
·-

' ' ·:· 1 

: 117 
Whitney blocks in the l . 

hyperspace of a finite graph 

Alejandro Illanes 

Tech. Rept. I-92-6 (CIMAT/MB) 
I 
I .. _...,. 
1 a a r 

Received: July 15, 1992 Approved: August 28, 1992 

··-----··------ ---- -·-----------·-·--- -----·-·· 





,_} 

HHITX.lEY BLOCKS IN THE HYPERSPACE OF A FINITE GR..~PH. 1 

Alejandro Illanes 

ABSTRACT. Let X be a finite graph. Let . C (X) be the hyperspa·.::e of 

all nonempty subcontinua of X and let g c (X) -7 IR be a W'hitney 

map. We prove that ·there exist numbers 0 < To < T1 < T2 < • • • -<:: TM 

= J.L (X) such that if T · e (T1-1 1 Ti) 1 then the Whitney block 

-1 -1 g (T1-1 1 T1) is homeomorphic to the product 11 (T) x (T1-1, Ti) . We 

also show that there exist only a finite number-· of topologi.::ally 

different W'hitney levels for c (X) . 

&~S (MOS) Subj. Class.: 54B20 

Keyrvords: Hyperspaces 1 Whitney levels 1 Whitney blocl<.s, Fin:.. te 

graphs. 

INTRODUCTION. Throughout this paper X denotes a finite gt:"aph, 

i.e. , a compact connected metric space -v;hich is the unicm of 

finitely many segments joined by their end points. A segment of X 

is one of those segments. A subgraph of X is a graph 'contain~d in • 

X formed by some of those segments. Let SG (X) = { A c X -: .. A is a 

subgraph of X } . 
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The hyperspace of subcontinua of X is c {X) = { A c X : A is a 

nonempty, ·closed connected subs.et· o;e X· } metrized with the 

Hausdorff metric. Let F1(X) = { {x} e C(X) x e X }. A map is a 

continuous function. A m1itney map for C(X) (see [8, 0.50]) is a 

map fJ. c (X) ~ lR such that J1 ({X}) = 0 for every x e X, 

~(A) < ~(B) if A c B ¢ A and J.i.(X) = 1. A Whitney level is a set of 

the form }l-
1 (t), where t e [0,1]. A Wl1itneyblock is a set o£ the 

-1 form ~ (t, s), where 0 :S t < s :S 1. From now on, J1 will den,:>te a 

Whitney map for C{X). 

In [1], R. Duda made a detailed study of the polyhedral structure 

of C(X) by giving a good decomposition of C{X) into balls. In [2], 

he gave a charaterization of those polyhedra which are hyperspaces 

of acyclic finite graphs. 

Whitney levels of finite graphs have been studied by H. Kato. In 

( 4] he showed that they are always poyhedra and that if to = 

min { 11 {A) : A is a simple closed curve contained in X ;. and 

0 :S t < to 1 

-1 then 11 (t) is homotopically·equivalent to X. In [4] 

and [6] he gave bounds for the fundamental dimension of Whitney 

levels of finite graphs ancl, in [5] he proved that Whitney levels 

of finite graphs admit all homotopy types of compact connected 

ANRs. 

This paper was motivated by the following result of I. Puga 

( 10, Thm. 2. 5]) : "There exists t e [ 0, 1) and there exists a 

homeomorphism ~ (Cone over 

,, ,. 

-1 
~ {[t,1]) such that 



~{A,O) =A, ~{A,l) =X and s < t implies that ~{A,s) c ~(A,t) for 

each A e 11-1 (t) ". She· ·expressed this property by saying that the 

hyperspace· of subcontinua of a finite graph is conical pointed. 

In this paper, we prove: 

THEOREH 1. Suppose that 11 ( SG (X)) u { 0} = {To, T1 1 • • • I TH}, where 

0 = To < T1 < ••• < TM = 1. If 1 :::: i :::: !vi and T e (T1-1,T1) 1 then 

there exists a homeomorphism 
. -1 -1 

~ : 11 (T) X (Ti-1,Ti) ---7 11 {Ti-1,Ti) 

such that q>(A,T) = A and ~(A,s) c ~(A,t) if s < t for every 

A E 11-1 (T) and, for each t E {Tl-t,Ti), ~ 111-
1 (T) X {t} is a 

homeomorphism -1 from 11 (T) X {t} 
.:..1 

onto 11 (t) . 

THEOREM 2. There are only a finite number of topologically 

different Whitney levels for C(X). 

1. PRELIMINARIES. 

The vertices of X are the end points of the·segments of X. Notice 

that the set.SG(X) of subgraphs of.X depends on the choice of the 

segments. We are interested in having as less subgraphs as 

possible, so we will suppose that X is not a simple ¢losed curve 

and each vertex of X is either an end point of X or a '·ramification . 

point of X. With this restriction two extremes of a segment of x. · 

may coinciQ.e and then such a "segment" would be a simple closed 

curve. The set of segments of X is denoted by s. For each J e s, 

we fix an orientation and then we identify J with a ·closed 
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interval [ (-1)J, (1)J]. Notice that, it is possible that (-1) J = 
. ' 

(1)J. We write -1 (resp. 1) instead 
I . 

of (-1)J (resp. ( 1) J) if no 

confusion arrives. 
I 

n order to define the map cp in ,Theorem 1, we will describe· its 

action in each J e S. For each A e IJ.-
1 (T) , we consider A n J and 

' 

we enlarge or shrink this set. Tol ilustrate how the shrinking of A 

n J must be defined, let us consider the following diagram: 

Since A1, Aa and A3 are very close, Aa " J can not be s{lrinked and . 

the shrinking of At' " J and A3 " J must be almost imperceptible 

compared with the shrinking of A1 n L and AJ n L. 

2. AUXILIARY MAPS. 

Consider the map f {-1,1) ---7 IR given by f(t) = tg(trr/2). and let 

g : IR ~ (-1,1) be the inverse map of f. Then f(-t) = -f(t) for 

every t e {-1, 1), g(-s) = -g(s) for every s e IR and -g in the 

inverse map of -f. Define Cv(X) = C(X) - (SG(X) v F1(X)). 
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Define F 

F(A,t) = U { FJ(A,t) 
v 

J e s } , where ·FJ : c (X) x IR ---7 { E E is 

a closed subset of J } is defined as follows: 

(a) 'An J if A n J = 0, {-1}, {1}, {-:1,1} or J, 

(b) [ -1, g ( f (b) +t) J if A n J = [-1,b] and -1 < b < 1, 

(c) [ g ( f (a) -t) , 1] if An J = [a,1] and -1 < a < 1, 

(d) [a+e(m-a),b+e(m-b)], where a+b and m = 2+a-b 

FJ (A, t} = e = 1+1+g(f(b-a-1)+t) if An J = [a,b] and a-b 

-1 < a < b < 1 and, 

a+b (e) [-1,a+e(m-a)] v [b+e(m-b),1], where m = 2+a-b and 

e = i+1+g(f(~=~-1 )-t) if An J = [-1,a] v [b,1], 

-1 -~ a < b ~ 1 and -1 < a or b < 1. 

In case _(e), ___ a(L._:t_a) .. ~ .. b(L.+ .... a) . and .. a(1 .- b) .... ::s b(l ~--b)-,---then ----------

2a + a 2 
- ab ::s a + b ::s_ 2b + ab - b2

, so a ::s m ::s b, where a < m or 

b < m. Notice that e is a strictly increasing function of t. If 

t ---7 ro, e ---71, a+ e(m·- a) ---7 m and b + e(m- b) ---7 m. If 

t ---7 -ro 1 

2 e ---7 1 + a _ b' a + e (m - a) ---7 ~1 and b + e (m - b) ·-7 1. 

Thus FJ(A,t) is a proper subset of J, {-1,1} c FJ(A,t) -'* {~1,1}; 

if t < s, then FJ(A,t) c FJ(A,s) * FJ(A,t), FJ(A,t) ---7 J as 
··~.-- .. 

-· ... , ''· -
,;. . ,....,. ... - -~- . 

Similarly I in case (d) f FJ (A, t) is a. :LJroper subset . of J I 

.. 

-1, 1 ~ FJ(A,t) 1 m e FJ(A,t); if t < s, then FJ(A,t) c FJ(A,s) '* 

FJ (A, t), FJ (A, t) -~ J as t ---7 ro and FJ (A, t) ---7 {m} as t ---7 -ro. 
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I 

In all the cases, if A f"l J is a nonempty:. proper-· subset of J, ·then 
I . . . 
I .• · • 

FJ {A, t) is a nonempty proper subf?et of J. Moreover, -1 (resp. 1) 
I 

belongs to A if and only if -1 (resp. · 1) belongs to FJ (A, t). It 

follows that, for each t, a vertex p of X belongs to A if and o.nly 

if p belongs to F{A,t) and F(A,t) e Cv(X). Therefore F is well 

defined. 

We will need the following properties of function F: 

I. If t < s, then F(A,t) c F{A,s) ¢ F{A,t). 

It follows from the fact that in cases (b), (c), (d) and (e), if.t 

< s , then F J (A, t) c F J (A, s) ¢ F J (A, t) • · 

II. For a fixed A e cv (X) , if t ~ -oo, F (A, t) tends to a 

one-point set or to a subgraph of X which is cbntained in A and, 

if t ~ oo, then F{A,t) tends to a subgraph of X which contains A • 

III. F is continuous. 

Let ((An, tn)) n be a sequence in cv (X) x IR which converges to an 

element {A,t) in Cv(X) x IR. We may suppose that if J e Sand An J 

= 0, then An f"l J = 0 for every n. Let S* = { J e S A f"l J ¢ 0 }. 

Since F(A,t) has no isolated points, if we can find a finite set E 

such that F(An,tn) v E ~ F(A,t), then we will have that 

F(An,tn) ~ F(A,t). In order to find such a set E, it is enough to 

show that, for each J e S*, there exists a finite set EJ such that 

FJ(An,tn) v EJ ~ FJ(A,t). Then take J e S*. Here it is necessary 

to consider the following cases: 



J 

1. A () J = J, 

2. A () J = (-1,b] vlith -1 < b < 1, 

3. A r. J = [a,1] vJith ~1 < a < 1, 

4. A r. J = [a,b] with -1 < a < b < J., 

5. i\. () J = [-1,a] v [b, 1 J with -1 < a < b < 1, 

6. A r. J = [-1,a] v {1} with -1 < a < 1, 

7. A r. J {-1} v (a,l] with -1 < a < 1, 

8. A () J = {-1}, 

9. A () J = {1} and, 

10. A r. J = {-1,1}. 

We only check cases 1. and 6. the others are similar. For case 1., 

·the sequsnce {An) n can be .partioned into. subsequences (B){)};: Hhere 

each (Bk)k lies in one of the following subcases: 

(a) B1_ r. J == J, Then F.'J(Bk,t ) = J ~ FJ{A,t). 
A nk 

(b) 

then FJ(Bk'·t ) = [-1,g(f(bk)+t ) ] ~ [-1,1] = FJ(A,t). 
nk nk 

(c) B r. J = [ak,1] with -1 < ak < 1. It is similar to (b). 

(d) Bk r. J = [ak,bk] with -1 < ak < bk < 1. Then ak ~ -1 and 

bk~ 1, so ek = 1 + [1 + g(f(bk - ak - 1) + tn _)]/ (ak -:- bk) ~ .0. 
k . 

Thus bk + ek(mk - bk) - (ak + ek(mk - ak)) = (bk - ak) (1 - ·ek) ---7 ·· 

2 •. Therefore FJ(Bk,tnk) = [ak + ek(mJ<. -· ak)) ,bk + ek(mk - bk)] -~ 

[-1,1] = FJ(A,-t). 

0 ,;. 1-, < 
.L .l.J}( 
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- ak)) = (bJc - ak) (1 - e1~) = (blc - ak) ( [.1 + g (f (bk - ak - 1) + 

t
11 

) ]/ (ak - bk)) ~ o. 'rhus F'J(B1 ,t ) ~ J = FJ(A,t). 
Jc , c nk 

Therefore FJ (A
11

, t
11

) ~ !PJ (A, t) • 

In case 6., define EJ = {1}. Note that FJ(A,t) = [-1,g(f(a) + t)] 

v {1}. We must consider the following subcases: 

(a) Bk 11 J = [-l,bk] with -1 < bk < 1. Since B ~ A, bk -7 a, 

then F J ( Bk, t ) v EJ = ( -1, g ( f ( b1 ) +t ) ] v { 1} -7 [ -1, g ( f (a) + t] 
nk c n1c 

v {1} = FJ{A,t). 

(b) Bk 11 J = [ak,bJ() with -1 < a1c < bJc < 1. Then ak -7 -.1 and 

bk-7 a. This implies that mk = (a1c + bk) I (2 + ak - bk) -7 -1 and 

ek ~ 1 + (1 + g(f(a) + t) ]/ (-1 - a). Thus FJ(Bk,t ) v EJ = 
nk 

[ale + e1c(m1c - a1c)) ,bk + ek(m1c - bk)] v EJ ~ [-1,g{f(a) + t)] v 

{1} = FJ(A,t). 

(c) Bk 11 J = [-1,ak] v [bk,1], with -1 ~ ak < bk ~ 1 and -1 < ak 

or bk < 1 ~ Then ak ~ a, bJt -7 1, m1c ~ 1 and e1c -7 (a - g ( f (a) + 

t))/(a- 1). Thus FJ(Bk,t) v EJ = (-l,{ak + e1c(rnk- a1c)] v 
nk . 

[ bk + ek ( m1c - bk) , 1 ] ~ [ -1 , g ( f (a) + t) ] v { 1} = F J (A, t) • 

Therefore F is continuous. 
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From (1) and (2), {1 - e) a - (1 - e1)a1 = (1 - e)b - (1 - e1)b1, 

then (1- e)(a- b)= (1- e1)(a1- b1) 
• F 

(4). Us1ng (3) we 

have, s + f (b - a - 1) = t + f (b1 - a1 - 1) ( 5) • 

Let r = 1 + g(f(b - a - 1) - t) = 1 + g(f(b1 - a1 - 1) - s) > O. 

Then e = 1 + rl(a- b) and e1 = 1 + rl(al- b1). So, (1) and (2) 

imply: in+ r(m- a)l(a- b)= m1 + r(m1- al)l(al- b1) and m + 

r(m- b)l(a- b) = m1 + r(m1- b1)l(a1- b1). Using definitions of 

m and m1 , m - r ( 1 + a) 1 ( 2 + a - b) = m1 - r ( 1 + at ) 1 ( 2 + at - bt) 

and m + r ( 1 - b) 1 ( 2 + a - b) = rot + r (1 ·- bt) I ( 2 + at - b1) •• ~ ( 6) • 

Then m - m1 = r [ ( 1 + a) I ( 2 + a - b) - ( 1 ·+ at) I ( 2 + a1 - bt) ] . . 

Hence m - rot = -r (a - a1 + b - bt - ab1 -+ bat) I ( 2 + a ... b) ( 2 + a1 -

bt). While, from definitions of m and rot, 

m - m1 = 2 (a - a1 + b ~ b1 - ab1 + ba1) 1 ( 2 + a - b) (2 + a:i_ - b1) • 

Since r --< 2, (a - -at -+ b - bt - abt + bat)/ (2 + a ..... -b) (-2 --+-:'ai~---.. . . - . ~-

· .. ·. . . , · .. . '.·· 
bt) = o. Therefore m = rot. :: . . .' .. ·. : '. . ~ 

·. ·. ·: . 

From (6) we have, (1 + a) I (2 + a - b) = (1 + at) I (2 + al .;_: -.bt') ·, 

and (1- b)l(2 +a~ b) = ·11- bt)l(2 +at - bt). 
. . ·. \ <·· .. : .. · 

Since p e (A n J) - (B f'\ J) , then at < a or b < bt. In the first 

case, 1 + a1 < 1 + a, so 2 + a :- b > 2 + at - bt and .. f (b -~ :a-·-:::''\) 
L 

< f (bt - at - 1) , then ( 5) implies ·t <: s. · Analogously, ::iri the-~, 

second case, t < s. 

(~) A r1 J = [a,b] with -1 < a < b < 1. This case is similar .to 

case (d). Then t < s. 

. .:~. .. -- ....... 
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From (1) and (2}, (1 - e) a - (1 - e1)a1 = (1 - e)b - (1 - ~~t}bt, 
! 

then ( 1 - e) (a - b) = ( 1 - e1) ~ a1 - b1) 

have, s + f(b- a- 1} = t + f (b1 :- at - 1) 
! 

( 4) • Using ( 3) we 

( 5) • 

Let r = 1 + g(f(b - a - 1} - t) F 1 + g(f(b1 - a1 - 1) - s) > o. 

Then e = 1 + r 1 (a - b) and e1 = 1 + r 1 ( a1 -· b1) • So, ( 1) and ( 2) 

imply: m + r(m- a)l(a- b) = m1 + r(m1 - at)l(at - bt) and m + 

r(m- b)l(a- b) = m1 + r(m1- bt}l(at- b1). Using defini·tio1s of 

m and m1, m - r ( 1 + a) I ( 2 + a - b) = m1 - r ( 1 + a1) I ( 2 + a1 - bt) 

a~d m + r(1- b)/(2 +a- b) = m1 + r(1- bt)l(2 + a1- b1) (6). 

rrhm~ m - nu = r [ ( 1 + a) I ( 2 + a - b) - ( 1 + a1) I ( 2 + a1 .... b1) ] . 

Hence m - m1 = r (a -· a1 + b - b1 - ab1 + ba1) 1 ( 2 + a - b) ( 2 + at -

b1). While, from definitions of m and m1, 

r;1. •• m1 ""'2(<1- a1 + b- bt- sb1 + bat)l(2 +a-· h) (2 ·1- at-· ln). 

f3 i.Il C! ~:l 1:~ (a - ill + b ·-· b1 - abt + bat) / ( 2 + (:'t -· b) ( 2 -~ 

b1) ::::~ o. ':i:h:~~i:eforc rn == m1. 

I'J:'Ol'tl (6} 'de have, (1 + i.:t) 1 (?. + a ·· b) .. - (l + a1} f (2 + a1 - b1) 

and (1- b)/(2 +a- b) = (1- bt)l(2 + a1- bt). 

Since p e (An J) - (B n J), then a1 <a orb< b1. In the first 

case, 1 + at < 1 + a, so 2 + a - b > 2 + at - b1 an~ f(b - a - 1) 

< f(bt - at - 1), then (5) implies t: < s. Analogously, in tile 

second case, t < s. 

(e) A n J = (a,b] with -1 < a < b < 1. This case is simil~r to 

case (d). Then t < s. 
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This completes the proof of property IV. 

Define G 

G{B,t) = U { GJ(B,t) 
v 

J e s }, where GJ : c (X) x ~ ~ { E E is 

a closed subset of J } is defined as follows: 

(a) B n J if B n J = rzJ, {-1}, {1}, {-1,1} or J, 

(b) [-1,g{f(b)-t)] if B n J = [-1,b] and -1 < b < 1, 

(c) [ g ( f (a) +t) , 1 ] if B n J = [a,1] and -1 < a < 1, 

(d) [ (a-e'm) I (1-e'), (b-e'm) I (1-e')], where m a+b = 2+a-b 

GJ (BIt) = and e' = 1+ b-a if B n J = [a,b] and -1+g(t-f(b-a-1)) 

-1 < a < b < 1 and, 

(e) [-1, (a-e'm) I (1-e')] u [ (b-e'm) I (1-e') ,1], where 

a+b d ' - ~+ . b-a . if B n J = 
m = 2+a-b an e - -1+g(-t-f(b-a-1)) 

[-1,a] u [b,1], -1 ~a< b ~ 1 and -1 <a orb< 1. 

In case (e), let a1 = (a- e'm)l(1- e') and b1 = (b- .e'm)l(l- e'), 
·ntF;.-

then a1 < b1. Note that e' is an increasing continuous functi~n of 

t. If t ~ oo, . e' ~ . ( 2 + a - b) I 2, if t ~ -oo, e' ~ -oo. Then 

e' < (2 +a- b)l2 for every t e ~. Thus e'(1 + m) = e'2(1 + ~)1(2 

+a- b) s 1 +a and e'(1- m) = e'2(1- b)l(2 +~-b) ~ 1- b. 

This implies that -1 ~ (a - e'm)/(1 - e') = a1 (equality holds .if 

and only if -1 = a) and b1 = (b - e'm) 1 (1 - e') ·~ 1. · (equality 

holds if and only if b = 1). If t ~ oo, a1 ~ -1 and bt ~ -·L.--If 

t ~ -oo, a1 ~ m and b1 ~ . m. S inc.e a + b - 2 e 'm = m ( 2 + a =· b -

2e'), m = (a- e'm + b- e'm)l(2(1- e') +a- b) = (a1 + bl)/(2 + 

+ a1 bl) . Therefore m = ·. a1 + b1 
2 + a1 - b1 · = 1 Define e 

11 



1 + 91f(bt - at - 1 ) + t). Note that bt 
at - bt 

- a1 - 1 = (b - a - { 1 -

e'))/(1- e') = -g(-t -f(b- ~- 1)). This implies that e "e'. 
I 

Thus at + e (m - at} = a and bt + e (m - bt) = b. 

Therefore, GJ(B,t) is a continuous function of t, GJ(B 1 t) ~ J as 

t ~ -co 1 GJ { B, t) ~ { -1 1 1} as t ~ co 1 GJ { B 1 0) = B n J and 
v . 

supposing that G(B,t) e C (X), we have that FJ(G{B 1 t) 1 t) = [-1,a] 

v [b 1 l] = B n J for every t e ~. 

'rhe analysis of cases (a) 1 (b), (c) and (d) is similar and we 

v conclude that G(B,t) e C (X) for each t e ~, FJ(G(B,t) 1 t) = B n J 

for every t e ~, then F(G{B,t) ,t) = B for every t e ~, G(B,t) 

depends continuously on t, G(B,t) tends to a one-point set or to a 

subgraph of X which is contained in B as t ~ co and G(B,t) tends 

to a subgraph of X which contains B as t ~ - co. 

3. PROOF OF·THEOREM 1. 

• -1 v -1 
Def1ne A = f.l (T) c C (X) and B = JJ. (Tl-t,Tl) For each A e A 1 let 

r(A) = inf { t e ~ : F(A,t) e B } and R{A) = sup { t e ~ F(A,t) 

e B }. Since FJ(A,O) = An J for every J e S 1 we have that F(A,O) 

= A e B for each A e A. Then r(A) and R(A) are defined and -co s 

r(A) < 0 < R(A) s ro. Let C = { (A 1 t) e Ax R : r{A) < t < R{A) }. 

We will prove that the function Fo = FIC is a homeomorphism from C 

onto B. 

12 



Property I. implies that Fo(A,t) e B for every (A,t) e C. In 

order to prove that Fo is ~njective, suppose that Fo(A,t) = 

Fo(B,s). If A* B~ since J..L(A) = J..L(B), then A - B -:t. IZl and B - A '* 

0. Property IV. implies that t < s and s < t. This contradi::::tion 

implies that A= B. Thus, by property I., (A,t) = (B,s). Therefore 

Fo is injective. To prove that Fo is onto, v let B e · B c C (X) . 

Since G(B,t) tends to a one-point set or to a subgraph of X which 

is contained in B t ~ oo and G (B, t) tends to a subgraph of X N"hich 

contains B as t ~ -oo, Then lim J..L(G(B,t)) 
t~ 

:S Ti-l and 

lim· J..L(G(B,t)) ~ Ti. Thus there exists t e !R such that A = G(B,t) 
t~-oo 

e A. The continuity of F implies that r (A) < t < R (A) • Then 

Fo(A,t) = B. Therefore Fo is surjective. 

Let K : B ~ c be the inverse function of Fo. We will show that K 

is cont~~~~-~-s~ _I~ _is __ ~nough to prove that if (Bn) n_ -~~---(i--~=~uenc~------­

in B which is convergent to an element B e B and the sequence 

(K ( Bn) ) n converges to an element ( Ao, to) e A x [ -:.~, oo] ; then 

( A_o , to ) = K ( B ) & 

Let (A,t) = K{B) and, for each n, let (An,tn) = K (Bn) • Then 

(An,tn) ~ (Ao,to). If r(Ao) < to < R (Ao) , then Fo (A, t) = B = 

lim Bn = i!iim Fo (A 1 t ) = .. Fo{Ao,to) 1 so (Ao 1 to) =~- K (~) • If ·to -:!:: --
n---700 ...,..-7m n n 

r(Ao), take a number t* > r(Ao). Then there exists N ··such ·that t --~ 
--- - - - -· n _·:_~ . ·---. · ... 

< t* for each n ~ N. Then Bn c F(An,tn) c F(An,t*) for each n :::e-N.--.------,----

Thus B c F (Ao,.t*) for every t* > r (Ao) • If r (Ao) > -Ct:J, then B c 

F(Ao,r(Ao)) c F(Ao,O) = Ao. Thus Ti-l< J..L(B) :S J.L(F(Ao,r(Ao))) :s 

J..L(Ao) < Ti. Then there exists r < r(Ao) such that Ti-l < 
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11 ( F (Ao, r)) < T1 which is a contradiction with the definition of 

r ( Ao) • If r ( .lf.o} = -oo, then B c 1 irn F (Ao, -n) which is a subgraph 
n--7co 

of X or a one point-set contained in Ao. Thus 11 (B) :S Tl-1 which is 

a contradiction. Similar contradictions are obtained supposing 

that to i!: .R(An}. This completes the proof that (Ao,to) = K(B). 

Therefore K is continuous. 

Hence F is a homeomorphism~ 

In order to define r,p, Let p1 : A x IR ---7 A and p2 : A x IR ---7 IR be 

the respective projection maps. Define 1/J : B -4 A x (T1-1, T1) by 

1/J(B) = (p1 (K(B)) ,11(B)). Then 1/1 is continuous. 

Let (A, t) e A x (T1-1, T1) . Since F (A, n) converges to a subgraph of 

X which contains A, then lim ll(F(A,n)) 2:: Tl. Thus there exists m 
n--7oo 

> 1 such that JI(F(A,m)) > t. Similarly, there exists n2 > 1 such 

that 11(F(A,-n2)) <. t. Hence there exists a unique s e IR such that 

11 (F (A, s)) = t. Define r,p (A, t) = F (A, s) • 

Property I. implies that if t1 < t2,, then r,p(A,tl) c tp(A,t2>. Note 

that ifJ(rp(A,t)J = ji(F(A,s)) = (A,t). Since J.L(F(p1(K(B)) ,p2(K(B))) = 

J.L(B), then f'(ji(B)) = rp( (p1 (K(B)} ,p2(K(B}))) = F(K(B)) = B. Then 1/1 

is the inverse :map of r,p. Since ll(F(A,O)) = J.L(A) = T, then r,p(A,T) = 

A for every A eA. 

To prove that f is continuous, it is enough to prove that If 

((An, tn)) n is a sequence in A x (T1-1, T1) which converges t.o an 
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element (A,t) in A x (Tl-t,Ti) and rp(An,tn) converges to an 

element B e C(X), then B = rp(A,-t-)•- Set rp(An,tn) = F(An,sn), where 

Jl(F(An,sn)} = tn and set rp(A,t) = F(A,s) where .u(F(A,s)) = t. Then 

tn = .U(!p(An,tn)) -7 t.L(B), so .U(B) = t E (T1-1 1T1). Thus B e B •. Set 

K(B) = (A*,r). Then (A*,r) =lim K(rp(A ,t )) =lim K(F(An,sn)) = 
n-700 n n n-?oo 

~~00 (An,sn)· Thus An -7 A* and sn -7 r. Hence A*= A. Since tn = 

J.L(F(An,sn)) -7 .u(F(A,r)), then t = .u(F(A,r)). Hence B =rp(A,t). 

This completes the proof that rp is a homeomorphism and the proof 

of theorem 1. 

COROLLARY. ([10, Thm. 2.5]) C(X) is conical pointed. That is, for 

each Whitney map 1.1 : C(X) -7 ~ there exists T e (0,1) such that 

g-
1
([T,1]) is homeomorphic to the topological cone of .u-1 (T). 

3. PROOF OF THEOREM 2. 

DEFINITION. Let A and B be two Whitney levels for C(X) and let 

C e C(X). We say that Cis placed between A and B if there exists 

A E A and B E B such that A c C c B :;: A or B c C c A :;: B • 

. THEOREM. Let _A_ and B be_ two Whitney levels. ·.· SUPJ?OSe that no ------··--'·--'Cc. 

element is SG(X) v Ft(X) is placed ·between ,A and B.cThen A and 

are homeomorphic. 

PROOF. Set A= J1-1 (t) and B = u-1 (s) where .u, u : C(X) -7 IR are 

Whitney maps and t, s e [0,1]. Let A e A - B, we will prove that 
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there exists a unique r e R such that u(F(A,r)) = s. If u(A) < s, 

taking an order arc from A to X (see [ 8 , ] , there e)(ists 

Bo E B such that A c Bo "!; A, then A 

A e Cv (X), Let D = 1~ F(A,n). Then 
n oo 

contains A. If v (D) :S s, there exists 

u(A) < v(B) and A c D c B "!; A which 

Thus u(D) > s. Then u(F(A,O)) = u(A) 

~ SG(X) v Ft (X) • Therefore 

D is a subgraph of X which 

B e B such that D c B. Then 

contradicts our assumption. 

< s = lim u(F(A,n)}. This 
n~oo 

proves the existence of r in this case. The case v (A) > s is 

similar. In both cases r is unique by property I. 

v Analogously, for each B e B - A, B e C (X) and there exists a 

z e ll such that ll(G(B, z) ), = t. 

Define 1 : A~ B by r(A) = A if A e A n B and 7(A) = F(A,r) e B 

if A E A - B. 

Note that A c 0 (A) or 0 {A) cA. To prove that 1 is surjective, let 

B E B. If B e A, then B = "((B). If B e B - A, let z e R be such 

that ll{G(B,z)} = t. Then F{G(B,z),z} =Band G(B,z) eA. Thus 

r(G(B,z)) = B. Hence 1 is surjective. To prove that r is 

injective, let A1, A2 E A with A1 * A2. If At, A2 e B, then r (A1) 

= At * A2 = r (A2) • If At e B and A2 ~ B, then A2 c 1 (A2) "!; A2 or 

r (A2) c A2 "!; r (A2} , so '(A2) ~ A, and "( (A2) "!; At = 7 (At) • If 

At, A?. f B, since At - A2 ~ 12! and A2 - At :f:. li!J, property IV. 

implies that F (AlI rt) :f:. F (A2, r2) for every rt, r2 E R. Hence 

'1 (At) ~ 1(A2). Therefore 1 is injective. 
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Finally, we will prove that 1 is continuous. It is enough to prove 

that if (An) n is a sequence in A which converges to an element 

A e A and r(A ) ~ B e B, then 0 (A) = B. We may suppose that 
n 

An e B for each n or An E B for each n. The first case is 

immediate. In the second case, set 0 (An} = F(A ,r ) . We consider n n 
two subcases: (a) A e A - B, set 0 (A) = F (A, r) • We suppose, for 

example that r s rn for each n. Then F(An,r) c F(An,rn) = 7(An)' 

then r(A) = F(A,r) = *~m F(An,r) c *~m r(An) .= B. Since r(A) I 

B e B, we have that r(A) = B. (b) A e B. Since An c 7 (An) or 

_r{An) cAn for every n, then A c B or B c A and A, B e B. Thus A= 

B. This completes the proof that 0 is continuous. 

Therefore a is a homeomorphism. 

PROOF OF THEOREM 2. Let g = { A c C(X) : A is a Whitney level for 

C (X), A :ot F1 (X) and A :ot {X} } . Let V = { E : E c SG (X) } . T!"len V 

is finite. 

Define cr : g ~ ~ x p x p ~y: 

cr (A) = ( { E e SG (X) : there exists A e A such that E c A· ;t E_ } , 

SG(X) n A, { E e SG(X) :there exists A e A such that AcE :ot A}). 

In order to prove Theorem 2, it is _enough to show t~at if. cr(A)-,= _,:' 

u(B), then A is homeomorphic to B. 

Suppose then that cr(A) = u(B). By .the previot1S theore:m, . it is 

enough to prove that no element in SG(X) is placed between A and B. 

Suppose, for example, that there exist A e A, B e 'B and Eo e 3G(X) 
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such that A c Eo c B :t A. If A = Eo, then Eo e SG(X) n A = 

SG (X) (\ B ( B 1 S 0 Eo 1 

contradiction. If A :t Eo, 

B E 

F(A) 

B and 

= F (B) 

Eo ·c B :t Eo which is a 

implies that there exists 

B1 e B such that Bt c Eo :t B1. Thus B1 c B :t Bt which is also a 

contradiction. 

Therefore A is homeomorphic to B. 
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