A mapping theorem for topological sigma-compact manifolds

COMUNICACIONES DEL CIMAT

CENTRO DE INVESTIGACION EN MATEMATICAS

Apartado Postal 402
Guanajuato, Gto.
México
Tels. (473) 2-25-50
2-02-58

A Mapping Theorem For Topological Sigma-Compact Manifolds.

It is the purpose of this paper to prove a generalization to σ-compact manifolds of a well known result due to M.Brown (see [4]), which asserts the existence of a special kind of continuous, "non-pathological" surjections from the unit n-dimensional cube onto a given compact connected manifold M^{n}.

In the more general setting when M^{n} is σ-compact, the space $E(M)$ of ends of M^{n} plays an important role: Since $E(M)$ is a totally disconnected, compact, metrizable space, a set E contained in the boundary of the unit cube I^{n} can be constructed in such a way that E is homeomorphic to $E(M)$. Now $I^{n} \backslash E$ and M^{n} are two manifolds with the same set of ends. Broadly speaking, our result states that M^{n} is the identification space obtained from $I^{n} \backslash E$ by identifying points within the boundary of $I^{n} \backslash E$ alone.

The set $E(M)$ is empty exactly when M is compact. In this case, the arguments are reduced to those given by M. Brown for compact manifolds. Some applications are mentioned afterwards.
§ 1.- The Set of Ends.

The concept of the set of ends of a space is due to Freudenthal. Here we recall some basic notions.

Let X be a locally compact, Hausdorff space. Denote by $K(X)$ the set of all compact subsets of X partially ordered by inclusion. If $K \in K(X)$, denote by $C(X \backslash K)$ the set of connected components of $X \backslash K$ considered as a discrete topological space.

If $K, L \in K(X)$ with $K C L$, then there is a well defined continuous function

$$
\rho_{\mathrm{K}}^{\mathrm{L}}: C(X \backslash \mathrm{~L}) \longrightarrow C(X \backslash K)
$$

such that for each $V \in C(X \backslash L), \rho_{K}{ }^{L}(V)$ is the unique component of $X \backslash K$ containing V. In this manner, the collection

$$
\left\{C(X \backslash K), \rho_{K}{ }^{L} \mid K, L \in K(X) \text { and } K C L\right\}
$$

constitutes an inverse system of topological spaces indexed over the directed set $K(X)$.

An end of X is, by definition, a point in the inverse limit space of this system. In other words, an end of X is a function e which assigns to each compact set K of X a non-empty connected component $e(K)$ of $X \backslash K$, in such a way that $K_{1} \subset K_{2}$ implies $e\left(K_{2}\right) \subset e\left(K_{1}\right)$. Let $E(X)$ be the set of all ends. There is a topology on $X \cup E(X)$ having as a basis of neighbourhoods of $e_{0} \in E(X)$ the $N_{K}\left(e_{0}\right)=e_{0}(K) \cup\left\{\right.$ ends e $\left.\mid e(K)=e_{0}(K)\right\}, K E K(X)$. With this topology $X \cup E(X)$ is a Hausdorff space containing $E(X)$, with its inverse limit topology, as a closed (nowhere dense) subspace.

If $f: X \rightarrow Y$ is a continuous proper function (i.e. $F C Y$ compact implies $f^{-1}(F)$ compact), then f is extended uniquely and continuously to a function

$$
f \cup f_{E}: X \cup E(X) \longrightarrow Y \cup E(Y)
$$

such that for e $\in E(X)$ and $F C Y$ compact $f_{\epsilon}(e) F$ is the (unique) component of $Y \backslash F$ containing $f\left(e\left(f^{-1}(F)\right)\right)$.

Let X be a space, and let $K \in K(X)$. A connected component V of $X \backslash K$ is said to be bounded if its closure is compact, and otherwise we say that V is unbounded. Define

$$
\hat{K}=X \backslash U\{V \in C(X \backslash K) \mid V \text { is unbounded }\}
$$

*The proof of the following lemma may be found in Berlanga and Epstein [2].

1.1 Lemma.

Let X be a connected, locally connected, locally compact, Hausdorff space and let $K \in K(X)$. Then $X \backslash K$ has only finitely many umbounded components and \hat{K} is compact.
1.2 Remark.

It follows that $E(X)$ is compact since $\hat{K}(X)=\{\hat{K} \mid K \in K(X)\}$.
is cofinal in $K(X)$ and each $C(X \backslash \hat{K})$ is finite. It is also known that $X \cup E(X)$ is compact and that $E(X)$ is totally disconnected. Also if X is metric $X \cup E(X)$ is metrizable.
§ 2.- Definitions.

Let X be a subset of a topological space Y. We define $\stackrel{\circ}{X}$ and CIX to be, respectively, the topological interior and the topological - closure of X in Y . Call X a (closed) ncell if X is homeomorphic to the unit n-cube $I^{n}=[0,1]^{n}$. For a subset X of a manifold M we define IntX to be $(M \backslash \partial M) \cap \stackrel{\circ}{X}$, where ∂M denotes the boundary of M.
§ 3.- The Main Theorem.

Let M^{n} be a connected, second countable manifold of dimension n. Then there exists a compact set EC ∂I^{n} and a continuous proper surjection $\psi: I^{n} \backslash E \rightarrow M$ such that
(1) $\left.\psi\right|_{\text {Int }} \mathrm{I}^{\mathrm{n}}: \operatorname{Int} \mathrm{I}^{\mathrm{n}} \longrightarrow \psi\left(\operatorname{Int} \mathrm{I}^{\mathrm{n}}\right)$ is a homeomorphism;
(2) $\psi\left(\operatorname{Int} I^{\mathrm{n}}\right) \cap \psi\left(\partial \mathrm{I}^{\mathrm{n}} \backslash E\right)=\varnothing$;
(3) ψ extends naturally to $\tilde{\psi}: I^{n} \rightarrow M \cup E(M)$ in such a way that $\left.\tilde{\psi}\right|_{E}$ is a homeomorphism from E onto $E(M)$.

Furthermore, if $\mathrm{n} \geq 2$ then E can be chosen to be contained in $[1 / 3,2 / 3] \times\{(1 / 2,1 / 2, \ldots, 1 / 2,1)\}$.
§ 4 .- Definitions, Lemmas and Proof of the Main Theorem.

4.1 Definitions.

An (n-1)-dimensional submanifold B of an n-manifold M is bicollared in M if there is a homeomorphism P of $\mathrm{B} \times\langle-1,1\rangle$ onto a neighbourhood of B in M such that $P(b, 0)=b$, for all $b \in B$. If B is closed in M we require also that P can be extended to a closed embedding of $B \times[1,1]$ into M.

If B is the boundary of an n-dimensional submanifold C of M, then $B \times\langle-1,0]$ and $B \times[0,1\rangle$ denote the inmer and outer collars of B. In general, we will not distinguish $(b ; t) \in B \times\langle-1,1\rangle$ from $P((b, t))$.

Define $H(M)$ to be the group of homeomorphisms of M onto itself. If $h: M \rightarrow M$ is a homeomorphism, then supp h denotes the support of h, that is, the closure of the set of points of M which are actually moved by h.

The following result, proved in Appendix 1 below, is just a straightforward generalization of lemma 2 in M. Brown [4] (or lemma 6 in Berlanga and Epstein [2]).

4:2 Lemma.

Let M^{n} be a manifold with $n \geq 3$ and let d be a metric on M. Let C^{n} be a closed n-dimensional manifold with bicollared boundary $\partial \mathrm{C}$ in M .

Let $\epsilon>0$ be given and suppose $\Lambda=\left\{D_{j}\right\}_{j \in J}$ is a locally finite family of sets in M such that each D_{j} is a closed n-cell of diameter less than $\epsilon / 2$ whose interior intersects C. Let $X=\left\{X_{i}\right\}_{i \in L}$ be a locally finite set of points in U_{j} Int D_{j}.

Suppose that $0<\gamma<1$. Then there is an ϵ-homeomorphism f in $H(M)$ such that $f(C) \supset f(C) \supset C \cup X$ and

日
$\operatorname{supp} f C\left(U_{j}\right.$ Int $\left.D_{j} \backslash C\right) \cup \partial C \times\langle-\gamma, \gamma\rangle$. In particular, f fixes pointwise the inner n-manifold bounded by $\partial \mathrm{C} \times\{-\gamma\}$.

4.3 Lemma.

Let M be a connected, second countable, n -dimensional manifold with $n \geq 3$ and let $X \subset$ Int M be a locally finite set of points. Then there exists a compact set
$E \subset[1 / 3,2 / 3] \times\{(1 / 2,1 / 2, \ldots, 1 / 2,1)\} \subset \partial \mathrm{r}^{\mathrm{n}}$, and a proper embedding $\psi_{\star}: I^{n} \backslash E \rightarrow M$ with bicollared boundary such that ψ_{\star} (Int $\left.I^{\mathrm{n}}\right) \supset \mathrm{X}$ and ψ_{\star} extends naturally to $\tilde{\psi}_{\star}: I^{n} \rightarrow M \cup E(M)$ in such a way that $\left.\tilde{\psi}_{\star}\right|_{E}$ is a homeomorphism from E onto $E(M)$.

Proof. Define a clean (closed) n-cube in I^{n} to be a cube C of the form $[0, \beta]^{\mathrm{n}}+\nu$, for some $\beta>0$ and $\nu \in \mathbb{R}^{\mathrm{n}}$, such that $\mathrm{CCI} \mathrm{I}^{\mathrm{n}}$ and $\mathrm{C} \cap \partial \mathrm{I}^{\mathrm{n}}=\left([0, \beta]^{\mathrm{n}-1} \times\{\beta\}\right)+\nu$.

Observe that if C_{1}, \ldots, C_{k} is a disjoint collection of clean cubes then $\mathrm{Cl}\left(\mathrm{I}^{\mathrm{n}} \backslash \mathrm{U}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}\right.$) is homeomorphic to I^{n}. We divide the proof in three steps.

Step 1. Let $\left\{K_{i}\right\}_{i \in \mid N}$ be any collection of $K_{i} \in K(M)$ such that $M=U_{i} K_{i}$ and $K_{i} \subset \stackrel{\circ}{K}_{i+1}$; further properties of the K_{i} will be specified in Step 2. It is not difficult now to define a sequence $\left\{L_{i}\right\}_{i \in \| N}$ of n-cells in I^{n} with $L_{i} \subset \stackrel{\circ}{L}_{i+1}$ and such that
(a) The complement of ${ }^{\circ}{ }_{i}$ is the finite disjoint union of clean cubes of diameter less or equal $1 / 2^{i}$, and such that, for each $A \in C\left(I^{n} \backslash L_{i}\right)$, we have,
$-A \cap[1 / 3,2 / 3] \times\{(1 / 2,1 / 2, \ldots, 1 / 2,1)\} \neq \varnothing$. Hence, $E=\cap_{i} I^{n} \backslash L_{i}$ is contained in
$[1 / 3,2 / 3] \times\{(1 / 2,1 / 2, \ldots, 1 / 2,1)\}$;
(b) For each i $\in \mathbb{N}$ there exists a bijection $\lambda_{1}: C\left(I^{n} \backslash L_{i}\right) \rightarrow C\left(M \backslash \hat{K}_{i}\right)$ such that the diagrams

commute (icj).

The reader can readily verify the following assertion:

Assertion :

$$
E=\cap_{i}{ }^{n} \backslash L_{i}, E\left(I^{n} \backslash E\right) \text { and } E(M) \text { are homeomorphic. }
$$ Furthermore, the identity map $I^{n} \backslash E \rightarrow I^{n} \backslash E$ extends naturally to a homeomorphism of $I^{n}=\left(I^{n} \backslash E\right) \cup E$ onto $\left(I^{n} \backslash E\right) \cup E\left(I^{n} \backslash E\right)$.

Before proceeding into Step 2 of this lemma, the reader may - refer to Appendix 2 for a preliminary discussion.

Step 2. Let the K_{i} be constructed as to satisfy also the following properties:
$\stackrel{0}{K}_{i}$ is connected;
$M \backslash \hat{K}_{i}$ has exactly the same number of components as $\stackrel{\circ}{K}_{\mathrm{K}+1} \backslash \hat{K}_{i}$.

If $\psi_{0}: I^{n} \rightarrow \stackrel{0}{K}_{0}$ is an embedding with bicollared boundary, then there exists a homeomorphism h_{1} of M with compact support such that
(1) $\operatorname{supp} h_{1} \cap \psi_{0}\left(L_{0}\right)=\varnothing$;
(2) $\operatorname{supp} h_{1} \subset{\stackrel{\circ}{K_{1}}}_{1}$;
(3) If $A \in C\left(I^{n} \backslash L_{1}\right)$ then
(a) $h_{1}\left(\psi_{0}(A)\right) \subset \lambda_{0}\left(\rho_{0}^{1}(A)\right)$;
(b) $h_{1}\left(\psi_{0}(A)\right)$ and $\lambda_{1}(A)$ are not separated in M by $h_{1}\left(\psi_{0}\left(I^{n} \backslash A\right)\right) \cup \hat{K}_{0}$, (that is, $h_{1}\left(\psi_{0}(A)\right)$ and $\lambda_{1}(A)$ lie in the same connected component of

$$
M \backslash\left(h_{1}\left(\psi_{0}\left(I^{n} \backslash A\right)\right) \cup \hat{K}_{0}\right)
$$

Proof. Let $A_{1}, A_{2}, \ldots, A_{k}$ be the components of $I^{n} \backslash L_{1}$. It is not difficult to construct a family of disjoint arcs, say $\left\{\gamma_{i}:[0,2] \rightarrow M \mid 1 \leq i \leq k\right\}$ and a family $\left\{U_{i} \mid 1 \leq i \leq k\right\}$ of disjoint connected open sets in K_{1} such that, for each $\mathrm{i}_{\text {, }}$

$$
\begin{aligned}
& U_{i} \cap \psi_{0}\left(I^{n}\right) \subset \psi_{0}\left(A_{i}\right) ; \\
& \gamma_{i}([0,1]) \subset U_{i} ; \\
& \gamma_{i}([1,2]) \subset K_{2} \backslash \hat{K}_{0} ; \\
& \gamma_{i}(0) \in \psi_{0}\left(A_{i}\right) ; \\
& \gamma_{i}(1) \in \lambda_{0}\left(\rho_{0}^{1}\left(A_{i}\right)\right) ; \\
& \gamma_{i}(2) \in \lambda_{1}\left(A_{i}\right)
\end{aligned}
$$

This can be done because $M \backslash \psi_{0}\left(I^{n}\right)$ is connected and an n-dimensional manifold cannot be disconnected by a set of dimension n-2 (see Hurewicz and Wallman [5]).

Since the group of compactly supported homeomorphisms of a connected manifold acts transitively on interior points, we can find, for each i, a homeomorphism $h_{1, i}$ compactly supported on U_{i} which sends $\gamma_{i}(0)$ to $\gamma_{i}(1)$.

For each $i=1,2, \ldots, k$, let $\tau_{i} \in[1,2]$ be the last parameter such that its image under γ_{i} lies in $h_{1, i}\left(\psi_{0}\left(I^{n}\right)\right)$.

Consequently, there is a unique x_{i} in $\partial I^{n} \cap A_{i}$ with $\gamma_{i}\left(\tau_{i}\right)=h_{1, i}\left(\psi_{0}\left(x_{i}\right)\right)$. Now choose a clean closed cube B_{i} such that $x_{i} \in B_{i} \subset A_{i}$ and $h_{1, i}\left(\psi_{0}\left(B_{i}\right)\right) \subset \lambda_{0}\left(\rho_{0}^{1}\left(A_{i}\right)\right)$.

With a homeomorphism of M sending $\psi_{0}\left(I^{n}\right)$ onto itself and supported in a small neighbourhood of $\psi_{0}\left(\mathrm{Cl}_{\mathrm{i}}\right)$ we can shrink $\psi_{0}\left(\mathrm{Cl}_{1}\right)$ onto $\psi_{0}\left(\mathrm{~B}_{\mathrm{i}}\right)$ before applying $h_{1, \mathrm{i}}$. Therefore, without loss of generality we can assume that $A_{i}=B_{i}$ and that $\operatorname{supp} h_{1, i} \cap \operatorname{supp} h_{1, j}=\varnothing$ for $i \neq j$. Hence,

$$
h_{1, i}\left(\psi_{0}\left(A_{i}\right)\right) \subset \lambda_{0}\left(\rho_{0}{ }^{1}\left(A_{i}\right)\right) \text { and } h_{1, i}\left(\psi_{0}\left(A_{i}\right)\right)
$$ $\lambda_{1}\left(A_{i}\right)$ are not separated in M by $h_{1, i}\left(\psi_{0}\left(I^{n} \backslash A_{i}\right)\right) \cup \hat{K}_{0}$.

Finally, the homeomorphism $h_{1}=h_{1,1} \circ h_{1,2} \circ \ldots \circ h_{1, k}$ has the required properties.

Step 3. By induction, we can construct a sequence $\left\{h_{i}\right\}_{i \in \| N}$ of homeomorphisms with compact support such that, for each i,
(1) $\operatorname{supp} h_{i+1} \cap\left(h_{i} \circ h_{i-1} \circ \ldots \circ h_{1} \circ \psi_{0} \cdot\left(L_{i}\right)\right)=\varnothing$;
(2) $\operatorname{supp} h_{i+1} \subset \stackrel{\circ}{K}_{i+1}^{\circ}$;
(3) $\operatorname{supp} h_{i+1} \cap \hat{K}_{i-1}=\varnothing$;
(4) If $A \in C\left(I^{n} \backslash L_{i+1}\right)$ then
(a) $h_{i+1} \circ h_{i} \circ \ldots \circ h_{1} \circ \psi_{0}(A) \subset \lambda_{i}\left(\rho_{i}^{i+1}(A)\right)$;
(b) $h_{i+1} \circ h_{i} \circ \ldots \circ h_{1} \circ \psi_{0}(A)$ and $\lambda_{i+1}(A)$ are. not separated in M by $h_{i+1} \circ h_{i} \circ \ldots \circ h_{1} \circ \psi_{0}\left(I^{n} \backslash A\right) \cup \hat{K}_{i}$.

Define $\psi_{i}=h_{i} \circ \ldots \circ h_{1} \circ \psi_{0}, i \in \mathbb{N}$. Therefore, the following properties hold:
(5) $\left.\psi_{i}\right|_{L_{i}}=\left.\psi_{i+k}\right|_{L_{i}}$ for all $i, k \in \mathbb{N}$;
(6) $\psi_{i+k}(A) \subset \lambda_{i}\left(\rho_{i}{ }^{i+1}(A)\right)$ for all $i \in \mathbb{N}$, $k \in \mathbb{N} \backslash\{0\}$, and all $A \in C\left(I^{n} \backslash L_{i+1}\right)$. It follows that $\lim _{i \rightarrow \infty} \psi_{i}=\psi_{\star}$ exists in $U_{i} L_{i}$ and is such that
(7) $\left.\psi_{\star}\right|_{L_{i}}=\left.\psi_{i}\right|_{L_{i}}$ for all $i \in \mathbb{N}$;
(8) $\psi_{\star}(A) \subset \lambda_{i}\left(\rho_{i}^{i+1}(A)\right)$ for all $i \in \mathbb{N}$ and all $-A \in C\left(\left(I^{n} \backslash E\right) \backslash L_{i+1}\right) ;$

$$
\text { (9) } \psi_{\star}^{-1}\left(\hat{K}_{i}\right) \subset L_{i+1} .
$$

Property (7) says that ψ_{\star} is continuous and injective. Property (9) (which follows from (8)) tells us that $\psi_{\star}: I^{n} \backslash E \rightarrow M$ is proper, and therefore induces a map $\psi_{\star} \cup \psi_{\epsilon}:\left(I^{n} \backslash E\right) \cup E\left(I^{n} \backslash E\right)=I^{n} \longrightarrow M \cup E(M)$ such that if e is an end of $I^{n} \backslash E, \psi_{\epsilon}(e) \hat{K}_{i}$ is the component of $M \backslash \hat{K}_{i}$ containing $\psi_{\star}\left(e\left(\psi_{\star}^{-1}\left(\hat{K}_{i}\right)\right)\right)$, hence, by (9), it is equal to the component of $M \backslash \hat{K}_{i}$ containing $\psi_{\star}\left(e\left(L_{i+1}\right)\right)$, but, by (8), this is just $\lambda_{i}\left(\rho_{i}^{i+1}\left(e\left(L_{i+1}\right)\right)\right)=\lambda_{i}\left(e\left(L_{i}\right)\right)$. That is, we have proved that the following diagram commutes:

Since each λ_{i} is bijective, Ψ_{ϵ} must be a homeomorphism. Therefore, we have constructed a proper embedding $\psi_{\star}: I^{n} \backslash E \rightarrow M$ inducing a homeomorphism on ends.

In order to complete the proof of lemma 4.3 we need to produce a bicollar of $\psi_{\star}\left(\partial I^{n} \backslash E\right)$ and we need to "expand" the image C of $I^{n} \backslash E$ in M as to contain X in its interior.

Let E^{\prime} be the projection of E into I^{n-1}, so $E=E^{\prime} \times\{1\}$. It is not difficult to see that the spaces $W=[-1,2]^{n} \backslash\left(E^{\prime} \times[1 / 2,2]\right)$ and $T=W \cap I^{n}$ are homeomorphic to $I^{n} \backslash E$ and that the inclusion map $\mathrm{T} \rightarrow \mathrm{W}$ is a proper map inducing a homeomorphism on ends.

Therefore without loss of generality, we can assume that the domain of the map ψ_{\star} is W. But now $\left.\psi_{\star}\right|_{T}$ has the same properties of ψ_{\star} with the advantage that $\partial \mathrm{T}$ has a natural bicollar contained in M .

It now only remains to "expand" the image of Ψ_{\star}. To this purpose we can construct a locally finite family $\Lambda_{0}=\left\{D_{j}\right\}_{j \in J}$ of closed n-cells such that X is contained in U_{j} Int D_{j} and Int $D_{j} \cap C \neq \varnothing$ for all $j \in J$.

- Therefore, by an application of lemma 4.2, say with $\gamma=1 / 2$ and $\epsilon=\infty$, we get the desired expansion.
4.4 Proof of the main theorem.

When the dimension of the manifold M is less or equal two, the theorem follows from the classification of second countable manifolds of dimensions one and two (see Ahlfors and Sario [1]).

Assume now that the dimension of M is greater or equal to three. Let d be a complete metric on M . Let $\Lambda_{1}, \Lambda_{2}, \ldots$ be a sequence of locally finite covers of M such that each element of Λ_{i}
is a closed n-cell of diameter less than $1 / 2^{i+1}$ and Int $M=U\left\{\operatorname{Int} D \mid D \in \Lambda_{i}\right\}$. For each i, let X_{i} be a locally finite set of points such that $X_{i} \subset \operatorname{Int} M$ and $\operatorname{Int} D \cap X_{i} \neq \varnothing$ if $D \in \Lambda_{i}$.

Let C_{1} be the image inder ψ_{\star} where ψ_{\star} is the embedding given by the above lemma, and assume that $X_{1} \subset \operatorname{Int} \mathrm{C}_{1}$. Applying Lemma 4.2 with $X=X_{2}, \Lambda=\Lambda_{1}$ and γ small, we get a $1 / 2$-homeomorphism f_{1} of M onto itself such that
$\dot{M} \partial C_{2}=f_{1}\left(C_{1}\right) \supset f_{1}\left(\stackrel{D}{C}_{i}\right) \supset C_{1} \cup X_{2}$ and $f_{1} l_{(1-\gamma) C_{1}}=I d$, where $(1-\gamma) C_{1}=C_{1} \backslash \partial C_{1} \times\langle-\gamma, 0]$.

Repeated applications of 4.2 give a sequence f_{1}, f_{2}, \ldots of homeomorphisms of M such that for each $m \in \mathbb{N} \backslash\{0\}$,

$$
\begin{aligned}
& f_{m} \text { is a }(1 / 2)^{m} \text {-homeomorphism; } \\
& M \supset f_{m} \circ \ldots \circ f_{1}\left(C_{1}\right) \supset f_{m} \circ \ldots \circ f_{1}\left(\stackrel{0}{C}_{1}\right) \\
& \\
& \qquad C_{1} \cup U_{i}\left\{X_{i} \mid 1 \leq i \leq m+1\right\} ;
\end{aligned}
$$

$$
f_{m+1} \text { restricted to } f_{m} 0 \ldots \circ f_{1}\left(\left(1-\gamma / 2^{m}\right) C_{1}\right) \text { is the }
$$

Clearly $\mathrm{f}_{\mathrm{m}} \circ \ldots \circ \mathrm{f}_{1}$ converges to a map ψ such that

$$
\psi\left(C_{1}\right)=\lim _{m \rightarrow \infty} f_{m} \circ \ldots \circ f_{1}\left(C_{1}\right)=M ;
$$

$$
\psi \text { is a homeomorphism on } \stackrel{\circ}{C}_{1}
$$

$$
\psi^{-1}\left(\psi\left(\partial C_{1}\right)\right)=M \backslash{\stackrel{\circ}{C_{1}}}_{1}
$$

so that when ψ is restricted to C_{1} we get the required map.

4.5 Remark.

Let $\psi: I^{n} \backslash E \rightarrow M$ be a mapping given by the main theorem above. Then, measures (having the boundary of the unit n-cube as a null set) and homeomorphisms of the unit n-cube fixing ∂I^{n} pointwise can be thrown, respectively, into measures and homeomorphisms of M via ψ. This provides us with a tool for the topological and algebraic study of various groups of (measure preserving) homeomorphisms of M (see [3]).

Appendix 1.

A1.1 Definitions.

A subset X of an n-manifold M is cellular if for every neighbourhood U of X there is an n-cell Q such that $X C$ Int $Q C U$.

If B is an ($n-1$)-dimensional, bicollared submanifold of M - and $\delta_{i}: B \rightarrow\langle 0,1\rangle(i=1,2)$ continuous are given, define

$$
\begin{aligned}
& B \times\left\langle\left\langle-\delta_{1}, \delta_{2}\right\rangle\right\rangle=\left\{(b, t) \mid-\delta_{1}(b)\left\langle t\left\langle\delta_{2}(b)\right\} .\right.\right. \\
& B \times\left\{\left\{(-1)^{i} \delta_{i}\right\}\right\}=\left\{(b, t) \mid(-1)^{i} \delta_{i}(b)=t\right\} .
\end{aligned}
$$

We divide the proof of lemma 4.2 into two.

A1.2 Lemma.

Let M^{n} be a manifold with $\mathrm{n} \geq 3$ and let d be a metric on M . Let C^{n} be a closed n -dimensional manifold with bicollared boundary $\partial \mathrm{C}$ in M .

Let $\epsilon\rangle 0$ and a continuous function $\delta: \partial C \longrightarrow\langle 0,1\rangle$ be given. Suppose $\Lambda=\left\{D_{j}\right\}_{j \in J}$ is an (at most countable) locally finite family of sets in M such that each D_{j} is a closed n-cell of diameter less than $\epsilon / 2$ whose interior intersects C. Let $X=\left\{x_{i}\right\}_{i \in L}$ be a locally finite set of points in $\underset{j \in J}{ }$ Int $_{j} D_{j} \backslash C$. Then there is a locally
finite set of points $X^{\prime}=\left\{x^{\prime}{ }_{i}\right\}_{i \in L}$ in $\partial C \times\langle\langle 0, \delta\rangle\rangle$ and an $\epsilon / 2$-homeomorphism $h: M \rightarrow M$ such that supp $h C \underset{j \in J}{\cup} \operatorname{Int} D_{j} \backslash C$ and $h\left(x_{i}{ }_{i}\right)=x_{i}$ for each $i \in L$.

Proof. We may assume, without loss of generality, that $x_{i_{1}}=x_{i_{2}}$ for $i_{1} \neq i_{2}$ (hence L is at most countable).

Associate with each x_{i} some element, say $D_{j(i)}$, of Λ which contains x_{i} in its interior. Associate with each D_{j} a point y_{j} in $C \cap$ Int D_{j}. For $i \in L$ let α_{i} be a poligonal arc (relative to some combinatorial structure on $D_{j(i)}$) in Int $D_{j(i)}$ from x_{i} to $y_{j(i)}$. Since an n-dimensional connected manifold cannot be disconnected by a subset of dimension less or equal $n-2$ (see Hurewicz and Wallman [5]), this can be done in such a manner that $\alpha_{i_{1}}$ and $\alpha_{i_{2}}$ are disjoint or intersect only in the common end point $y_{j\left(i_{1}\right)}=y_{j\left(i_{2}\right)}$.

Let x_{i} be a point of $\alpha_{i} \cap \partial C \times\langle\langle 0, \delta\rangle\rangle$ such that the segment $\left[x_{i}, x_{i}^{\prime}\right]$ of α_{i} does not intersect C. Since α_{i} is poligonal in $D_{j(i)}$, so is $\left[x_{i}, x_{i}^{\prime}\right]$. Hence $\left[x_{i}, x_{i}^{\prime}\right]$ is cellular in $D_{j(i)}$ and therefore cellular in M . Hence there exists a (locally finite) family $\left\{Q_{i}\right\}_{i \in L}$ of n-cells such that

$$
\begin{aligned}
& Q_{i} \cap Q_{j}=\varnothing \quad \text { if } i=j ; \\
& {\left[x_{i}, x_{i}^{\prime}\right] \subset \stackrel{\circ}{Q}_{i} ;} \\
& Q_{i} \cap C=\varnothing ; \\
& Q_{i} \subset \text { İnt } D_{j(i)}
\end{aligned}
$$

Let h be a homeomorphism of M onto M such that h restricted to $M \backslash U_{i} Q_{i}$ equals the identity;

$$
\begin{aligned}
& h\left(Q_{i}\right)=Q_{i} ; \\
& h\left(x_{i}^{\prime}\right)=x_{i} .
\end{aligned}
$$

Then h is the required homeomorphism.

A1. 3 Lemma.

Suppose that $0<\gamma<1$ and that the hypotheses of the above lemma are satisfied. Then there is an ϵ-homeomorphism f of M onto M such that $f(\mathrm{C}) \supset \mathrm{f}(\mathrm{C}) \supset \mathrm{C} \cup X$ and $\operatorname{supp} f\left(C\left(U_{j}\right.\right.$ Int $\left.D_{j} \backslash C\right) \cup \partial C \times\langle-\gamma, \gamma\rangle$. In particular, f fixes pointwise the "inner" n-manifold bounded by $\partial \mathrm{C} \times\{-\gamma\}$.

- Proof. Choose $\delta: \partial \mathrm{C} \rightarrow\langle 0, \gamma / 2\rangle$ continuous and such that for each $c \in \partial C$ the diameter (with respect to the induced metric) of $\{\mathrm{c}\} \times[-2 \delta(\mathrm{c}), 2 \delta(\mathrm{c})]$ - in the collar $\mathrm{C} \times[-1,1]$ - is less than $\epsilon / 2$.

Let. $\alpha: \partial C \rightarrow H([-1,1])$ be defined by the formula

$$
\alpha_{c}(t)= \begin{cases}t & -1 \leq t \leq-2 \delta(c) \\ (3 / 2) t+\delta(c) & -2 \delta(c) \leq t \leq 0 \\ (1 / 2) t+\delta(c) & 0 \leq t \leq 2 \delta(c) \\ t & 2 \delta(c) \leq t \leq 1\end{cases}
$$

Since $\partial C \times[-1,1]$ is closed in M, we can define a homeomorphism $\mathrm{g} \in H(M)$ such that g is the identity outside $\partial \mathrm{C} \times\langle-1,1\rangle$ and is given by $g(c, t)=\left(c, a_{c}(t)\right)$ for each $(c, t) \in \partial C \times[-1,1]$.

Therefore, g is fixed on the manifold bounded by $\partial \mathrm{C} \times\{\{-2 \delta\}\}$, stretches $\partial \mathrm{C} \times\{0\}$ parametrically onto $\partial \mathrm{C} \times\{\{\delta\}\}$ and is fixed outside $\partial \mathrm{C} \times\{\{2 \delta\}\}$. Furthermore, g is an $\epsilon / 2$-homeomorphism and if h is the homeomorphism obtained in the conclusion of the above lemma, then $f=h o g$ is the required ϵ-homeomorphism.

Appendix 2.

We would like to embed a copy of I^{n} in K_{0} and start an inductive process with the aid of the combinatorial scheme constructed in Step 1. Suppose for a moment that I^{n} is actually contained in K_{0}^{0} and that A_{0} is a component of $I^{n} L_{0}$. Then, we want to "push" A_{0} (or some part of A_{0}) to where it corresponds. That is, into $\lambda_{0}\left(A_{0}\right)$. Now let A_{00} be a component of $I^{n} \backslash L_{1}$ contained in A_{0}. A further push should take A_{00} (or some part of A_{00}) into $\lambda_{1}\left(A_{00}\right)$. And so on.

Many things can go wrong in the process. The following diagram intends to show some of the difficulties.

$$
I^{n} \backslash L_{0}=A_{0} \quad A_{1} \quad I^{n} L_{1}= \begin{cases}\square \square & \square \square \\ A_{\infty} \cup A_{01} & \cup A_{10} \cup A_{11}\end{cases}
$$

There is nothing wrong with the push we gave to A_{0}, but A_{1} is so badly deformed that we cannot push, say A_{00}, any further (and achieve convergence at the end of the story).

The situation for A_{10} is bad as well. Certainly we can push it once more as to move some part of it into $\lambda_{1}\left(A_{10}\right)$. But then a third push most probably will be impossible.

Although the example is two-dimensional (we are assuming dimension no less than three in this lemma), it is easy to extend it to dimension three (the "tentacles" will now look like "domes").

There can be problems with the compact sets $\left\{K_{i}\right\}_{i}$ as well, so we will need to assume some "connectivity" properties.

Proceed now into Step 2

References.
[1] L.V. Ahlfors and L. Sario: Riemann Surfaces. Princeton University Press (1960).
[2] R. Berlanga and D.B.A. Epstein: Measures on sigma-compact manifolds and their equivalence under homeomorphism. J. London Math. Soc.
(2), 27(1983) 63-74.
[3] R. Berlanga: Homeomorphisms preserving a good measure in a manifold, Ph. D. Warwick (1983).
[4] M. Brown: A mapping theorem for untriangulated manifolds. In: M. K. Fort (editor): Topology of 3-manifolds and related topics. Prentice Hall (1963) 92-94.
[5] W. Hurewicz and H. Wallman: Dimension Theory. Princeton University Press (1948).

