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ON THE INTERSECTION OF Two PLANAR PoLYGoNs. -------
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Guanajuato, Gto. 36000. 

Mexico. 

Polygons have proved to be important elements for 

representing and manipulatin~ visual data. Hence. a knowledge of 

the geometric and the combinatorial nature of the intersection of 

planar polygons may serve to tackle such problems as the 

removal of hidden surfaces. A complete classifying scheme for the 

intersection of stable pairs of polygons and an explicit 

enumeration for the case of two triangles is given. 
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StabiLity and EquivaLence. 

We begin the present exposition in the general setting of 

simple closed curves, and then restrict ourselves to the class of 

(convex) polygons. Afterwards, the discussion specializes to the 

concrete situation of triangles. 

A simple closed curve r is the continuous, injective image of 

2 a given circle into the euclidean plane ~ ·That is, r is just a 

curve which s~arts and ends at the same point and does not 

intersect with itself. It is not difficult to see that for any 

compact subse~ K of r there is a curve A with r n A = K. This 

somehow finishes the classification problem ·of intersectin~ simple 

curves. unless one is concerned with such things as fractals. 



No matter how bizarre r might be, the "Jordan-Shonflies 

Theorem" states that rE2 can be deformed . continuously and 

bijectively in such a way that r _is mapped onto the standard unit 

circle. Therefore we may speak of the inner region bounded by r. 

There are two ways of circling r: One leav~ng its interior always 

on the left (the counter-clockwise or positive direction), and 

other having the interior of r on the right hand side. An 

orientation of r is choosing a way of circling it. 

We say that the simple closed curve r is polygonal if it can 

be represented as the finite union of line segments (i.e. edges)· 

in such a way that each two distinct segments are either disjoint 

or meet at most at a common vertex. Now let A be another polygon. 

Then r intersects A stably if no ~e~tex of one of the cur~es lies 

on an edge of the other. This implies, in p~rticular, that r and 

A have no common vertices and that the intersection of one_edge of 

r with one of A is either empty or a unique point contained in the 

interior of both edges. To put this in another way: The 

intersection of edges is either empty or "honest" (transversal). 

In this situation, the pair (r,A) is ~alled a stable pa~r of 

polygons. 

Let Cr,A) and (r' ,A') be two- stable pairs of polygons. They 

.are defined to be equivalent if there exists an orient~tion 
. ', 

'' 2 preserving continuous bijection from (E onto itself sending r 

( resp. A ) onto r · ( resp. A' ) , and the vertices of r (res!=. A 

onto the vertices of r · · ( resp. A' ). 

•:J 
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With this notion, it is now true that if the pair (r,A) is 

stable, then "small", but independent, perturbations of rand A do 

not change the e~uivalence class of the pair. Think of r and A as 

two elastic strings (of different color) sitting over the table. 

We are asserting that by shaking one string a little, and then the 

other, the "nature" of r()A is not affected. From the arithmetical 

point of view, "stability" says that minor computer errors do not 

change "the geometry". 

The lntersec t ion Scheme. 

By a directed polygon we mean a _polygon r together with an 

orientation and a fixed vertex v called its origin. 
0 

With this 

the vertices of r with the property that, for 0 ~ i < m, each pair 

(v .. v. ) determines an edge of r, denoted by [v .. v. J, in such a 
~ ~·~ ~ ~·~ 

way that the orientation induced by the ordering of the pair 

agrees with the one given by the global orientation of r. 

Simil.arly, anv finite set of points in r can be numbered in a 

unique compatible way. 

Let r,A be directed polvgons. The pair (r,A) is itself 

directed if r is positively oriented and A is oriented in the 

negative direction (in what f0llows, any other convention would 

work as well. but one has to be chosen). 



Let ;r,A) be a directed, stable pair of polygons with 

non-emptv intersection. Note that the number k of points in rnA 

is alwavs even. The pc•ints . in r()A are given two different 

numberings. hence inducing a permutation p on the set 

{0,1, .... k-1} : If x e rnA ,x=x with respect to r, and 
s 

with respect to A, then p(s)=t . 

.. Define a function y from {0.1, ... ,k-1} to {0,1, ... m-1} such 

that y( s) =i if x e[v., v. J, where 
s 1. 1.+:1 

m 
(vi.) i.=o is the vertex listing 

for r and r()A = (x ) is numbered according to r. 
s s 

Define a 

function~ from {0,1 .... ,k-1} to {0,1, ... ,n-1} such that ~(t)=j if 

x e[w., w. ] , where 
t J J+:1 

n 
(wj) j=o is the vertex listing for A and 

r()A = (xt)t. is numbered according to A . 

It is much easier to visualize the permutation p, and the 

functions y and A by constructing the following intersection 

scheme: 

Draw a line segment. Think of it as the interval of 

real numbers [O,m] and label each integer coordinate. 

Think of the marked subintervals as a representation of 

.. • the edges of r. 

·- Within each subinterval [ i. i+l.] , mark as many small 

crosses as poirits are in [v., v. ] n A·. 
1. 1.+1. 

There r...:ill be 

exactly k crosses in all. Its natural ordering and 

oosition corresponds to y. Above the s-th crossing. wrio::e 
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p(s). Below, write the number j if the intersection it 

represents lies on [w., w. ] . 
J J+:1 

This represents A. 

We need to add one more bit of information to this 

scheme: Whether the origin of r lies inside or outside A. 

It is amusing to note that only two essentially different, 

simple closed curves can now be drawn intersecting the l~ne 

containing [O,m] precisely in the marked crosses and following the 

sequence written on top (hence imposing an orientation on each of 

these curves). As an example, the reader might try the sequence 

(23,22,11,10,9,8,1,6,3,4,5,2,7,16,17,18,19,0,33,20,15,14,13,12,21, 

24,29,28,25,26,27,32,31,30). One curve will look as a 

"reflection" of the other. Let the line containing the interval 

[O,m] represent r, and let the upper half plane represent the 

interior of r. In this way, A corresponds to the curve whose 

right hand side region contains the set {O,m} (or for that matter, 

the infinity) if and only if the origin of r lies inside A. 

Given a pair (r,A) with empty intersection, define its 

intersection scheme just as the information of whether the origin 

of r is inside or outside A. 

Let (r,A), (r' ,A') be directed. stable pairs of polygons. 

After ra~her a few drawings, it should become clear that a 

sufficien~ condition for the pairs to be equivalent is the 

equality of their respective intersection schemes. Conversely, if 

the given pairs are equivalent, then their intersection schemes 

will coi~cide after possiblv changing the c~i~ins of r· :r ~·. 

·.:. 



The Convex Case. 

. :·; 

A set X in the euclidean plane is convex if for any two 
';'·.:.'. 

points in X the whole straight segment joining them is also 

contained in X. A polygon A is convex if it has a convex 

interior. 

Let (r,A) be a directed, stable pair of poly$ons such that· 

A is convex. As before, let (v.)~ 
1. 1.=0 

n 
and (w.). 

0 J J= 
be the vertices 

of r and A respectively. Suppose that rnr is not empty, and that 

it contains k elements. Then, by convexity, for any given .. edge 

[v. , v. ] of r, the intersection [v. , v. 
1

] n A contains at 
1.. l.+i 1.. 1.+ 

most 

two points, hence k ~ 2m. Note in particular; that if 

[v, ,v. ] n A consists of exactly two poirits, theri v.and v. 
1.' 1.+i 1.. t.+i 

must 

lie outside A. Also, if v.and v. lie inside A then obviously 
1.. 1..+:1. 

[v., v. ] is all inside A. If r is convex as well, the 
1.. 1.+:1. 

permutation p on {0,1, .. ,k-1}, induced by 

numberings of rnA is just a cyclic Vgriation of 

1 2 
k-1 1~-2 

k-2 
2 

the two different 

k-1, 
1 . 

This .is b~cause th~ intersection of the interiors of r and A 

is convex. Even more, it is always possible to choose the origins 

of r· and A such that pis exactly the permutation (~). 

·let [ v . .v. J and [w., w .. ] . be two int~rsecting edges of r and A 
1. 1..+:1. J J+:1 . 

such that w. is outside r. 
J 

If it happens that [w., w. ] 
J J+:i 

has two 

intersections with r, assume further that [w.,w. ] n [v .• v. i 
J J:t:1 1.. 1..+:!.. 

7 
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is the first one when traveling from w. to w. . Then v: must be 
J J+~ ~ 

outside A because, by the convexity of A, its interior is all to 

the right hand side of [w.,w. ]. 
J. J+1 

By choosing v. 
~ 

and w. 
J 

as new 

origins we get the desired permutation (the sequence 

(k-l,k-2, ... ,1,0) is obtainable only if A has at least one vertex 

inside r). 

The Intersection Of Two Trian8Les. 

By a triangle we mean a polygon with only three vertices. 

Since a polygon is a simple closed curve then, by definition, a 

triangle is never degenerate. Also, triangles are always convex. 

Let (r,A) be a directed,stable pair of triangles. The 

intersection r()A consists of cero, two, four, or six points. If 

rnr is empty, then the pair is disjoint, or one triangle is 

contained in the other. If there are two intersections, then 

these can lie on a single edge of r or not. In any event, the 

complement A\(r()A) consists of two (open) arcs where the vertices 

of A must be distributed. In the first case, the distribution of 

the vertices of r is fixed, but in the second, either one or two 

vertices of r lie inside A. We have sev~n possibilities in all. 

If there are four intersections, then these can be distributed in 

the fo:lowing way in r: Two sides with two intersections each, or 

one side with two intersections and the other sides with just one. 

In any e';en::, A\ (r('/•) consists of four arcs where the vertices of 



A must be distributed. There are eight cases in all. Finally, 

there is only one situation with six intersections. 

The table given below summarizes all nineteen possibilities. 

In the first column. the triad <abc> says how many intersections 

·lie on each edge of r. In the second, the intersection ~cheme is 

written in different notation. The pair 0·Y) in the third column 
-·-

exhibits how many verti~es of r lie inside A and how many of A lie 

inside r. 

1) <000> --1--1-·- out. 
(o, o) 

2) <000> --1--J--out. 
(o, 3) £ - : 

3) <000;· --1--1--. 
t.n 

(3, o) 

4} <110> o-Jo-J--out. (1. o) 

5) <110> o-jo-J--. 
l.n 

(2. o) 

6) <110> 0- j1-l-- (1 1 ~) out.. 

7) .. 1 1 ,.l \ '-- \.. •' 
'"J I ,..., 1_- .:.- j-- out (1. 2} 

8) <110> O-j2-j-- _ 
,_,, (2. 1) 



9) 

10) 

11) 

12) 

13) 

1 C:' _;I 

16) 

1
...,., 
I . 

18) 

19) 

<200; 

<200> 

<211> 

<211> 

<211> 

<211> 

<220> 

<220> 

<220> 

<:220> 

<222> 

.=..::a ·le1 .... en .. ce. 

E. E. t·1c,ise, 

01j--j--
out. (o. 1) 

021--1--out. 
(o. 2) 

0111-IO-out 
(1, o) 

0211-IO- out. (1 '1) 

02j2-IO-
out. 

(1. o} 

02j2-l1-
out 

(1. 1) 

01j10j--
out 

(o. o) · 

02j10j--
out. 

(o. 1) 

02j20j--
out 

(o. o) 

02j21j--
C•Ut 

(o. 1) 

02j21j10 
out. 

(o. o) 
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