so $2 + a - b > 2 + a_1 - b_1$ and $f(b - a - 1) < f(b_1 - a_1 - 1)$, then (5) implies t < s. Analogously, in the second case, t < s.

(e) $A \cap J = [a,b]$ with -1 < a < b < 1. This case is similar to case (d). Then t < s.

From (1) and (2), $(1 - e) = (1 - e_1)a_1 = (1 - e_1)b_1 - (1 - e_1)b_1$, then $(1 - e)(a - b) = (1 - e_1)(a_1 - b_1) \dots (4)$. Using (3) we have, $s + f(b - a - 1) = t + f(b_1 - a_1 - 1) \dots (5)$.

.,******

19. A 18.

Let r = 1 + q(f(b - a - 1) - t) = 1 + q(f(b1 - a1 - 1) - s) > 0. Then e = 1 + r/(a - b) and $e_1 = 1 + r/(a_1 - b_1)$. So, (1) and (2) imply: $m + r(m - a)/(a - b) = m_1 + r(m_1 - a_1)/(a_1 - b_1)$ and $m + r(m - b)/(a - b) = m_1 + r(m_1 - b_1)/(a_1 - b_1)$. Using definitions of m and m_1, $m - r(1 + a)/(2 + a - b) = m_1 - r(1 + a_1)/(2 + a_1 - b_1)$ and $m + r(1 - b)/(2 + a - b) = m_1 + r(1 - b_1)/(2 + a_1 - b_1)$. (6). Then $m - m_1 = r[(1 + a)/(2 + a - b) - (1 + a_1)/(2 + a_1 + b_1)]$. Hence $m - m_1 = r(a - a_1 + b - b_1 - a_{b_1} + b_{a_1})/(2 + a - b)(2 + a_1 - b_1)$.

Gince r < 2, $(a - a_1 + b - b_1 - ab_1 + ba_1)/(2 + a - b)(2 + a_1 - b_1) = 0$. Therefore $m = m_1$.

From (6) we have, (1 + a)/(2 + a - b) = (1 + ai)/(2 + ai - bi)and (1 - b)/(2 + a - b) = (1 - bi)/(2 + ai - bi).

Since $p \in (A \cap J) - (B \cap J)$, then $a_1 < a$ or $b < b_1$. In the first case, $1 + a_1 < 1 + a$, so $2 + a - b > 2 + a_1 - b_1$ and $f(b - a - 1) < f(b_1 - a_1 - 1)$, then (5) implies t < s. Analogously, in the second case, t < s.

(e) $A \cap J = [a,b]$ with -1 < a < b < 1. This case is similar to case (d). Then t < s.

This completes the proof of property IV.

Define G : $C^{\vee}(X) \times \mathbb{R} \longrightarrow C^{\vee}(X)$ by G(B,t) = U { G_J(B,t) : J $\in S$ }, where G_J : $C^{\vee}(X) \times \mathbb{R} \longrightarrow$ { E : E is a closed subset of J } is defined as follows:

$$(a) \quad B \cap J \qquad \text{if } B \cap J = \emptyset, \{-1\}, \{1\}, \{-1,1\} \text{ or } J, \\(b) \quad [-1,g(f(b)-t)] \qquad \text{if } B \cap J = [-1,b] \text{ and } -1 < b < 1, \\(c) \quad [g(f(a)+t),1] \qquad \text{if } B \cap J = [a,1] \text{ and } -1 < a < 1, \\(d) \quad [(a-e'm)/(1-e'), (b-e'm)/(1-e')], \quad \text{where } m = \frac{a+b}{2+a-b} \\\text{and } e' = 1 + \frac{b-a}{-1+g(t-f(b-a-1))} \qquad \text{if } B \cap J = [a,b] \text{ and} \\-1 < a < b < 1 \text{ and}, \\(e) \quad [-1, (a-e'm)/(1-e')] \cup [(b-e'm)/(1-e'),1], \text{ where} \\m = \frac{a+b}{2+a-b} \text{ and } e' = 1 + \frac{b-a}{-1+g(-t-f(b-a-1))} \qquad \text{if } B \cap J = \\[-1,a] \cup [b,1], \ -1 \le a < b \le 1 \text{ and } -1 < a \text{ or } b < 1.$$

In case (e), let $a_1 = (a - e'm)/(1 - e')$ and $b_1 = (b - e'm)/(1 - e')$, then $a_1 < b_1$. Note that e' is an increasing continuous function of t. If $t \rightarrow \infty$, $e' \rightarrow (2 + a - b)/2$, if $t \rightarrow -\infty$, $e' \rightarrow -\infty$. Then e' < (2 + a - b)/2 for every $t \in \mathbb{R}$. Thus $e'(1 + m) = e'2(1 + a)/(2 + a - b) \le 1 + a$ and $e'(1 - m) = e'2(1 - b)/(2 + a - b) \le 1 - b$. This implies that $-1 \le (a - e'm)/(1 - e') = a_1$ (equality holds if and only if -1 = a) and $b_1 = (b - e'm)/(1 - e') \le 1$ (equality holds if and only if b = 1). If $t \rightarrow \infty$, $a_1 \rightarrow -1$ and $b_1 \rightarrow 1$. If $t \rightarrow -\infty$, $a_1 \rightarrow m$ and $b_1 \rightarrow m$. Since a + b - 2e'm = m(2 + a - b - 2e'), $m = (a - e'm + b - e'm)/(2(1 - e') + a - b) = (a_1 + b_1)/(2 + a_1 - b_1)$. Therefore $m = \frac{a_1 + b_1}{2 + a_1 - b_1}$. Define $e = 1 + b_1$ $\frac{1 + g(f(b_1 - a_1 - 1) + t)}{a_1 - b_1}$. Note that $b_1 - a_1 - 1 = (b - a - (1 - e'))/(1 - e') = -g(-t - f(b - a - 1))$. This implies that e = e'. Thus $a_1 + e(m - a_1) = a$ and $b_1 + e(m - b_1) = b$.

Therefore, $G_J(B,t)$ is a continuous function of t, $G_J(B,t) \rightarrow J$ as t $\rightarrow -\infty$, $G_J(B,t) \rightarrow \{-1,1\}$ as t $\rightarrow \infty$, $G_J(B,0) = B \cap J$ and supposing that $G(B,t) \in C^{\vee}(X)$, we have that $F_J(G(B,t),t) = [-1,a]$ $\cup [b,1] = B \cap J$ for every t $\in \mathbb{R}$.

The analysis of cases (a), (b), (c) and (d) is similar and we conclude that $G(B,t) \in C^{\vee}(X)$ for each $t \in \mathbb{R}$, $F_J(G(B,t),t) = B \cap J$ for every $t \in \mathbb{R}$, then F(G(B,t),t) = B for every $t \in \mathbb{R}$, G(B,t) depends continuously on t, G(B,t) tends to a one-point set or to a subgraph of X which is contained in B as $t \to \infty$ and G(B,t) tends to a subgraph of X which contains B as $t \to -\infty$.

3. PROOF OF THEOREM 1.

Define $A = \mu^{-1}(T) \in C^{\vee}(X)$ and $B = \mu^{-1}(T_{1-1},T_1)$ For each $A \in A$, let $r(A) = \inf \{ t \in \mathbb{R} : F(A,t) \in B \}$ and $R(A) = \sup \{ t \in \mathbb{R} : F(A,t) \in B \}$. Since $F_J(A,0) = A \cap J$ for every $J \in S$, we have that $F(A,0) = A \in B$ for each $A \in A$. Then r(A) and R(A) are defined and $-\infty \leq r(A) < 0 < R(A) \leq \infty$. Let $C = \{ (A,t) \in A \times \mathbb{R} : r(A) < t < R(A) \}$. We will prove that the function $F_0 = F|C$ is a homeomorphism from C onto B.

Property I. implies that $F_0(A,t) \in B$ for every $(A,t) \in C$. In order to prove that Fo is injective, suppose that Fo(A,t) = $F_{\circ}(B,s)$. If $A \neq B$, since $\mu(A) = \mu(B)$, then $A - B \neq \emptyset$ and $B - A \neq \emptyset$ ø. Property IV. implies that t < s and s < t. This contradiction implies that A = B. Thus, by property I., (A,t) = (B,s). Therefore F_{\circ} is injective. To prove that F_{\circ} is onto, let $B \in B \subset C^{\vee}(X)$. Since G(B,t) tends to a one-point set or to a subgraph of X which is contained in B t $\rightarrow \infty$ and G(B,t) tends to a subgraph of X which contains В as $t \rightarrow -\infty$, Then $\lim_{t \to \infty} \mu(G(B,t)) \leq$ T_{i-1} and $\lim_{t \to \infty} \mu(G(B,t)) \ge T_i$. Thus there exists $t \in \mathbb{R}$ such that A = G(B,t) ϵ A. The continuity of F implies that r(A) < t < R(A). Then $F_{\circ}(A,t) = B$. Therefore F_{\circ} is surjective.

Let $K : B \to C$ be the inverse function of Fo. We will show that K is continuous. It is enough to prove that if $(B_n)n$ is a sequence in B which is convergent to an element $B \in B$ and the sequence $(K(B_n))n$ converges to an element $(Ao, to) \in A \times [-\infty, \infty]$, then (Ao, to) = K(B).

Let (A,t) = K(B) and, for each n, let $(A_n,t_n) = K(B_n)$. Then $(A_n,t_n) \rightarrow (A_0,t_0)$. If $r(A_0) < t_0 < R(A_0)$, then $F_0(A,t) = B =$ $\lim_{n \to \infty} B_n = \lim_{n \to \infty} F_0(A_n,t_n) = F_0(A_0,t_0)$, so $(A_0,t_0) = K(B)$. If $t_0 \leq r(A_0)$, take a number $t^* > r(A_0)$. Then there exists N such that $t_n =$ $< t^*$ for each $n \geq N$. Then $B_n \subset F(A_n,t_n) \subset F(A_n,t^*)$ for each $n \geq N$. Thus $B \subset F(A_0,t^*)$ for every $t^* > r(A_0)$. If $r(A_0) > -\infty$, then $B \subset F(A_0,r(A_0)) \subset F(A_0,0) = A_0$. Thus $T_{1-1} < \mu(B) \leq \mu(F(A_0,r(A_0))) \leq \mu(A_0) < T_1$. Then there exists $r < r(A_0)$ such that $T_{1-1} <$

 $\mu(F(A_{\circ},r)) < T_{1}$ which is a contradiction with the definition of $r(A_{\circ})$. If $r(A_{\circ}) = -\infty$, then B $\subset \lim_{n \to \infty} F(A_{\circ}, -n)$ which is a subgraph of X or a one point-set contained in A₀. Thus $\mu(B) \leq T_{1-1}$ which is a contradiction. Similar contradictions are obtained supposing that $t_{\circ} \geq R(A_{\circ})$. This completes the proof that $(A_{\circ}, t_{\circ}) = K(B)$. Therefore K is continuous.

Hence F is a homeomorphism.

In order to define φ , Let $\rho_1 : A \times \mathbb{R} \longrightarrow A$ and $\rho_2 : A \times \mathbb{R} \longrightarrow \mathbb{R}$ be the respective projection maps. Define $\psi : B \longrightarrow A \times (T_{1-1}, T_1)$ by $\psi(B) = (\rho_1(\mathbb{R}(B)), \mu(B))$. Then ψ is continuous.

Let $(A,t) \in A \times (T_{1-1},T_{1})$. Since F(A,n) converges to a subgraph of X which contains A, then $\lim_{n \to \infty} \mu(F(A,n)) \ge T_{1}$. Thus there exists ni > 1 such that $\mu(F(A,n_{1})) > t$. Similarly, there exists $n_{2} > 1$ such that $\mu(F(A,-m_{2})) < t$. Hence there exists a unique s $\in \mathbb{R}$ such that $\mu(F(A,s)) = t$. Define $\varphi(A,t) = F(A,s)$.

Property I. implies that if $t_1 < t_2$, then $\varphi(A, t_1) \subset \varphi(A, t_2)$. Note that $\psi(\varphi(A, t)) = \psi(F(A, s)) = (A, t)$. Since $\mu(F(\rho_1(K(B)), \rho_2(K(B))) =$ $\mu(B)$, then $\varphi(\psi(B)) = \varphi((\rho_1(K(B)), \rho_2(K(B)))) = F(K(B)) = B$. Then ψ is the inverse map of φ . Since $\mu(F(A, 0)) = \mu(A) = T$, then $\varphi(A, T) =$ A for every $A \in A$.

To prove that φ is continuous, it is enough to prove that If $((A_n, t_n))n$ is a sequence in $A \times (T_{1-1}, T_1)$ which converges to an

element (A,t) in $A \times (T_{i-1},T_i)$ and $\varphi(A_n,t_n)$ converges to an element B \in C(X), then B = $\varphi(A,t)$. Set $\varphi(A_n,t_n) = F(A_n,s_n)$, where $\mu(F(A_n,s_n)) = t_n$ and set $\varphi(A,t) = F(A,s)$ where $\mu(F(A,s)) = t$. Then $t_n = \mu(\varphi(A_n,t_n)) \rightarrow \mu(B)$, so $\mu(B) = t \in (T_{i-1},T_i)$. Thus B \in B. Set $K(B) = (A^*,r)$. Then $(A^*,r) = \lim_{n \to \infty} K(\varphi(A_n,t_n)) = \lim_{n \to \infty} K(F(A_n,s_n)) =$ $\lim_{n \to \infty} (A_n,s_n)$. Thus $A_n \rightarrow A^*$ and $s_n \rightarrow r$. Hence $A^* = A$. Since $t_n =$ $\mu(F(A_n,s_n)) \rightarrow \mu(F(A,r))$, then $t = \mu(F(A,r))$. Hence B = $\varphi(A,t)$. This completes the proof that φ is a homeomorphism and the proof of theorem 1.

COROLLARY. ([10, Thm. 2.5]) C(X) is conical pointed. That is, for each Whitney map μ : C(X) $\rightarrow \mathbb{R}$ there exists T \in (0,1) such that $\mu^{-1}([T,1])$ is homeomorphic to the topological cone of $\mu^{-1}(T)$.

3. PROOF OF THEOREM 2.

DEFINITION. Let A and B be two Whitney levels for C(X) and let $C \in C(X)$. We say that C *is placed between A and B* if there exists $A \in A$ and $B \in B$ such that $A \subset C \subset B \neq A$ or $B \subset C \subset A \neq B$.

THEOREM. Let A and B be two Whitney levels. Suppose that no element is SG(X) \cup F1(X) is placed between A and B. Then A and B are homeomorphic.

PROOF. Set $A = \mu^{-1}(t)$ and $B = \upsilon^{-1}(s)$ where μ , υ : $C(X) \rightarrow \mathbb{R}$ are Whitney maps and t, $s \in [0,1]$. Let $A \in A - B$, we will prove that there exists a unique $r \in \mathbb{R}$ such that v(F(A,r)) = s. If v(A) < s, taking an order arc from A to X (see [8,], there exists $B_0 \in B$ such that A c $B_0 \neq A$, then A $\notin SG(X) \cup F_1(X)$. Therefore $A \in C^V(X)$. Let $D = \lim_{n \to \infty} F(A,n)$. Then D is a subgraph of X which contains A. If $v(D) \leq s$, there exists $B \in B$ such that D c B. Then v(A) < v(B) and A c D c B \neq A which contradicts our assumption. Thus v(D) > s. Then $v(F(A,0)) = v(A) < s = \lim_{n \to \infty} v(F(A,n))$. This proves the existence of r in this case. The case v(A) > s is similar. In both cases r is unique by property I.

Analogously, for each $B \in B - A$, $B \in C^{\vee}(X)$ and there exists a $z \in \mathbb{R}$ such that $\mu(G(B, z)) = t$.

Define $\gamma : A \longrightarrow B$ by $\gamma(A) = A$ if $A \in A \cap B$ and $\gamma(A) = F(A,r) \in B$ if $A \in A - B$.

Note that $A \subset \gamma(A)$ or $\gamma(A) \subset A$. To prove that γ is surjective, let $B \in B$. If $B \in A$, then $B = \gamma(B)$. If $B \in B - A$, let $z \in \mathbb{R}$ be such that $\mu(G(B,z)) = t$. Then F(G(B,z),z) = B and $G(B,z) \in A$. Thus $\gamma(G(B,z)) = B$. Hence γ is surjective. To prove that γ is injective, let A1, A2 $\in A$ with A1 \neq A2. If A1, A2 $\in B$, then $\gamma(A1)$ $= A_1 \neq A_2 = \gamma(A_2)$. If A1 $\in B$ and A2 $\notin B$, then A2 $\subset \gamma(A_2) \neq A_2$ or $\gamma(A_2) \subset A_2 \neq \gamma(A_2)$, so $\gamma(A_2) \notin A$, and $\gamma(A_2) \neq A_1 = \gamma(A_1)$. If A1, A2 $\notin B$, since A1 $- A_2 \neq \emptyset$ and A2 $- A_1 \neq \emptyset$, property IV. implies that $F(A_1, r_1) \neq F(A_2, r_2)$ for every r_1 , $r_2 \in \mathbb{R}$. Hence $\gamma(A_1) \neq \gamma(A_2)$. Therefore γ is injective.

Finally, we will prove that γ is continuous. It is enough to prove that if $(A_n)n$ is a sequence in -A which converges to an element $A \in A$ and $\gamma(A_n) \to B \in B$, then $\gamma(A) = B$. We may suppose that $A_n \in B$ for each n or $A_n \notin B$ for each n. The first case is immediate. In the second case, set $\gamma(A_n) = F(A_n, r_n)$. We consider two subcases: (a) $A \in A - B$, set $\gamma(A) = F(A, r)$. We suppose, for example that $r \leq r_n$ for each n. Then $F(A_n, r) \subset F(A_n, r_n) = \gamma(A_n)$, then $\gamma(A) = F(A, r) = \lim_{n \to \infty} F(A_n, r) \subset \lim_{n \to \infty} \gamma(A_n) = B$. Since $\gamma(A)$, $B \in B$, we have that $\gamma(A) = B$. (b) $A \in B$. Since $A_n \subset \gamma(A_n)$ or $\gamma(A_n) \subset A_n$ for every n, then $A \subset B$ or $B \subset A$ and A, $B \in B$. Thus A =B. This completes the proof that γ is continuous.

Therefore γ is a homeomorphism.

PROOF OF THEOREM 2. Let $\mathfrak{A} = \{ A \subset C(X) : A \text{ is a Whitney level for} C(X), A \neq F1(X) and A \neq \{X\} \}$. Let $\mathfrak{P} = \{ E : E \subset SG(X) \}$. Then \mathfrak{P} is finite.

Define $\sigma : \mathfrak{A} \longrightarrow \mathfrak{P} \times \mathfrak{P} \times \mathfrak{P}$ by:

 $\sigma(A) = (\{ E \in SG(X) : \text{there exists } A \in A \text{ such that } E \subset A \neq E \},$ $SG(X) \cap A, \{ E \in SG(X) : \text{there exists } A \in A \text{ such that } A \subset E \neq A \}).$ In order to prove Theorem 2, it is enough to show that if $\sigma(A) = -\sigma(B)$, then A is homeomorphic to B.

Suppose then that $\sigma(A) = \sigma(B)$. By the previous theorem, it is enough to prove that no element in SG(X) is placed between A and B. Suppose, for example, that there exist $A \in A$, $B \in B$ and $E_{\circ} \in 3G(X)$

such that $A \in E_0 \subset B \neq A$. If $A = E_0$, then $E_0 \in SG(X) \cap A = SG(X) \cap B \subset B$, so E_0 , $B \in B$ and $E_0 \subset B \neq E_0$ which is a contradiction. If $A \neq E_0$, F(A) = F(B) implies that there exists $B_1 \in B$ such that $B_1 \subset E_0 \neq B_1$. Thus $B_1 \subset B \neq B_1$ which is also a contradiction.

Therefore A is homeomorphic to B.

BIBLIOGRAPHY.

[1] R. Duda On the hyperspace of subcontinua of a finite graph, I. Fund. Math. 62 (1968) 265-286.

[2] R. Duda On the hyperspace of subcontinua of a finite graph, II. Fund. Math. 63 (1968) 225-255.

[3] R. Duda Correction to the paper "On the hyperspace of subcontinua of a finite graph, I". Fund. Math. 69 (1970) 207-211.

[4] H. Kato Whitney continua of curves Trans. Amer. Math. Soc. 300 (1987) 367-381.

[5] H. Kato Whitney continua of graphs admit all homotopy types of compact connected ANRs Fund. Math. 129 (1988) 161-166.

[6] H. Kato A note on fundamental dimensions of Whitney continua of graphs J. Math. Soc. Japan 41 (1989) 243-250.

[7] L. Montejano-Peimbert and I. Puga-Espinosa Shore points in dendroids and conical pointed hyperspaces To appear in Top. Appl.

[8] S. B. Nadler, Jr. Hyperspaces of sets Marcel Dekker (1978) New york and Basel.

[9] S. B. Nadler, Jr. Continua whose hyperspace is a product Fund. Math. 108 (1980) 49-66.

[10] I. Puga-Espinosa *Hiperespacios con punta de cono* Tesis doctoral, Facultad de Ciencias, Universidad Nacional Autónoma de México, (1989)

Centro de Investigación en Matemáticas, A. C. (CIMAT) Apdo. 402, Guanajuato 36000, Guanajuato, MEXICO

Permanent Address:

Universidad Nacional Autónoma de México, Instituto de Matemáticas, Circuito Exterior, Ciudad Universitaria, México, 04510, D. F. México.