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ABSTRACT 

This paper· develops the .idea that 

dynamical 

various 

purpor·Ls 

·description 

systems can exhibit behaviour' 

tests of t'andomness. 

to explain the origin 

in Nechanics, as a 

In 

of 

means 

detennlnisti c 

Lhal passes 

acldi ti on, it. 

pt'obabi 1 is tic 

to simplify 

Ltuoi enormously complex classical de.scription of 

t1w very 1 arge scal.e systems. Fi na11 y, these 

cornpl ementary vi e1·1s a!'e i ntegt'ated in the study of 

flucLuations, first by 1i1eans of a Langevin ther·mal 

equation, then by means of a put'ely delet'minisl.ie 

dynamical systems exhi.biling random behu.viom', 

l. Introduction 

For cent.uries, Physics stood as the mainstay .of deter·ininism, 

Hi th Classical Nechanics as the clearest cut cleterminis tic 

par·acligm. l<lechanical phenomena would be classically described in 

terms of smooth fu'nct ions sati'sfying onlinary cliffei~enL ial 

equati.or1s; eaclt such function specifyi.ng a trajectory i.n Lhe plmse 

space r (an open subset of some IRcl) associated vrith Lhe ps.r-LicJe 

::;yst.em under consi.der·ation. The detei~min:i.sUc chc.u·acter of sucll 

phenomena Hou] d be r·ef lee ted ln an ex is t.ence and unicjUJ~Jless 

theoi·em for I. he initial value problf~lll sssocial'.ed Hi l.h, l.hr~ 

con~espond:ing diffei'ent ial equation in t: 

x = f(x) x(O)==x 
0 

( 1 ) 

Let: f I:.Hi· Li.psch.itz contin~Wl!S i.n r. Then, gi.ven XOE r, there is a 

posi.tive numlJer i5 and a unique trajectory ifJ: (-8,<'5)~ r solvj_ug (1). 

1 

------------- --------- --- --------------· ---------------- -----
~~~--- ---~~~--~-~ ------ ---- -~----~-~- --------- -----· ---·-- -- ···-·--·-----------



This nice deterministic image of the world did not fare very 

vlell when systems consisting of a large number of particles began 

to be studied by Mechanics. Indeed, after being given a first 

quantitative version by D. Bernoulli in his treatise 

"Hydrodynamica", published in 1738, kinetic theory was reinvented 

in the mid 1800's by Maxwell and Boltzmann [Brush,1976, Book 1]. 

The purpose of such effort was to explain the macroscopically 

observed behaviour of substances in terms of the then 

!~evolutionary molecular theory of matter, acording to which matter 

consists of an enormously large numbers of particles (atoms, 

molecules) bound together by the interatomic or intermolecular 

forces, as the case may be; matter manifests as a gas, a liquid or 

a solid, depending on the intensity of those forces. 

Macroscopically, this molecular assembly manifests itself in terms 

of measurable properties like pressure, volume, temperature 'and 

the like. In the kinetic approach to the study of thermal 

phenomena, the macroscopic observables are obtained from 

microscopic dynamical quantities by taking averages on the latter. 

Thus, at least in principle this approach calls for a mechanical 

study of extremely large assemblies of particles. 

Typically, the number of particles that must be considered is 
23 

of the order of Avogadro's number (N = 6. 023 X 10 molecules/g. 
Av 

mole). Note that solving initial value p1~oblems like (1) requires. 

knowing the initial phase (position and velocity) of each particle 

in the asssembly. This is clearly out of the question. Even if 

such information was available, integrating the equations of 

motion in order to obtain the corresponding trajectory in phase 

space would exceed the capabilities of the fastest compnters. 

Statistical mechanics was conceived by Maxwell and Boltzmann in 

order to circumvent. this difficulty. For a discussion on the 

foundations of the statistical approach in Mechanics, see Chapter 

10 of [Brush, 1976], also [Ehrenfest-Ehrenfest, 1959]. 

On the other hand, the particle systems of kinetic theory are 

large scale systems in the modern sense of the term [Siljak, 1978], 

and the corresponding mathematical description (1) could be 
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conceivably dealt Hith using any of the various simplification 

procedures available in the literatur,e on large scale systems. 

An· often folloHed simplification strategy [Hernandez, 1987] 

involves splitting the phase x of the par·ticle system into tHo 

components: a slow component y and fast one 11, and then rewr·i te 

Lhe dynamical equations in the form 

where e Is a small para~eter. Neglecting the fast dynamics amounts 

Lo replacing (2) by the simpler description 

y==g ( y, 17) ' h(y, 1))=0 (3) 

In addition, the decomposition leading to (2) is assumed to be 

done in such a way that y is of "loH"dimension, hance tli.e 

differential part of (3) consists of "just a feH " differential 

equations. 

If, moreovet,, the additional assumptions are made that a) the 

fast dynamics can be broken up into tHo components, say as ln 

g(y,~)= b(y) + c(~), 

abel b) the se~ond term on the right :hand s:i.de is replaced by an 

aclcLitive noise term O't;, there results the simpler dynamical 

descr·iption 

y=b(y) y(O)=y 
() 

(!J) 

_,. 

Notice that the algebraic part of (3) has been neglected, the 

effecL of the fast componenLs being replaced by the random 

additive noise term. In (4), 0' is a (scalar, vector· or matrix) 

parameter repr·esenting the noise intensity, and t; :is some standanl 

Lime~varying noise term. 

Contr·ary to the fully deterministic picture surroumling L11e 
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initial value problems (1) of classical mechanics, initial value 

problems like (4) offer a much less ambitious description of the 

wor'ld. Indeed, instead of aiming at predicting the value of the 

slow variables y t seconds after the start of the motion, 

pr'edictions now take the form the probability of y(t) lying .in 

some set A given y(O) is so and so. 

Description 1 ike (4) have been fruitfully applied in 

statistical physics [Beck-Roepstorff, 1987], under the denomination 

of Langevin equation. A special case thereof' is given ample 

coverage in sect ion 5 below (thermal fluctuations). Thus, large 

assemblies of particles can indeed be tr~eated by Mechanics, but at 

the cost of giving up determinism. See [Kac, 1959] for a 

cornpr'ehens i ve present at ion of probabilistic methods and reasoning 

in the physical sciences; see also section 3 of this paper in 

connection with the role of probability in particle mechanics. 

Section 2 below deals with the concept of dynamical system, 

as conceived in mathematical system theory [Kalman eL al., 1969), 

centered around the notions of input, output and state. In 

particular, the particle systems of classical mechanics are 

dynamical systems without inputs, and whose state space coincides 

Hil.lt r, Lhe phase space. An alternative simpl ificatlon of Lhe 

Large scale description (1) is based on a different spli.Lting of 

Lhe state vector x, this l. ime into an observable part y and a 

u11observable par't z. In addition, the assumption is made that a) 

Lhe dynamics of the observable part follows closely that of z (tl~ 

lleH sLate), and b) the observable component (the new output) does 

not affect the state dynamics. Thus one gets a simplified version 

of (1) different form (3), of the form 

~=¢( z)' (5) 

Now, dynamical systems such as (5) have been devised whose 

output y behaves in a Hay clearly resembling the behaviour of 

nondeterministic systems like tossed coins, see [Taylor, 1987]. See 

also [Galgani et al., 1988), where macroscopic charged particles in 

a radiation field (a deterministic dynamical system) are shoHn to 

4 



ut1dergo a hif:Sbly fluctuating motion, very random in appearance. 

Hor·e classically, deterministic dynamical systems evolving in 

discrete time are routinely used in order to generate sequences 

that pass vat~ious randomness tests. Indeed, all modern computing 

systems are . provided with such random number generators (see 

section 4 beloH), and a Hhole branch of computational probability 

is concerned with devising means for tt~ansformi.ng those computet~ 

generated random sequences into samples froHI given dislr·.ibut:i.ons 

[Knuth, 1981). Thus, deter·ministic dynamical systems can exhibil 

appc.:u·enlly random behaviour. Section 5· beloH ends with a. 

presentation of one such system, proposed i.n [ Beck·-Hoeps torff, · 

1987] in order to detan the structure of the fluctuating term f;, 

in the Langevin equation (4), and which qual.i.fies as a random 

trajectory generator. 

2. Dynamical Systems 

Under· deterministic conditions, the purpose of modelling is 

to provide a means to predict future behaviour i.n ter~ms of a set 

of present conditions. The Iitost gener~al form of a detennin:i.stic 

model is a dynamical system [Kalman et a.l, 1969] 

<T,U,X,Y,'U,o,i\.> 

Hhen~. typically, 

. a) T is either an inter·val .(continuous time) or a set of integers 

(discrete time). 'l;be elements of T are known as instants. 

b) U, X and Y ar·e nonemply sets. The elements of U are kno1"n as 

_input values, Hhereas those of X and Y m~e the si:ates and outpuL 

values, respectively. 

c) 'U is a set of funcLi.ons for·m T into U, each ·,y E 'II helng 

refecred to as an aclmlssible inpu.t trajectory. o: l\><XXU -7X is t~he 

sta.t:e transition map, 1vhere l\:= {cs,t) E T
2
:s:st} His such thav',.· 

o ( s , t , x , r' J = o ( s , t , x, ·;y" ) if 'a'' I -·a" I [s,t]- [s,t]. 
o ( t, I;, X,{)') = X 

( la) 

(lb) 



Here, o(s,t,x, 0 ) is the state arrived at at timet if the state 

was x at time s and input trajectory a was applied over the time 

interval [s,t]. 

Note that, given (s,r), (r,t)E~, 0 E'U, xEX, it necesarily 

follows that (s, t)E~ and 

o(r,t,o(s,r,x,r).r) = o(s,t,x,r), (2) 

lest determinism be violated. 

Finally 

e) i\: X -7 Y is the read - out map, namely i\( x) is the output 

value observed when the state is x. 

To simplify matters somewhat, consider the special case in 

wich the state is observable (X = Y and i\ is the identity map) and 

'U consists of only one trajectory i\. Then, the dynamical system is 

identified by simply specifying <T, X, o>, with o: ~><X -7 X and (2) 

specializes into 

o(r,t,o(s,r,x)) o(s,t,x) ( 3) 

lv1ore specifically, consider the situation in which the state 

transition map is time homogeneous i. e. T is closed under 

addition and 

o(s+h, l+h,x) = o(s,t,x) V hE T 

whenever (s,t) E ~. x EX. Then, 

o(s,t,x) = o(O,t-s,x) 

and it is convenient to simplify the notation as follows: for each 

t E T, let Pt: X -7 X be definec:i by 

Ptx: = o(O,t,x) 
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Then (3) transforms into 

i. e. 

p p 
s t 

P Ptx s . = p X 
s+t 

P ·t' s,lET . s+. , . 
( Ll). 

and {P t E T} is said to constitute a semigroup of or)et'ators on 
t' 

X. Ho te that. T is r·equired to be closed under adell t ion :in order· to 

Hrlte (4). The semigroup property i.s to be taken as tlJe 

ma.Lhemat ical counterpat'l of determ:ln:lsm. 

nandowness is said to occur Hhenever obset'Ved behe.vi.our .i.s so 

ecral.ic that no repr·oducib.ility of r~esults can be expected. In 

other 1-1ords, observations do not support a determini.stic analysis 

of t he s it Uc'\. t i on at hand. 

When randomnes is detected, the ultimate aim of the modelling 

acti.vity has to be loHered somewhat. ·Instead of pr·edictions like 

P x is the state arrived at t seconds after starting from state 
,t 

x, one has to content oneself Hith Heaker predicti'ons of the sort 

of the probab.ility of arriving at a state in il t seconds ·after 

starting from state x .is 1rt(x,!l), a number in [0, 1], for each 

set 1\ E dl, Hith d/. a cr-algebra of subsets of X. Thus, X l1as to be 

enclo\~ed with a measurable structure and a family {nt, t E T} of 

transition probabilities replaces the sem:lgroup {Pt,t E T}. 

Note, hoHever·, that this family of transitlon probab:ll:lt:les 

defines a family {Pt, t. E T} of operatocs acLing on N, the famlly 

of all bounded measurable functions f:X ~ IR. Thus 

buL it is 11ot a.lHays Lr·ue l:haL { P t E T} v cons L .i I. u Les 

sern:i.group. ~/hen it does, the semigr·oup is' 'said Lo be· NarlwvJa.n, and 

deterrniriism is recovered, <:~.t the price of changing the state space 

(N insLead of X). See [Heisenblatt, 1971]. 

On Lht1 otheJ~ hand, chaos is a.n appar·enLly r~ando11r behaviour· 
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observed in certain dynamical systems whose orbits exhibit a 

rather erratic behaviour [Devaney, 1987]. Thus, a deterministic 

analysis may also lead to apparently random behaviour, of the lcind 

commonly modelled in probabilistic terms. 

In connection with chaos, one normally considers discrete 

time dynamical systems i.e. T = {0, 1,2, ... }, so that 

P X = f(n) (x) 
n 

i.e. the transfor·mations in the semigroup are the iterates of a 

certain r (=P ). By an abuse of terminology, f itself is commonly 
1 

refered to as a dynamical system. The orbit of an element xEX 

under· a dynamical system f is the sequence of iterates 

x, f(x), f( 2 J (x) 

Let us examine in what follows the notions of chaos and 

randomness as encountered in some classical physical systems. 

3. Probability in particle mechanics. 

Consider a system made up of N point particles of masses 

m, ... ,m, interacting according to a potential function V, a 
1 n 

smooth function of the 3N spatial coordinales q , ... , q 
1 n 

specifying a configuration of this particle systems. 

Let p , ... , p be the individual momenta of these particles, 
1 N 

whose kinetic energies can then be defined as 

liP. 11
2 

-
2

1
- (i=l, ... , N). 

Ill 

Iler'e and in what follows 11·11 denotes the euclidean norm in an 

appropiate euclidean space. The hamiltonian (or total energy) 

function associated with this particle system is defined as 

H(q,p) 
N IIPi f 
E 2m + V(q) 

i = 1 i 

Gil 
v1here we have put q: =(q , ... , q ) , p: =(p , ... , p ) . Each (q, p)EIR 

1 N · 1 N 
6N 

wi 11 be called a phase of the system; let f: =IR denote pllase 

space. 
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According to the Hamiltonian formulation of Classical 

Mechanics [J\r~nold, 1978], the physical motions of this particle 

system correspond to. the solutions of the system of 6N ordinary 

differential quations. 

BII 
Bp ' p = ar-I 

Bq (l) 

Let us assume that H is smooth enough that (1) has a unique 

solution ~H(1J(t),t,b(t)) defined for ail tEIR for each initial phase 

(q,p). Thus (1) defines a dynamical system with T = IR, r as state 

space and associated semigroup given by 

Note that the semigroup property of {Pt, tEIR} reflects the 

existence and uniqueness of solutions of the 

( 1 ) . Note also that problem associated Hi th 
-1 

fact a group, "ti th P t = P for each tEIR since -t . ' 

initial 

{P , tEUH .. t is 

value 

in 

The group pr~operty of {P t, tEIRr embodies the reversj_/Jle 

char·acter~ of each of the mot ions the dynamical system ( 1) can 

under·go. 

NoH, by the chain rule, 

an = Bq 
aH an 

+ Bp Bp [- ~!i] - 0' 

all partial deri.vatives on the right hand side bei.ng evDJuaLed 

at ( cf)( t), 1ji( t)). Then, total energy is conserved 

trajectories of this dynamical system. 

a.lo.ug tlw 

For each Borel subset. B of r, let PtB denoLe Hs image under· 

Pt, for each t E IR. Liouville's theorem [Arno.ld,l978] asser~ts that 
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where I• I stands for Lebesgue measure in IH
6

N. Thus, the floH in 

r induced by (1) is conservative also in this sense: volume in 

phase space is conserved by the flow induced by (l). 

NoH, by the conservation of total energy, the floH 

can be restJ,icted to any hypersurface of constant energy like 

M := i(q,p)Ef: H(q,p) = E ~· 
o · o· 

It is possible to endow t1 
0 

with a measure 11 (defined on B(M ) , the Borel subsets of M in 
0 0 

the relative topology as a subset of r) Hhich is preser·ved by the 

flow in t1, i.e. 
0 

V BEB(M ) . 
0 

Indeed, such measure is given by [ Khincbin, 1949]. 

f dO' 
/1 ( A) = c A II V'H ~ 

Hhef'e c is a positive normalizing constant 

a probability measure. It suffices that I-I 

its arglllnents in order to guarantee that 

Lherefof'e Pt:t1 --7M, is indeed defined for 
. 0 0 

i.e. M(t1 ) =1 , M is 
0 

goes to infinity Hi th 

t1 is compact, and 
0 

all te!H. Mor,eover, it 

suffices then that IJH:;t:Q on r to quarantee that Jl is Hell defined. 

In the physical literature [Thompson, 1972] the probability space 

(tv! ,B(M ),Jl) is refered to as Gibbs' microcanonical ensemble. 
0 0 

Classical Hechanics provides other invariants of the mot ion: 

the thf'ee components of linear momentum, those of angular 

momentum, etc. Together Hit.h total energy, they specify a compact 

invariant manifold M, Hith dim(M)=: m<6N. 

For systems of physical interest, m Hill not be much smaller 

than BN, thus precluding the determination of iPt'tE IHr on the 

basis of a sufficiently numerous family of invariants of the 

motion. For instance, in the study of liquids and gases N Hill be 

enormously large, of the order of Avogadro's number (N=6.023 X 

10
23

), then there is no hope to explicitly solve the equations of 

mot ion in or,der to determine the gr·oup. 
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Spurred by this difficulty, Poincare suggested the use of 

sections in order to study the motions of such dynamical systems: 

a section is a (low dimensional) linear manifold L, whose 

intersection with M will be denoted by X. A mapping f: X-7X can then 

be defined as follows: 

L. 

-r(x)<+oo VxeX, 

For each x e X, consider the 

corresponding trajectory t HPtx: 

Let -r(x):= inf ~t>O:. PtxeX~ and 

let f:X-7X be given by· 

provided -r(x) <+oo. 

Assume for an instant that 

. (2) 

so that f is indeed defined everywhere i.n X. Then a dynamical 

system has been defined in X, the orbit of an element x e X being 

x, f(x), f< 2 >(x), ... ( 3) 

For the sake of illustration, consider the dynamical systems 

in ~2 specifed by the ordinary differ~ntial equations in polar 

coordinates 

. 
r= r(1-r), 8 = 1. ( 4) 

The phase portait of the system is 

easily shown to consist of one 

unstable · crit leal point (the 

origin) and a stable 1 imi L cycle 

( the unit c i rc 1 e ) Let L be any 

straight 1 ine tJ~ansversal to the 

uh.i t . circle 

section). 

11 
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The orbit of an arbitrary p e L consists of a sequence of 

points in L, say {P }, with both A and Bas limit points. 
n 

A B 

To apply the method, condition (2) must be guaranteed. The 

non triviality of this task even in the simplest cases is apparent 

in the foregoing example (4). In practice this requirement may 

render this method rather difficult to apply. However, when it can 

Ge applied this method may lead to rather suprislng results. 

For·, observe that a Poincare sect ion L must have loH 

dimension (say n) to allow analysis. The coordinates identifing 

the points of L are the actual observables, and it is reasonable 

Lo expect a substantial loss of information in passing from a 

description in terms of the phase space (or the invariant manifold 

l-1) to a description in terms of the Poincare sections L or, 

rather, of its intersection X with M. Be it as it may, the 

experimenter is constrained to accept this state of affairs. 

An observer, unaware of all the underlying dynamical 

structure given by (1), observes x and indeed its whole orbit (3). 

In fact, the observer observes only fini tety many elements of 

such orbit (say r of them), but one may conceivably think of 

observing the whole orbit. 

An approach often followed in the physical sciences consists 

of par'Litioning X into subsets, generically denoted by A, and then 

compute the relative frequencies 

1t Ji~r: f(iJxeAl 
f (A): J [ 

r r 

It is an empirical finding that, as r grows beyond bounds, 

the values of f (A) 
r 

tend to stabilize about a fixed value, 

depending only on A, and to be denoted by rr(A). Thus, rr(A) is the 

probability of finding the systems in some phase in A, i.e. 
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rr(A) = 
( i ) 

l i m _it-_1.1...1_· _=s_r_: _f __ ( x_)_E_A-'-'-J 
r----7 oo r 

If these measurements are repeated for every set A in a 

~-algebra~ of subsets of X, there will result a probability space 

(X,~' rr), . 

a nondeterministic model for such a situation. And the. 

experimenter who built this model will remain una1-1are of the 

underlying deterministic structure present in the situation under 

study .. 

4. nandom number generation. 

Let X denote the unit interval and let :f:X----7X be a 

dynamical system acting on X. 

An elementary topological 

X 

(i,·H~)) argument sbo1-1s that there is at 

least one xEX such that f(x)=x 

if f is continuous. Such x is 

called a fixed point of f. 

It is Hell known that such fixed poi11t is unique if f is a 

contraction of X. i.e. if 

jf(x)-f(y) I =s ajx-yj 

with O=sc~:<l. fvloreover, in such a case the unique fixed point is a 

global attractor. In other Herds, for~ each xEX, the corresponding 
. . (2) . 

or·brt x, f(x), f (x), ... converges to X. 

Clearly such a behaviour is not exactly what one ~mulct like 

to call random i.e. the orbit if(nJ(Xl }- does not constitute a 

random sequence, Hhichever. concepts of ranc:lomnes is· chosen. 

Intuitively, one would nke. to have c:lymunlcal systems f whose 

orbits fill up the whq·le of ··x, if posible in a unifonn fashion; 

such orbits could conceivably be called random sequences. 
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To make things precise, let's say that sequence ~x ~ is 
n 

equidistributed in X if 

1 im 
n~oo 

ll ~ i ~n: x. E [a, b] ~ 
I 

n 

for any subinterval [a, b] of X. 

b-a, 

The following result of H. Weyl shows that such sequences do 

exist. Its proof has been adapted from [Freiberger·-Grenander, 

1971]. 

Theor·em. 

Let a be a positive irrational and let u.={ia}, 1=0,1,2, ... , 
l 

where { ·} is the fractional part of t:he argument. Then {u.} is 
l 

equidistributed in X. 

Proof. 

Pick an interval [a, b]cX and let ;t be its characteristic 

rune Lion. 
± 

Fix c >0 such LhaL O~a-c<a<a+c<b-f:<b<b+c~l, and l el. ;rf: 

IJe two continuous 1·eal functions on X defined by theii' g1·aphs a.s 

follows: 

T 
1 

1--------1-~-
l_ 

0 a-c a b b+c 1 

~ 
T 

1 

I 
j_ 

0 a a+c b-e b 1 

Then 

;tc ~ X < 
+ 

XC on X 
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Note that the ec1u'i.distd buted cha.rac ter of { u.} awouuts to. 
1 

lim 1 n · 
1 

- L x(u )=I x(u)du. n-7oo n k 
k=l 0 

Note also that if such a relation held for every continuous 

f, say 

1 i. 1n 1 
n-7co n 

n 

2: f(u ) 
It 

k=l 

+ 

1 J f(u)clu 
0 

then it Hould hold for both x~, and a li.miting argument (for 8-70) 

Hould establish i.t for X· On the other·hand, any such continuons f 

is the unifrom limit of trigonometrlc polynomials, [Weiss, 1965] 

hence it suffices to establish the above property for f of the 

form 

m 

f ( ) \' 2Jrikx 
: x==L.,ae , 

k 
X E X. 

lc=l 

Noting that, for such f 
' 

1 
n m n Ill 

~- ~ [e21lkia r L f(u.) I: a 
1 L 2m {ja}k 

L ak - e 
n j=l J 

. k n 
k=l j=l k=l J=l 

and recalling that a is irrational, one finally. obtai.ns 

1 
[\ m 

1 1 -f,f(u) == r. a n , . It n 
j=l J k= 1 1 

On the otheJ~ hand 

1 J f(u)du 
0 

Thus proving the result. ~ 

2'1ti nita - e 2ITi ka 
e --7 0 as n 

21fia - e 

Ill .1. 

r. j 270 lwd a e · u 
It 

k=l 0 

0 

---7 CO, 

A dynamical system giving rise to the above sequence. as 

orbit is 

f(x)=x+a(mod 1); 

.15 



the orbit of ae[0,1] is precisely {{ia},i=0,1,2, ... },hence it is 

a random sequence in the sense that it fills up the unit intePval 

in a uniform fashion i.e. the orbit is equidistributed there. 

Note, however, that such erratic behaviour may not be 

sufficient for randomness, i.f this last property is understood in 

the sense of absence of any systematic behaviour. To see that 

consider the following example, taken from [Knuth, 1981 J: let 

{U },{V} be both equidistributed ].n [0,1] and thet~errom construct 
k k 

the neH sequence 

The subsequence i~Uk ~ is equidistributed in [o, h] Hherea.s 

~ vk ~ is equidistributed in c/2, 1]' hence the combined 

sequence is equidistr·ibuted in [0, 1]. HoHever, its elements jump 

back and forth between the left and right subintervals, t.hus 

pr·ovenL ing us fr·om considering it "random". Then He Han!. mot'e i't·om 

a sequence than its being equidistributed in order to call it 

"random". Following [Knuth, 1981], let us introduce the folloHing 

concepts: 

Let {U} be a sequence in [0, 1], k::: 1. 

a) {U} is k-equidistributed if 

l i m il { i sn: U. + . e [ aj , b J ] , j=O, 1, ... , n-1} 
1 J 

IHOO n 

for· all choices of Qsa <b sl, j'=O, 1, ... , n-1. 
J j 

n-1 

= IT ( b -a ) , 
.I = 0 l J 

b) {U } is random lf it is k-equi.distributed for each k?.:l. 
l 

There are simple dynamical. systems Hhi.ch have random orbl Ls, 

as the following result shows: 

16 



Theorem [Franklin, 1963] 

For each 8>1, let U = 8n(mod.l). Then {U} is random 8- a.e. 
n n 

wi tl1 respect to Lebesgue measure. l1oreover {U } is random only if 
n 

e is a transcendental number. 

Thus, wi tl1 probability one the sequences corresponding to 

{nn}, etc. are random. There is however no cei~tainty of their 

random character or absence thereof. An e>(pl icit 

producing random sequences was given in [Knuth, 1965]. 

algorithm 

There are many simple, computationally efficient algoritms 

used in order to generate "random numbers", and they all share the 

follo11ing structure: there is a dynamical system f: X-7X, a.nd a 

"ranc!om sequence" of any length is gener:ated by simply choosing a 

"seed" X E X and computing as many elements of its orbit {f(n) (x)} 

as required. See [Knuth, 1981]. 

The quotes above reflect the fact that the.,' resulting 

sequences ·a:re not random in the above sense, but they ar~e 

equidistributed for a suitable k~l (often k=2). 

The foregoing remarks illustrate the point that ·chaotic. 

dynamical systems can be used ~n order to generate randomnes in 

the r~al line. The following section will show that they can also 

be used in order to genei~ate randonmess in functi.on space. 

5. Thermal Fluctuations. 

Let us go back to s'tud.ying particle systems using the methods 

of Classical l"lechanics, in order to model how a "heavy" particle 

diffuses within a surrounding fluid. 
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According to molecular theory, the surrounding fluid consists 

of an extremely large number of particles (its molecules), which 

move about constantly and impinge on the diffusing particle: each 

collision alters the linear momentum of the heavier particle and 

Lhereby determines its trajectory. Besides, the bulk fluid acts 

upon the particle by countering its motion i.e. it manifests 

itself in the form of a friction force. 

To simplify matters, let us decompose the particle's motion 

into three orthogonal directions and analyze such motion in one of 

those directions only. Use x to denote the particle's position, v 

to denote its velocity, and assume q>(v) is the fdction fOJ~ce i.n 

the x direction when the particle moves with velocity v. Clearly 

(p( 0 )=0. 

In the spirit of Statistical Mechanics, let us simplify 

rnat Lers fur·ther by replacing the "heat bath" provided by the 

Jnolecules of the surrounding fluid by a r·andom term, with Ll1e 

properties of gaussian white noise of amplitude 0'. Then, in Lhe 

no tat ion of It.o' s calculus [Schuss, 1980] NewLon's Second LaH 

translates into 

dv = ¢(v)dt+O'dW, (1) 

\vher~e { W( t), u~:O} is a standard one dimensional \Hener process and 

we have taken the pat'ticle' s mass to be unity [compare with eq. 

(1.4)). Finally, the kinemati.cs of the situation says that 

dx = vdt. (2) 

Let us assume that 1> is smooth enough to guar·anLee Lhe 

existence of a unique solution {(X(t),V(t)),O:St:ST} of (1), (2) 

corresponding to any initial (nonrandom) phase·(xo,vo). This is so 

if, for instance 

rjJ(v) = -(3v, 

18 



·" 

Hhich is the friction term considered in the ori g:i nal ITeaLment by 

Langevin: equati.on ( 1) transforms into 

dv= -[3vdt + rjJdW. ( 3) 

The solution to the pair (2), (3) corresponding to an 

iniLial phase (xo, vo) is referred to as the Ornstein-Uhlenbeck 

rnode.L of broHniar1 motion-briefly, the 0-·U. process. 

An easy computation shows that such a process is given by 

[
x( t )]= [ 1 HI-e -:t ~]· [ xol + It [ ~ 
v ( t) 0 e [3 Vo 

0 

[
. -[3(t-s)]. 
1-e . . 

-[3(t-s) clW(s), 
O'e 

and the elementar-y properties of the stochastic integral [Schuss, 

1980] shoH Lhat 

i) the 0-U process is gaussian 

ii) its mean is 

[ 
[ •]' . . Vo -[3t 

. Xo + {3 1-e J 
-[3t 

Vo e 

i.i i) :iL s convar i ance watr i x is 

C(t) ~[ 

See [Doob, 1942], also [Nelson, 1967] for· these results, 

originally derived in [ Ornstein-Uhlenbeck, 1930] and oLhec sout·ces 

as well. 

19 



For large t 

[ ~\ l 
(4a) 

0 
C(t)~ 

2 
0' 

Einstein's formula relating the amplitude of the ther~mal 

n uctuat ion to the extent of the dissipation is 

0'
2=2[3kT, ( 5) 

where k is Boltzmann's constant and T is absolute temper·aLure. 

Then, ( 4) transforms into. 

r2kTt 
C(t)"l 0 

(4b) 

Then, asymptotically, the Lwo componenl.s of Lhe 0-U pr·ocess 
2 

ar·e independent and gaussian vrith variances 2kTt (position) and a· 

(velocity). In other words, the limiting velocity distribul.ion is 

l·1axHe ll' s, whet"eas the 1 imit ing posit ion distri butlo!l is the one 

predicted by the simpler Einstein-Smoluchowski theory of brovmian 

motion [ Ingar·clen, 1986], [Einstein, 1956]. 

For any time instant, the trajectory of the 0-U process 

fills-up the Hhole phase space of the brownian particle, hence 

this is a r·ather random physical sysLe1n. Let us see that Lhis 

r·andorn system can be realized as the output of a chaotic dynamical 

system. 

For, in the spirit of the discussion leading to ( 1. 4) let us 

folloH [Beck-Roepstorff, 1987] and consider the 0-U process as the 

time evolution of those dynamical variables which vary slowly 

Hlti le there is a much smaller (microscopic) time scale T giving 

Lhe evolution of the remaining rapid variables. This microscopic 

time scale would correspond to the mean collision time betHeen the 

!Jig particle and the molecules in the heat bath. 
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Let {~t} be a stationary sequence of random variables having 

zero mean and variance (1
2

, defined on a common probabi 1 i ty space 

(X, !1.,11). Sup.pose the particle receives at each instant nT 

(n=O, 1, 2, . ) an impulse of magnitude At time t 
' 

[t/-r] impacts Hi 11 have ocurred and the total impulse rece:i. vee! 

Hill be 

[tiT] 

ST(t)=h L~n 
n=O 

Newton's Second Law can now be expressed as 

dv = ¢(v)dt+dS (t) 
T 

-compare Hith the nonlinear Langevin equation (1). 

Let f:X-71R be ~0 and let J.L denote :i.ts distribution. 

stationary character of {~ } is equivalent to the inva.riance 
n 

uuder some dl-mea.s UI~ab l e transformation (1: X-7X, i.e. 

-1 
J.l 0 (I = J.l. 

The 

o:f J.l 

(6) 

In addition, ~ = ~ o(l, hence ~ (x)=f(oPx), 
n+l n n 

see [I-lida., 1970). 

Let x : 
n 

n = (J' X ' 
0 

n = 0,1,2, ... 

On the other~ hand, in between two succesive impacts, say :for 

nT::st<(n+l)T, n=O, 1,2, ... the particle's velocity evo.lves according 

to 

V = rjJ(V) v(rn) = v ( 7) 
Il 

Let. g(t.,vo) denote the. solution over [ 0, 1.·] : of the above · 

initial value problem :for n=O. Then, t.he time invar~ia.nce of the 

clifl'er·ential equation in (7) allows us to say tha.t 

lim v(t), = 
t-7(n+1 h 
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At the end of the nt 11period, the particle suffers the (n+l) 8
t 

collision, obtaining therefrom an additional impulse of magnitude 

~f(x 
1

). Therefore NeHton's Second LaH translates into 
n+ 

v = g(-r, v )+VLf(x ) 
n+l n n+1 

(8a) 

Hhere 

X 0'( X ) (8b) 
n+l n 

The pair of equations (8) constitutes a dynamical system 

aclillg on Lhe space X X IR. Note Lhat Lher·e is nothing random i.n 

it., and yet the following result holds: 

Tl!eorem [Beck-Roepst.orff, 1987]. 

Under some "technical conditions" on 0' and f, 

[ t/T] 

S(t.): =~ L: f(Xn+
1

) =? a·W(L) 
n=O 

[or tE [ 0, t], where 11 
=?

11 denotes ~veak convergence and 

00 
2 2 

() = E ~ +2 L E(~ ~ ) 
0 0 Il 

n=l 

This t~esult authorizes us to use the dynamical system (8) in 

order to generaLe (appt~oximations to) the trajectories of the 

stochastic d.ifferent ial equations ( 1)' ( 2). Thus we have 

constructed a (deterministic) generator of random functions. To 

implement it, it suffices to consider any chaotic dyuamical 

syslem such as 

2 
f ( x) = 2x - 1 on [ -1, + 1], 

Hhich has an invariant measure 11 given by 

J.t( A) = 1 I dx 

rr A .. ~ -x2 

assuming it satisfies the 11 technical conditions" referTed to 

above. See [Beck-Roepst.orff, 1987] for the details. 
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