Existence and Uniqueness of Solution
 119

 to Superdifferential EquationsJ. Monterde and O. A. Sánchez-Valenzuela

Tech. Rept. I-92-7 (CIMAT/MB)

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO SUPERDIFFERENTIAL EQUATIONS

J. Monterde
O. A. Sánchez-Valenzuela

Abstract

We state and prove the theorem of existence and uniqueness of solutions to ordinary superdifferential equations on supermanifolds. It is shown that any supervector field, $X=X_{0}+X_{1}$, has a unique integral flow, $\Gamma: \mathbb{R}^{1 \mid 1} \times\left(M, \mathcal{A}_{M}\right) \rightarrow\left(M, \mathcal{A}_{M}\right)$, satisfying a given initial condition. A necessary and sufficient condition for this integral flow to yield an $\mathbb{R}^{1 / 1}$-action is obtained: the homogeneous components, X_{0}, and, X_{1}, of the given field must define a Lie superalgebra of dimension (1,1). The supergroup structure on $\mathbb{R}^{1 / 1}$ however, has to be specified: there are three non-isomorphic Lie supergroup structures on $\mathbb{R}^{1 / 1}$, all of which have addition as the group operation in the underlying Lie group \mathbf{R}. On the other extreme, even if X_{0}, and X_{1} do not close to form a Lie superalgebra, the integral flow of X is uniquely determined and is independent of the Lie supergroup structure imposed on $\mathbb{R}^{1 \mid 1}$. This fact makes it possible to establish an unambiguous relationship between the algebraic Lie derivative of supergeometric objects (e.g., superforms), and its geometrical definition in terms of integral flows. It is shown by means of examples that if a supergroup structure in $\mathbb{R}^{1} \mid 1$ is fixed, some flows obtained from left-invariant supervector fields on Lie supergroups may fail to define an \mathbb{R}^{11}-action of the chosen structure. Finally, necessary and sufficient conditions for the integral flows of two supervector fields to commute are given.

1. INTRODUCTION

We prove here the theorem of existence and uniqueness of solutions to superdifferential equations on supermanifolds. This work is based on two previous approacheseach one followed by each of the authors separetely ([7], and [9], respectively). Both predecessor papers dealt with the problem of integrating supervector fields on supermanifolds, but the results reached by each one of them were only partial. In [7], a unique way of integrating even supervector fields was obtained, but ad hoc techniques were required for the odd ones. Even so, not all of them could have an integral in the sense defined there; integral flows in [7] depended only on one real parameter $t \in \mathbb{R}$. On the other hand, the approach in [9] provided a better way of making sense of the ordinary differential equation defined by any supervector field. This was achieved by introducing $\mathbb{R}^{1 / 1}$ as the parameter superspace to carry out the integration, and by using the evaluation morphism on points to completely

1991 Mathematics Subject Classification. Primary: 58A50, 58C50, 58F25, 34A12 Secondary: 34A26, 22E20.

Keg words and phrases. Supermanifolds, Superdifferential Equations, Lie Supergroup Actions.
Partially supported by the Spanish CICYT grant \#PB90-0014-C03-01, MRLTA/90-92, and CONACYT-México.
determine the C^{∞} functions that build up the flow. The proof of the theorem on existence and uniqueness of solutions there, was based on the ideas of the pioneering work of Shander [13]: To determine first the normal forms for the superfields so as to actually carry out the integration on the simplest coordinate version of each. The normal-form problem, however, was not solved in [9], and the theorem was therefore proved only for a subclass of supervector fields: those having a normal form in $\mathbb{R}^{1 / 1}$. Nevertheless, these included the known examples in the literature so far, and provided some new ones (cf, [5], and [13]).

We are now very pleased to communicate in this paper the best statement of the theorem, and its most unrestricted proof: i.e., one without any regard on parities, normal forms, special integrating parameters or techniques, etc. (cf, Theorem 3.5, below). But before giving the details, it is pertinent to make some comments about the nature of the problem, the nature of our approach, and the significance of the results.

First of all, the problem of posing ordinary differential equations on supermanifolds (or, on any similar geometric category), combines the supervector field to be integrated, X, with the solution of the equation, Γ, so as to Γ-relate X with some fixed derivation D in the integrating parameter superspace, \mathcal{T}. We call the pair (T, D) the integrating model for the equation. Thus, the starting point is always the equation,

$$
\begin{equation*}
D \circ \Gamma^{*}=\Gamma^{*} \circ X \tag{1.1}
\end{equation*}
$$

($c f, \S 2$ below for precise definitions and statements). Since Γ^{*} is a map of superalgebras, it preserves the \mathbb{Z}_{2}-grading, and therefore, Eq. (1.1) may immediately be splitted into two equations; namely,

$$
\begin{equation*}
D_{0} \circ \Gamma^{*}=\Gamma^{*} \circ X_{0}, \quad \text { and }, \quad D_{1} \circ \Gamma^{*}=\Gamma^{*} \circ X_{1} \tag{1.2}
\end{equation*}
$$

where, $X=X_{0}+X_{1}$, and $D=D_{0}+D_{1}$, are the corresponding \mathbb{Z}_{2}-decompositions of X, and D. In particular, to integrate odd superfields one requires at least a non-zero D_{1}. On the other hand, since the supercommutators of two Γ-related derivations are again Γ-related, it follows from (1.2) that,

$$
\begin{equation*}
\left[D_{0}, D_{1}\right] \circ \Gamma^{*}=\Gamma^{*} \circ\left[X_{0}, X_{1}\right], \quad \text { and, } \quad\left[D_{1}, D_{1}\right] \circ \Gamma^{*}=\Gamma^{*} \circ\left[X_{1}, X_{1}\right] \tag{1.3}
\end{equation*}
$$

These relations may produce some non-trivial conditions on the superfields X to be integrated depending on the values of $\left[D_{0}, D_{1}\right]$, and $\left[D_{1}, D_{1}\right]$. It is natural to assume that the integrating parameter superspace \mathcal{T} is a Lie supergroup, and that D_{0}, and D_{1} are left-invariant supervector fields, so that they form a (1,1)-dimensional Lie superalgebra. If this is the case, there are real constants a, and b (and in fact, $a b=0$), such that,

$$
\begin{equation*}
\left[D_{0}, D_{1}\right]=a D_{1}, \quad \text { and } \tag{1.4}
\end{equation*}
$$

$$
\left[D_{1}^{\prime}, D_{1}\right]=b D_{0}
$$

In particular, if Γ^{*} happens to be monic (cf. [1]), (1.1) becomes a well-posed equation only for those superfields satisfying the "integrability conditions",

$$
\begin{equation*}
\left[X_{0}, X_{1}\right]=a X_{1}, \quad \text { and, } \quad\left[X_{1}, X_{1}\right]=b X_{0} \tag{1.5}
\end{equation*}
$$

There are, however, various reasons to pursuit the idea that any supervector field must be integrable, in the sense of giving rise to an integral flow, $\Gamma: \mathcal{T} \times\left(M, \mathcal{A}_{M}\right) \rightarrow$ (M, \mathcal{A}_{M}). In fact, an integral flow for any superfield is needed in order to relate the dynamical (geometrical) definition of the Lie derivative of any supergeometrical object (e.g., superdifferential forms), to its corresponding algebraic characterization. The latter usually makes good sense, no matter what superfield is chosen to take the derivative along to. The best example at hand is this: the Lie derivative of any superform ω, may be defined algebraically by,

$$
\begin{equation*}
\mathcal{L}_{X} \omega=i(X) \circ d \omega+d \circ i(X) \omega \tag{1.6}
\end{equation*}
$$

without imposing conditions like (1.5) on X. One would like to understand this formula as the quantitative result of a geometrical assertion: the rate of change of ω along the flow generated by X. In particular, one would like to conclude that when - the Lie derivative of something is zero, that something does not change along the flow. This is the crucial step in proving some geometrical assertions. To quote a concrete example, let us mention that this result is needed to show that the integral flow of a supervector field acts by supersymplectic transformations, if and only if it is superhamiltonian (see for example, [10], and [12]; see also [6], and [11] for the basics of supersymplectic supermanifolds).

The way to supress the conditions on the homogeneous components of the field, and to produce a uniquely determined integral flow for any supervector field, is to pose the differential equation in terms of the evaluation morphism on points of the superparameter space \mathcal{T}. This was precisely the main contribution of [9]. We recall that in the category of supermanifolds there is a unique terminal object: a single point with the constant structure sheaf \mathbb{R}. It is natural in terms of it to produce an evaluation morphism on points, and to make sense of, $\left.e v\right|_{t=t_{0}}$, as a morphism of superalgebras. Thus, the differential equation must be (cf, $\$ 2$ below for the precise definitions),

$$
\begin{equation*}
\left.e v\right|_{t=t_{0}} \circ D \circ \Gamma^{*}=\left.e v\right|_{t=t_{0}} \circ \Gamma^{*} \circ X \tag{1.7}
\end{equation*}
$$

What remains then is to select a specific integrating model, $(\mathcal{T} ; D)$. Now, any supervector field on (M, \mathcal{A}_{M}) canonically projects onto a smooth vector field on M whose integral flow always defines (locally; at least) an action of the additive group \mathbb{R} on M. Therefore, it is only natural to require that $\mathcal{T}_{\text {red }}=\mathbb{R}$, and the underlying smooth map $\tilde{\mu}$ of the Lie supergroup operation $\mu: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T}$ be addition in \mathbb{R}. On the other hand, letting D_{0}, and D_{1} be left invariant supervector fields, the possible choices are forced by the following procedure: First; determine all the (1, 1) dimensional Lie superalgebras over the reals. Then, look at their corresponding connected, simply connected, $(1,1)$-dimensional Lie supergroups having addition as their underlying operation in \mathbb{R}. Finally, realize D_{0}, and D_{1} as left invariant supervector fields.. It turns out that there are three different (1,1)-dimensional Lie supergroup structures on $\mathbb{R}^{1 / 1}$ extending addition on \mathbb{R}. We shall label these structures by the numbers 1,2 , and 3 . Thus, if (1.4) is satisfied, the corresponding Lie supergroup structures on $\mathbb{R}^{1 \mid 1}$, and their left invariant supervector fields are
given according to the following table:

	$\mu\left(\left(t_{1}, \tau_{1}\right),\left(t_{2}, \tau_{2}\right)\right)$	D_{0}	D_{1}
Type 1	$\left(t_{1}+t_{2}, \tau_{1}+\tau_{2}\right)$	∂_{t}	∂_{τ}
Type 2	$\left(t_{1}+t_{2}+\tau_{1} \tau_{2}, \tau_{1}+\tau_{2}\right)$	∂_{t}	$\partial_{\tau}+\tau \partial_{t}$
Type 3	$\left(t_{1}+t_{2}, \tau_{2}+\mathrm{e}^{t_{2}} \tau_{1}\right)$	$\partial_{t}+\tau \partial_{\tau}$	∂_{τ}

(The Lie supergroup structure of type 2 is locally isomorphic to the supermultiplicative structure given by, $\mu\left(\left(t_{1}, \tau_{1}\right),\left(t_{2}, \tau_{2}\right)\right)=\left(t_{1} t_{2}+\tau_{1} \tau_{2}, t_{1} \tau_{2}+t_{2} \tau_{1}\right)$.) Note that $D=D_{0}+D_{1}$, is always of the form:

$$
D=\partial_{t}+\partial_{\tau}+\tau D^{\prime}
$$

Now, one can prove that the integral flow obtained when using D is exactly the same as that obtained when using $\partial_{t}+\partial_{\tau}$ (cf. $\$ 2.3$ below). In other words, for the sole purpose of determining the integral flow, $\Gamma: \mathbb{R}^{111} \times\left(M, \mathcal{A}_{M}\right) \rightarrow\left(M, \mathcal{A}_{M}\right)$, the detailed supergroup structure on \mathbb{R}^{11} is irrelevant as long as the differential equation is posed as in (1.7). When it furthermore happens that the homogeneous components of the supervector field do form $\mathrm{a}^{i}(1,1)$-dimensional Lie superalgebra, the differential equation may be possed as in (1,1) without the evaluation morphism, and a Lie supergroup action of the $\mathbb{R}^{1 / 1}$ supergroup corresponding to that Lie superalgebra is defined by the integral flow ($c f$. Theorem 3.6 below).

Note that conditions (1.5) have nothing to do with the integrability criteria given by Frobenius theorem on the bundle that trivializes the particular supermanifold on which X is defined: Eqns. (1.5) are stronger because a and b are real constants. When these conditions are not satisfied, all what happens is that the integral flow does not behave like the real one-parameter exponential of a $C^{\infty 0}$ vector field. The integral flow exists, but it fails to define a Lie supergroup action of $\mathbb{R}^{1 / 1}$ on $\left(M, \mathcal{A}_{M}\right)$. This phenomenon might be exagerated if a definite integrating model is fixed. For example, fixing the Type 1 supergroup structure as the integrating model (\mathcal{T}, D), the integral flow obtained for a non-even left invariant supervector field on the Lie supergroup $G L(1 \mid 1)$ (i.e., the multiplicative supergroup structure on $\mathbb{R}^{1 \mid 1}$) does not define a Lie supergroup action of \mathcal{T}. The reason is of course that the Type 1, and Type 2 structures are not isomorphic: The exponential morphism-understood as the "point" determined on the supergroup by flowing along the integral "curve" of a left invariant supervector field after a unit of "time" from some prescribed initial direction-does not provide a Lie supergroup homomorphism in this case.

The main results of this work (Theorems 3.5, and 3.6) are presented with no commitment to any particular type of supergroup structure on $\mathbb{R}^{1 / 1}$. Our original approach made use of a,specific'choice (Type 1) arguing that for such a supergroup structure the correspondence that makes it possible to view an arbitrary section of the structural sheaf of a given supermanifold asla morphism from the supermanifold into $\mathbb{R}^{1 / 1}$ was addition preserving. However, M. Rothstein has pointed out to us that
in so doing one leaves out some of the interesting Lie theoretic phenomena arising from the integration process. Besides, almost no new work had to be done in order to present the results in the more general setting because the actual computation of the integral flow Γ does not depend on the Lie supergroup structure of $\mathbb{R}^{1 / 1}$.

The paper is organized as follows: $\S 2$ gives the basic definitions, and it is based on [9]. The various Lie supergroup structures on $\mathbb{R}^{1 \mid 1}$ are given, and it is shown that for the actual determination of the flow only ∂_{t}, and ∂_{τ} may be used. $\oint 3$ states the theorem of existence and uniqueness of solutions. Its proof is considerably reduced to the proof of the same theorem for an even superfield, X_{0}, but this is precisely the theorem proved in [7], which we translate so as to fit with our genieral scheme here. Following [10] and [12], we define in $\S 4$ Lie derivatives of superforms in terms of our integral flows and show that one may compute these Lie derivatives algebraically with only interior multiplication, and exterior differentiation, as expected. Finally, $\$ 5$ provides the details for determining the left invariant supervector fields of the different Lie supergroup structures of $\mathbb{R}^{1 / 1}$. Needless to mention the relevance of having settled the integration question, as it is a fundamental tool in some applications. Concretely, we are thinking of some physical and geometrical considerations involving the Euler-Lagrange equations studied in [8], and Hamilton's equations studied in [10], and [12]. We also hope that the methods developed here be of some help in the infinite dimensional theory of superintegrable systems developed mainly in [4].

2. THE ODE PROBLEM ON SUPERMANIFOLDS

2.1 Definitions, conventions, and notation. We shall refer the reader to [3], and [5] for definitions. Our conventions are the following: A supermanifold shall always mean a real supermanifold; it is a pair, $\left(M, \mathcal{A}_{M}\right)$, with M some m-dimensional real smooth manifold, and \mathcal{A}_{M} the structure sheaf of real superfunctions on M. A morphism $\left(M, \mathcal{A}_{M}\right) \rightarrow\left(N, \mathcal{A}_{N}\right)$ is a pair $\Psi=\left(\widetilde{\Psi}, \Psi^{*}\right)$, with $\widetilde{\Psi}: M \rightarrow N$ continuous, and $\Psi^{*}: \mathcal{A}_{N}(N) \rightarrow \mathcal{A}_{M}\left(\widetilde{\Psi}^{-1}(N)\right)$, a map of \mathbb{R}-superalgebras commuting with restrictions. The terminal object is $(\{*\}, \mathbb{R})$; a point with the algebra of constants on it. The terminal morphism, $\left(M, \mathcal{A}_{M}\right) \rightarrow(\{*\}, \mathbb{R})$ shall be denoted by C. By definition, a supermanifold has a preferred embedding, $\delta:\left(M, \mathcal{C}_{M}^{\infty}\right) \rightarrow\left(M, \mathcal{A}_{M}\right)$; its superalgebra map, $\delta^{*}: \mathcal{A}_{M}(M) \rightarrow \mathcal{C}_{M}^{\infty}(M)$ shall be written, $f \mapsto \tilde{f}$. Each point $x \in M$ defines a morphism $\delta_{x}:(\{*\}, \mathbb{R}) \rightarrow\left(M, \mathcal{A}_{M}\right)$, by letting, $\delta_{x}{ }^{*}: \mathcal{A}_{M}(M) \rightarrow \mathbb{R}$, be, $f \mapsto \tilde{f}(x)$. The composition $\delta_{x} \circ C$ gives a superalgebra map closely related to this: $f \mapsto \tilde{f}(x) 1_{\mathcal{A}_{M}(M)}$ Note that the domain can be any supermanifold. We shall write C_{x}, and $\left.e v\right|_{x}$, instead of $\delta_{x} \circ C$, and $\left(\delta_{x} \circ C\right)^{*}$, respectively. In products, with underlying points $(x, y) \in M \times N$, the notation $\left.e v\right|_{x}$ stands for $\left(C_{x} \times i d_{N}\right)^{*}$; it pulls back superfunctions on $M \times N$ to superfunctions on N.

An (m, n)-dimensional superdomain shall always be understood as a coordinate superdomain; i.e., an open coordinate domain, U, in some \mathbb{R}^{m}, and the exterior bundle, $\Lambda \mathbb{R}^{n}$, based on the trivial rank- n-bundle, \mathbb{R}^{n}, over U. When $U=\mathbb{R}^{m}$, the corresponding superdomain, $\left(\mathbb{R}^{m}, \Gamma\left(\bigwedge \mathbb{R}^{n}\right)\right)$, shall be denoted by $\mathbb{R}^{m \mid n}$. It is convenient to write $U \subset \mathbb{R}^{m \mid n}$ for the restriction of the structure sheaf $\Gamma\left(\bigwedge \mathbb{R}^{n}\right)$ on \mathbb{R}^{m}, to the open domain $U \subset \mathbb{R}^{m}$. Thus, $\mathcal{U}=\left(U,\left.\Gamma\left(\wedge \mathbb{R}^{n}\right)\right|_{U}\right)$.
2.2 ODE's on superdomains. Let $\left(M, \mathcal{A}_{M}\right)$ be a supermanifold, and let $\operatorname{Der} \mathcal{A}_{M}$ be the sheaf of superderivations of $\dot{\mathcal{A}}_{M}(M)$. Supervector fields on M are sections of $\operatorname{Der} \mathcal{A}_{M}$. Each supervector field X defines in a unique fashion a smooth vector field, $\tilde{X} \in \mathcal{D e r} C^{\infty}(M)$, by letting, $\tilde{X}(\widetilde{f})=\widetilde{X(f)}$, for each $f \in \mathcal{A}_{M}(M)(c f$. [3]). It is well known that \tilde{X}, gives rise to a collection of smooth maps, $\left\{\phi_{t}\right\}_{t \in \mathbb{R}}$, for which the following is true ($c f$. [15]):
For each $t \in \mathbb{R}$, there exists a maximal open subset $V_{t}(\widetilde{X}) \subset M$, and a smooth map, $\phi_{t}: V_{t}(\widetilde{X}) \rightarrow M$, such that,
(1) $\phi_{t}(x)=\gamma(t, x)$, for each $x \in V_{t}(\tilde{X})$; γ being the unique integral curve of \tilde{X} through x at $t=0$, and defined on its maximal domain $\left\{t \in \mathbb{R} \mid x \in V_{t}(\widetilde{X})\right\}$.
(2) $\phi_{t}: V_{t}(\tilde{X}) \rightarrow V_{-t}(\tilde{X})$ is a diffeomorphism whose inverse is ϕ_{-t}.
(3) $V_{0}(\tilde{X})=M, \phi_{0}=i d_{M}$, and $V_{t_{1}}(\tilde{X}) \subset V_{t_{2}}(\tilde{X})$, if $t_{1} \geq t_{2} \geq 0$, or $t_{1} \leq t_{2} \leq 0$.
(4) $\bigcup_{t>0} V_{t}(\tilde{X})=\bigcup_{t<0} V_{t}(\tilde{X})=M$.

Furthermore, for each $x \in M$ there is an open subset $V_{x}(\tilde{X}) \subset M$, and some $\epsilon>0$, such that the map $(t, y) \mapsto \phi_{t}(y)$ is smooth and defined on $(-\epsilon, \epsilon) \times V_{x}(\widetilde{X})$.

In particular, the subset $V(\tilde{X})=\left\{(t, x) \in \mathbb{R} \times M \mid x \in V_{t}(\tilde{X})\right\}$ is open, and a smooth map $\phi: V(\tilde{X}) \rightarrow M$ can be defined by $\phi(t, x)=\phi_{t}(x)$; equivalently, there is a well defined homomorphism $\phi^{*}: C^{\infty}(M) \rightarrow C^{\infty}(V(\widetilde{X})), \phi^{*}(f)=f \circ \phi$, which is the unique solution to the equation,

$$
\begin{equation*}
\tilde{D} \circ \phi^{*}=\phi^{*} \circ \dot{X} \tag{2.2.1}
\end{equation*}
$$

subject to the initial condition $\phi(0, x)=x$. We have written \tilde{D} for the lift to $V(\tilde{X})$ of the vector field $\frac{d}{d t}$ defined on \mathbb{R}. This lift is uniquely defined by the conditions, $\tilde{D} \circ p_{1}{ }^{*}=p_{1}{ }^{*} \circ \frac{d}{d t}$, and $\tilde{D} \circ p_{2}{ }^{*}=0 ; p_{1}$, and p_{2} being the projections of $V(\tilde{X}) \subset \mathbb{R} \times M$ into the corresponding factors. Note that (2.2.1) is equivalent to the following equation in $C^{\infty}(M)$:

$$
\begin{equation*}
\left.e v\right|_{t=t_{0}} \circ \tilde{D} \circ \phi^{*}=\left.e v\right|_{t=t_{0}} \circ \phi^{*} \circ \tilde{X} \tag{2.2.2}
\end{equation*}
$$

for each $t_{0} \in p_{1}(V(\tilde{X}))$. Now let \mathcal{V}_{X} be the open subsupermanifold of $\mathbb{R}^{1 \mid 1} \times$ (M, \mathcal{A}_{M}) whose underlying smooth manifold is $V(\tilde{X})$. A solution to the \mathbb{Z}_{2}-graded differential equation defined by X, is a supermanifold morphism,

$$
\begin{equation*}
\Gamma: \mathcal{V}_{X} \rightarrow \mathcal{A}_{M} \tag{2.2.3}
\end{equation*}
$$

such that, for each $t_{0} \in \mathbb{R}$,

$$
\begin{equation*}
\left.e v\right|_{t=t_{0}} \circ \tilde{D} \circ \Gamma^{*}=\left.e v\right|_{t=t_{0}} \circ \Gamma^{*} \circ X \tag{2.2.4}
\end{equation*}
$$

subject to the initial condition,

$$
\begin{equation*}
\Gamma \circ\left(C_{0} \times i d\right)=i d \tag{2.2.5}
\end{equation*}
$$

The equality (2.2.4) is set between superderivations of the sheaf \mathcal{A}_{M}. We have written \tilde{D} for the lift to V_{X} of a preferred superfield, D, on $\mathbb{R}^{1 \mid 1}$ (cf. $\S 2.4$ below). This lift is defined by the conditions, $\tilde{D} \circ p_{1}{ }^{*}=p_{1}{ }^{*} \circ D$, and $\widetilde{D} \circ p_{2}{ }^{*}=0 ; p_{1}$, and p_{2} being the projections of V_{X} into the corresponding factors (which are open subsupermanifolds $\mathbb{R}^{1 / 1}$ and $\left(M, \mathcal{A}_{M}\right)$, respectively). The evaluation morphism $\left.e v\right|_{t=t_{0}}$ is used to pull the superfunctions in \mathcal{V}_{X} back to $\left(M, \mathcal{A}_{M}\right)(c f,[5],[9]$, and [1]). Note that the initial condition (2.2.5) may be rewritten as,

$$
\begin{equation*}
\left.e v\right|_{t=0} \Gamma^{*} f=f \tag{2.2.6}
\end{equation*}
$$

for any superfunction f in \mathcal{A}_{M}.
2.3 On the role of the evaluation morphism. It is worth our while to actually appreciate the difference between Eq. (2.2.4), and,

$$
\begin{equation*}
\tilde{D} \circ \Gamma^{*}=\Gamma^{*} \circ X \tag{2.3.1}
\end{equation*}
$$

In order to do this we shall work on the supermanifold $\mathbb{R}^{m \mid n}$, and we shall write equations (2.3.1), and (2.2.4) in local coordinates for an arbitrary derivation D in \mathbb{R}^{111}. Let $\{t, \tau\}$ be a set of local coordinates in $\mathbb{R}^{1 \mid 1}$. There is no loss of generality in assuming that the integration model is locally of the form,

$$
\begin{equation*}
D=(1+\alpha \tau) \partial_{t}+(1+\beta \tau) \partial_{\tau} \tag{2.3.2}
\end{equation*}
$$

where α, and β are smooth functions of t. Now, let $\left\{x^{i} ; \theta^{\mu}\right\}$, be a set of local coordinates in $U \subset \mathbb{R}^{m \mid n}$. Let X be some given supervector field on \mathcal{U}, and write it in these local coordinates as,

$$
\begin{align*}
X= & \sum_{i}\left\{A^{i}+\sum_{\mu} A_{\nu}^{i} \theta^{\nu}+\sum_{\mu<\nu} A_{\mu \nu}^{i} \theta^{\mu} \theta^{\nu}+\cdots\right\} \partial_{x^{i}} \\
& +\sum_{\rho}\left\{B^{\rho}+\sum_{\nu} B_{\nu}^{\rho} \theta^{\nu}+\sum_{\mu<\nu} B_{\mu \nu}^{\rho} \theta^{\mu} \theta^{\nu}+\cdots\right\} \partial_{\theta \rho} \tag{2.3.3}
\end{align*}
$$

Let Γ be a morphism $\mathbb{R}^{111} \times \mathcal{U} \rightarrow \mathcal{U}$. We shall write it in coordinates as,

$$
\begin{align*}
& \Gamma^{*} x^{i}=\gamma_{0}^{i}+\sum_{\nu} \gamma_{\nu}^{i} \tau \theta^{\nu}+\sum_{\mu<\nu} \gamma_{\mu \nu}^{i} \theta^{\mu} \theta^{\nu}+\cdots, \\
& \Gamma^{*} \theta^{\rho}=g_{0}^{p} \tau+\sum_{\nu} g_{\nu}^{\rho} \theta^{\nu}+\sum_{\mu<\nu} g_{\mu \nu}^{\rho} \tau \theta^{\mu} \theta^{\nu}+\sum_{\lambda<\mu<\nu} g_{\lambda \mu \nu}^{\rho} \theta^{\lambda} \theta^{\mu} \theta^{\nu}+\cdots, \tag{2.3.4}
\end{align*}
$$

where, in fact, we should have written $p_{1}{ }^{*} \tau$, and $p_{2}{ }^{*} \theta^{\mu}$, instead of just τ, and θ, as we just did, for the local coordinates on $\mathbb{R}^{\left.1\right|^{1}} \times \mathcal{U}$ (p_{j} being the projection onto the $j^{\text {th }}$-factor of the product $\mathbb{R}^{1 / 1} \times U$). Let us further simplify the notation, and write,

$$
\begin{align*}
\Gamma^{*} x^{i} & =\left(\gamma_{(0)}^{i}+\gamma_{(2)}^{i}+\cdots\right)+\tau\left(\gamma_{(1)}^{i}+\gamma_{(3)}^{i}+\cdots\right) \tag{2.3.5}\\
\Gamma^{*} \theta^{\mu} & =\tau\left(g_{(0)}^{\mu}+g_{(2)}^{\mu}+\cdots\right)+\left(g_{(1)}^{\mu}+g_{(3)}^{\mu}+\cdots\right)
\end{align*}
$$

where ' (k) ' denotes the \mathbb{Z}-degree of homogeneity in the odd variables $\left\{\theta^{\mu}\right\}$. Then,

$$
\begin{align*}
\Gamma^{*} X x^{i}= & \left(\gamma_{(0)}^{*} A^{i}+\sum_{\nu} \gamma_{(0)}{ }^{*} A_{\nu}^{i} g_{(1)}^{\nu}+\cdots\right) \\
& +\tau\left(\sum_{\nu} \gamma_{(0)}{ }^{*} A_{\nu}^{i} g_{(0)}^{\nu}+\sum_{j} \gamma_{(0)}^{*} \partial_{x} A^{i} \gamma_{(1)}^{j}+\cdots\right) \\
\mathbf{\Gamma}^{*} \mathbb{X} \theta^{\mu}= & \left(\gamma_{(0)}^{*} B^{\mu}+\sum_{\nu} \gamma_{(0)}^{*} B_{\nu}^{\mu} g_{(1)}^{\nu}+\cdots\right) \tag{2.3.6}\\
& +\tau\left(\sum_{\nu} \gamma_{(0)}{ }^{*} B_{\nu}^{\mu} g_{(0)}^{\nu}+\sum_{j} \gamma_{(0)}{ }^{*} \partial_{x} ; B^{\mu} \gamma_{(1)}^{j}+\cdots\right)
\end{align*}
$$

where use his been made of the fact that for any C^{∞} function f on $\mathcal{U}, \Gamma^{*} f$ is given by, $f \circ \gamma_{(0)} \frac{s}{2} r \sum \gamma_{n}^{j} \theta^{\nu} \partial_{x^{i}} f \circ \gamma_{(0)}+\cdots$. On the other hand, we have, (2.3.7)

$$
\begin{aligned}
& \tilde{D} \Gamma^{*} x^{i}=\left(\gamma_{(0)}^{i}{ }^{\prime}+\gamma_{(2)}^{i}{ }^{\prime}+\cdots\right)+\left(\gamma_{(1)}^{i}+\gamma_{(3)}^{i}+\cdots\right) \\
& \quad+\tau\left(\Omega\left(\gamma_{(0)}^{i}{ }^{\prime}+\gamma_{(2)}^{i}{ }^{\prime}+\cdots\right)+\left(\gamma_{(1)}^{i}{ }^{\prime}+\gamma_{(3)}^{i}{ }^{\prime}+\cdots\right)+\beta\left(\gamma_{(1)}^{i}+\gamma_{(3)}^{i}+\cdots\right)\right) \\
& \quad \tilde{D} \Gamma^{*} \theta^{\mu}=\left(g_{(0)}^{\mu}+g_{(2)}^{\mu}+\cdots\right)+\left(g_{(1)}^{\mu}{ }^{\prime}+g_{(3)}^{\mu}{ }^{\prime}+\cdots\right) \\
& \left.\quad+\tau\left(g_{(0)}^{\prime \mu}+g_{(2)}^{\mu}+\cdots\right)+\alpha\left(g_{(1)}^{\mu}{ }^{\prime}+g_{(3)}^{\mu}{ }^{\prime}+\cdots\right)+\dot{\beta}\left(g_{(0)}^{\mu}+g_{(2)}^{\mu}+\cdots\right)\right)
\end{aligned}
$$

If the definition of the superdifferential equation is given without the evaluation morphism in front of it, these local-coordinate expressions yield two separate systems of equations; namely,

$$
\begin{align*}
\gamma_{(0)}^{i} & =\gamma_{(0)}{ }^{*} A^{i}, & g_{(0)}^{\mu} & =\gamma_{(0)}{ }^{*} B^{\mu}, \\
\gamma_{(1)}^{i} & =\sum_{\nu} \gamma_{(0)}{ }^{*} A_{\nu}^{i} g_{(1)}^{\nu}, & g_{(1)}^{\mu}{ }^{\prime} & =\sum_{\nu} \gamma_{(0)}{ }^{*} B_{\nu}^{\mu} g_{(1)}^{\nu} \tag{2.3.8}\\
\cdots & =\cdots, & \cdots & \cdots
\end{align*}
$$

and,

$$
\begin{align*}
\alpha \gamma_{(0)}^{i}{ }^{\prime} & =\sum_{\nu} \gamma_{(0)}{ }^{*} A_{\nu}^{i} g_{(0)}^{\nu}, & g_{(0)}^{\mu}{ }^{\prime}+g_{(0)}^{\mu} & =\sum_{\nu} \gamma_{(0)}{ }^{*} B_{\nu}^{\mu} g_{(0)}^{\nu} \\
\gamma_{(1)}^{i}{ }^{t}+\beta \gamma_{(1)}^{i} & =\sum_{j} \gamma_{(0)}{ }^{*} \partial_{x} A^{i} \gamma_{(1)}^{j}, & \alpha g_{(1)}^{\mu}{ }^{\prime} & =\sum_{j} \gamma_{(0)}{ }^{*} \partial_{x^{i}} B^{\mu} \gamma_{(1)}^{j}, \tag{2.3.9}\\
\cdots & =\cdots, & \cdots & =\cdots .
\end{align*}
$$

It is intuitively clear from these expressions that a unique solution exists to the first set of equations: The first equation in (2.3.8) is classical. Its unique solution, $\gamma_{(0)}$, may be plagged into the equation right in front of it to determine uniquely the coefficients $g_{(0)}^{\mu}$. In fact, $\gamma_{(0)}$ must be plugged into every single equation of the system. The next equation to solve is the second on the right in order to determine uniquely the $g_{(1)}^{\boldsymbol{j}}$, Then go to the equation on the left to determine the $\gamma_{(1)}^{i}$'s in terms of the $g_{(1)}^{(x)}$'s. It is clear that this "shoe-lace" manner of solving the first set
completely determines the coefficients of the flow in a unique fashion. Now, the second set of equations arises from the coefficients of τ. Since the flow coefficients are already determined, the second set must be thought of as identities that ought to be true among the coefficients of the given superfield. If no restrictions are imposed on the superfields to be integrated, the second set of equations should not be there at all. The way to do this is precisely by formulating the differential equation of the superfield X with the evaluation morphism in it, so that the equality (2.3.1) really means a congruence $(\bmod \tau)$; but this is precisely what Eq. (2.2.4) says. We shall see in Theorem 3.6 below precisely under what circumstances the superdifferential equation can be posed without the ev-map.
2.4 On the choice of the integrating model. Note that once the ev-map is made part of the definition, the system of equations obtained from the model D, and that obtained from the model $D+\tau D^{\prime}$ are exactly the same. This can be readily seen, either from the fact that $\left.e v\right|_{t=t_{0}} \tau=0$, or from the coordinate expressions above. (Note that the system (2.3.8) obtained from the full derivation D, is exactly the same as the one obtained from $\partial_{t}+\partial_{\tau}$).

Now, one may argue that if some pair of homogeneous fields, $D_{0_{r}}$ and D_{1}, is chosen as model for the integration of all supervector fields, they must form a Lie superalgebra. In fact, D_{0}, and D_{1} must generate the Lie superalgebra of left invariant supervector fields on a (1,1)-dimensional Lie supergroup. If furthermore, the integration theory of supervector fields is required to reproduce the C^{∞} theory under the canonical morphism $\mathcal{A}_{M} \rightarrow \mathcal{C}_{M}^{\infty}$, the underlying Lie group must be \mathbb{R} with its additive structure. It is well known (and easy to see) that up to isomorphism there are only three (1,1)-dimensional Lie superalgebras; labeling them with $\mathrm{j}=1$, 2 , and 3 , their structure may be displayed as follows (multiplying D_{0} by a constant if necessary, one may assume that $a=1$, or $b=1$ in (1.4)):

$$
\left[D_{0}, D_{1}\right]=\delta_{j 3} D_{1}, \quad \text { and }, \quad\left[D_{1}, D_{1}\right]=\delta_{j 2} D_{0}
$$

To realize D_{0}, and D_{1} as supervector fields satisfying these commutation relations.. : on the (1,1)-dimensional Lie supergroup, local coordinates $\{t, \tau\}$ may be chosen in such a way that,

$$
\begin{equation*}
D_{0}=\partial_{t}+a \tau \partial_{\tau}, \quad \text { and, } \quad D_{1}=\partial_{\tau}+b \tau \partial_{t} \tag{2.4.1}
\end{equation*}
$$

where a and b are real constants satisfying $a b=0$. (If the constraint on D_{0}, and D_{1}, to generate one of the Lie superalgebras above is not imposed, a, and b would be arbitrary smooth functions of t). By formal exponentiation of the Lie superalgebra elements one obtains formally some 'Lie supergroup elements' from which the supergroup operation may be obtained. Now; for the sake of clarity we. shall state first the explicit operations, $\mu_{j}: \mathbb{R}^{1 / 1} \times \mathbb{R}^{1 \mid 1} \rightarrow \mathbb{R}^{1 \mid 1}(\mathbf{j}=1,2$, and 3) that endow \mathbb{R}^{11} with a Lie supergroup structure (Prop. 2.4.1 below), and recover a posteriori the corresponding left invariant supervector fields ($\$ 5$ below). Thus, we have the following result whose proof is a straightforward verification using the techniques of [1]:
2.4.1 Proposition. Let $\{t, \tau\}$ be the standard supercoordinate system on $\mathbb{R}^{1 / 1}$ (i.e., t is the linear functional $\mathbb{R} \rightarrow \mathbb{B}$ dual to the basis element $1 \in \mathbb{R}$, and τ is the
generator of $\bigwedge(\mathbb{R} t)^{*}$ dual to $\left.t^{*}\right)$. There are three different supergroup structures on $\mathbb{R}^{1 / 1}$ whose composition morphisms, $\mu_{\mathrm{j}}: \mathbb{R}^{1 \mid 1} \times \mathbb{R}^{1 \mid 1} \rightarrow \mathbb{R}^{1 \mid 1},(j=1,2,3)$, are respectively given by the following superalgebra maps:

$$
\left(\mu_{\mathrm{j}}{ }^{*} t, \mu_{\mathrm{j}}{ }^{*} \tau\right)= \begin{cases}\left(p_{1}{ }^{*} t+p_{2}{ }^{*} t, p_{1}{ }^{*} \tau+p_{2}{ }^{*} \tau\right) ; & j=1 \tag{2.4.2}\\ \left(p_{1}{ }^{*} t+p_{2}{ }^{*} t+p_{1}{ }^{*} \tau p_{2}{ }^{*} \tau, p_{1}{ }^{*} \tau+p_{2}{ }^{*} \tau\right) ; & j=2 \\ \left(p_{1}{ }^{*} t+p_{2}{ }^{*} t, e^{p_{2}{ }^{*} t} p_{1}{ }^{*} \tau+p_{2}{ }^{*} \tau\right) ; & j=3\end{cases}
$$

where p_{1}, and p_{2} are the projection morphisms of $\mathbb{R}^{1 \mid 1} \times \mathbb{R}^{1 / 1}$ into their factors. In all cases, the identity morphism is given by $\left.e v\right|_{t=0}$, and the invertion superdiffeomorphism $\alpha: \mathbb{R}^{1 \mid 1} \rightarrow \mathbb{R}^{1 \mid \sqrt{3}}$ is given by,

$$
\left(\alpha_{\mathrm{j}}^{*} t, \alpha_{\mathrm{j}}^{*} \tau\right)= \begin{cases}(-t,-\tau) ; & j=1,2 \tag{2.4.3}\\ \left(-t,-e^{-t} \tau\right) ; & j=3\end{cases}
$$

Remark. It is shown in $\$ 5$ below that the homogeneous generators for the corresponding Lie superalgebtas of left invariant supervector fields are given by,

$$
D_{0}=\left\{\begin{array}{ll}
\partial_{t} & j=1,2, \tag{2.4.4}\\
\partial_{t}+\tau \partial_{\tau} & j=3,
\end{array} \quad, \text { and }, \quad D_{1}= \begin{cases}\partial_{\tau} & \mathrm{j}=1,3 \\
\partial_{\tau}+\tau \partial_{t} & \mathrm{j}=2\end{cases}\right.
$$

In what follows, it will be assumed that $D=\partial_{t}+\partial_{\tau}+\tau D_{\mathrm{j}}{ }^{\prime}$, with,

$$
\begin{equation*}
D_{\mathrm{j}}^{\prime}=\delta_{\mathrm{j} 2} \partial_{t}+\delta_{\mathrm{j} 3} \partial_{\tau} ; \quad \mathrm{j}=1,2,3 \tag{2.4.5}
\end{equation*}
$$

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS TO SUPER-ODE'S

By Batchelor's theorem, any supermanifold (M, \mathcal{A}_{M}) is isomorphic (although not canonically) to a supermanifold of the form ($M, \Gamma(\bigwedge E)$), where $\pi: E \rightarrow M$ is a smooth vector bundle. The proof of existence and uniqueness of solutions to super-ODE's in a supermanifold $\left(M, \mathcal{A}_{M}\right)$ can be reduced to the same problem in a graded manifold of the Batchelor hind. This is a consequence of the following,
3.1 Lemma. Let $\sigma:\left(M_{v} \mathcal{A}_{M}\right) \rightarrow\left(N, \mathcal{A}_{N}\right)$ be a supermanifold isomorphism. Let X be a supervector field on $\left(M, \mathcal{A}_{M}\right)$ and let \mathcal{V}_{X} be the maximal domain of definition of some solution, $\Gamma: \mathcal{V}_{X} \rightarrow\left(M, \mathcal{A}_{M}\right)$, to the ODE defined by X

$$
\begin{equation*}
\left.\epsilon v\right|_{t=\sum_{t_{g}}^{\prime}} \circ \tilde{D} \circ \Gamma^{*}=\left.e v\right|_{t=t_{0}} \circ \Gamma^{*} \circ X \tag{3.1.1}
\end{equation*}
$$

Let $\sigma_{*} X=\left(\sigma^{-1}\right)^{*} \circ X \circ \sigma^{*}$ be the supervector field on $\left(N, \mathcal{A}_{N}\right)$ induced by σ and X, and let p_{1}, and Ψ_{2} be the projections of the product $\mathbb{R}^{1 \mid 1} \times \mathcal{M}$ onto their corresponding factors. Then, $\sigma \circ \Gamma \circ\left(p_{1} \times \sigma^{-1} \circ p_{2}\right)$ is a solution to the ODE defined by $\sigma_{*} X$, and its domain of definition, $\sigma\left(\mathcal{V}_{X}\right)$, is maximal. Furthermore, if Γ is a unique solution satisfying (2.26), then $\sigma \circ \Gamma \circ\left(p_{1} \times \sigma^{-1} \circ p_{2}\right)$ is also a unique solution satisfying a similar condition for superfunctions in \mathcal{A}_{N}.
Proof. We shall write $\tilde{D}^{M,}$, and \tilde{D}^{N}, for the lifts of D to $\mathbb{R}^{1 \mid 1} \times\left(M, \mathcal{A}_{M}\right)$, and $\mathbb{R}^{111} \times\left(N, \mathcal{A}_{N}\right)$, respectively. The fact that $\sigma \circ \Gamma \circ\left(p_{1} \times \sigma^{-1} \circ p_{2}\right)$ is a solution to
the equation defined by $\sigma_{*} X$, is a consequence of the following equalities:

$$
\begin{aligned}
&\left.e v\right|_{t=t_{0}} \circ \widetilde{D}^{N} \circ\left(p_{1} \times \sigma^{-1} \circ p_{2}\right)^{*} \circ \Gamma^{*} \circ \sigma^{*} \\
&=\left.e v\right|_{t=t_{0}} \circ\left(p_{1} \times \sigma^{-1} \circ p_{2}\right)^{*} \circ \widetilde{D}^{M} \circ \Gamma^{*} \circ \sigma^{*} \\
&=\left.\left(\sigma^{-1}\right)^{*} \circ e v\right|_{t=t_{0}} \circ \widetilde{D}^{M} \circ \Gamma^{*} \circ \sigma^{*} \\
&=\left.\left(\sigma^{-1}\right)^{*} \circ e v\right|_{t=t_{0}} \circ \Gamma^{*} \circ X \circ \sigma^{*} \\
&=\left.e v\right|_{t=t_{0}} \circ\left(p_{1} \times \sigma^{-1} \circ p_{2}\right)^{*} \circ \Gamma^{*} \circ \sigma^{*} \circ\left(\sigma^{-1}\right)^{*} \circ X \circ \sigma^{*} \\
&=\left.e v\right|_{t=t_{0}} \circ\left(p_{1} \times \sigma^{-1} \circ p_{2}\right)^{*} \circ \Gamma^{*} \circ \sigma^{*} \circ\left(\sigma_{*} X\right)
\end{aligned}
$$

where the following facts have been used:

$$
\begin{aligned}
& \tilde{D}^{N} \circ\left(p_{1} \times \sigma^{-1} \circ p_{2}\right)^{*}=\left(p_{1} \times \sigma^{-1} \circ p_{2}\right)^{*} \circ \widetilde{D}^{M}, \\
& \left.e v\right|_{t=t_{0}} \circ\left(p_{1} \times \sigma^{-1} \circ p_{2}\right)^{*}=\left.\left(\sigma^{-1}\right)^{*} \circ e v\right|_{t=t_{0}}
\end{aligned}
$$

The maximality of the domain can be easily deduced arguing by contradiction, and using the facts that σ is an isomorphism, and that \mathcal{V}_{X} was assumed to be maximal. The uniqueness part of the statement is proved similarly
Remark. This lemma implies that if we know how to integrate ODE's in Batchelor supermanifolds, then me also know how to integrate them in any supermanifold. Moreover, the non-canonicity of the Batchelor isomorphism is not a problem: Let us suppose that $\sigma_{i}:\left(M, A_{M}\right) \rightarrow\left(M, \Gamma\left(\bigwedge E_{i}\right)\right), i=1,2$, are two isomorphisms and that X is a supervector field on $\left(M, \mathcal{A}_{M}\right)$. Then, the supervector fields $\left(\sigma_{1}\right)_{*} X$ and $\left(\sigma_{2}\right)_{*} X$ are related by the isomorphism $\sigma_{2} \circ\left(\sigma_{1}\right)^{-1}$; hence, by the lemma, their integrals are also related, and once the uniqueness question is settled (cf. 3.2, and 3.5 below), they will define the same solution in (M, \mathcal{A}_{M}).

From now on we shall assume that $\left(M, \mathcal{A}_{M}\right)=(M, \Gamma(\bigwedge E))$, where $\pi: E \rightarrow M$ is a smooth vector bundle. For the sake of simplicity, we shall occasionally write \mathcal{M} for the pair $\left(M, \mathcal{A}_{M}\right)$. Let $X \in \operatorname{Der} \mathcal{A}_{M}(M)$ be a.supervector field, and assume Γ is a morphism, $\mathcal{V}_{\mathbf{X}} \rightarrow \mathcal{M}$, satisfying (2.2.4), and (2.2.5). As we pointed it out in the introduction, the fact that Γ^{*}, and $\left.e v\right|_{t=t_{0}}$ are morphisms of superalgebras, makes it possible to split the differential equation (2.2.4) into two equations:

$$
\begin{align*}
& \left.e v\right|_{t=t_{0}} \circ \widetilde{D_{0}} \circ \Gamma^{*}=\left.e v\right|_{t=t_{0}} \circ \Gamma^{*} \circ X_{0}, \quad \text { and, } \tag{3.1.1}\\
& \left.e v\right|_{t=t_{0}} \circ \widetilde{D_{1}} \circ \Gamma^{*}=\left.e v\right|_{t=t_{0}} \circ \Gamma^{*} \circ X_{1}, \quad \therefore-
\end{align*}
$$

where, $X=X_{0}+X_{1}$, and $D=D_{0}+D_{1}$, are the corresponding \mathbb{Z}_{2}-decompositions of X, and D. We shall assume that D_{0}, and D_{1} are the generators of the leftinvariant supervecto fields on $\mathbb{R}^{1 / 1}$ for one of the Lie supergroup structures listed in Proposition 2.4.1 Due to the first observation made in 2.4, the integral flow Γ only depends on the congruence class of D_{0}, and D_{1}, modulo τ; whence, only on ∂_{t}, and ∂_{τ}, respectively.

Now, for the proof of the existence and uniqueness theorem we shall follow the methods of [7]. Let \bar{X} be the supervector field on V_{X} defined by the conditions,
$\bar{X} \circ p_{1}{ }^{*}=0$ and $\bar{X} \circ p_{2}{ }^{*}=p_{2}{ }^{*} \circ X$. Since $p_{2}{ }^{*}$ is monic, it is easy to see that the map $X \mapsto \bar{X}$ is monic. We shall make use of the Type 1 structure in our first few results, but only to apply the main result of [7] (Proposition 3.2), and to find explicitly the integral flow in terms of an auxiliary Type $1-\mathbb{R}^{1 / 1}$-action, Φ (see Theorem 3.5 below). Once this is done, the question of whether or not the integral flow defines a Lie supergroup action can be stated as in Theorem 3.6 below, without having to compromise with any specific choice.
3.2 Proposition. Let X_{0} be an even supervector field on $\left(M, \mathcal{A}_{M}\right)=(M, \Gamma(\bigwedge E))$, and let the notation be as in 2.3 above. There exists a unique solution $\Phi: \mathcal{V}_{X_{0}} \rightarrow \mathcal{M}$, to the equation,

$$
\widetilde{\partial_{t}+\partial_{\tau}} \circ \Phi^{*}=\Phi^{*} \circ X_{0}
$$

satisfying the initial condition, $\left.e v\right|_{t=0} \circ \Phi^{*}=i d$. Furthermore, the solution Φ satisfies the following properties:
(1) $\Phi^{*} \circ X_{0}=\bar{X}_{0} \circ \Phi^{*}$.
(2) Φ defines a Type $1-\mathbb{R}^{1 \mid 1}$-action.

Proof. This is simply Theorem 3 of [7]. The only subtle point is this: According to [7], Φ defines a (local) \mathbb{R}-action. The statement that it defines in fact a Type $1-\mathbb{R}^{1 / 1}$-action follows easily because $\widetilde{\partial_{\tau}} \circ \Phi^{*}=0$
Remark. The proof of this result in [7] was carried out with the help of a linear connection defired on the bundle E. The connection was only used to have manageable expressions of supervector fields as derivations. Its role is unessential; in fact, the solution found turns out to be independent of the linear connection, as expected (e.g., one may argue by uniqueness). On the other hand, it is interesting to note that an essential use of the underlying C^{∞} flow of \tilde{X} is made in [7] in order to determine the maximal domain of the solution. Now, if one proceeds naively integrating the local expressions (2.3.8) one can easily get convinced that, up to first order in the odd variables, there will be a unique solution Γ of (3.1.1), such that $\tilde{\Gamma}=\gamma_{(0)}$ is the smooth flow on the coordinate neighborhood U generated by $\tilde{X}=\sum A^{i} \partial_{x^{i}}$, and $g_{(1)}$ is the parallel transport on E with respect to a connection ∇ uniquely determined by the order-one coefficients of the odd part of the field X. In fact, one may think of $t \mapsto g_{(1)}(t)$ as a curve on End E, which in view of the initial condition (2.2.6) goes through the identity at $t=0$. But then, the differential equation for $g_{(1)}$ in (2.3.8) is simply the equation that defines parallel transport on E along $\gamma_{(0)}$, with respect to the connection form whose matrix is $\left(B_{\nu}^{\mu}\right)$.

We shall now turn to the integration of odd supervector fields.
3.3 Lemma. Let X_{1} be be an odd supervector field in $\left(M, \mathcal{A}_{M}\right)$. Let $X_{0} \in$ $\operatorname{Der} \mathcal{A}_{M}(M)$ be even, and let $\Phi: \mathcal{V} \rightarrow \mathcal{M}=\left(M, \mathcal{A}_{M}\right)$ be its unique integral flow as in Proposition $3.2\left(\mathcal{A} \subset \mathbb{R}^{1 \mid 1} \times \mathcal{M}\right)$. Let p_{1}, and p_{2} be the projections of the product $\mathbb{R}^{1 \mid 1} \times M$ onto their corresponding factors, and let $\alpha: \mathbb{R}^{1 \mid 1} \rightarrow \mathbb{R}^{1 \mid 1}$ be the inversion superdiffeomorphism on the Type 1 Lie supergroup structure of $\mathbb{R}^{1 / 1}$ (cf. (2.4.5) above). Define,

$$
\Phi_{\alpha}=\left(p_{1} \times \Phi\right) \circ\left(\alpha \circ p_{1} \times p_{2}\right): \mathcal{V} \rightarrow \mathcal{V}
$$

Then,
(1) Φ_{α} is a superdiffeomorphism whose inverse is $\Phi_{\alpha}{ }^{-1}=p_{1} \times \Phi$.
(2) $\tilde{\partial}_{t} \circ \Phi_{\alpha}^{-1^{*}} \circ \bar{X}_{1} \circ \Phi_{\alpha}{ }^{*}=\Phi_{\alpha}{ }^{-1^{*}} \circ\left[\overline{X_{0}, X_{1}}\right] \circ \Phi_{\alpha}{ }^{*}$.
(3) The integral flow of $\Phi_{\alpha}{ }^{-1^{*}} \circ \bar{X}_{1} \circ \Phi_{\alpha}{ }^{*}$ is $\rho: \mathcal{W} \rightarrow \mathcal{V}$, with

$$
\rho^{*}=\pi_{2}^{*}+\left(\pi_{1}^{*} \tau\right)\left(\pi_{2}^{*} \circ \Phi_{\alpha}^{-1^{*}} \circ \bar{X}_{1} \circ \Phi_{\alpha}^{*}\right)
$$

$\mathcal{W} \subset \mathbb{R}^{1 \mid 1} \times \mathcal{V}$, and π_{1}, and π_{2} the projections of $\mathbb{R}^{1 \mid 1} \times \mathcal{V}$ into their corresponding factors.

Proof. The first assertion follows from the fact that Φ is an action: Indeed (cf. [1]),

$$
\begin{aligned}
\left(p_{1} \times \Phi \circ\left(\alpha \circ p_{1} \times p_{2}\right)\right) \circ\left(p_{1} \times \Phi\right) & =p_{1} \times \Phi \circ\left(\alpha \circ p_{1} \times \Phi\right) \\
& =p_{1} \times \Phi \circ\left(C_{0} \times p_{2}\right)=p_{1} \times p_{2}
\end{aligned}
$$

The second assertion requires a little work to establish the following facts:
(a) $\tilde{\partial}_{t} \circ\left(p_{1} \times \Phi\right)^{*}=\left(p_{1} \times \Phi\right)^{*}\left(\tilde{\partial}_{t}+\bar{X}_{0}\right)$, i.e., $\left(p_{1} \times \Phi\right)$ is the integral flow of $\tilde{\partial}_{t}+\bar{X}_{0}$, with no need of the ev-morphism (cf. Proposition 3.2 above).
(b) $\tilde{\partial}_{t} \circ \bar{X}_{1}=\bar{X}_{1} \circ \tilde{\partial}_{t}$.
(c) $\left(\alpha \circ p_{1} \times p_{2}\right)^{*} \circ \bar{X}_{0}=\bar{X}_{0} \circ\left(\alpha \circ p_{1} \times p_{2}\right)^{*}$
(d) $\left(\alpha \circ p_{1} \times p_{2}\right)^{*} \circ \tilde{\partial}_{t}=-\tilde{\partial}_{t} \circ\left(\alpha \circ p_{1} \times p_{2}\right)^{*}$.

Now, these may be proved by showing that both sides of the stated equalities yield the same answer when applied to an arbitrary element of the form $p_{1}{ }^{*} f p_{2}{ }^{*} g$, with f a superfunction in $\mathbb{R}^{1 \mid 1}$, and g a superfunction in $\left(M, \mathcal{A}_{M}\right)$. Thus, for (a), we have,

$$
\begin{aligned}
\tilde{\partial}_{t} \circ\left(p_{1} \times \Phi\right)^{*}\left(p_{1}{ }^{*} f p_{2}{ }^{*} g\right) & =\widetilde{\partial_{t}}\left(p_{1}{ }^{*} f \Phi^{*} g\right) \\
& =\left(p_{1}{ }^{*}\left(\partial_{t} f\right)\right)\left(\Phi^{*} g\right)+\left(p_{1}{ }^{*} f\right)\left(\tilde{\partial}_{t} \circ \Phi^{*} g\right) \\
& =\left(p_{1}{ }^{*}\left(\partial_{t} f\right)\right)\left(\Phi^{*} g\right)+\left(p_{1}{ }^{*} f\right)\left(\Phi^{*} \circ X_{0} g\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left(p_{1} \times \Phi\right)^{*} \circ\left(\tilde{\partial}_{t}+\bar{X}_{0}\right)\left(p_{1}{ }^{*} f p_{2}{ }^{*} g\right)= & \left(p_{1} \times \Phi\right)^{*}\left(p_{1}{ }^{*}\left(\partial_{t} f\right)\right) p_{2}{ }^{*} g \\
& +\left(p_{1} \times \Phi\right)^{*} p_{1}{ }^{*} f\left(p_{2}{ }^{*} X_{0} g\right) \\
\therefore & =\left(p_{1}^{*}\left(\partial_{t} f\right)\right)\left(\Phi^{*} g\right)+\left(p_{1}^{*} f\right)\left(\Phi^{*} \circ X_{0} g\right)
\end{aligned}
$$

Similarly, for (b):

$$
\tilde{\partial}_{t} \circ X_{1}\left(p_{1}^{*} f p_{2}^{*} g\right)=\left(p_{1}^{*} \partial_{i}\left(f_{0}-f_{1} \tau\right)\right) p_{2}^{*} X_{1} g=X_{1} \circ \tilde{\partial}_{t}\left(p_{1}^{*} f p_{2}^{*} g\right)
$$

where we have written $f=f_{0}+f_{1} \tau$, with f_{0}, anf f_{1} smooth functions on \mathbb{R}. The proof of (c) is equally easy, and the proof of (d) comes down to show that,
$\partial_{t} a^{*} j=-\alpha^{*} \partial_{t} f$, for any superfunction in $\mathbb{R}^{1 \mid 1}$. But this follows from the fact that $\alpha^{*} t=-i$, and $\alpha^{*} \tau=-v$. Indeed,

$$
\begin{aligned}
\partial_{t} \alpha^{*} f & =\partial_{t}\left(f_{0} \circ \tilde{\alpha}-f_{1} \circ \tilde{\alpha} \tau\right) \\
& =-f_{0}^{\prime} \circ \tilde{\alpha}+f_{1}^{\prime} \circ \tilde{\alpha} \tau=-\alpha^{*}\left(f_{0}^{\prime}+f_{1}^{\prime} \tau\right)
\end{aligned}
$$

With (a) (d) settled, the second statement is a straightforward computation:

$$
\begin{aligned}
& \tilde{\partial}_{i} \circ \Phi_{a}{ }^{-1 *} \circ \bar{X}_{1} \circ \Phi_{a}{ }^{*}=\tilde{\partial}_{t} \circ\left(p_{1} \times \Phi\right)^{*} \circ \bar{X}_{1} \circ \Phi_{\alpha}{ }^{*} \\
& =\left(p_{1} \times \Phi\right)^{*} \circ \tilde{\hat{y}}_{0} \circ \bar{X}_{1} \circ \Phi_{\alpha}{ }^{*}+\left(p_{1} \times \Phi\right)^{*} \circ \bar{X}_{0} \circ \bar{X}_{1} \circ \Phi{ }_{\alpha}{ }^{*} \\
& =\Phi_{\alpha}{ }^{-1^{*}} \circ \dot{\bar{X}}_{0} \odot \bar{X}_{1} \circ \Phi_{\alpha}{ }^{*}+\Phi_{\alpha}{ }^{-1^{*}} \circ \bar{X}_{1} \circ \tilde{\partial}_{t} \circ\left(\alpha \circ p_{1} \times p_{2}\right)^{*} \circ \Phi^{*} \\
& =\Phi_{\alpha}{ }^{-1^{*}} \circ \bar{X}_{0} \circ \bar{X}_{1} \circ \Phi_{\alpha}{ }^{*}-\Phi_{\alpha}{ }^{-1^{*}} \circ \bar{X}_{1} \circ\left(\alpha \circ p_{1} \times p_{2}\right)^{*} \circ \tilde{\partial}_{i} \circ \Phi^{*} \\
& =\Phi_{\alpha}{ }^{-1 *} \circ \bar{X}_{0} \circ \bar{X}_{1} \circ \Phi_{\alpha}{ }^{*}-\Phi_{\alpha^{-1}}{ }^{*} \circ \bar{X}_{1} \circ\left(\alpha \circ p_{1} \times p_{2}\right)^{*} \circ \Phi^{*} \circ X_{0} \\
& =\Phi_{\alpha}{ }^{-1^{*}} \circ \bar{X}_{0} \circ \bar{X}_{1} \circ \Phi_{\alpha}{ }^{*}-\Phi_{\alpha}{ }^{-1^{*}} \circ \bar{X}_{1} \circ\left(\alpha \circ p_{1} \times p_{2}\right)^{*} \circ \bar{X}_{0} \circ \Phi^{*} \\
& =\Phi_{\alpha}{ }^{-1^{*}} \circ\left(\bar{X}_{0} \circ \bar{X}_{1}-\bar{X}_{1} \circ \bar{X}_{0}\right) \circ \Phi_{\alpha}{ }^{*} \text {. }
\end{aligned}
$$

Finaly, the third assertion is just a straightforward check: On the one hand,

$$
\left(\widetilde{\partial_{1} \pm \partial_{T}}\right) \circ \rho^{*}=\pi_{2}^{*} \Phi_{\alpha}^{-1^{*}} \bar{X}_{1} \Phi_{\alpha}^{*}+\left(\pi_{1}^{*} \tau\right)\left(\pi_{2}^{*} \Phi_{\alpha}^{-1^{*}}\left[\overline{X_{0}, X_{1}}\right] \Phi_{\alpha}^{*}\right)
$$

On the other haad,

$$
\rho^{*} G \Phi_{\alpha}{ }^{-1^{*}} \bar{X}_{1} \Phi_{\alpha}{ }^{*}=\pi_{2}{ }^{*} \Phi_{\alpha}{ }^{-1^{*}} \bar{X}_{1} \Phi_{\alpha}{ }^{*}+\frac{1}{2}\left(\pi_{1}{ }^{*} r\right)\left(\Phi_{\alpha}{ }^{-1^{*}}\left[\overline{X_{1}, X_{1}}\right] \Phi_{\alpha}{ }^{*}\right)
$$

and it is clear from both equations that the right hand sides are congruent (mod $\mathrm{x}_{1}{ }^{*} \tau$)
3.4 Corollary. Let the hypotheses be as in the previous lemma. The necessary and sufficient conditions for having

$$
\left.\widetilde{\left(\partial_{t}+\partial_{\tau}\right.}\right) \circ \rho^{*}=\rho^{*} \circ\left(\Phi_{\alpha}^{-1^{*}} \bar{X}_{1} \Phi_{\alpha}^{*}\right)
$$

withont the ev-morphism acting from the left are,

$$
\left[X_{0}, X_{1}\right]=0, \quad \text { and }, \quad\left[X_{1}, X_{1}\right]=0
$$

Proof. The right hand sides of the two equations in the proof of the previous lemma are equal, if and only if,

$$
\Phi_{a}{ }^{-1^{*}} \circ\left[\overline{X_{0}, X_{1}}\right] \circ \Phi_{\alpha}^{*}=\frac{1}{2} \Phi_{\alpha}^{-1^{*}} \circ\left[\overline{X_{1}, X_{1}}\right] \circ \Phi_{\alpha}{ }^{*}
$$

Since both sides of this equation are homogeneous elements of different parity, since α_{α}^{*}, and $\Phi_{\alpha}^{-1^{*}}$ are isomorphisms, and since $X \mapsto \bar{X}$ is monic, the assertion followis
3.5 Theorem. Let X be a supervector field on $\left(M, \mathcal{A}_{M}\right)$, and let X_{0}, and X_{1} be its homogenous components. Let $\Phi: \mathcal{V} \rightarrow \mathcal{M}=\left(M, \mathcal{A}_{M}\right)$ be the unique integral flow of X_{0} as in Proposition $3.2\left(\mathcal{V} \subset \mathbb{R}^{1 \mid 1} \times \mathcal{M}\right)$. Let Φ_{α} be as in Lemma 3.3, and let $p: \mathcal{W} \rightarrow \mathcal{V}\left(\mathcal{W} \subset \mathbb{R}^{11^{3}} \times \mathcal{V}\right)$ be the unique integral flow of $\Phi_{\alpha}^{-1^{*}} \circ \bar{X}_{1} \circ \Phi_{\alpha}^{*}$. Then, there is a unique integral flow, Γ, of X satisfying the initial condition $\left.e v\right|_{t=0}$ $\circ \Gamma^{*}=i d$. In fact,

$$
\Gamma^{*}=\eta^{*} \circ \rho^{*} \circ \Phi^{*}
$$

where $\eta: \mathcal{V} \rightarrow \mathcal{W}$ is the unique morphism defined by the conditions,

$$
\eta^{*} \pi_{1}^{*} f=p_{1}^{*} f, \quad \text { and } \quad \eta^{*} \pi_{2}^{*} g=g
$$

for all superfunctions, f in $\mathbb{R}^{1 \mid 1}$, and g in \mathcal{V}.
Proof. Note that,

$$
\Phi \circ \Phi_{\alpha}=\Phi \circ\left(p_{1} \times \Phi \circ\left(\alpha \circ p_{1} \times p_{2}\right)\right)=\Phi \circ\left(C_{0} \times p_{2}\right)=p_{2}
$$

because Φ is an $\mathbb{R}^{1 \mid 1}$-action. Therefore, $\Phi_{\alpha}{ }^{*} \Phi^{*}=p_{2}{ }^{*}$, and hence,

$$
\begin{aligned}
\eta^{*} \rho^{*} \Phi^{*} & =\eta^{*}\left(\pi_{2}{ }^{*} \Phi^{*}+\left(\pi_{1}{ }^{*} \tau\right)\left(\pi_{2}{ }^{*} \Phi_{\alpha}{ }^{-1^{*}} \bar{X}_{1} p_{2}{ }^{*}\right)\right) \\
& =\eta^{*}\left(\pi_{2}{ }^{*} \Phi^{*}+\left(\pi_{1}{ }^{*} \tau\right)\left(\pi_{2}{ }^{*} \Phi_{\alpha}{ }^{-1^{*}} p_{2}{ }^{*} X_{1}\right)\right) \\
& =\eta^{*}\left(\pi_{2}{ }^{*} \Phi^{*}+\left(\pi_{1}{ }^{*} \tau\right)\left(\pi_{2}{ }^{*} \Phi^{*} X_{1}\right)\right) \\
& =\Phi^{*}+\left(p_{1}{ }^{*} \tau\right) \Phi^{*} X_{1}
\end{aligned}
$$

where use has been made of $\Phi_{\alpha}{ }^{-1^{*}} p_{2}{ }^{*}=\left(p_{2} \circ \Phi_{\alpha}{ }^{-1}\right)^{*}=\Phi^{*}(c f$. Lemma 3.3-(1)). Now, on the one hand we have,

$$
\left(\widehat{\partial_{t}+\partial_{\tau}}\right) \circ \Gamma^{*}=\Phi^{*} \circ\left(X_{0}+X_{1}\right)+\left(p_{1}^{*} \tau\right)\left(\Phi^{*} \circ X_{0} \circ X_{1}\right)
$$

Whereas,

$$
\Gamma^{*} \circ\left(X_{0}+X_{1}\right)=\Phi^{*} \circ\left(X_{0}+X_{1}\right)+\left(p_{1}^{*} \tau\right)\left(\Phi^{*} \circ X_{1} \circ\left(X_{0}+X_{1}\right)\right)
$$

It is now clear that the right hand sides of both equations are congruent (mod $\mathrm{p}_{1}{ }^{*} \tau$)
3.6 Theorem. Let X be a supervector field on $\left(M, \mathcal{A}_{M}\right)$, and let X_{0}, and X_{1} be its homogenous components. Let $\mathrm{j}=1,2$, and, 3 , label the different Lie supergroup structures of $\mathbb{R}^{1 \mid 1}$ as in Prop. 2.4.1. Then; the following assertions are equivalent:
(1) X_{0}, and X_{1} generate the following (1,1 -dimensional Lie superalgebra:

$$
\left[X_{0}, X_{1}\right]=\delta_{j 3} X_{1,}, \quad \text { and }, \quad\left[X_{1}, X_{1}\right]=\delta_{j 2} X_{0} . \quad(j=1,2,3)
$$

(2) The integral flow 1 of X satisfies the equation
without the ev-morphism (D_{j}^{\prime} as in (2.4.5)).
(3) The integral flow Γ of X defines a Type $j-\mathbb{R}^{1 \mid 1}$-action on $\left(M, \mathcal{A}_{M}\right)$.

Proof. The mext to the last equation in the proof of Theorem 3.5 above implies that,

$$
\widetilde{\tau \sigma^{2}}=\left(p_{1}^{*} \tau\right)\left(\Phi^{*} \circ X_{0}\right), \quad \text { and }, \quad \widetilde{\tau \partial_{\tau}}=\left(p_{1}^{*} \tau\right)\left(\Phi^{*} \circ X_{1}\right)
$$

It then follows that, $\left(\partial_{\mathrm{t}}+\widetilde{\partial_{\tau}+D_{j}}{ }^{\prime}\right) \circ \Gamma^{*}$ is actually equal to (and not just congruent $\left(\bmod p_{1}{ }^{*} \tau\right)$ to $) \Gamma^{*} \circ\left(X_{0}+X_{1}\right)$, if and only if,

$$
\begin{aligned}
& \Phi^{*} \circ X_{0} \circ X_{1}=\Phi^{*} \circ X_{1} \circ X_{0}-\delta_{j, 3} \Phi^{*} \circ X_{1}, \quad \text { and, } \\
& \Phi^{*} \circ X_{1} \circ X_{1}=\delta_{j, 2} \Phi^{*} \circ X_{0},
\end{aligned}
$$

and the equivalence between (1), and (2) follows.
To prove the equivalence between (1) and (3) we shall need the specific Lie supergroup structares of $\mathbb{R}^{1 / 1}$ (cf. Prop. 2.4 .1 above). Let $\left\{t_{1}, t_{2}, \tau_{1}, \tau_{2}\right\}$ be the graded coordinates $\mathbb{C l}^{1 / 11} \times \mathbb{R}^{1 / 11}$ and $\{t, \tau\}$ those of $\mathbb{R}^{1 / 1}$. The map μ_{j} can be conveniently expressed in ternns of μ_{1} as follows:

$$
\mu_{\mathrm{j}}^{*} f=\mu_{1}^{*} f+\delta_{\mathrm{j} 2} \tau_{1} \tau_{2} \mu_{1}^{*} \circ\left(\partial_{t}\right) f+\delta_{\mathrm{j} 3} \tau_{1}\left(\mathrm{e}^{t_{2}}-1\right) \mu_{1}^{*} \circ\left(\partial_{\tau}\right) f_{1}
$$

for all $f \in \mathcal{A}_{\mathbf{z}} 1(\mathbb{R})$.
Now, let the notation be as in Theorem 3.5 above. The integral flow Γ of X defines a Type $\mathrm{j} \mathbb{R}^{\mathrm{II} 1}$-artion on $\mathcal{M}=\left(M, \mathcal{A}_{M}\right)$ iff the following diagram commutes:

We shall them need the following formula:

$$
\begin{aligned}
&\left(\mu_{\mathrm{j}} \circ\left(\pi_{1} \times p_{1} \circ \pi_{2}\right) \times p_{2} \circ \pi_{2}\right)^{*}=\left(\mu_{1} \circ\left(\pi_{1} \times p_{1} \circ \pi_{2}\right) \times p_{2} \circ \pi_{2}\right)^{*} \\
&+\delta_{\mathrm{j}, 2} \tau_{1} \tau_{2}\left(\mu_{1} \circ\left(\pi_{1} \times p_{1} \circ \pi_{2}\right) \times p_{2} \circ \pi_{2}\right)^{*} \circ \widetilde{\partial}_{t} \\
&+\delta_{\mathrm{j} 3}\left(\mathrm{e}^{t_{2}}-1\right) \tau_{1}\left(\mu_{1} \circ\left(\pi_{1} \times p_{1} \circ \pi_{2}\right) \times p_{2} \circ \pi_{2}\right)^{*} \circ \overline{\partial_{\tau}}
\end{aligned}
$$

where we have wriaten $\pi_{1}{ }^{*} \tau=\tau_{1}, \pi_{2}{ }^{*} p_{1}{ }^{*} t \rightleftharpoons t_{2}$, and, $\pi_{2}{ }^{*} p_{1}{ }^{*} \tau=\tau_{2}$. This may be proved in a simaightfrward manner by the methods of Lemma 3.3.

Since Φ is a Type 1 action, the diagram above commutes when Φ is placed instead
of Γ, and $\mu_{\mathrm{I}}=\mu_{1}$. Therefore, on the one hand we obtain;

$$
\begin{align*}
&\left(\mu_{\mathrm{j}} \circ\left(\pi_{1} \times p_{1} \circ \pi_{2}\right) \times p_{2} \circ \pi_{2}\right)^{*} \Gamma^{*}= \\
&=\left(\mu_{\mathrm{j}} \circ\left(\pi_{1} \times p_{1} \circ \pi_{2}\right) \times p_{2} \circ \pi_{2}\right)^{*}\left(\Phi^{*}+\left(p_{1}{ }^{*} \tau\right)\left(\Phi^{*} X_{1}\right)\right) \\
&=\left(\Phi \circ\left(\mu_{1} \circ\left(\pi_{1} \times p_{1} \circ \pi_{2}\right) \times p_{2} \circ \pi_{2}\right)\right)^{*} \\
&+\left(\left(\pi_{1} \times p_{1} \circ \pi_{2}\right)^{*} \mu_{1}{ }^{*} \tau\right)\left(\Phi \circ\left(\mu_{1} \circ\left(\pi_{1} \times p_{1} \circ \pi_{2}\right) \times p_{2} \circ \pi_{2}\right)\right)^{*} \circ X_{1} \tag{b}\\
& \quad+\delta_{j 2} \tau_{1} \tau_{2}\left(\mu_{1} \circ\left(\pi_{1} \times p_{1} \circ \pi_{2}\right) \times p_{2} \circ \pi_{2}\right)^{*} \tilde{\partial}_{1} \Phi^{*} \\
& \quad+\delta_{j 3} \tau_{1}\left(e^{t_{2}}-1\right)\left(\mu_{1} \circ\left(\pi_{1} \times p_{1} \circ \pi_{2}\right) \times p_{2} \circ \pi_{2}\right)^{*} \Phi^{*} X_{1} \\
&=\left(\Phi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right)^{*}+\left(\tau_{1}+\tau_{2}\right)\left(\Phi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right)^{*} \circ X_{1} \\
& \div \delta_{j 3} \tau_{1}\left(e^{t_{2}}-1\right)\left(\Phi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right)^{*} \circ X_{1} \\
&+\delta_{j 2} \tau_{1} \tau_{2}\left(\Phi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right)^{*} \circ X_{0}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\left(\pi_{1} \times \Gamma \circ \pi_{2}\right)^{*} \Gamma^{*} & =\left(\pi_{1} \times \Gamma \circ \pi_{2}\right)^{*}\left(\Phi^{*}+\left(p_{1}^{*} \tau\right)\left(\Phi^{*} X_{1}\right)\right) \\
& =\left(\Phi \circ\left(\pi_{1} \times \Gamma \circ \pi_{2}\right)\right)^{*}+\tau_{1}\left(\Phi \circ\left(\pi_{1} \times \Gamma \circ \pi_{2}\right)\right)^{*} \circ X_{1} \tag{c}
\end{align*}
$$

Thus, exerything comes down to compare $\Phi \circ\left(\pi_{1} \times \Gamma \circ \pi_{2}\right)$, with $\Phi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)$. Now we claim that,

$$
\begin{equation*}
\left(\Phi \circ\left(\pi_{1} \times \Gamma \circ \pi_{2}\right)\right)^{*}=\left(\Phi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right)^{*}+\tau_{2}\left(\pi_{1} \times \Phi_{\alpha}^{-1} \circ \pi_{2}\right)^{*} \bar{X}_{1} \Phi^{*} \tag{d}
\end{equation*}
$$

To prove this we may again assume that $\Phi^{*} f=\sum_{i} p_{1}{ }^{*} f_{i} p_{2}{ }^{*} g_{i}$. (By completeness of the product sheaf on \mathcal{V}, if the result is true for this particular form of $\Phi^{*} f$, the result will be true in general). Now,

$$
\begin{aligned}
& \left(\Phi \circ\left(\pi_{1} \times \Gamma \circ \pi_{2}\right)\right)^{*} f=\sum_{i}\left(\pi_{1} \times \Gamma \circ \pi_{2}\right)^{*}\left(p_{1}{ }^{*} f_{i} \dot{p}_{2}{ }^{*} g_{i}\right) \\
& \quad=\sum_{i} \pi_{1}{ }^{*} f_{i}\left(\left(\Phi \circ \pi_{2}\right)^{*} g_{i}+\tau_{2}\left(\Phi \circ \pi_{2}\right)^{*} X_{1} g_{i}\right) \\
& \\
& \quad=\left(\pi_{i} \times \Phi \circ \pi_{2}\right)^{*}\left(\sum_{i} p_{1}{ }^{*} f_{i} p_{2}^{*} g_{i}\right)+\tau_{2}\left(\sum_{i} \pi_{1}{ }^{*} \bar{f}_{i}\left(\Phi \circ \pi_{2}\right)^{*} X_{1} g_{i}\right),
\end{aligned}
$$

where we have put, $\bar{f}_{i}=\left(f_{i}\right)_{0}-\left(f_{i}\right)_{1}$, because we permuted places with the odd variable \boldsymbol{x}_{2} - Note that,

$$
\pi_{2}{ }^{*} \Phi^{*} X_{1} g_{i}=\pi_{2}{ }^{*} \Phi_{\alpha}{ }^{-1 *} \bar{X}_{1} p_{2}{ }^{*} g_{i},
$$

because,

$$
\begin{aligned}
\Phi_{\alpha}^{*} \Phi^{*} X_{1} g_{i} & =p_{2}{ }^{*} X_{1} g_{i}=\bar{X}_{1} p_{2}{ }^{*} g_{i} \\
& \Longrightarrow \Phi^{*} X_{1} g_{i}=\left(\Phi_{\alpha}{ }^{-1}\right)^{*} \bar{X}_{1} p_{2}{ }^{*} g_{i} \\
& \Longrightarrow \pi_{2}^{*} \Phi^{*} X_{1} g_{i}=\left(\Phi_{\alpha}{ }^{-1} \circ \pi_{2}\right)^{*} \bar{X}_{1} p_{2}{ }^{*} g_{i}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(\Phi \circ\left(\pi_{1} \times \Gamma \circ \pi_{2}\right)\right)^{*} f & =\left(\Phi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right)^{*} f \\
& +\tau_{2}\left(\left(\pi_{1} \times \Phi_{\alpha}^{-1} \circ \pi_{2}\right)^{*} \sum_{i}\left(p_{1}{ }^{*} \bar{f}_{i} \bar{X}_{1} p_{2}{ }^{*} g_{i}\right)\right) \\
& =\left(\Phi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right)^{*} f \\
& +\tau_{2}\left(\left(\pi_{1} \times \Phi_{\alpha}^{-1} \circ \pi_{2}\right)^{*} \sum_{i}\left(\bar{X}_{1} p_{1}^{*} f_{i} p_{2}^{*} g_{i}\right)\right)
\end{aligned}
$$

where we have used the fact that X_{1} is an odd derivation to revert from \bar{f}_{i} to f_{i}. Thus Eq. (d) above is true. In particular, the right hand side of Eq. (c) is,

$$
\begin{aligned}
\text { RHS of }(c) & =\left(\Phi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right)^{*}+\tau_{2}\left(\pi_{1} \times \Phi_{\alpha}^{-1} \circ \pi_{2}\right)^{*} \bar{X}_{1} \Phi^{*} \\
& \tau_{1}\left(\left(\Phi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right)^{*} X_{1}+\tau_{2}\left(\pi_{1} \times \Phi_{\alpha}^{-1} \circ \pi_{2}\right)^{*} \bar{X}_{1} \Phi^{*} X_{1}\right)
\end{aligned}
$$

If we now compare this expression with the right hand side of Eq. (b), we conclude that the diagram (a) commutes, if and only if,

$$
\left(\pi_{1} \times \Phi_{\alpha}^{-1} \circ \pi_{2}\right)^{*} \bar{X}_{1} \Phi^{*}=\left(1+\delta_{j 3}\left(\mathrm{e}^{t_{2}}-1\right)\right)\left(\Phi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right)^{*} X_{1},
$$

and,

$$
\left(\pi_{1} \times \Phi_{\alpha}^{-1} \circ \bar{\pi}_{2}\right)^{*} \bar{X}_{1} \Phi^{*} X_{1}=\delta_{j 2}\left(\Phi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right)^{*} \circ X_{0}
$$

Equivalently, if and only if,

$$
\bar{X}_{1} \circ \Phi^{*}=\left(1+\delta_{\mathrm{j}, 3}\left(\mathrm{e}^{-t_{2}}-1\right)\right) \Phi^{*} \circ X_{1}, \quad \text { and }
$$

$$
\begin{equation*}
\bar{X}_{1} \circ \Phi^{*} \circ X_{1}=\delta_{j 2} \Phi^{*} \circ X_{0} \tag{e}
\end{equation*}
$$

where we have used the fact that $\pi_{1} \times \Phi_{\alpha} \circ \pi_{2}$ is invertible, and its inverse is $\pi_{1} \times \Phi_{\alpha}^{-1} \circ \pi_{2}$, and the fact that

$$
\left(\Phi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right) \circ\left(\pi_{1} \times \Phi_{\alpha}^{-1} \circ \pi_{2}\right)=\Phi
$$

(both assertions are easy to check). Note the appearance of $\mathrm{e}^{-t_{2}}$ in the right hand side of the first equation. This follows from, $\left(\pi_{1} \times \Phi_{\alpha} \circ \pi_{2}\right)^{*} \mathrm{e}^{\left(p_{1} \circ \pi_{2}\right)^{*} t}=\mathrm{e}^{\left(\alpha \circ p_{1} 0 \pi_{2}\right)^{*} t}$, which is in turn a consequence of the definition of Φ_{α}. In particular, it follows from these equations that,

$$
\delta_{\mathrm{j} 2} \Phi^{*} \circ X_{0}=\left(1+\delta_{\mathrm{j}, 3}\left(\mathrm{e}^{-t_{2}}-1\right)\right) \Phi^{*} \circ X_{1} \circ X_{1}
$$

For $\mathrm{j}=1$, and 3 this equation says that $\Phi^{*} \circ X_{1} \circ X_{1}=0$, and since Φ^{*} is monic, $\left[X_{1}, X_{1}\right]=2 X_{1} \circ X_{1}=0$. For $\mathrm{j}=2$, the same equation says $\Phi^{*}\left(2 X_{0}-\left[X_{1}, X_{1}\right]\right)=0$. On the other hand, for $\mathrm{j}=1_{\nu}$ 'and 2 , the first equation in (e) says that, $\bar{X}_{1} \circ \Phi^{*}=$ $\Phi^{*} \circ X_{1}$. Applying $\widetilde{\partial}_{t}$ on both sides, and using both, Proposition 3.2, and the statement (b) in the proof of Lemma 3.3, we get

$$
\bar{X}_{1} \circ \Phi^{*} \circ X_{0}=\Phi^{*} \circ X_{0} \circ X_{1}
$$

Now the original equation may be used again in the left hand side and replace $\bar{X}_{1} \circ \Phi^{*}$ by $\Phi^{*} \circ X_{1}$, to finally obtain, $\Phi^{*}\left(\left[X_{0}, X_{1}\right]\right)=0$. For $\mathrm{j}=3$ the procedure is exactly the same: Apply $\tilde{\partial}_{4}$ can both sides, then use Proposition 3.2, the statement (b) in the proof of Lemma 3.3, and finally equation (e) again to substitute the value of $\bar{X}_{1} \circ \Phi^{*}$

Example. Let $\Omega(M)$ be the sheaf of differentiable forms on the differentiable manifold M of dimension m. The pair $(M, \Omega(M))$ is a supermanifold of dimension (m, m). Some distinguished supervector fields are:
(1) The Lie derivative, \mathcal{L}_{X}, with respect a vector field X in M,
(2) The contraction, i_{X}, with respect a vector field X, and,
(3) The exterior denvative, d.

Now, the integral flow of \mathcal{L}_{X} is the pull-back, Φ^{*}, of the integral flow of X. The integral flow of i_{X} is given by the map $\Gamma^{*}=i d^{*}+\tau i_{X}$. Finally, the integral flow of d is given by the map $\Gamma^{*}=i d^{*}+\tau d$. It is easy to construct a supervector field that does not define any type of $\mathbb{R}^{1 / 1}$ action. For example, $X_{1}=d+i_{X}$. This is so because, $\left[X_{1,} X_{2}\right]=2 \mathcal{L}_{X}$. The integral flow of X_{1} is given by the map $\Gamma^{*}=i d^{*}+\tau\left(d+i_{X}\right)$. The reader can also check directly that the integral flows of d and i_{X} do not commote.

An example of supervector field defining a Type $2 \mathbb{R}^{1 \mid 1}$ action is given by the derivation, $i_{X}+d+2 \mathcal{L}_{\mathbf{X}}$. Its integral flow is $\Gamma^{*}=\Phi^{*} \circ\left(i d^{*}+\tau\left(d+i_{X}\right)\right)$, where Φ^{*} is the integral flow of the vector field $2 X$.

For an example of a supervector field defining a Type $3 \mathbb{R}^{1 / 1}$ action let $I d$ be the identity map of the catangent bundle. Id can be viewed as a vector-valued differential form of degree 1. The contraction of this form with differential forms defines an algebraic derivation of degree 0 ; the latter shall be denoted by $i_{I d}$. Note that if $\beta_{(p)}$ is a differential form of degree p then $i_{I d}\left(\beta_{(p)}\right)=p \beta_{(p)}$. The integral flow of $i_{I d}$ is given by $\Phi^{*} \beta_{(p)}=\mathrm{e}^{p t} \beta_{(p)}$. Now, consider the derivation $D=i_{I d}+i_{X}$. This is of type 3 because $\left[i_{X}, i_{I d}\right]=i_{X}$. The associated derivation $\Phi_{\alpha}{ }^{-1 *} \circ \bar{X}_{1} \circ \Phi_{\alpha}{ }^{*}$ defined in Lemma 3.3 is just $\mathrm{e}^{-t} i_{X}$. By Theorem 3.5, the integral flow of D is given by $\Gamma^{*} \beta_{(p)}=\mathrm{e}^{p t}\left(\beta_{(p)} \frac{1}{\frac{1}{2}} \mathrm{~T}^{-t} i_{X} \beta_{(p)}^{-}\right)$.

Our next result states precisely under what conditions the integral flows of two supervector fields cormmte. In order to keep the notation simple, the proof is given only for complete supervector fields. The general case considers the intersection of the domains of the flows and it is handled similarly. Note that in the \mathcal{C}^{∞} category, the statement that the flows ϕ and ψ (of \widetilde{X}_{0}, and \widetilde{Y}_{0}, resp.) commute is that, for all t_{1}, and all t_{2},

$$
\phi_{t_{1}} \circ \psi_{t_{2}}=\psi_{t_{2}} \circ \phi_{t_{1}} .
$$

Thus, the statement for the \mathbb{Z}_{2}-graded category has to use the twist morphism, $T: \mathbb{R}^{1 \mid 1} \times \mathbb{R}^{1 / 1} \rightarrow \mathbb{R}^{1 \mid 1} \times \mathbb{R}^{1 / 1}$, defined by the conditions:

$$
\rho_{1}^{*} T^{*}=\rho_{2}^{*}, \therefore \quad \text { and }, \quad \rho_{2}{ }^{*} T^{*}=\rho_{1}{ }^{*},
$$

where, ρ_{1}, and ρ_{2} are the projections of the product $\mathbb{R}^{1 / 1} \times \mathbb{R}^{1 \mid 1}$.
3.7 Proposition. Let $X=X_{0}+X_{1}$, and $Y_{=}=Y_{0}+Y_{1}$ be supervector fields on $\mathcal{M}=\left(M, \mathcal{A}_{M}\right)$, and let Γ, and θ be their corresponding integral flows. Then, Γ, and Θ commute, i.e.,

commutes, if and only if,

$$
\left[X_{0}, Y\right]=0 \quad \text { and, } \quad\left[X_{1}, Y\right]=0
$$

Proof. The methods of the proof are the same as those of Theorem 3.6. We shall write, $\Gamma^{*}=\Phi^{*}+\tau_{1} \Phi^{*} X_{1}$, and $\Theta^{*}=\Psi^{*}+\tau_{1} \Psi^{*} Y_{1}$, where both, Φ, and Ψ-being the flows of X_{0}, and Y_{0}, respectively-define Type 1 supergroup actions of $\mathbb{R}^{11^{1}}$ in \mathcal{M}. Thus, on the one hand one finds (cf. Eq. (d) in Thm. 3.6),

$$
\begin{gathered}
\left(\pi_{1} \times \theta \circ \pi_{2}\right)^{*} \Gamma^{*}=\left(\Phi \circ\left(\pi_{1} \times \Psi \circ \pi_{2}\right)\right)^{*}+\tau_{2}\left(\pi_{1} \times \Psi_{\alpha}^{-1} \circ \pi_{2}\right)^{*} \bar{Y}_{1} \Phi^{*} \\
\quad+\tau_{1}\left(\left(\Phi \circ\left(\pi_{i} \times \Psi \circ \pi_{2}\right)\right)^{*}+\tau_{2}\left(\pi_{1} \times \Psi_{\alpha}^{-1} \circ \pi_{2}\right)^{*} \bar{Y}_{1} \Phi^{*}\right) X_{1}
\end{gathered}
$$

On the other hand,

$$
\begin{aligned}
& \left(\pi_{1} \times \Gamma \circ \pi_{2}\right)^{*} \Theta^{*}=\left(\Psi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right)^{*}+\tau_{2}\left(\pi_{1} \times \Phi_{\alpha}^{-1} \circ \pi_{2}\right)^{*} \bar{X}_{1} \Psi^{*} \\
& \quad+\pi_{1}\left(\left(\Psi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right)^{*}+\tau_{2}\left(\pi_{1} \times \Phi_{\alpha}^{-1} \circ \pi_{2}\right)^{*} \bar{X}_{1} \Psi^{*}\right) Y_{1}
\end{aligned}
$$

Thus, acting on both sides of this equation with $\left(T \circ\left(\pi_{1} \times \circ p_{1} \circ \pi_{2}\right) \times p_{2} \circ \pi_{2}\right)^{*}$, we simply get τ_{1}, and τ_{2} interchanged. Thus, the diagram in the statement commutes, if and only if, the following equations are satisfied:

$$
\begin{aligned}
\Phi \circ\left(\pi_{1} \times \Psi \circ \pi_{2}\right) & =\Psi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right) \\
\left(\pi_{1} \times \Psi_{\alpha}^{-1} \circ \pi_{2}\right)^{*} \bar{Y}_{1} \Phi^{*} & =\left(\Psi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right)\right)^{*} Y_{1} \\
\left(\Phi \circ\left(\pi_{1} \times \Psi \circ \pi_{2}\right)\right)^{*} X_{1} & =\left(\pi_{1} \times \Phi_{\alpha}^{-1} \circ \pi_{2}\right)^{*} \bar{X}_{1} \Psi^{*} \\
\left(\pi_{1} \times \alpha_{\alpha}^{-1} \circ \pi_{2}\right)^{*} \bar{Y}_{1} \Phi^{*} X_{1} & =-\left(\pi_{1} \times \Phi_{\alpha}^{-1} \circ \pi_{2}\right)^{*} \bar{X}_{1} \Psi^{*} Y_{1},
\end{aligned}
$$

where the minus sign in the last equation is the result of writing $\tau_{2} \tau_{1}=-\tau_{1} \tau_{2}$. We now substitute the first equation in the second and third, and the resulting three in the last one. We finally act on such equations from the left with, $\left(\pi_{1} \times \Psi_{\alpha} \circ \pi_{2}\right)^{*}$, and ($\left.\pi_{1} \times \Psi_{\alpha} \circ \pi_{2}\right)^{*}$, appropriately, and end up with the following system of equivalent equations,

$$
\begin{aligned}
\Phi \circ\left(\pi_{1} \times \Psi \circ \pi_{2}\right) & =\Psi \circ\left(\pi_{1} \times \Phi \circ \pi_{2}\right), & & X_{1} \circ Y_{1}
\end{aligned}=-Y_{1} \circ X_{1}, ~ 子 \begin{array}{ll}
\Phi^{*} \circ Y_{1} & =\bar{Y}_{1} \circ \Phi^{*},
\end{array}
$$

and these equations hold true if and only if '

$$
\begin{array}{ll}
{\left[X_{0}, Y_{0}^{\prime}\right]=0,} & {\left[X_{1}, Y_{1}\right]=0} \\
{\left[X_{0,} Y_{1}\right]=0,} & {\left[X_{1}, Y_{0}\right]=0}
\end{array}
$$

(Note that these equations are not equivalent to $[X, Y]=0$)
Remark. In the \mathcal{C}^{∞}-category there exists a bijection between the set $\operatorname{DerC}{ }^{\infty}(M)$, of complete vector fields on a smooth manifold M, and the subset,

$$
\operatorname{Hom}\left(\mathcal{C}^{\infty}(M), \mathcal{C}^{\infty}(\mathbb{R} \times M)\right)^{\mathbb{R}}
$$

of algebra maps, $\Phi^{*}: \mathcal{C}^{\infty \infty}(M) \rightarrow \mathcal{C}^{\infty}(\mathbb{R} \times M)$, satisfying
(1) $\Phi_{0}{ }^{*}=i d$, and,
(2) $\Phi_{t_{1}}{ }^{*} \circ \Phi_{t_{2}}{ }^{*}=\Phi_{t_{1}+t_{2}}{ }^{*}$, for all t_{1}, and t_{2} in \mathbb{R},
where, $\Phi_{t}{ }^{*}=\left.e v\right|_{t} \circ \Phi^{*} \in \mathcal{A} u t \mathcal{C}^{\infty}(M)$, for each $t \in \mathbb{R}$.
In order to find a similar characterization in the \mathbb{Z}_{2}-graded category, note first that if $\Gamma \in \mathcal{H o m}\left(\mathcal{A}_{M}(M), \mathcal{A}_{\mathbb{R}^{1 / 2} \times \mathcal{M}}(\mathbb{R} \times M)\right)^{\mathbb{R}^{1 / 2}}$ (where $\mathcal{A}_{\mathbb{R}^{1 / 2} \times \mathcal{M}}$ denotes the structure sheaf of $\left.\mathbb{R}^{1 / 1} \times\left(M, \mathcal{A}_{M}\right)\right)$, then,

$$
\Gamma^{*} f=\Phi^{*} f+\tau Z_{1} f
$$

for any $f \in \mathcal{A}_{M}(M)$. It is easy to verify that Z_{1} must be an odd \mathbb{R}-linear map $Z_{1}: \mathcal{A}_{M}(M) \rightarrow \mathcal{A}_{\mathbb{Z} 10} \times \mathcal{M}(\mathbb{R} \times M)$, satisfying;

$$
Z_{1}(f g)=Z_{1}(f) \Phi^{*}(g)+(-1)^{|f|} \Phi^{*}(f) Z_{1}(g)
$$

for all f, and g in $\mathcal{A}_{M}(M)$, and furthermore, that $\Phi \in \mathcal{H o m}\left(\mathcal{A}_{M}(M), \mathcal{A}_{\underline{L} 1 \mid 0} \times \mathcal{M}(\mathbb{R} \times\right.$ $M)$). Our last result in this section says that there is a similar correspondence in the \mathbb{Z}_{2}-graded category. The statement and its proof are simple rephrasings of the proof of Theorem 3.5, and the previous lemmas. (We are indebted to Prof. J. Muñoz Masqué, for bringing this point to our attention).
3.8 Proposition. Let $\mathcal{M}=\left(M, \mathcal{A}_{M}\right)$ be a supermanifold, and let $\mathcal{A}_{\mathbf{I}^{112} \times \mathcal{M}}$, and $\mathcal{A}_{\mathbb{R}^{10} \times \mathcal{M}}$, be the structure sheaves of the supermanifolds $\mathbb{R}^{1 \mid 1} \times \mathcal{M}$, and $\mathbb{R}^{1 \mid 0} \times \mathcal{M}$, respectively. There exists a one-to-one correspondence between the set $\operatorname{Der} \mathcal{A}_{M}(M)$, of complete supervector fields on $\left(M, \mathcal{A}_{M}\right)$, and the subset,

$$
\mathcal{H o m}\left(\mathcal{A}_{M}(M), \mathcal{A}_{\mathbb{R}^{\mathrm{I} \mid 1} \times \mathcal{M}}(\mathbb{R} \times M)\right)^{\mathbb{R}^{1 \mid 1}}
$$

of superalgebra maps Γ^{*}, such that,
(1) $\Gamma_{0}{ }^{*}=\left.e v\right|_{t=0} \circ \Gamma^{*}=i d$.,
(2) The homomorphism $\Phi^{*} \in \mathcal{H} o m\left(\mathcal{A}_{M}(M), \mathcal{A}_{\mathbb{R}^{1 / 0} \times \mathcal{M}}(\mathbb{R} \times M)\right)$ associated to Γ, defines an \mathbb{R}-action on \mathcal{M}, and naturally extends to an \mathbb{R}^{111}-action.
(3) The odd \mathbb{R}-linear map $Z_{1}: \mathcal{A}_{M}(M) \rightarrow \mathcal{A}_{\mathbb{R}^{10} \times \mathcal{M}}(\mathbb{R} \times M)$. associated to Γ is such that,

$$
\Phi^{*} \circ \bar{Z}_{1} \in p_{2}{ }^{*} \operatorname{Der} \mathcal{A}_{M}(M)
$$

that is, $\Phi^{*} \circ \bar{Z}_{1}$ comes from an odd superyector field on $\left(M, A_{M}\right)$.
(Note that the third condition means that the map $\Phi^{*} \circ X_{1}$, which in principle is just a derivation from \mathcal{A}_{M} into $\mathcal{A}_{\mathbb{R} 110} \times \mathcal{M}$; actually defines an odd supervector field on ($\left.M, \mathcal{A}_{M}\right)$).

4. INTEGRAL FLOWS AND LIE
 SUPERDERIVATIVES OF SUPERFORMS

This section is included for the sake of completeness. We shall proceed along the lines of [10] and [12]. Our aim is to define the Lie derivative of any superform, ω, on a given superdomain, with respect to any supervector field, X. Moreover, we want to relate our definition to the integral flow Γ; of X; and also; be able to prove that the usual algebraic characterization given in terms of interior multiplication and exterior differentiation holds true. Our guiding principle has been the fact that the algebraic formula for Lie superderivatives, also called the Cartan formula, $\mathcal{L}_{X} \omega=$ $d \circ i(X) \omega+i(X) \circ d \omega$, makes sense regardless of the peculiarities of the field X (i.e., it is not necessary that its homogeneous components satisfy $\left[X_{0}, X_{1}\right]=\delta_{j 3} X_{1}$, and $\left[X_{1}, X_{1}\right]=\delta_{j 2} X_{0}$). We thus start with the following:
4.1 Definition. Let X be a supervector field on a superdomain (M, \mathcal{A}_{M}), and let Γ be its unique integral flow satisfying the initial condition, $\left.e v\right|_{t=0} \Gamma^{*}=i d^{*}$. Let ω be any superform on $\left(M, \mathcal{A}_{M}\right)$. The Lie superderivative of ω is the superform, $\mathcal{L}_{3}(\mathcal{L}$, given by,

$$
\mathcal{L}_{X} \omega=\left.e v\right|_{t=0} \circ \tilde{D} \circ \Gamma^{*} \omega
$$

4.2 Proposition. The usual relationship between Lie derivatives on forms, exterior differentiation, and interior multiplication, holds true in the theory of supermanifolds; namely,

$$
\mathcal{L}_{X} \omega=d i(X) \omega+i(X) d \omega
$$

Proof. It suffices to verify that both sides yield the same answer when $\omega=f$, and whes $\omega=d f$, for any superfunction f. Now, for $\omega=f$, we have,

$$
\begin{aligned}
\mathcal{L}_{X} f & =\left.e v\right|_{t=0} \circ \tilde{D} \circ \Gamma^{*} f \\
& =\left.e v\right|_{t=0} \circ \Gamma^{*} \circ X f \\
& =X f=i(X) d f
\end{aligned}
$$

where use has been made of the differential equation for the flow of X, the initial condition, and the definition (as in [3]) of the exterior derivative on superfunctions.

Let as now assume that $\omega=d f$. Let d, and $d_{\mathbb{R}}$, be the exterior differentiation operators on the supermanifolds $\left(M, \mathcal{A}_{M}\right)$, and $\mathbb{R}^{1 \mid 1}$, respectively. Therefore, the exterior differentiation operator on $\mathbb{R}^{111} \times\left(M, \mathcal{A}_{M}\right)$ is defined by the conditions:

$$
\tilde{d} \circ \pi_{1}^{*}=\pi_{1}^{*} \circ d_{\mathbb{R}}, \quad \text { and }, \quad \tilde{d} \circ \pi_{2}^{*}=\pi_{2}^{*} \circ d
$$

" Γ^{*} commates with $d^{\prime \prime}$, then means that, $\tilde{d} \circ \Gamma^{*}=\Gamma^{*} \circ d$. Moreover, the operators \tilde{d}, and $\overline{\mathbb{D}}$ commute with each other, as can be checked directly from the definitions. With these preliminaries in mind, one now has the following:

$$
\begin{aligned}
\mathcal{L}_{X} d f & =\left.e v\right|_{t=0} \circ \tilde{D} \circ \Gamma^{*} d f=\left.e v\right|_{t=0} \circ \tilde{D} \circ \tilde{d} \Gamma^{*} f \\
& =\left.e v\right|_{t=0} \circ \tilde{d} \circ \tilde{D} \circ \Gamma^{*} f=\left.d \circ e v\right|_{t=0} \circ \tilde{D} \circ \Gamma^{*} f \\
& =\left.d \circ e v\right|_{t=0} \circ \Gamma^{*} \circ X f=d(i(X) d f)
\end{aligned}
$$

where we have used the superdifferential equation, and the initial condition
In the case when the integral flow Γ defines a Lie supergroup action of $\mathbb{R}^{1 \mid 1}$ in (M, \mathcal{A}_{M}) we can say even more:
4.3 Proposition. Let X be a supervector field satisfying any of the conditions of Theorem 3.6, and let Γ be its unique integral flow satisfying the initial condition, $e v \|_{i=0} \Gamma^{+}=i d^{*}$. Then, for any superform ω,
*

$$
\Gamma^{*} \mathcal{L}_{X} \omega=\tilde{D} \circ \Gamma^{*} \omega
$$

Proof. This is a straightforward verification using, $\omega=f$, and $\omega=d f$, for an arbitrary superfunction f. The only difference with 4.2 above is that Thm. 3.6 now guarantees that the superdifferential equation satisfied by Γ is $\widetilde{D} \Gamma^{*}=\Gamma^{*} X$

5. LEFT INVARIANT SUPERFIELDS ON $\mathbb{R}^{1 \mid 1}$

Following [1], a Lie supergroup is a supermanifold (G, \mathcal{A}_{G}), with a prefered underlying point, $e \in G$, and two morphisms,

$$
\mu:\left(G, \mathcal{A}_{G}\right) \times\left(G, \mathcal{A}_{G}\right) \rightarrow\left(G, \mathcal{A}_{G}\right), \quad \text { and }, \quad \alpha:\left(G, \mathcal{A}_{G}\right) \rightarrow\left(G, \mathcal{A}_{G}\right),
$$

satisfying,
(1) $\mu \circ\left(\mu \circ\left(p_{1} \times p_{2}\right) \times p_{3}\right)=\mu \circ\left(p_{1} \times \mu \circ\left(p_{2} \times p_{3}\right)\right)$,
(2) $\mu \circ\left(C_{e} \times i d\right)=i d=\mu \circ\left(i d \times C_{e}\right)$,
(3) $\mu \circ(\alpha \times i d)=C_{z}=\mu \circ(i d \times \alpha)$.

The left action of (G, \mathcal{A}_{G}) on itself can be expressed in terms of μ as follows: Let $\left\{x^{j}, \theta^{\nu}\right\}$ be a local system of coordinates on $\left(G, \mathcal{A}_{G}\right)$. Assume,

$$
\mu^{*} f=\mathcal{F}\left(p_{1}^{*} x^{j}, p_{2}^{*} x^{j} ; p_{1}^{*} \theta^{\nu}, p_{2}{ }^{*} \theta^{\nu}\right)
$$

Then,

$$
\dot{L}^{*} f=\mathcal{F}\left(x_{1}{ }^{j}, x^{j} ; \theta_{1}{ }^{\nu}, \theta^{\nu}\right),
$$

with,

$$
L^{*} x_{1}^{j}=x_{1}^{j}, \quad \text { and }, \quad L^{*} \theta_{1}^{\nu}=\theta_{1}^{\nu}
$$

This morphism is invertible, and its inverse, L^{-1}, is given in terms of μ, and α as follows: write,

$$
\left\{\mu \circ\left(\alpha \circ p_{1} \times p_{2}\right)\right\}^{*} f=\mathcal{H}\left(p_{1}^{*} x^{j}, p_{2}^{*} x^{j} ; p_{1}^{*} \theta^{\nu}, p_{2}^{*} \theta^{\nu}\right)
$$

Then,

$$
L^{-1^{*}} f=\mathcal{H}\left(x_{1}^{j}, x^{j} ; \theta_{2}^{\nu}, \theta^{\nu}\right)
$$

with,

$$
L^{-1 *} x_{1}^{j}=x_{1}^{j}, \quad \text { and }, \quad L^{-1^{*}} \theta_{1}^{\nu}=\theta_{1}^{\nu} .
$$

We shall illustrate the use of L in the following examples:
Example 5.1. Let \mathbb{R}^{11} be considered with its multiplicative structure; in terms of the local coordinates $\{x, \theta\}$,

$$
\mu^{*} x=p_{1}{ }^{*} x p_{2}^{*} x+p_{1}^{*} \theta p_{2}^{*} \theta, \quad \text { and }, \quad \mu^{*} \theta=p_{1}^{*} x p_{2}^{*} \theta+p_{1}^{*} \theta p_{2}^{*} x
$$

Let $G L(1 \mid 1)$ be $\mathbb{R}^{1 \mid 1}$ with the point $x=0$ removed, and structure sheaf the restriction of that of $\mathbb{R}^{1 / 2}$ to $\mathbb{R}-\{0\}$. Then, $G L(1 \mid 1)$ is a Lie supergroup $(c f,[1])$. The inversion morphism is given by, बt,

$$
\alpha^{*} x=\frac{1}{x} \quad \text { and }, \quad \alpha^{*} \theta=-\frac{1}{x^{2}} \theta
$$

The morphism L refered to above is given by,

$$
L^{*} x=x_{1} x+\theta_{1} \theta, \quad \text { and, } \quad L^{*} \theta=x_{1} \theta+\theta_{1} x
$$

and its inverse is，

$$
L^{\mathrm{E}^{*}} x=\frac{1}{x_{1}}\left(x-\frac{\theta_{1}}{x_{1}} \theta\right), \quad \text { and }, \quad L^{-1^{*}} \dot{\theta}=\frac{1}{x_{1}}\left(\theta-\frac{\theta_{1}}{x_{1}} x\right) .
$$

Let $X=\left(f_{0}+f_{1} \theta\right) \partial_{x}+\left(g_{0}+g_{1} \theta\right) \partial_{\theta}$ ，be an arbitrary supervector field on $\left(\mathbb{R}^{1 \mid 1}\right)^{*}$ ． Then，X is le⿻弓⿰丿丨贝刂灬 invariant，if and only if，

$$
X=L^{*} X L^{-1^{*}}=\left(L^{*} X L^{-1^{*}} x\right) \partial_{x}+\left(L^{*} X L^{-1^{*}} \theta\right) \partial_{\theta}
$$

It is then easy to chech that X is left invariant，if and only if it is of the form，

$$
X=\lambda_{0}\left(x \partial_{x}+\theta \partial_{\theta}\right)+\lambda_{1}\left(x \partial_{\theta}-\theta \partial_{x}\right)
$$

with λ_{0} ，and λ_{1} real constants．Note that in this case（assuming $\lambda_{0} \lambda_{1} \neq 0$ ），

$$
\left[X_{\cong}, X_{1}\right]=0, \quad \text { and, } \quad\left[X_{1}, X_{1}\right]=-2 \frac{\lambda_{1}^{2}}{\lambda_{0}} X_{0}
$$

The integral fium of X is found as follows：First，it is easy to check that the map，

$$
\Phi^{*} x=e^{\lambda_{0} t} x, \quad \Phi^{*} \theta=e^{\lambda_{0} t} \theta
$$

is the integral fiow of the even part X_{0} ，satisfying $\partial_{\tau} \Phi^{*}=0$（i．e．，as if $X_{1}=0$ ）． As we have sem，the integral flow of $X_{0}+X_{1}$ is given by $\Gamma^{*}=\Phi^{*}+\tau \Phi^{*} \circ X_{1}$ ．It is then easy to cluect that，

$$
\Gamma^{*} x=e^{\lambda_{0} t}\left(x-\lambda_{1} \tau \theta\right), \quad \Gamma^{*} \theta=e^{\lambda_{0} t}\left(\theta+\lambda_{1} \tau x\right)
$$

Example 5．2．Now consider \mathbb{R}^{111} with the Type 2 Lie supergroup structure：In terms of the local coordinates $\{x, \theta\}$ ，

$$
\mu_{2}{ }^{*} x=p_{1}{ }^{*} x+p_{2}{ }^{*} x+p_{1}{ }^{*} \theta p_{2}{ }^{*} \theta, \quad \text { and }, \quad \mu_{2}{ }^{*} \theta=p_{1}{ }^{*} \theta+p_{2}{ }^{*} \theta
$$

The left multiplication morphism L is，

$$
L^{*} x=x_{1}+x+\theta_{1} \theta, \quad \text { and }, \quad L^{*} \theta=\theta_{1}+\theta
$$

and its inverse is，

$$
\mathbb{I}^{\mathbf{1}^{*}} x=-x_{1}+x-\theta_{1} \theta, \quad \text { and, } \quad L^{-1^{*}} \theta=-\theta_{1}+\theta
$$

Let $X=\left(f_{0} f_{8} \theta\right) \partial_{x}+\left(g_{0}+g_{1} \theta\right) \partial_{\theta}$ ，be a supervector field on $\mathbb{R}^{1 \mid 1}$ ．Then，the condition，$X=L^{*} X L^{-1 *}$ ，for left invariance，leads to the following：X is left invariant，if and onfy if it is of the form，

$$
X=\lambda_{0} \partial_{x}+\lambda_{1}\left(\partial_{\theta}+\theta \partial_{x}\right)
$$

with λ_{0}, and λ_{1} real constants. Note that, if $\lambda_{0} \lambda_{1} \neq 0$,

$$
\left[X_{0}, X_{1}\right]=0, \quad \text { and }, \quad\left[X_{1}, X_{1}\right]=2 \frac{\lambda_{1}^{2}}{\lambda_{0}} X_{0}
$$

The integral flow of X is found as in the previous example and is given by:

$$
\Gamma^{*} x=x+\lambda_{0} t+\lambda_{1} \tau \theta, \quad \text { and; } \quad \Gamma^{*} \theta=\theta+\lambda_{1} \tau
$$

Remark. It is interesting to note that there is a Lie supergroup homomorphism (local isomorphism) between the Type 2 supergroup structure of $\mathbb{R}^{1 \mid 1}$, and the supergroup $G L(1 \mid 1)$ of Example 5.1 above. This is. the $\operatorname{map} \Psi: \mathbb{R}^{1 \mid 1} \rightarrow G L(1 \mid 1)$, given in terms of local coordinates $\{x, \theta\}$ of $\mathbb{R}^{1 \mid 1}$, and $\{y, \xi\}$ of $G L(1 \mid 1)$ by,

$$
\Psi^{*} y=\mathrm{e}^{x}, \quad \text { and }, \quad \Psi^{*} \xi=\mathrm{e}^{x} \theta
$$

It is a straightforward matter to check that this is the unique (locally invertible) mörphism satisfying,

$$
\mu \circ\left(\Psi \circ \dot{p_{1}} \times \Psi \circ p_{2}\right)=\Psi \circ \mu_{2}
$$

where μ and μ_{2} are as in the previous examples.
Example 5.3. Finally consider $\mathbb{R}^{1 \mid 1}$ with the Type 3 Lie supergroup structure: In terms of the local coordinates $\{x, \theta\}$,

$$
\mu_{3}^{*} x=p_{1}^{*} x+p_{2}^{*} x \quad \text { and, } \quad \mu_{3}^{*} \theta=\mathrm{e}^{p_{3} * x} p_{1}^{*} \theta+p_{2}^{*} \theta
$$

The lef multiplication morphism L is,

$$
L^{*} x=x_{1}+x, \quad \text { and }, \quad L^{*} \theta=\mathrm{e}^{x} \theta_{1}+\theta
$$

and its inverse is,

$$
L^{-1^{*}} x=-x_{1}+x, \quad \text { and }, \quad L^{-1^{*}} \theta=-\mathrm{e}^{x-x_{1}} \theta_{1}+\theta
$$

Let $X=\left(f_{0}+F_{1} \theta\right) \partial_{x}+\left(g_{0}+g_{1} \theta\right) \partial_{\theta}$, be a supervector field on $\mathbb{R}^{1 / 1}$. The condition, $X=L^{*} X L^{-1^{*}}$, leads this time to the following: X is left invariant, if and only if it is of the form,

$$
\text { the form, } \quad X=\lambda_{0}\left(\partial_{x}+\theta \partial_{\theta}\right)+\lambda_{1} \partial_{\theta}, * \quad \operatorname{l}_{2} \quad \operatorname{L}_{r}+t_{t}
$$

with λ_{0} and λ_{1} real constants. Note that,

$$
\left[X_{0}, X_{1}\right]=-\lambda_{0} X_{1}, \quad \text { and }, \quad\left[X_{1}, X_{1}\right]=0
$$

The integral flow of X is found as in the previous examples, and is given by:

$$
\Gamma^{*} x=x+\lambda_{0} t ; \text { and, } \quad \Gamma^{*} \theta=\mathrm{e}^{\lambda_{0} t} \theta+\lambda \lambda_{1} \tau
$$

In all these examples, the integral flows of the left invariant supervector fields under consideration do nat define Type $1 \mathbb{R}^{1 / 1}$-actions on the supergroups they are respectively defined. In fart, $\left[X_{1}, X_{1}\right] \neq 0$ in 5.1-5.2, and $\left[X_{0}, X_{1}\right] \neq 0$ in 5.3 (See Thm. 3.6). On the other hand, the integral flows in 5.2, and 5.3 , trivially recover the multiplication map μ_{3} of Prop 2.4.1 for $\lambda_{0}=1=\lambda_{1}$.

Remark. Let $\operatorname{Der} \mathcal{A}_{G}(G)^{\boldsymbol{A}_{G}(G)}$ be the left invariant derivations on $\left(G, \mathcal{A}_{G}\right)$. Note that the Lie supergroup structures we are dealing with here, do not satisfy the properties stated in [3]: wamely, that the function and exterior factors can be recovered from the left invariant supervector fields. In particular, it is not true that $\mathcal{C}^{\infty}(G)$ is isomorphic to,

$$
\mathcal{C}_{0}(G)=\left\{f \in \mathcal{A}_{G} \|(G) \mid X f=0, \text { for all odd } X \in \operatorname{Der}_{\mathcal{A}}(G)^{\mathcal{A}_{G}(G)}\right\}
$$

In both examples above we obtain,

$$
\mathcal{C}_{0}(G)=\left\{f \in \mathcal{A}_{G}(G) \mid f=c_{0} ; c_{0} \text { constant }\right\} \simeq \mathbb{R}
$$

Acknowledgements. We would like to thank M. Rothstein for the enlightening discussions maintained daring a visit of the second author to the University of Georgia. We would also fike to thank Prof. Yu. I. Manin for his reading of the original manuscript and the encouragement received from him. Last, but not least, we would like to thank our colleges J. Muñoz-Masqué and, F. Ongay-Larios, for those valuable discussions and mutliple suggestions.

References

1. Boyer, C. P., and Sánchez-Valenzuela, O. A., Lie Supergroup Actions on Supermanifolds, Trans. Amer. Math. Soc. 323 (1991), 151-175.
2. Giachetti, R., and Ricci, R., R-actions, Derivations, and Frobenius Theorem on Graded Manifolds, Advances in Math. 62 (1986), 84-100.
3. Kostant, B., Graded Mazifolds, Graded Lie Theory and Prequantization, Lecture Notes in Math. (Bleuler, K. and Fretz, A, eds.), Proc. Conf. on Diff. Geom. Methods in Math. Phys., Bonn 1975., val. 57a, Springer Verlag, Berlin and New York, 1977, pp. 177-306.
4. Kapershmidt, H. A., Elanests of Superintegrable Systems; Basic Techniques and Results, D. Reidel Publrshing Company, Dordrecht, 1987.
5. Manin, Y. I., Gauge Field Treory and Complex Geometry, Springer-Verlag, New York, 1988.
6. Monterde, J., A Characteritation of Graded Symplectic Structures, Differential Geometry and its Applications (1922) (to appear).
7. Monterde, J., and Montesinns, A., Integral Curves of Derivations, Annals of Global Analysis and Geometry 6 (1988), 177-189.
8. Monterde, J., and Munar Masqué, J., Variational Problems on Graded Manifolds, Talk at the Fit. Conf. an Mathesmatical Aspects of Classical Field Theory, Seattle 1991 (Preprint: CSIC, Madrid).
9. Ongay-Larios, Fr. $^{\prime}$, and Sáachez-Valenzuela, O. A., $\mathrm{R}^{1 \mid 1}$-Supergroup Actions and Superdifferential Equatiozs, Proc. Amer. Math. Soc. (1992) (to appear).
10. Ongay-Larios, F., and Sáxchex-Valenzuela, O. A., Hamilton's Equations and Supersymplectic Flowa on (2 2 2 -Dinsemaivnal Superspace, Poster-talk at the $10^{\text {th }}$ International Congress on Mathematical Phynics; Lnipaig 1991, Jour. Geometry and Physics (1992) (to appear).
11. Rothstein, M.. The Structure of Supersymplectic Supermanifolds, Lecture Notes in Phys. (Bartocci, C. Brizzo, U. and Cianci, R., eds.), Proc. Conf. on Diff. Geom. Methods in Math. Phys., Rapallo 1900., vol. 375, Springer Verlag, Berlin and New York, 1991, pp. 331-343.
12. Rothstein, M., and Sanchez-Valenzuela, O. A., On the Lifting of the Garge Group to the Supergroup of Supersymplectic Automorphisms, (Preprint in preparation, 1992).
13. Shander, V. N., Vertor fields and differential equations on supermanifolds, Funct. Anal. Appl. 14 (1980), 160-161.
14. Sánchez-Valenzuela, O. A., On Supergeometric Structures, Ph.D. thesis, Harvard UniversityCambridge, (1986); On Supervector Bundles, Comunicaciones Técnicas IIMAS-UNAM (Serie Naranja) 457 (1986).
15. Warner, F: W., Foundations of Differentiable Manifolds, Scoot, Foresman, and Co., Glenview; lll, 1971.

Dpto. de Geometría y Topologfa, Facultad de Matemáticas, Universidad de Valencia; C/Dr: Moliner 50, 46100-Burjasot (Valencia), Spain.

E-mail address: monterde@vm.ci.uv.es

Centro de Investigación en Matemáticas; Apdo. Postal, 402; C.P. 36000 Guanajuato, Gto., México.

E-mail address: samemanvm1.dgsca.unam.mx

