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INTRODUCTION

A lamination or foliated space is a topological space that can be seen as a disjoint
union of manifolds, whose local aspect is that of a product while its global geometry
is usually quite complicated. The first non-trivial example of a lamination is the
phase space of a continuous dynamical system -written as the disjoint union of
orbits—,where the problem of understanding the asymptotic behaviour of orbits is
most naturally posed. ’ : :

In this thesis, however; we will be concerned exclusively with laminations whose
leaves are hyperbolic Riemann surfaces. Examples of these objects arise naturally
in the field of ordinary differential equations with complex time, but may come
from other constructions such as Sullivan’s definition of universal solenoids (see [S]
or the Appendix) or Hilbert modular foliations (sece Chapter III).

In an attempt to give an interpretation to the problem of the asymptotic be-
haviour of the leaves, and to tinderstand it from the probabilistic (or ergodic-
theoretical) point of view, many different measures have been associated to lamina-
tions. The'aim of this work is to shed some light on the way some of these measures
relate. '

The first measures we will consider are holonomyv-invariant measures. These are
not measures on the foliated space, but on its transversals. Nevertheless. there
is a natural sense in which theyv generalize the concept of invariant measures for
flows. While invariant measures always exist for flows on compact metric spaces,
holonomy-invariant measures not always exist on laminations, and an example of
this phenomenon can be found in {Ga]. The main theorem concerning the existence
of holonomy-invariant measures. due to Plante ([P]), guarantees their existence if
there are leaves whose volume has subexponential growth-which is not usually the
case for laminations by hyperbolic surfaces. ‘

The second class of measures we will consider are defined and studied by Lucy
Garnett in [Ga]. These are measures on-the foliated space invariant under the heat
flow on leaves. called Aarmonic or stationary, of which holonomy-invariant measures
are essentially a special case. : -

The fact that leaves are hyperbolic Ricmann surfaces has led to the study of
three flows which are particulary interesting on hyperbolic surfaces: the geodesic,

the stable horocyele and the unstable horocyele laminated fows. The third class of

measures we will be interested in is that of measures invariant under one or more
of these flows. The hope is that they will help us to understand the geometric
complexity of the lamination; that is. the way leaves are “wrapping” inside the
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space—although most of the work in this direction is still to be done. In [B-GM],
for example, for certain Riccati foliations unique ergodicity of the horocycle flow is
proved, and the unique SRB (for Sinai-Ruelle-Bowen) or physical measure of the
geodesic foliated flow is found and described. :

In this thesis £ will always denote a compact, nonsingular lamination whose
leaves are hyperbolic Riemann surfaces, and T'£ its unit tangent bundle. The
laminated geodesic flow on T L is called g, and the stable and unstable horocycle
flows on T* L are called h* and h™, respectivley.

In chapter two, certain relationships between harmonic measures and measures
invariant under the laminated flows g, AT and h™ are discussed. The following two
theorems are proved: .

THEOREM 11.2.5. Any harmonic measure on L is the projection of a measure
invariant under the horocycle flow h* on T1L.

THEOREM 11.3.2." Any measure on T*L invariant under both g and h™ projects
onto a harmonic measure on L.

Of course these theorems remain true if we change A for h™.

The converse of Theorem II1.2.5 is not known, but does not hold if the lami-
nation is not compact. And the proof of this theorem does not indicate if the
correspondence “harmonic measure — measure invariant under A*” is one-to-one.
The converse of Theorem I1.3.2 is not known either, nor is it known if the corre-
spondence “measure invariant under g and AT — harmonic measure” is surjective.

A theorem that characterizes harmonic measures in terms of measures invariant
under one or more laminated flows is likely to hold, but is still to be proved. In
fact, the converse of Theorem 11.3.2 should be true. Such a result would allow us
to express problems related to harmonic measures, which are usually very difficult,
in terms of laminated flows. For example, the question ‘Does a minimal lamination
by hyperbolic surfaces have a unique harmonic measure?’ would be generalized to
‘Is there a unique measure ergodic for the joint action of g and A*?’ This problem
seerns, at first sight, to be easier to handle. ‘

The study of measures simultaneously invariant under the three laminated flows
g, AT and h~ does not lead to new measures. Showing this is the aim of the
following proposition, which can also be found in Chapter two.

ProprosiTION 11.1.1. There is a canonical bijection between measures invariant
under g, h* and h™ and holonomy-invariant measures.

In Chapters three and four, two families of examples are studied: Hilbert modular
foliations and a Riccati foliations.

For Hilbert modular foliations, the following result is proved:
8

ProposITION I11.2.3. The volume is the unique harmonic measure of the Hilbert
modular foliation. '

The volume in this foliated space is the projection of the volume in the unit
tangent bundle to the foliation, which is an ergodic measure for the three flows g,
h* and h™.

Also in Chapter III, Proposition II1.3.1 describes the geometry of the leaves of
Hilbert modular foliations, and easily implies that the horocycle flow has no closed
orbits. Observe that in the unit tangent bundle of a single hyperbolic Riemann
surface S of finite volume, there are relatively few measures invariant under the
horocycle. flow. Namely, all ergodic probability measures of the horocycle flow
h* are the Liouville measure and measures on closed horocycles. This does not
generalize to foliated spaces: In Example II1.3.2 we see that the Hilbert Modular
foliation has measures invariant under h* which are not invariant under g, and are
therefore not at all similar to the Liouvlle measure on T1S. These measures do not
come from closed horocycles, since there are none.

Chapter four is actually the chronological beggining of this thesis. In this chap-
ter, a measure that was found and studied by Bonatti and Gémez-Mont in [B-GM]
is identified as the only harmonic measure of the generic Riccati foliation. It is ob-

tained in [B-GM] as the projection of two measures p. and p— on the unit tangent

bundle to the foliation, each of which is invariant under two foliated flows. (ux
is invariant under g and h*.) The fact that this measure is harmonic, although
easily derived from the results and technigues in [B-GM], suggested the ideas for
the whole of this thesis. '




CHAPTER 1

PRELIMINARIES

1 Hyperbolic Surface Laminations

DEFINITION: L is a lamination if it is a separable, locally compact metrizable space
that has an open covering {E;} and an atlas {(E;, ¢;)} satisfying:

1) ¢; : E; = D; x T;, for some open disk D; in R and topological space T}, and
2) the coordinate changes @, op; ' are of the form (z,t) —~ ({(z,t), 7(t)) where each
{ is smooth in the z variable. :

1 L
; | ' ) ' ' ) - This last condition says that the sets of the form’,gai“l(Di x {t}), called plaques, -
| ' : ‘ : glue together to form d-dimensional manifolds that we call leaves. The open sets g‘

E; are called flow bozes.

are smooth, the total space £ is a manifold and the lamination is called foliation. In
this case, we use the notation AL for the manifold and F for the foliated structure.

|
| .
- When the topological spaces T; are disks in R* and the changes of coordinates
|
\ ' : ‘
‘ DEFINITION: L is a Riemann surface lamination if the disks D; are open subsets of
‘ the complex plane and the maps ( are holomorphic in the 2z variable. We say that
L is a hyperbolic surface larnination if its leaves are hyperbolic Riemann surfaces.
' DEFINITION: L is oriented if the atlas {{E;,»;)} induces an oriented atlas on each
i - ' : . , leaf. ’

:‘ ‘ ’ : ' ‘ . ‘ Remark that a Riemann swrface lamination is always oriented.

Each leaf on a hyperbolic surface lamination £ has a Poincaré metric, which is ' ]
the only Riemannian metric of constant curvature -1 compatible with the confor-
mal structure. According to a theorem due to Candel [C1], these metrics on the
leaves, as well as all their dervivatives, have a continuous variation in the transverse
direction. ‘

In this thesis, £ will always denote a hyperbolic surface lamination, and, unless ‘
) : otherwise stated, it will be compact. |
; .

!

i

For examples of these objects, see the Appendix.

If uis any measure on the Bovel g-algebra of £, the integral of any function f ' i
with respect to g will be written [ fdu or g f). '

1l
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2 Laminated Geodesic and Horocycle Flows

2.1 Geodesic and Horocycle Flows on Hyperbolic Surfaces

We will work with the upper-half plane model of the hyperbolic plane, given by
H={z=z+iyeC:y>0}
where the Riemannian metric
('7 '>.‘c+-iy
is 1/y? times the Euclidean scalar product.

The isometries of § are the Mdbius transformations that preserve the horizontal
axis 0% = R U {oo} sending $ onto.9; so the group of isometries can be identified
with PSL(2, R), whose left action on $ is given by

“fa b L= % +b
c d T ez+d
DEFINITION: A geodesic on §) is an isometric immersion of the real line R into §.

Geodesics are circles orthogonal to the real axis R or vertical lines. In fact, it is

not difficult to verify that the curve
v:R = 9 v(t) =iet

is a geodesic, and MObius transformations preserving R U {co} send it to other
vertical lines or circles orthogonal to the real axis. Remark that since the action
of the group of isometries is transitive in the unit tangent bundle T1§ of 5, all
geodes_ics must be of this form. The geodesic flow in 718, that for any z €  and
any vector v € T15) gives the geodesic starting at z with velocity v, will be called
g :

The action of PSL(2,R) on 7' #, being transitive and free, allows us to identify
Tl with PSL(2,R). We will choose one of the possible identifications: Let v be
the vector (1,0) based at the point ¢ € ), i.e. the unit tangent vector to 5 at 4
pointing upwards. We will associate to 4 € PSL{2, R) the element A -v in T15.

We will call D; the diagonal matrix

er 0
0 e 3 )°

Under the identification given above, D; corresponds to the point g:(v) € T8,
and thercfore the geodesic starting at v, when viewed in PSL(2,R), is the one-
parameter subgroup {D;}. Consider the geodesic starting at some other point B -v
in T'H~that is, at the element B of PSL(2,R). It can be obtained by applying the
isometry B to the geodesic {D,}; namely, it is the curve

R—=T'9
t)—)BDf

This tells us that the geodesic flow on T, when seen in PSL(2, R), is the action
by right translations of the one-parameter subgroup D = {D;}.

12

A circle in § U 89 tangent to 89 = RU {oo} is called a horosphere.

Consider the horizontal line [ in $ passing through the point i, and in each
point ¢+7 of [4. take the unit tangent vector to § at ¢+ pointing upwards, which

we will call v;. The curve
» R—-T'%

t >y

(which is parametrized by unit length) is a horocycle.

Remark that the geodesic starting at t+i with velocity v, is the curve s — t+€%1,

which approaches exponentially, as s increases, the geodesic starting at i with

velocity vo = v.
DEFINITION: We say that the curve h is the stable horocycle at the point v € T153.

Viewing geodesics as curves in T'%. we see that all geodesics passing through
points in h are headed towards co € 95; conversely, all geodesics heading towards
ocC intersect A at some point. :

Considering the horosphere I through 7 that is tangent to 0 € 99, and the
unit vectors tangent to § and orthogonal to {_ pointing “outwards” (like v on the
point ), we get vectors dirccting geodesics that come from 0, and that approach

‘exponentially. in the past, the geodesic with initial condition v.

DEFINITION: We call the curve in T'$) whose elements are these points of 719 and
which is parametrized by unit length, the unstable horecycle at v.

DEFINITION: For any other point w in T'$ and the isometry B taking v to w,
we define the stable (1nstable) horocycle at w as the image under B of the stable
(unstable) horocycle at v. ’ :

REMARK. Any two points on this curve direct geodesics that approach exponen-
tially in the future (past), and that head to (come from) the same point in 0.

DEFINITION: The stable (unstable) horocycle flow is the flow AT : T2 9 — T1H (A7)
that, for any initial condition w € T'§. gives the stable (unstable) horocycle at w.
When viewed in PSL(2,R), it is given by the action by right translations of the

one-parameter group
1 ¢
= {(o1))

(= {0 1)}

REMARK. The geodesic and horocyele flows satisfy the following important rela-
tionship, which can be easily verified by means of matriz multiplication:

gsohf =hf_ oge and gioh =hj.ogs. (%)
From this we can see that the horocycle flows are preserved by the geodesic flow,
one of them being exponentially contracted and the other one being exponentially
exponded.

L3
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Namely, the geodesic flow is Anosov and its stable and unstable manifolds are
precisely given by the orbits of the horocycle flows. (For the definition of Anosov
flow see, for example, [K-H], Ch.17, sect. 4, pg.545.)

If T is a discrete subgroup of PSL(2,R), it acts on the left by isometries on

and the quotient space
h S=T\H

is a hyperbolic surface or orbifold, depending on whether I' contains elliptic elements

cosf sinf
—sinf cosd
‘ whose action on ) has a fixed point. S inherits from $ a Riemannian metric of
constant curvature —1, that can be of finite or infinite area.

! —matrices in PSL(2,R) whose canonical form is < , the only ones

: The unit tangent bundle 715 to S is T\T'H = T\PSL(2,R), and the flows gy,
h and h; on T$ project onto flows in 715 which are also called geodesic, stable
horoc;» cle and unstable horocycle flows. The three of them preserve the Liouville
i measure, which is locally given by the hyperbolic area times the angular measure on
m the unit tangent space to each point (or simply the projection of the Haar measure
on PSL(2,R)). The geodesic flow g; : TS — TS is Anosov, and its stable and
unstable manifolds are the orbits of A* and h~. The weakly stable (weakly unstable)
foliation of the geodesic flow on TS is the two-dimensional foliation on 715 tangent
to the vector field directing g and h* (™).

The following two theorems, due to Hopf and Hedlund (respectively), are not

used in the sequel, strictly speaking. Nevertheless, they suggest the idea of using -

the laminated geodesic and horocycle flows as a means to see “where leaves are
going”, and constitute beautiful examples of the interplay between g, AT and h~.
The proofs given are taken from [Gh). ‘

to the Liouville measure in T1S.
Proof:

Remark that any matrix in PSL(2, R) can be written as the product of matrices
in the subgroups D, H. and H_; this means that any function invariant under g,
h* and A~ must be constant on T*S.

- Let X be the Liouville measure, and f a square-integrable function on 7% S which
is invariant under the geodesic flow. We wish to prove that f is constant A-almost
everywhere.

el Using the formula Iabeled (*) and the fact that fis invariant under g;, we have:
/f fohf)dr= / °0gs) Oh;"ogs)d/\
-_:/f-foh+_5td/\~——> /fsz.
§—rcO

This means (Cauchy-Schwarz) that f o A = f in L?()\), and therefore almost
P everywhere. In the same way we can prove that f is h™-invariant, and therefore
constant almost everywhere. [

14 -

’ ‘ TueEOREM. (Hopf) If S has finite area, the geodeszc flow is ergodic with respect

THEOREM. (Hedlund) If S has finite area, the horocycle flows are ergodic with
respect to the Liouwville measure in T'S.

Proof:

If we take the linear (usual) action of SL(2,R) on R?, the stabilizer of the
point (1,0) is H. = é i) } Therefore, the homogeneous space SL(2,R)/H
can be identified with-R?\{(0,0)}, and the left H,-action on SL(2,R)/H, is by
horizontal translations. A continuous function on R2\{(0,0)} invariant under such
translations is a function of the variable y; in particular, it is constant on the z-axis,
which is the orbit of (1,0) under the right action of the diagonal group D.

The preceding discussion tells us the following: if ® is a continuous function on
SL(2,R) invariant on double H+ -classes, then it is constant on the one-parameter

subgroup D = {(60' 69% > }

Consider now an h*-invariant function f € L?()\), where ) is again the Liouville
measure on T1S. The function ® on SL(2,R) defined by

/f #(ag) M

is continuous and satisfles

q,«}) j)g)'=<r><_g>~*'—‘1><9<3 )

and therefore it is invariant under the right action of D. This means that

/fzd/\:/f'(f?gs)d/\.

and f is invariant under the geodesic flow. We know, using Hopf’s theorem, that
f must be constant A-almost everywhere. [

When the surface § = '\ has finite volume, Dani and Smillie give in [D-S]
the complete description of the ergodic measures for the horocycle flow A*. If the
surface S is compact, the hovocycle flow has no closed orbits. If S-is not compact,
it has a finite number of ends, each corresponding to a parabolic generator of its
fundamental group I'. Each end is foliated by a one-parameter family of closed
horocycles, and these families mdudo all closed horocycles of S. Dani and Smillie
prove the following:

TueoreM. (Dani-Smillic) The ergodic measures for the horocycle flow on TS
are the Liouville measure and measures having support in closed horocycles.

15




REMARK. This means that if S is compact, the horocycle flow on TS is uniquely
ergodic. Such a result does not hold for the geodesic flow g, which has many ergodic
inuariant measures.

2.2 Laminated flows

DEFINITION: If £ is a hyperbolic surface lamination, we call T1£ the lamination
whose three dimensional leaves are the unit tangent bundles of the leaves of £ and
that has “the same” charts as L.

- DEFINITION: The laminated geodesic flow is a flow (also called: g;, which will not

lead to confusion since this will be the only g: in the sequel), that, restricted to the
unit tangent bundle of a leaf L of £, coincides with the geodesic flow in T1L. The
laminated horocycle flows are defined in an analogous way.

In general we will only work with the stable laminated horocycle ﬂow, which will
be called h;. All these flows are continuous on T'L, as a consequence of Candel’s
theorem (see [C1]).

It is an important fact that in the lamination T*L there is a right PSL(2, R)-
action whose orbits are the leaves, which is as good (meaning continuous, smooth
or analytic) as the lamination itself. Exactly as in the case of surfaces, the geodesic
and the horocycle flows correspond to the action on T L of the diagonal and upper-
triangular matrices respectively.

Measures associated to flows are inspired by the analogy between a lamination
and_a surface: a leaf of £ that is very recurrent should behave in a way similar
to that of a single compact Riemann surface S. For such a surface, the Loiuville
measure of its unit tangent bundle may be obtained from any single orbit of the
horocycle flow. Namely, for any point v € T*S, if X is the Liouville measure,

T
[ ar= jim o IO

for any continuous function fon T*S. The same is true for the geodesic flow, if we
restrict ourselves to considering almost all initial conditions v (according to M).

In a sense, if we knew h™ but not S, we would be able to “recover” the manifold
T'S, and therefore the surface S. In an analogous way, using laminated flows, we
would like to get a better understanding of the behaviour of a leaf L from the study
of the orbits that lie on L of the laminated flows.

The following remark, which is a well-known fact, will not be used in the sequel.. -

Nevertheless, it states a similarity between compact hyperbolic Riemann surfaces
and compact hyperbolic surface laminations.

16

REMARK. The laminated horocycle flow h has no closed orbits on T L.
Proof:
. Any closed orbit of A would be contracted exponentially by the geodesic flow,

and would therefore converge to a fixed point of 4 in the compact space T1L. But
h has no fixed points. O

17
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3 Holonomy-invariant measures

If £ is a compact lamination and ¢ : E — D x T is a coordinate chart, we say
that a subset of £ of the form ¢~} ({z} x T) is a transversal of L.

Consider a finite set 71,... ,7, of transversals such that any leaf of £ intersects
at least one of the 7.

DEFINITION: A finite measure g on 71 U ... U 7y, is holonomy-invariant if it is
invariant under all the elements f of the holonomy pseudogroup of £ that have
domain and range contained in 73 U ...U7,. (For the definition of the holonomy
pseudogroup of £, see [C-L], Ch.4, secc.1 or [C-C], vol.I, Ch.11, secc.2.)

REMARK:. A holonomy-invariant measure on Ty U. . . UT, induces in a canonical
way a holonomy-invariant measure on any other finite union of transversals that
intersects all leaves of L. This allows us to speak of holonomy-invariant measures
on L. ‘

We say that a Riemannian manifold L has subexponential growth if

lim llogvol(B(ar:,r)) =0,

T30 T

where vol{B(z,r)) is the volume of the ball of radius r centered at a point z € L.

Suppose there is a Riemannian metric on the leaves of £ that is continuous in
L. (If L =(M,F) is a foliation, one may simply take a Riemannian metric on M.)
Plante proved in [P] a sufficient condition for the existence of holonomy-invariant
measures, which is the following:

TueOREM. (Plante) If £ has a leaf whose volume has sub-ezponentiol growth,
then there is a holonomy-invariant measure.

However, leaves of subexponential growth need not -exist in hyperbolic surface
laminations. :

An example of a hyperbolic surface lamination that has no holonomy-invariant
measures is the foliation (T'' S, F), where S is a compact hyperbolic Riemann surface
and F is the weakly stable foliation of the geodesic flow on T'S. This example can
be found in [Ga].

DEFINITION: A measure class on a measurable space is a family of measurable sets
that is closed under countable unions. '

We say that two measures u and v on a given measurable space are equivalent if
each of them is absolutely continuous with respect to the other one. An equivalence
class fi of measures determines a measure class: that of the measurable sets of u-
measure zero.

18

DEFINITION: Let 71,..., 7, be transversals to £ such that , U...U 7, intersects
all leaves. A measure class @ in 7 U...U T, is holonomy-invariant if, -

QegefQeQ

for every holonomy transformation f whose domain and range are cohtained in
T1U...UTg.




4 Harmonic Measures'

Introduction

In this section, a brief introduction to harmonic measures will be given. These
measures were defined by Lucy Garnett in [Ga), where everything which is said
here is stated and proved in much more detail. Nevertheless, certain background
on heat diffusion on Riemannian manifolds is assumed in Garnett’s paper, so we
make here a brief review of the necessary definitions. The following bocks can
be referred to for further study of this topic: [Ch] gives in Chapters VI to VIII
an exhaustive treatment of the heat kernel in Riemannian manifolds. [D] explains
the interplay between the classical and probabilistic diffusion theories—in particular
Brownian motion, although in R"™. [Y] develops in Chapter XIII, sections 1 to 5,

the theory of Markov processes in locally compact spaces—which include Browninan -

motion on Riemannian manifolds and foliated Brownian motion~, and in Chapter
IX, the theory of semigroups and their infinitesimal generators.

4.1 Preliminaries on Heat Diffusion.

Let M be a complete Riemannian manifold of bounded Ricci curvature. Asso-

"ciated to M is its Laplace-Beltrami operator, called Ay, which is the infinitesimal

generator of the heat semigroup {D;} on M. whose transition probabilities are given

" by the heat kernel. We will briefly recall what all these terms refer to.

DEFINITION: Given a differentiable function f on A, the gradient of f is the vector
fieldgrad f on Al for which ‘

(grad f.v) = vf Vv e TAM,

where ¢ f is the directional derivative of f at the basepoint of v in the direction of
V. : '

DerINITION: If ¥ denotes the Levi-Civita connection associated to the metric, the
divergence of a vector fleld X is the real-valued function on M defined by

(div ) (p) = trace(v = V,X),
where the variable v ranges over 7,/

DEeFINITION: The Laplacian (or metric Laplacian or Laplace-Beltrami operator) is
defined on functions f which are at least twice-ditferentiable, by the expression

A_\[f = div gra.d f
20

DEFINITION: A function u on M x (0, +oc) satisfies the heat equation on M if
du

“07 = Apru.
DEFINITION: A heat kernel on M is a continuous function which is a fundamental
solution for the heat equation on M, i.e. it is a real-valued function p on M x M x
(0, +cc) for which
u(z,t) = [ plo.v. ) dy
. M N
always gives a solution to the initial value problem for the heat equation on A,

" with initial values f, where f is bounded and continuous on M.

Furthermore (see [Ch]), the heat kernel
p:MxMx(0,+0) >R

is of class C*° and unique, and satisfies the following:
1) It is symmetric in the space variables, i.e. p(z,y,t) = p(y, z,t),
2) it is harmonic and has mass 1 as a function of z for fixed y and t and
3) forallt,s >0, [, p(z,2.t)p(z,y,5) dz = p(z,y,t + 5).

" The last equation is clearly identifiable as Chapman-Kolmogorov’s equation (see,
for example, [Y], chapter XIII), and tells us that p defines transition probabilities
for a Markov process on M, which is the Weineér process, usually called Brownian
motion. This means that if z is a point in A and E is a measurable subset of 3/,
the probability that a Brownian path starting at z is in £ at time ¢ is given by

/ p(z,y.t)dy.
JE

These transition probabilities determine the Weiner measure on the space of
continuous paths Q., as follows:
DEFINITION: -
Q= {w :[0,4+0c0) = M, continuous, and such that w(0) = z}.
The Weiner measure is determined by its value on cylinders; that is, sets of the
form ,
c(tlr st 7tn~',E17 e :'En) = {w € 'Q.E : ».d(t[) € EL: M rw(tll) € En}:

for positive times ¢; < ... < t, and measurable subsets E|,... ,E, of M.

DEFINITION: The Weiner measure of C(ty,... ,tn: Ey,... .Ey) is
/ .. / / Pyt )p(y vy b = £ oo D(Ynmts Uns b = tact) dyy dys . .. Ay,
E. JEJE

DEFINITION: The heat semigroup on A/ is the semigroup {D;}, that acts on real-
valued continuous bounded functions on A/ solving the initial-value problem for the
heat equation. Namely,

Dif() = | oo fw)dy.
A
This quantity should be thought of as “the temperature at z at time ¢ if the
initial temperature distribution is f”-assuming A is a homogeneous medium.
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There is another expression for D, f, in terms of the Brownian motion, which is.

D.f(@) = /Q F(wt)) do,

where the integration is performed with respect to the Weiner measure.

4.2 Definition of Harmonic Measures.

Let £ be a lamination, such that every leaf has a Riemannian metric with
bounded Ricci curvature, that varies continously in £ (in the topology of uniform
convergence in compact subsets of the leaves). Under these hypotheses, associated
to each leaf L there is a semigroup {Dr(t)}s>0 that corresponds to the heat dif-
fusion in L, whose infinitesimal generator is the Laplace-Beltrami operator of L,
Ar.

We define an operator A on £ that is the collage of the Laplace-Beltrami oper-
ators on leaves: , . .

- DEFINITION: Af(z) is Apfl(z), if L is the leaf of £ through z and f|z is the

restriction of f to L. We call A laminated (or foliated) Laplacian.

To this operator there corresponds a semigroup {D;}:>0, the laminated heat
semigroup; that does heat diffusion along the leaves. It can also be expressed in
terms of the laminated heat kernel, p: £ x £ x (0,+00) — R, which restricted to
a leaf coincides with its heat kernel, and such that p(z,y,t) = 0 if z and y lie on
different leaves. In this notation, we make the following definition:

DEFINITION:

-

D, f(z) = /C p(z,y,9)(y) dy.
DEFINITION: A probability measure m on £ is Aarmonic if
: / Afdm =0

c

for every measurable, bounded function f, which is twice differentiable in the leaf
direction.

It is true and intuitively clear, although not easy to prove, that a measure is
harmonic if and only if it is fixed by the laminated heat semigroup; that is, if

| /Cthdm-_—-/Cfdm

for every measurable bounded function f on £. (And indeed the apparently weaker
condition Dym = m implies that Dym = m for all t.) In fact, the existence of
harmonic measures on compact laminations can be shown by applying a fixed-point
theorem to the action of the laminated heat semigroup on the compact convex set of
probability measures on £ (see [Ga]), although Candel gives in [C2] an elementary
proof of the existence of harmonic measures, using Hahn-Banach’s theorem.
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Two properties of harmonic measures, one of which is its local characterization,
can be found in Lucy Garnett’s paper. Here we will only state them:

THEOREM. {Garnett)

(1) Measurable functions on L having null laminated Laplacian are constant on
almost all leaves with respect to any harmonic measure.
(2) As a consequence of Rokhlin’s disintegration theorem, any harmonic measure
m on L decomposes in_any flow boz E as ‘ :

| Jram= | [ s,

the set I being the set of plaques of E (that is, the transversal of E), 7 : E — I
the projection of E onto I, v = mm ™! the projection of m and each o, a probability’
measure on E that has its support in the plaque m~1(s). A probability measure m is
harmonic if and only if the conditional measure o, is the Riemannian measure of
the plaque 7~4(s) times a nonnegative harmonic function on the plague, for almost
every s € I. '

An important fact about harmonic measures is that they determine holonomy-
invariant measure classes—which implies that these classes exist, although holonomy-
invariant measures may not. Conversely, any holonomy-invariant measure, com-
bined with the volume measure on the leaf direction, determines a harmonic mea-
sure. These harmonic measures are called fotally invariant harmonic measures.

DEFINITIONS: We can also define the laminated Brownian motion, as the Markov
process on £ whose transition probabilities are given by the laminated heat kernel,
in a way analogous to that of the previous section. Each of its paths lies on a single
leaf, and the Weiner measure on

Q, = {w:{0,+00) = L, continuous, such that w(0) =z
and w(t) lies on the léaf through z}

is defined exactly as it was before.

Of course, the laminated heat semigroup can be expressed as

D[_f(.v)=/Q Fw(t)) dw.

4.3 Ergodic Theorems and Ergodic Decomposition

Two of the main. theorems in Lucy Garnett’s paper are ergodic theorems for
harmonic measures, that state the following:
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LAMINATION ErRcoDic THEOREM. (Garnett) Let m be a ﬁm’tq harmonic mea-
sure. For any m-integrable function f there exists an m-in?egmble Function f which
s constant along Zeaves and has the following two properties:

1) f(z) = limpoyoo = Z“’l D f(z) for m-almost all z,

9) [, fdm = [, fdm.

LeAF PaTH Ercopic THEOREM. (Garnett) Let m be a finite harmomc mea-

sure. For any real-valued integrable function f on L the limp—yoo & Zt—o Flw(t)
ezists for m-almost every point x and almost any path w (in the sense of Weiner
measure) starting at ¢ and lying on the leaf of x. This limit is independent of w,

constant on leaves and equals the leaf diffused time average fof f.

DEFINITION: A harmonic measure m.is ergodic if £ can not be partitioned into two
measurable leaf-saturated subsets having positive m measure.

In the last section of her paper, Lucy Garnett gives an ergodic decomposition of
harmonic méasures on compact foliated manifolds, which holds for compact lami-

nations.

The ergodic harmonic measures can be briefly described as follows: we take a
point z in £ and consider the Dirac delta at z, which we call J;. We can diffuse
this measure, obtaining for each positive time ¢ a probabxhty measure D;d,, whose
integral on any continuous function f on L is D:f(z). For almost all z &Lccordmcr
to any harmonic meagure, the sequence of Birkhoff means

1 n—1

has a limit which we call ;. Again for almost all z, this limit does not depend
on z"but only on the leaf where it lies—and, of course, the integral of a continuous

function f with respect to &, is nothing but f(z).

These measures are ergodic, and the Ergodic Decomposition Theorem reads as
follows:

Ercopic DECOMPOSITION THEOREM. (Garnett) If m is any harmonic proba-
billity measure and f is any bounded measurable function on £,'then

frome (r5)

where R is o leaf-saturated subset of L such that
1) at every point r € R, Oz,‘ exists, and T is contained in 1ts support,

2) for any two point T,y € R lying on the same leaf, by = oy and
3) any harmonic probubility measure gives full measure to R.
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CHAPTER II

RELATIONSHIPS BETWEEN MEASURES
ON HYPERBOLIC SURFACE LAMINATIONS

Introduction

As before, £ is a compact lamination whose leaves are hyperbolic Riemann sur-
faces, each endowed with its Poincaré metric. We can consider harmonic measures
on L, as well ‘as ‘measures invariant under the horocycle and geodesic laminated
flows, which are both continuous in the unit tangent bundle Tl,C to £. The aim of
this chapter is to relate these measures, proving the following:

Prorosrrion L L. There is u one to one correspondence between any two of the
following: ‘

1) measures on T'L invariant under the three laminated flows g. h* and h™,

2) measures on T'L invariant under the PSL(2, R)-action and

3) holonomy-invariant measures on L.

THEoREM 2.5, Any harmonic measure on L is the projection of a measure in-
varient under the horocyele flow in T'L.

TuroreM 3.2, Any measure on T L invariant under both the (stab]e) horocycle
and the geodesic ﬂaws projects onto a harmonic measure on L.

 Of course. the measures mentioned in Theorem 3.2 do exist, as we shall briefly
see at the end of section 3. _

I section 1 we will prove Proposition 1.1, in section, 2 Theorem 2.5 and in’
section 3, Theorem 3.2. -

1 Laminated flows and holonomy-invariant measures

As wesaw in the previous chapter, there is a right action of PSL(2,R) on T'L,
whose orbits are the three-dimensional leaves of the lamination T2, Tt is therefore
a natural question if measures invariant under this action exist, and what they look
like.

Since: PSL(2.R) is generated by the one parameter subgroups D, H, and H_
(defined in section L.2), measures on T L invariant under the right PSL(H, R)-action’
are measures invartant under the three laminated Hows.
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REMARK. If S = I'\$ is a hyperboiic surface and m is a measure on an open
subset U of T1S = T\PSL(2,R), invariant under right translations by small el-
ements of PSL(2,R), it must be a scalar multiple of the Liouville measure of U.
This is true because the Liouville measure is the Haar measure of the unimodular

group PSL(2,R).
Proof of Proposition 1.1.

Suppose there is a measure p on T L invariant under the three flows g, A and
h—. The disintegration of x'in a flow box E = U x T of T*L gives a measure v in
the transversal 7' and conditional measures y; on the plaques of E such that, for
every continuous function f whose support is contained in E,

/fdp. / <</U><{t}fdut> dv(t).

The invariance of 4 and the uniqueness of the decomposition imply that each con-
ditional measure y; is a scalar multiple of the Liouville measure. This means (see
[C2]) that u is a totally invariant harmonic measure for the lamination T*£; that

- is, v is a holonomy-invariant measure.

On the other hand, any holonomy-invariant measure on T'L induces, by multi-
phcatmn with the Liouville measure on the leaves, a measure on T L which must

be invariant under the flows g, A" and A~

This proves that measures invariant under the three laminated flows correspond
to holonomy-invariant measures of the lamination T1L. More precisely, we know
that measures invariant under the three laminated flows are the same as totally-
invariant harmonic measures on T'L.

It is easy to see that T'L has the same holonomy-invariant measures as L.
Namely, the natural projection 7 : T'L — £ embeds transversals onto transversals,
and projects any holonomy-invariant measure v onto a holonomy-invariant measure
on £. Now, suppose v is holonomy-invariant in £. To prove that it is invariant
in T'L it is enough to verify that any path of the form v, = 7#7!({z}) has trivial
holonomy. This is immediately noticed from the fact that, if E is a flow box
containing z, 7 H(E) ~ T x U x S, and the path v, is simply one of the St
factors. O
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2 Horocycle flow and harmonic measures

This section is devoted to the proof of Theorem 2.5. We will first prove Theorem
2.5 for ergodic harmonic measures, and we will then use the Ergodic Decomposition
Theorem to handle the general case.

The basic idea underlying the proof of this theorem is the following: Birkhoff |

means converging to ergodic harmonic measures have radial symmetry, and are
therefore convex combinations of the Lebesgue measures of circles. These circles can
be embedded in T' £, and the embedded big circles are very close to horocycles. One
proves that, in the convex combination mentioned above, only big circles matter.
This will imply that, in the limit, a measure invariant under the horocycle flow is
obtained.

Step-1: Er;qodi‘c measure generated by a simply connected leaf.

Let us pick a point z in £ for which the ergodic harmonic measure

exists; and for the moment let us assume that the leaf L, of £ through z is slmpl\
connected. The Birkhoff sums 2 317 ! Dté shall be called o5V.

LEMMA 2.1. Let p be the heat kernel on the hyperbolic plane. There ezists a

funetion h: [0, +c0)-— [0, +oc) such that, for all z,
1) limy oo h(t) = o and
2) !D 2 h(t) )pf( y)dy "__) 0.

Proof:

An example of such a function is the radius of the disk whose area is 1/./p:(0, 0).
We use an /i such that A(r) < 7.

/

- DeFiNrrion: For each n, let 7, be A(/n), and we consider the measurc 7, whose

illt(‘gl‘zd olt continuous f‘(lll( tions on L is glven by
n~—1

f"“,,Z/ W)pe(z. y) dy.

Leaivia 2.2. The mass of the measure 0, approaches 1 as n goes to infinity.
’ 27
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Proof:

n—1
1—77n(1)=%2 /pt(z,y) dy

t=0D(z ) -
1 1 =t ,
=—Z /ptzydy+— > /pt(x,y)dy
n
0D(z re) {‘/T_ll'}'lD(z,Tn)
ni+1
< [_\/_jT_L_ 4 / Pa(2,y)dy —nsee 0. O
D{z,r) ’ '

DEFINITION. Let R : L,\{z} = T*L, C T'L be the inward pointing radial unit
vector field. Namely, R(y) is the velocity at y of the only geodesic starting at y
and passing through z. We consider the measures L, = R.6{™ and v, = R.np.

The measures u., are probabilities and the v, are not, but, a.ccordmg to Lemma
2.2, these sequences have the same limit points.

As the 7, are convex combinations of the normalized lengths of circles whose
radii are larger than r,, the v, are convex combinations of the push-forwards of
these measures by R, which we shall call Ar(z), r being the radius.

Lemna 2.3, The limit points of the sequence un, —equivalently v, — are probabilz'iy
measures on T'L invariant under the laminated horocycle flow.

Proof:

Since the lamination T'L is oriented, it is possible to define for each 7 > 0 a
fow " in T'L whose orbits (which we shall parametrize by unit lenght) are the
cnclos of radins r with the unit normal vector pointing inwards. Remark that the
measures Ay () are invarlant under the flow ¢". When r — oc. the angle between
" and the horocycle low tends to zero uniformly. This means that for any positive
g, if » is large enough. d(of (y), h:(y)) < 4, for any y € T*£ and any time ¢ between

-1 and 1. (Sce for example Theorem 3.8 in [B-N], which is easily proved using
Gromwall’s inequality.)

Let i be a limit point of the sequence v,, and therefore of the sequence u,. We
will see that p is invariant under hy for all times ¢ between -1 and 1.

Let f be a continuous function on T'L, € > 0, and § > 0 as in the definition of

- uniform continuity.

For a fixed ¢,

[1(f) = u(foh) S lun(f) — pn(fohy)|+¢

if n is large enough and such that p, belongs to the subsequence converging to y.
28
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Now, taking a bigger n if necessary,

|lun (f )— ( o hs)| =

pt 1ong5)[/f A@)@) = [ £ o hate) d0 (@) ) }

< }Li / °°pf<r>long<sr> [1f oty = Fo @l )W)
t=0 “ T

1 n—1 (oo ’
2> [ nryong(s) <
t=0 ¥ Tn

which achieves the proof of Lemma 2.3. O

Step 2: Ergodic measure generated by a l'eaf which zs not necessarily simply
connected.

Now we can drop our assumption that the leaf L, is simply connected. Of course
the definition of the vector field R on L, no longer makes sense, but we can define
R and the measures 5;”) on the universal cover of the leaf and A,, ¥, and u, on its
unit tangent bundle, and then project all the measures on 71 % onto T2 £. Remark
that the Birkhoff sums for the &, and the heat diffusion in the universal cover of
L, project onto those corresponding to L., with the heat kernel of the leaf. And as
for the measures on T*$, their projections are still convex combinations of those
of A, and the whole argument holds.

Since the p, project onté the Birkhoff sums 5;’”, any of its limit points (which in

fact is only one) projects onto §,, and a consequence of Lemma 2.3 is the following:

LEnna 2:470 J.Wzy ergodic. hmmomc measure is the pmjectzon of a measure on-

T'Z invariant under-the laminated horocycle flow.
Step 8: Harmonic measure not necessarily ergodic.

Now let z be any harmonic measure on £. The measures ¢, exist for z in a full-
measure subset of £, and the ergodic decomposition theorem for harmonic measures
states that for any continuous function f on £

Lrau=[ (/fda;) (z)

For each 51 let @, be the measure invariant under the horocvcle flow that
projects onto &, constructed as above. Remark that the map T — &, is measurable,
since it is the lirit of continuous functions.

DEeFINITION. We define the measure 8 on T'L by the expression

/2"1£de:/£ < Tl,cfdaz> dp(z).-

8 is clearly a measure invariant under the horocycle flow that projects onto L.
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This achieves the proof of

THEOREM 2.5. Every harmonic measure on L is the projection of a measure
invariant under the horocycle laminated flow on T L.

3 The flows g and h and harmonic measures

This section is devoted to the proof of Theorem 3.2, which will be done in two
steps. The first consists of locking at a single leaf of the weakly stable foliation
of the geodesic flow on the unit tangent bundle 7% to the hyperbolic plane, and
studying measures invariant under both the geodesic and the horocycle flows there.
The second is to disintegrate a measure invariant under the laminated flows in a
chart of the lamination T*£, obtaining conditional measures which are of the type
studied in step one, and to use our understanding of these to see how the whole
measure projects onto L. : :

Step 1: A leaf of the weakly stable foliation of the geodesic flow in T15.

We will work on the upper—half plane model of the hyperbolic plane $. In this
model, the leaf of the weakly stable foliation of the geodesic flow consisting of all
geodesics that have oo as an endpoint can be identified to the affine group

B={<g ai):aeRﬂbeR},

since the left action of B on this leaf sending the vertical unit v ector based on (z,y)
to the one based on (a’z + ab, a®y) is free and transitive.

This actlon of B, that corresponds under the identification to the left translation
in B. is an action by isometries, and this tells us that the hyperbolic area is nothing
but a”left Haar measure—which we will call u. Saying that a measure v on B is
invariant under both the geodesic and the horocyle flows is simply stating that it
is invariant under right translations in B; namely, that it is a multiple of the right
Haar measure. We wish to compare u and v, which amounts to computing their
Radon-Nikodym derivative, as they are in the same measure class.

REMARK. The Radon- N7kodym derivative f = whzch s, up to a scalar mul-
tiple, the right modular function of B-is hqrmomc

Proof:

An elementary calculation shows that this function is in fact, up to a scalar

multiple,
Q b 2
b (0 a‘1> =a".

In terms of the upper-half plane (with the vertical vector at each point) this means
that f(z,y) = y. which is harmonic in the euclidean sense. It is not difficult to
see, from the definition of the Laplacian and the hyperbolic metric, that this is the
saine as being harmonic in the hyperbolic sense. O
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Thanks to the preceding remark, we have

LElwmA. 3.1. Let L be a leaf of the weakly stable foliation of the geodesic flow
onT%H. If v is a measure on L invariant under the geodesic and stable horocycle
flows, it is a harmonic function times the area.

' Prgof'

Let p be the point at infinity at which all geodesics on L end, and L. the leaf
of all geodesms ending at co. If ¢ is the isometry that takes L to Lo, Lr is the
area and vy is invariant under both flows, the derivative 2%& d” is f o @, where f is
the harmonic function spoken of above. [

According to [N], measures that have the form “harmonic functionxarea” are
harmonic; namely the Laplacian of a smooth function with compact suport with
respect to these measures is zero.

Step 2: Measures invariant under g and h on T L.

Let @ : T'L — L be the projection, and v a measure on 7'/ invariant under
the geodesm and the horocycle flows. Let E/ = T x U be a flow box in £, whose
preimage by misof theform E=T x 1" =T x (S x U), where S is a circle and U
an open subset of the hyperbolic plane. The variables ¢, s and u refer to points in
T, S and U respectively.

To prove that 'y = 7, is a harmonic measure on L, we will see that the integral -

with respect to 4 of the Laplacian of a function that has compact support in B’ is
zero. To carry out this computation, we will disintegrate the measures v and p in
E and E' respectively, and use lemma 3.1.

fdu /fo,.du‘

//fo“dutdy)
{t}x V=1,

where the v, are the conditional measures corresponding to the disintegration of v
on the subsets V; of E, and £ is the push-forward of v under the projection of E
onto T'. On the other hand,

Nu/ £ e dix(t)

{t}xU=U;
//fmw
{t}xU=U,

where the p; are the conditional measures corresponding to the disintegration of
# on the plaques of E’, and f is the push-forward of . under the prOJectlon of £
onto I'. Remark that U coincides with /.
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The uniqueness of the decomposition implies that, for 2-almost all ¢, y; = w.v;.

We will disintegrate each v, on V; = (S x U); = S x Uy

fdv, = / fomd(w)s dne(s),
| e J(Us)s

where 7, is a probability measure on the circle S; = {¢t} x S.

We are now ready to compute f g5 Af dp, for a continuous function f which is
twice differentiable along the leaves and that has compact support contained in E'.

Afdy = _\.f07rd7/

i / / [, AFomden.dnis) a7

2/// Afdﬂ'*(l/t)sdnt(s)df/
T ¢ Tr((Ut)s):Ut

Since the measures (v;)s are harmonic on (U;)s, and the restriction of = to ()
is an isometry onto Uy, we have, for all (¢,5) € T x S,

Afdm(vy)s =0,
U:

which achieves the proof of

THEOREM 3.2. Any measure invariant under both the horocycle and the geodesic
fows, projects onto a harmonic measure.

REMARK. There are measures invariant under both the geodesic and the horo-
cycle flows.

Proof:

A simple way to see this is the following: Take a probability measure p invariant
under the horocyele How, and take any limit point of the set of measures defined

by ,
fe i[ /fogsduds.t]
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CHAPTER II

HILBERT MODULAR FOLIATIONS

If, as before, $ is the hyperbolic plane, the group of isometries of § x § is
isomorphic to
PSL(2,R) x PSL(2,R) x Z.

In fact, the two copies of PSL(2,R) correspond to the isometries of each factor
in § x 5 and the remaining Z» represents the isometry that interchanges the two
factors.

Recall that a dmcrcte subgroup I' of a Lie Group G is irreducible 1f its pro Jectlon
onto all normal proper subgroups of G is dense.

In this chapter we will consider a family of quotients of § x § by irreducible
lattices

T C PSL(2,R) x PSL(2,R)

having finite volume, which are not compact. These spaces have two natural trans-
verse (singular) foliations, that come from the “horizontal” and “vertical” foliations
in $ x 9. One of them will be called F.

r

In section 1 we will define-these foliated spaces: Hilbert modular surfaces. (See.
(H], Ch.3.) F is called Hilbert modular folilation: In section 2 we will see that.
(M, F) has only one harmonic measure: the volume. Much of what is said in this
section is true for other quotients of H x H by irreducible lattices, although we will
restrict ourselves to working with Hilbert modular foliations. Section 3 includes
some considerations on measures invariant under the horocycle foliated flow.

1 Definition of Hilbert modular foliations

Let us consider a real algebraic extension of degree two of the field of rational

- munbers, of the form A = Q(Vd), where d is a square-free integer. The ring of

algebraic integers of IV, which we will denote by Oy, is of the form
Oy=2Z+ Za,

a being Vd if d = 2.3 mod 4, and L& ‘/_ otherwise. If z = a + bo is an element of
Dy, its Galois conjugate is F = a — ba.
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Let us consider the following group homomorphism:
PSL(2,94) = PSL(2,R) x PSL(2,R)
A (4, 4),
where A is the matrix obtained by taking the Galois conjugates of the elements of
A. The image of this morphism, which we will call T, is an irreducible lattice in

PSL(2,R) x PSL(2,R), and the space of orbits of the action of ' on $ x ) is a
normal complex space, that we will call M(d), or simply M.

This space has a finite number of singularities, is non-compact, and can be
compactified by a finite number of points (the “cusps”) in order to obtain an analytic
space, which by means of dissingularization gives a smooth complex surface known
as the Hilbert modular surface (see [H]). Nevertheless, we will restrict ourselves to

working with the space M.

The “horizontal” foliation in $ x H, whose leaves are of the form $x {z}, induces
on the quotient M a foliation by hyperbolic Riemann surfaces (or orbifolds), that
will be called . Remark that the irreducibility of T implies that F is minimal-that
is, all leaves are dense. Therefore, all leaves are non-compact, and in fact all but
a finite number of leaves arc hyperbolic planes. It will be seen in section 3 what
leaves which are not simply connected look like.

2 The volume measure

As we stated before, the purpose of this section is to prove that F has only one
harmonic measure.

REMARK. Recall that M has isolated singularities. For any point T € M, the
set of continuous paths starting at T and lying on the leaf of F through T that
reach o singular point has Weiner measure zero. Consequently, although M s not
a manifold, its singular points are irrelevant when studying the foliated heat flow,
and therefore we can forget them in owr study of the harmonic measures.

On (M, F) the ergodic decomposition theorem for harmonic measures still holds.
Ergodic harmonic measures are the limits of Birkhoff means of the diffusion of Dirac
deltas; that is, measures of the form ’

n—1
3, = lim Z Dyd..
I
This limit exists and is a probability measure which depends only on the leaf passing
through z, for almost all z according to any harmonic probability measure-if there

*are any. This can be read in [Y] (chapter XIII). observing that the foliated heat

semigroup acts on the space
S={f:M—=R: fis continuous and lim flz) =0}
=00

As the lattice [ is acting by isometries on § x §3, the Riemannian metricon Hx 9

induces a Riemannian wetric on A/ that makes M/ locally isometric to H x . We
will take V to be the volume measure assoclated to this metric, suitably normalized

so that V(4f) = 1.
3+

' It can be easily seen that V' is a harmonic measure on M, and in this section we
will prove thgt all the measures §, coincide. This of course implies that V is the
only harmonic probability measure on M.

LEMMA 2.1. The volume V is a harmonic measure on M.

ihis lemma holds because the volume induces on transversals a holonomy in-
variant measure. Namely, it is locally of the form “(holonomy invariant measure)
x {area of the leaves)”. O '

LEMMA 2.2. There is a subset of M that has full probability according to any
harmonic measure, and where the ergodic harmonic measure 85 is independent of
the point x.

This has the following immediate consequence:
PROPOSITION 2.3. (M, F) has a unique harmonic measure, which is V.

REMARA,K 2.4. IfL is a hyperbolic Riemann surface and § is the hyperbolic plane,
let p and p be the heat kernels on L and on $ respectively. If £ is a point in 9 tha;f
projects onto x € L, then : :

p(t,z, )= > Blt,ad,).

Ct'ETq(L)

"_.fhis is, of course, a very general fact, not only concerning hypei“bolic Riemann
surfaces. It can be found, for instance, in [Ch], but it is easy to conclude from
the fact that L and 9 are locally isometric, and therefore posess the same Laplace
operator. ’ ' : :

Proof of Lemma 2.9:

Let = Dbe the canonical projection H x H — M and G the d gr
PSL(2,R) x O, of PSL(2,R) x PSL(2,R). We take two points j:nZidSl;b?;OB}[)
for which the measures §, and J, exist and are probabilities only dependinc; on the
leaves through & and y, respectivley, and two points £,§ = (y;. y2) €9 ><O_6 such
that (%) = z and #(§) = y. There is a sequence of isometries {(lJznA} C G such that
an(2) =2, = (y1. 2,) with lim,, =, = ys in H. We call 5™ the m-th Birkhoff mean

1 m=—1

L5 =l Did. at a point = € M. and 0™ the m-th mean at a point z in H x 9.

Let f be a continuous function on M such that lim, .o f{z) = O-that is, an
element of the space S. ‘ 7
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Since 7(%,) lies in the same leaf as z for all n,

) 3§,

lim 6W(£n)

m—roQ
On the other hand, the function f = f o is uniformly continuous, since fis
and 7 is a local isometry, so if n is large enough,

I]?(Z,Zn) - f(z7y2)] <g,

for any z in $. If p is the heat kernel on the hyperbolic plane and {f)t} the foliated
heat semigroup in § x %,

1D F#a) - Def (@) = ‘ | o, 2 z0) = Sl <

Therefore, for big values of n and any m, 55:) (f) and Sém) (f) are e-close. Observing

that 5;'”) (f) = 65 (f) completes the proof. - O

3 Measures invariant under foliated flows

In this section, we will consider the geodesic and horocycle foliated flows in
T'F = T\(PSL(2,R) x $), and see how these relate to the volume measure V
on M. PSL(2,R) acts on T'F by right translations on the first factor, and the
geodesic and horocycle flows come from the actions of the subgroups

) | D:{(es 69%>}an’dH+={<Cl)’ i>}

respectively.

Theorem I1.2.5 leads us to expect the existence of a measure invariant .under
the horocycle flow that projects onto 1. Remark that, althoggh_ we are nc?t in the
hypotheses of this theorem -since A is noncompact and F is singular—, its proof
still holds in this case. Such a measure is easily identifiable:

REMARK. The measure on T'F coming from Liouvillex hyperbolic area (@hich
we will call w) is invariant under the right action of PSL(2,R), @d n pa'rtzc.ular
under the foliated geodesic and horocycle flows. So it is a probability that satisfies
the thesis of theorem I.1.5., and it is also an exzample of theorem I1.3.2.

The measure u is ergodic for both flows, and we know this from Moore's ergodi-
city theorem, which we shall state below. For its proof, see [Z], Chapter II.

DEFINITION: We say that the action of a group G in a measure space (S, A, p) is

irreducible if all normal subgroups of G are ergodic.
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MOoORE’S ERGODICITY THEOREM. Let G be a semisimple Lie group acting ir-
reducibly on a probability space (S, A, n). If H is a closed, noncompact subgroup of
G, its action on S is ergodic.

COROLLARY. The volume on T*F is ergodic for the three foliated flows g, h*
and h™. :

Proof:

Take G = PSL(2,R), which is simple. The irreducibility of the lattice I’ implies
the ergodicity of the action (by right translations on the first factor) of the group
G on (I'\(G x G),projection of the Haar measure) and therefore of the action of G
on (T'F,p). O

Next, we will see that the horocycle flow is not uniquely ergodic on T'F, by
exhibiting another ergodic invariant measure. We will show that this measure is
nontrivial, in the sense that it is not a measure supported on a closed orbit-because
there are no closed orbits— and that it is not invariant under the geodesic flow.

ProprosiTiON 3.1. The leaves of F are either simply connected or hyperbolic
cylinders.

CoROLLARY. The horocycle foliated flow has no closed orbits.
Proof of Proposition 3.1:

Take a leaf L of F, and a point w € § such that $ x {w} projects onto L via
HxH—=T\(H % H). Two points (z, w) and (y, w) in H x H project onto the same
point.in M if and only if thereis a matrix A in' PSL(2, D) that sends z to y and
whose Galois conjugate A has w as a fixed point. This means that the fundamental
group of L is a quotient of the abelian group {4 € PSL(2,9,) : A(w) = w}, and is
therefore abelian. On the other hand, m L is free since L is noncompact, so it must
be either isomorphic to Z or trivial. This implies that the leaf L is, topologically,
a disk or a cylinder.

As a hyperbolic surface, a leaf L which is not simply connected may be of two
types: a hyperbolic cylinder or a parabolic one. (Only in the latter case do we have
closed horocycles.) L is parabolic when its fundamental group is generated by a
parabolic element in PSL(2,904) C PSL(2,R). But if A is parabolic, its conjugate
4 is also parabolic, and therefore has no fixed point in $ -which means that 4 does
not belong to the fundamental group of any leaf, completing the proof. O

N R
EXAMPLE 3.2

Consider the Lie subgroﬁp

p={((53)-(5 1))seer)
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of PSL(2,R) x PSL(2,R), which is isomorphic to the plane R?. To see that P
intersects I in a lattice, it is enough to give two linearly independent elements of
PNT; for example,

(626 ) = (G 56 7)

where  is the irrational number spoken of in section 1. This means that T = I'\ P
s a torus in I'\(PSL(2, R) x PSL(2, R)) that is invariant under the action of H,. by
right translations in the first factor. The probability v on T which comes from the
Haar measure of P is invariant under this action, and Moore’s theorem says that
it is ergodic. It is easy to see that v projects onté a‘nontrivial ergodic measure for
the horocycle flow on T F. Of course, the torus T is not invariant under the action
of the diagonal group D, so the measure v is not invariant under the geodesic flow.

-
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CHAPTER IV

RICATTI FOLIATIONS

Let S be a hyperbolic Riemann surface of finite area and p a representation of
the fundamental group of S in CP™; that is a group homomorphism

p:mS — PSL(n+1,C).
Throughout the chapter, n will be 1 or 2.

The suspension of this representation gives a foliated manifold (M, F), and the
following commutative diagram, as in the Appendix:

gxCpr 2y

§——s—>5

The restriction of ¢ to each leaf of F is a covering map, and ¢ : M — S is a fibration
over S whose fiber CP™ is transverse to the foliation.

As before, on each leaf of F we consider the Poincaré metric.

We will study the harmonic measures of this foliation (and'this metric), relating ..

them to measures invariant under the geodesic and horocw cle flows, that are studied
in {(B-GM] and [B-GM-V].

The unit tangent bundle T'F to the foliation F, where these flows are defined,
can be obtained as a quotient E of T'$ x CP™ exactly as before, which gives a
commutative diagram

T'§x CP"——>E
‘ Plxl lq’ :
T'H ———T'5

Via ¢’, the foliated geodesic and horocycle flows project onto the geodesic and horo-

cycle flows in TS, which are both ergodic with respect to the Liouville measure.

Let us call 7 the projection from £ to A{.

Let = be a point in M. L the leaf of F through z, whose universal cover is the
hyperbolic plane. Fix zg in © that projects onto z.
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DEerINITIONS: The circles containing points at distance r from zg in 9 have alength
measure that, after normalizing, we call A.(z). The projection of this measure is
a probability on M whose support is contained in L, that we call A.(z).

In [B-GM-V], the foliated horocycle and geodesic flows on E are studied. Under
certain conditions on the representation p, there exist measures called py and g
on E = TF, that satisfy the following:

1) gy is invariant under the foliated geodesic and stable horocycle flows, and for
almost all v in E (according to the Lebesgue measure class) and any continuous
function f, the measure p; gives the statistics for the orbit of v under gt in the
future; i.e.

lim /fogt (v)dt = [Efdm..

T—+too T

2) p_ is invariant under the foliated geodesic and unstable horocycle flows, and

for almost all v in E (according to the Lebesgue measure class) and any continuous

function f, the measure u_ gives the statistics for the orbit of v under ¢; in the

past; iL.e.
1 /7
ngwgp-/() f°9—-t('U)dt=/Efd/~t-—-

3) The measure p (u-) gives the statistics of Lebesgue-almost every orbit of
the foliated stable (unstable) horocycle flow, both for the past and the future.

We will consider a reprosentation p whose image p(w;S) does not leave any in-
variant measure on CP”. This condition is generic on p (see [J]), and it is enough to
guarantee the existence of the measures uy and u— described above. The following
theorem can be found in [B-GM] in a more general version:

THEOREM. (Bona,t.m, Gdémez-Mont) If p(m1S) leaves no invariant measure on
CP™ (n =1 or 2), then there is a probability measure v on M such that for any
z and any sequence {r,} of positive real numbers going to infinity, the sequence
{Ar. (2)} converyes weakly to v. Furthermore, v 'is the projection to M of both py
and p—.

Let z be any point in M, and consider the Birkhoff means

1 n—1
(5&,'1) = ; Z Dt(;:v-
t=0

We know from [Ga] that these means have a limit which is a probability for almost
every = with respect to any harmonic measure; nevertheless. in the non-compact
case we do not yet know if there are any harmonic measures.

PrROPOSITION 1. The limit i
d, = lim J.(L.”)

exists and is equel to v for every point .
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As any harmonic measure can be decomposed into measures of this type, we
have the following corollary:

COROLLARY 2. v is the unique harmonic measure of the (generic) Riccati foli-
ation.

The proof of this fact is very similar to and easier than the proof of Theorem
11.2.5, and its main ingredient is Lemma I1.2.1.

Proof of Proposition 1:

If 7y, : $ — L is the universal cover of the leaf L and {[7,5} is the heat semigroup
on $, we will call 5<") the probablility on § given by the expression & Z;:ol D¢ba,.

It is clear that 5,50 projects onto sir)

We can approximate the measures 5™ vy

. 1 .
77557; = ; Z Dtdzo y
t=[h{\/n)]

where h is the function given by Lemma I1.2.1 and [z] stands for the largest integer

smaller than or equal to the real number z. Exactly as in Chapter 11, the n(”) are
not probabilities but their mass tends to one. Their projections, 77,(5 " = (rL)*ng’Z)
are measures on M whose mass approaches 1 and that-can be written as convex
combinations of the measures A-(z) for large values of 7. They must therefore have

v as their limit. This implies, again as in Chapter II, that v must be the weak limit
of the sequence 5(7:) a '
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APPENDIX

EXAMPLES OF COMPACT
HYPERBOLIC SURFACE LAMINATIONS

ExaMPLE 1: SURFACES AND PRODUCT LAMINATIONS

A compact hyperbolic Riemann surface S is obviously a compact hyperbolic
surface lamination. So is a product of the form S x T, where T is a compact
metrizable space.

EXAMPLE 2: SUSPENSIONS

Let S be a compact hyperbolic Riemann surface and F a compact metrizable
space. An automorphism of F is simply a homeomorphism from F to itself if we
think of F' as an object in the category T of topological spaces. If F belonged to
a subcategory of 7 (e.g. that of differentiable manifolds, complex manifolds), we

could consider automorphisms of F to be maps in this subcategory. We call Aut(F)

the group of automorphisms of F.

Consider a group homomorphism
p:m(S) — Aut(F).
On the product $ x F, consider the equivalence relation given by

. ("Ef)N(h/‘r7p(ﬁ/)f)7

wherethe elements v of 1 (S) act by deck transformations on the first factor of & x F
and via the representation p on the second. This action preserves the “horizontal”
foliation, whose leaves are of the form $ x {f}, and therefore the quotient

AxF

L=

~

is é compact lamination by hyperbolic Riemann surfaces, which is called suspension
of p. If we call p the projection § x F — £, P: § — S the universal covering of .S

and p1 : § x F — § the projection onto the first factor, there is a map ¢ from £

onto S that makes the following diagram commute: ‘

axFL s

§—5—5

The restriction of g to each leaf of £ is a covering map, and g : £ — S is a fibration
over S whose fiber is isomorphic to F. If F is a differentiable manifold, £ is itself
a foliated differentiable manifold and the fibration ¢ is transverse to the foliation.
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EXAMPLE 3: WEAKLY STABLE AND UNSTABLE FOLIATIONS FOR THE GEODESIC
FLOW ON THE UNIT TANGENT BUNDLE OF A COMPACT HYPERBOLIC SURFACE

Consider a point p in the circle at infinity RU {oo} of the hyperbolic plane. For
any point z € §, there is a unique vector v(z,p) € T,$ that directs a geodesic
starting at z and heading towards p. The set

. Ly = {v(z,p) : €5}
is a hyperbolic plane embedded in T'§5. As p varies, the manifolds L} determine

a foliation F of 718 by hyperbolic planes. It is called ‘weakly stable’ foliation for
the geodesic flow in T14. .

IfT C PSL(2,R) is a discrete subgroup such that S = I'\% is smooth and
compact, 7 projects onto a foliation F by hyperbolic surfaces in 715 = I\T15.
This is the ‘weakly stable’ foliation for the geodesic flow on T1S.

Ifp € RU{o0} and z € H, we may also consider the vector u(z,p) € TiH
that directs the unique geodesic starting at z and coming from p (namely, heading
towards p in the past). =

The sets of the form

Ly ={u(z,p) : z€9}
determine a foliation whose projection onto T1S is called the ‘weakly unstable’
foliation for the geodesic flow on T1S.

EXAMPLE 4: SULLIVAN’S LAMINATION (Notes by Manuel Cruz)

A.THE DYADIC SOLENOID

1. The dyadic c’ompletion of Z: If n < m, then 2™7 is 3 subgroup of 27 and
there is a well defined quotient application

Prm 1 L)2MT = Z)2°Z,  z mod 277 w5 © mod 277,

This determines an inverse directed system {Z/2"Z, ppm} whose inverse limit is
the dyadic completion of Z which is denoted by Zs. Z,, with the profinite topology,
is an abelian, compact, perfect and totally disconnected topological group which is
homeomorphic to the dyadic Cantor set. :

II. The dyadic solenoid: From the theory of covering spaces, we know that, for
every n € N, there is a non-ramified covering space p, : X, — S! of degree 2.
Here, we canonically identify X, with R/2*Z. Then, for any n,m with n < m,
we have the corresponding covering maps p, : X, — S' and Pm ¢ X — St
Therefore, there is a unique COVEring map Prm : Xm -+ X, such that DPnOPam = Dym.
This determines an inverse directed system {X,,pn}nen, whose inverse limit is the
dyadic solenoid

Sy =lim X,

with canonical projection 7 : § — S!, determined by the projection of coordinates,
that determines a structure of Zs-principal bundle. ’
43




S is an abelian, compact, conected topological group, and each leaf of this unidi-
mensional lamination is a simply connected manifold of dimension 1, homeomorphic
to the universal cover R of S*. A typical fiber of this projection is homeomorphic
to Z,. Furthermore, every leaf of this lamination is dense.

B.SULLIVAN’S LAMINATION

1. Natural eztension: If f : S' = S is the two-to-one covering map given by
2z~ 22, then f induces a function f:Ss — Sy, called natural eztension of f, given
by ' '
FCozn, oz 20) =, Zn,. .. , 21, 20, (20))-

Clearly fisa homeomorphism since its inverse is the shift map “forgetting the first
coordinate”. Furthermore, f covers f: mwo f = for.

II. Hyper?)olization: Let us denote by L: the leaf passing through # € §;, and by
T:L: the line tangent to Lz at 2. We define the lamination £ associated to f by

L:={(3,v) €Ss x T:L: : dn(z) -v > 0}.
Then, £ is a Riemann surface lamination with canonical projection w. Each leaf

of this bidimensional lamination is a simply connected Riemann surface which is
conformally equivalent to §). A typical fiber of this projection is homeomorphic to

* the dyadic Cantor set.

1. Extension: Finally, let I : £ — £ be the application given by .

F(z,v) = (f(2),df(2) -v),

-

where df () is the derivative of the restriction of f to the leaf passing through Z.
Clearly, F is an extension of f.

In £ we define the following equivalence relation: (Z,v) ~ (#,v") if and only if

(z,v) and (2',v') are in the same orbit of the F-action.

Let £ := E./~ be the quotient space of this relation. Then, £ is a compact
Riemann surface lamination. Each leaf of this lamination is the image under the
quotient projection of a leaf in £. Every leaf induced by a ‘periodic’ leaf of F is an
annulus. Every leaf of this lamination is dense.

ExaMmPLE 5: THE UNIVERSAL HYPERBOLIC SOLENOID (Notes by Manuel Cruz)

Let us suppose that X := (X, z) is a compact Riemann surface of genus g > 1
with a base point, and let G := 71 (X, z) be the fundamental group of X. Let us fix
a covering map with base point (£,%) — X and let us recall that we can identify
G with the group of deck transformations of this universal covering.
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L. The profinite completion of G: Let us consider the set N' = N(G) consisting
of all normal subgroups of G having finite index. We can define a partial ordering
in this set by inclusion: if H,K € N, then H < K if and only if K C H. Let us
suppose that G is a base filter, i.e., if H, X € N, then there exists L € A such that
LcHNK.

If H, K € N with H < K, then we have a well-defined canonical projection
“pux :G/K - G/H, gKw— gH.

This determines an inverse directed system whose inverse limit is called the profinite
.completion of G and is denoted by G. Namely,

G =limG/H.

If G is also residually finite (ie. (NycpH = {1}), then we have an injective
homomorphism G < & induced by the projections in the factors. G/H whose

~ image is dense. G , endowed with the profinite topology, is an abelian, compact and

totally disconnected topological group, homeomorphic to a Cantor set.

II. The universal solenoid: From the theory of covering spaces, we know that

to each H € A we can associate a non-ramified covering space of degree n with -

base point, py : Xg — X. Here, we canonically identify Xz to $/H." Then,

for any H,K € N with H < K, we_have the corresponding covering applica-

tions pg : Xg — X and px : Xg — X. Then, there is a unique covering map
prK ¢ XKk — Xg such that py o pyg = px. This determines an inverse directed
system {X g, pr}ren, whose inverse limit is the Universal Hyperbolic Solenoid

S = lim X,

with canonical projection 7 : S — X, determined by a coordinate projection that
determines a G-principal bundle structure.

S is a compact, connected topological space, and each leaf of this bidimensional
lamination is a simply connected two-dimensional manifold. homeomorphic to the
covering space $ of X. A typical fiber of this projection is isomorphic to the
profinite completion of G.
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