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EXISTENCE AND UNIQUENESS OF SOLUTIONS 

TO SUPERDIFFERENTIAL EQUATIONS 

J. MONTERDE 

0. A. SANCHEZ-VALENZUELA 

A!?STRACT. We state and.prove the theorem of existence and uniqueness of solutions 
to ordinary superdifferential equations on supermanifolds. It is shown that any supei'
vector.field, X= Xo+Xt, ii~ a unique integral flow, r.: JR111 X (M,AM)--+ (M,AM), 
satisfying a given initial condition. A necessary and sufficient condition for this inte
gral flow to yield an R1 11-action is obtained: the homogeneous components, Xo, and, 
X1, of the given field must define a Lie superalgebra of dimension (1, 1). The super
group structure on JR1 11 however, has to be specified: there are three non-isomorphic 
Lie supergroup structures on R111 , all of which have addition as the group operation 
in the underlying Lie group R. On the other extreme, even if Xo, and X1 do not 
close to form a Lie superalgebra, the integral flow of X is uniquely determined arid 
is independent of the Lie ·supergroup structure imposed on JR111 . This fact makes 
it possible to establish an unambiguous relationship between the algebraic Lie de
ri'vative of supergeometric obJ~cts (e.g., superforms), and its geometrical definition 
in terms of integral flows. It is shown by means of examples that if a supergroup 
structure in R111 is fixed, some flows obtained from left-invariant supervector fields 
on Lie supergroups may fail to define an R111-action of the choa~n struc.ture. Finally, 
necessary and sufficient conditions for the integral flows of two supervector fields to 

· --··--commute are given. 

·1. INTRODUCTION 

We prove here the theorem of existence and uniqueness of solutions to superdifferen
tial equations on supermanifolds. This work is based on two previous approaches
each one followed by each of the. authors separetely ([7], and [9], respectively). Both 
predeceSsor papers dealt with the problem of integrating supervector fields on su
permanifolds, but the results reached by each one of them were only partial.· In 
[7], a unique way of integrating even supervector fields was obtained, but ad hoc 
techniques were required for the odd ones. Even so, not all of them could have an· 
integral in the sense defined there; integral flows in [7] depended only on one real 
parameter t -E IlL On the other hand, the approach in [9] provided a better way 
of making sense of the ordinary differential equation defined w any supervector ·. 
field. This was achieved by introducing JRlll as the parameter- superspace tOc~rrY .:: 
out the inteiration, and by using the evaluation morphism on points to completely 
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determine the coo functions that build up the flow. The proof of the theorem on 
existence and uniqueness of solutions there, was Qased on the ideas of the pioneer
ing work of Shander [13]: To determine first the normal forms for the superfields so 
as to actually carry out the integration on the simplest coordinate version of each. 
The normal-form problem, however, was not solved in [9], and the theorem was 
therefore proved only for a subclass of superve~tor fields: those having a normal 
form in ~1 11. Nevertheless, these included the known examples in the literature so 
far, and provided some new ones {cf, [5], and [13]). 

We are now very pleased to communicate in this paper the best statement of the 
theorem, and its most unrestricted proof: i.e, one without any regard on parities, 
normal forms, special integrating parameters or techniques, etc. ( cf, Theorem 3.5, 
below). But before giving the details, it is pertinent to make some tomments about 
the nature of the problem, the nature of our approach, and the significance of the 
results." ' 

First of all, the problem of posing ordinary differential equations on supermani
folds (or, on any similar geometric category),icombines the supervector field to be 
integrated, X, with the solution of the equation, r, so as to r-relate X with some 
fixed derivation D in the integrating parameter superspace, T. We call the pair 
(T,D) the integrating model for the equation. Thus, the starting point is always 
the equation, · 

(1.1) Dor• = r• oX, 

( cj, §2 below for precise definitions and statements). Since r• is a map of super al
gebras, it preserves the Z2-grading, and therefore, Eq. (1.1) may immediately be 
splitted into two equations; namely, . 

{1.2) Do o r• = r• o X o, and, 

where, X = X 0 + X 1, and D = Do + D1 , are the corresponding ~-decompositions 
of X, and D. In particular, to integrate odd superfields one requires at least a 
non-zero Dt. On the other hand, since the 'supercommutators of two r-related 
derivations are again r-related, it follows fro~ (1.2) that, 

I 

and,1 
! 

These relations may produce some non-trivial donditions on the superfields X to be 
integrated depending on the values of [Do, Dt], and [D1 , Dt]. It is natural to assume 
that. the integrating parameter superspace Tis a Lie supergroup, and that D0 , and 
D1 are left-invariant supervect6r fields, so that they form a {1, I)-dimensional Lie 
superalgebra. If this is the case, there are rf1al constants a, and b (and in fact, 
ab = 0), such that, I 

I . 
{1.4) [Do,Dd=aD1, and, 1 [D1,D1]=bDo. 

' 
In particular, if r• happens to be monic (cf. [1]), (1.1) becomes a well-posed 
equation only for those superfields satisfying the "integrability conditions", 

(1.5) and, 
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There are, however, various reasons to pursuit the idea that any supervector field 
must be integrable, in the sense of giving rise to an integral flow, r: T x (M, AM) --> 

(M, AM). In fact, an integral flow for any superfield is needed in order to relate the 
dynamical (geometrical) definition of the Lie derivative of any super geometrical ob
ject (e.g., superdifferential forms), to its corresponding algebraic characterization. 
The latter usually makes good sense, no matter what superfield is chosen to take 
the derivative along to. The best example at hand is this: the .Lie derivative of any 
superform w, may be defined algebraically by, 

(1.6) .Cxw = i(X) o dw +do i(X)w, 

without imposing conditions like (1.5) on X. One would like to understan:d this 
formula as the quantitative result of a geometrical assertion: the rate of change of w 
along the flow generated by X. In partic.u_lar, one would like to conclude that when 

·the Lie derivative of something is zero, that something does not change along the 
flow. This is the crucial step in proving some geometrical assertions. To ·quote a 
concrete example, let us mention that this result is needed to sho~ that the integral 
flow of a supervector field acts by supersymplectic transformations, if and only if 
it is superhamiltonian (see for example, [10}, and [12]; see also [6], and [11] for the 
basics ofsupersympledic supermanifolds). 

The way to supress the conditions on the homogeneous components of the field, 
and to produce a uniquely determined integral flow for any supervector field, is to 
pose the differential equation in terms of the evaluation morphism on points of the 
superparameter space 'T. This was prec_isely the main con:tribution of [9]. We recall . 

--that in the catego~y of supermanifolds _there is a unique terminal object: a single 
point with the conatant structure sheaf IR.:J:iis. n.·atural-l.n teiriis .. oCino-prc,-duce --------- - ·-- ······ · 
an evaluation morphism on points, and to make sense of, e~ lt=to, as a morphism of · 
superalgebras: Thus, the differential equation must be ( cf, §2 below for the precise 

·definitions), - ·· 

. (1.7) 

What remains then is to select a specific integrating model; (T ;D). Now, any 
supervector field on ( M, AM) canonically projects onto a smooth vector field on M 
wh0se integral flow always defines (locally; at least) an action of the additive group 
JR. on M. Therefore, it is only natural to require that 'Ired = ~, and the underlying 
smooth map jJ. of the Lie supergroup operation JJ: 'T x T -> T be additi6n in 
R On the other hand, letting Do, and D1 be left invariant. s~pervector fields, the 

. possible choices are forced by the following procedure: First;·determirieallthe (1,1)- . . _ 
.. dimensional Lie superalgebras civer the ·reals . ..iThen, look· at their corresponding'-;,::.,:· '.--::;: 

connected, simply connected, (1, I)~dixp.ensioilal Lie supergroups having addition;,.;.c> ·· 
.as their underlying operation in JR. Finally, ~ealize Do, .. and .Du:~.s_ieft illvariant . • · . ·. 
supervector fields~ .. It. turns out that the~e are three different (1, 1)-dime~~ion~:~~~:; ,_. 
Lie supergroup structures on JRlll exten~ing addition on JR. We shall label these·..: .. , - ·· 
structures by the numbers 1, 2, and 3. Thus, if (1.4) is satisfied, the corresponding 
Lie supergroup s~ructures on R111, and their left invariant supervector fields are 
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given according to the following table: 

fl( Ct1, Tt), (t2, T2)) I Do' D1 
! 

Type 1 (t1 + t2, T1 + T2) Ot Or 

Type 2 {tl + t2 + Tt T2, Tt + T2) Ot Or+ TOt 

Type 3 (tt + t2, T2 + et'rt) Ot +TOr Or 

(The Li~ supergroup structure of type 2 is l~cally isomorphic to the supermulti
plicative structure given by, fl ( (tt, Tt), (t2, T2)) = (t1 t2 + Tt T2 1 it T2 + t2Tt).) Note 
that D = Do + D1, is always of the form: 

I 

I I D = Ot + Or + 1T D . 
I 

Now, one can prove that th~ integral flow obtained when using D is exactly the 
same as that obtained when using o1 + Or ( cf. §2.3 below). In other words, for 
the sole purpose of determining the integral flow, r: ~1 1 1 X (M, AM) -+ (M, AM), 
the detailed supergroup structure on ~1 1 1 is Irrelevant as long as the differential 
equation is posed as in (1.7). When it furthen;nore happens that the homogeneous 
components of the supervector field do form a' (1, 1 )-dimensional Lie superalgebra, 
the differential equation may be passed as in (1,1) without the evaluation morphism, 
and a Lie supergroup action of the ~1 1 1 supergroup corresponding to that Lie 
superalgebra is defined by the integral flow ( cf. Theorem 3.6 below). 

Note that conditions (1.5) have nothing to d6 with the integrability criteria given 
by Frobenius theorem on the bundle that tri~ializes the particular supermanifold 
on which X is defined: Eqns. (1.5) are stronger because a and bare real constants. 
When these conditions are not satisfied, all what happens is that the integral flow 
does not behavE: like the real one-parameter exponential of a coo vector field. The 
integral flow exists, but it fails to define a Lie supergroup action ofJR111 on (M,AM ). 
This phenomenon might be exagerated if a definite integrating model is fixed. For 
example, fixing the Type 1 supergroup structure as the integrating model (7, D), 
the integral flow obtained for a non-even left invariant supervector field on the Lie 
supergroup G L(1l1) (i.e., the multiplicative supergroup structure on ~111) does not ' 
define a Lie supergroup action ofT. The reas<;m is of course that the Type 1, and 
Type 2 structures are not isomorphic: The exponential morphism-understood as 
the "point" determined on the-'~upergroup by flowing along the integral "curve" of 
a left invariant supervector field after a unjt of "time" from some prescribed initial 
direction----'does not provide a Lie supergroup homomorphism in this case. 

The main results of this work (Theorems 3.5, and 3.6) are presented with no 
commitment to any particular type of supergroup structure on IR*. Our original 
approach made use of a,,specific' choice (Type 1) arguing that for, such a supergroup 
structure the correspoi:{dence that makes it possible to view an arbitrary section of 
the structural sheaf of a given supermanifold as !a morphism from the supermanifold 
into ~1 11 was addition preserving. However, M. 'Rothstein has pointed out to us that 

I 
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in so doing one leaves out some of the interesting Lie theoretic phenomena arising 
from the integration process. Besides, almost no new work had to be done in order 
to present the results in the more general setting because the actual computation 
of the integral flow r do~s not depend on the Lie supergroup structure of ~11 1 . 

The paper is organized as follows: §2 gives the basic definitions, and it is based 
on (9]. The various Lie supergroup structures on JR111 are given, and it is shown that 
for the actual determination of the flow only Ot, and Or may be used. § 3 states the 
theorem of existence and uniqueness of solutions. Its proof is considerably reduced 
to the proof of the same theorem for an even superfield, Xo, but this is precisely the 
theorem proved in [7], which we translate so as to fit with our gen'eral scheme here. 
Following [10] and (12], we define in §4 Lie derivatives of superforms in terms of our 
integral flows and show that one may compute these Lie derivatives algebraically 
with only interior multiplication, and exterior differentiation, as expected. Finally, 
§5 provides the details for determining the left invariant supervector fields of the 
different Lie supergroup structures of JRlll. Needless to mention the relevance of 
having settled the integration question, as it is a fundamental tool in some applica
tions. Concretely, we are thinking of some physical and geometrical considerations 
involvmg the Euler-Lagrange equations studied in (8], and Hamilton's equations 
studied in [10], and [12). We also hope that the methods developed here be of some 
help in the infinite dimensional theory of superintegrable systems developed mainly 

in [4]. ·· 

2. ·THE ODE PROBLEM ON SUPERMA,~IFOLDS 

2.1 Definitions,. conve11tions, and notati~n~_We shall refer the reader to [3], _ .• 
and (5] for definitions. OU:r conventions are the followin-g:-.lfsupe-rmanifofdsliall at.:··---------.,..-- -
ways mean a real supermanifold; it is·a pair, (M, AM), with M some m-dimensional 
real smooth manifold, and AM the structure sheaf of real superfunctions on M. A 
morphism (M,AM)-+ (N,AN) is a pair _w-· = (~, W*), with ~:M--+' N continu-
ous, and w-*:AN(N)-+ AM(~- 1 (N)), -a map ofJR-superalgebras commuting wit~ 
restrictions. T.he terminal object is ({*},JR); a point with the algebraof constants 
op. it. The terminal morphism, ( .M, AM) -+ ( { *}, JR) shall be denoted by C. By-
definition, a supermanifold has a preferred embedding,6: (M, CM')- (M, AM); its 
superalgebra map, 8*:AM(M) - CM'(M) s_hall be written, f 1-+ J. Each point 
x EM defines a morphism Oz: ( {* },JR) - (M,AM ), by letting, Oz *: AM(M) -+ JR, c"·· 

be, f ....... !{x). The composition Oz o C gives a superalgebra map closely related to 
this:_ f t-+ f{x)l.AM'(M)···N~te that the .domain can be.any supermanifold. We shall-

·write Cr, and evlz, instead of 6::: o C, and ( Oz o C)*, respectively. In products, with 
-imderlying points(x, y) EM x N, the notationevlz stands for (Cz x idN'ti it pulls 
backsuperfunctionson M x N to superfunctions on N. · ·: .. :_·,;'-- ,: 

An (m, n )-dimensional superdomam shall always be understood as a coordinate ·--~ 
superdomain;-z.-e.~~-an open coordinate domain, u' in some m_m, and the exterior_ . 
bundle, /\Rn, based on the trivial rank-n-bundle, m_n, over U. When U = JR.m,' . 
t~e corresponding super domain, (lRm, f(/\ JRn)), shall be denoted -by· Rmln. · It is 
convenient to write U C m_mln for the restriction of the structure sheaf f(/\ m_n) on 
~-'\ t() the open domain U C lRm. Thus, U = (U,f(/\lRn) !u)· 

~· .. : . 
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2.2 ODE's on superdomains. Let (M,AM) be a supermanifold, and let 'DerAM 
be the sheaf of superderivations ofAM(M). Supervector fields on M are sections 
of VerAM. Each supervector field X defines in a unique fashion a smooth vector 

field, X E 'DerC00 (M), by letting, X(i) = x(!), for each IE AM(M) (cf [3]). It 
is well known that X, gives rise to a collection of smooth maps, { <Pt hell!:, for which 
the following is true ( cf. [15]): 

For each t E ~. there exists a maximal opelJ subset Vt(X) C M, and a smooth 
map, ifi1:Vt(X)-+ M, such that, 

(1') <fo1(x) = r(t, x), for each x E Vt(X); r being the unique integral curve of X 
through x at t = 0, and defined on its rj-JaximaJ domain {t E ~I x E Y't(X)}. 

(2) ¢1.: Vt(X)-+ V_ 1(X) is a diffeomorphi~m whose inverse is <P-t· 
(3) Vo(X) = M, <Po = idM, and vt 1 (X) C ft 2 (X), ift1 ;?.>: t2 ;?.>: 0, or t1 $ t2 $ 0. 
(4) Ut>o vt(X) = Ut<O vt(X) = M. 

Furthermore, for each X EM there is an open subset Vx(X) c M, and some f > 0, 
-such that the map (t, y) 1--+ <fo1(y) is smooth and defined on (-t, f) X Vx(X). 

i 
In particular, the subset V(X) = {(t, x) E lR x M I x E Vt(X)} is open, and a 
smooth map <P : V(X)-+ M can be defined by <P(t, x) = <fo1(x); equivalently, there 

is a well defined homomorphism <P* : C00 (M):...... C00 (V(X)), <P*(f) =I o ¢, which 
is the unique solution to the equation, 

(2.2.1) 

subject to the initial condition ¢(0, x) = x. We have written J5 for the lift to 

V(X) of the vector field ~~ defined on R This lift is uniquely defined by the 

d•t• D- * * d d D- * 0 d b · ~h · L • r con 1 tons, o PI = PI o dt , an o P2 = ; PI, an P2 emg • e proJec.mns 01 

V(X) C ~ x M into the corresponding factors. Note that {2.2.1) is equivalent to 
the following equation in C00 (.M): 

{2.2.2) 

for each to E P1 (V(X)). Now let Vx be the open subsupermanifold of ~111 x • 

(M,AM) whose underlying smooth manifold is V(X). A solution to the ~2-graded 
differential equation defined by X, is a supermanifold morphism, 

(2.2.3) 

such that, for each to E JR, i 
! 

(2.2.4) evjt=to o jj o r• = evj 1lto o r• oX, 

subject .t9 the initial condition, 

(2.2.5) r 0 (Co X id) = id. 
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The equality (2.2.4) is set between super derivations of the sheaf AM. We have 
written i5 for the lift to Vx of a preferred superfield, D, on JR111 ( cf §2.4 below). 
This lift is_ defined by the conditions, D o p1 • = p1 * o D, and D o p2 * = 0; p1 , 

and p2 being the projections of Vx into the ·corresponding factors (which are open 
subsupermanifolds JR111 and (M, AM), respectively). The evaluation morphism 
evlt:ta is used to pull the superfunctions in Vx back to (M, AM) ( cj, [5], [9], and 
[1J). Note that the initial condition (2.2.5) may be rewritten as, 

{2.2.6) 

for any superfunction fin AM. 

2.3 On the role of the evaluation morphism. It is worth our while to actually 
appreciate the difference between Eq. (2.2.4), and, 

(2.3.1) i5 o r· = r• o x. 

In order to do this we shall work on the supermanifold JRmln, and we shall write 
equations (2.3.1), and (2.2.4) in local coordinates for an arbitrary derivation Din 
JR1l1. Let {t, r} be a set of local coordinates in JR111 . There is no loss of generality 
in assmning that the integration model is locally ofthe form, 

(2.3.2) - D = (1 +a r)Bt + (1 + j3 r) 8.,, 
~-

where a, and j3 are smooth functions of t. Now, let {xi; 0~-' }, be a set of local 
~;(,!diiiates Iii U c JRmln. ·Let _X be some given supervector field- on. U,-and write _____ _ 
it in these local coordinates as, 

x = L {Ai + l:A~o~~ + L A~~~oJJo~ + ... }a.,. 
(2.3.3) 

i J.l J.l<ll 

+X'{BP + "'\'"' BP()II + ""BP 0~-'0 11 + ... }aep. L-t L- II L....- J.lll . 

.::::i. 

p · II J.l<ll 

Let r be a morphism JR1l1 xU-+ U. We shall write it in coordinates-as;-

r~ xi == ~~ + E 1t; o~~ + 2: 1!~~ o~-'e~~ + .. · . 
II .. J.l<ll 

(2.3.4) 
r•op =lor+ "_LgC8 11 + LY~II rB~-'8 11 _+ L gfJ.IIIe>-opell + ... ' 

. . II J.l<ll~ - A<J.I<II -

where, in fac"t,:w:e should have written P1•r, .. and P2*8~-', insteadofjust r,-and 8,. -. · 
as wejust"9i~,J.Qi_*~ J~al coordinates on JR.lfl XU (Pi being the projection onto .' , 
the jth_ractor of th~ p~oduct JR11l xU). Let us further simplify the notation, ·and ,,, ;' 

write, -- . -----------------'-'--'----------'-'·'~---

(2.3.5} 
r•:i = b[o) + 'Yt2) + ... ) + T btl) + 'Yt3) + .. •) 

.. ·r•a~J- ( ~-' ·-+ ~-' + ) + ( J.l + IJ + ) " - 7 Y(o) Y(z) • • • Y(t) 9(3) •.• ' 

------------------ ---
- -------~- ----
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where '( k )' denotes the /E.-degree of homogeneity in the odd variables {()I'}. Then, 
I 

r• Xzi = ("Y(O) ... Ai + E "Y(o): A~9(1) + ... ) 
II i 

+ T (L "Y(o) • A~~(o) + L "Y(o) * O.:;Ai-y{1) + · · ·) 
II j 

r•xeP = (1co>*BIA + L"Y<o>* Be9(1).+ ···) 
(2.3.6) 

II 

II j 

where use h.~ been made of the fact that for any coo function f on U, r• f is given 
by, f o "Y(o) + T "£ -y{,011 O.:;j o "Y(o) + .. · . On the other hand, we have, 
(2.3.7) 

.Br•i = h[o)1 + 1t2)
1 

+ .. ·) + ("Y[t) + "Yts) + · · ·) 

+ r (QY(r[o)
1 

+1l2)
1 

+ .. ·) + ("Yh)
1 

+,7ls/ + · · ·) + f3("Yl1) + "Y[s) + · · · )) 

D-f,.()IA (./A jJ ) (·p I /J I ) = Y(o) + 9(2) + .. · + 9(1) + 9(3) + .. · . 

(
/ 'JI. I p I ) ( 1J I ' I' I ) p' ( p . p >) + r \9(o) + 9(2) + · .. +ex 9(1) + 9(s) + .. · + 9(o) + 9(2) + .. · · 

If the definition of the superdifferential equation is given without the evaluation 
morphism i.m front of it, these local-coordinate expressions yield two separate sys
tems of equiiltions; namely, 

rtD/ = "Y(o/ Ai, 

(2.3.8) r~1) =I; reo>" A~ 9(1)• 
II 

and, 

v 

(2.3.9) rl1lr + Pr[1) = L ?<o> • o.:;A i1{1), 
j ·' 

···=···, 

II 

···= ... 

" I+ /J "'"' *B!J v 9(o) 9(o) = Lt "Y(o) . v 9(o) • 
II 

0:9(1/ = L"Y(o)"'O.:;B"1{1), 

j 

It is intuitively clear from these expressions that a unique solution exists to the 
first set of equations: The first equation in (2.3.8) is classical. Its unique solution, 
"Y(o), may he plugged into the equation right in front of it to determine uniquely 
the coeffi.cieltts .!lro}· In fact, "Y(o) must be phigged into every single equation of the 
system. The Ilellt equation to solve is the second on the right in order to determine 
uniquely theg(I)'s. Then go to the equatiori on the left to determine the "Yh)'s in 

terms of the 9~) 's. It is clear that this "shoe-lace" manner of solving the first set 
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completely determines the coefficients of the flow in a unique fashion. Now, the 
second set of equations arises from the coefficients of r. Since the flow coefficients 
are already determined, the second set must be thought of as identities that ought to 
be true among the coefficients of the given superfield. If no restrictions are imposed 
on the superfields to be integrated, the second set of equations should not be there 
at all. The way to do this is precisely by formulating the differential equation of the 
superfield X with the evaluation morphism in it, so that the equality {2.3.1) really 
means a. congruence (mod T)i but this is precisely what Eq. (2.2.4) says. We shall 
see in Theorem 3.6 below precisely under what circumstances the superdifferential 
equation can be posed without the ev-map. . 

2.4 On the choice of the integrating model. Note that once the. ev-map is 
made part oft he definition, the system of equations obtained from the model D, and 
"that obtained from the model D + r D' are exactly the sa.me. This can be readily 
seen, either from the fact that evlt=to r = 0, or from the coordinate expressions 

above. (Note that the system (2.3.8) obtained from the full derivation D, is exactly 
the same as the one obtained from Bt + 8.,. ). 

Now, one may argue that if s6me ·pair of homogeneous fields, Do, and D 1 , is 
chosen as model for the integration of all supervector fields, they must form a 
Lie superalgebra. In fact, Do, and b 1 must generate the Lie superalgebra of left 
invariant supervector fields on a (1,1)-dimensional Lie supergroup. Iffurthermore, 
the integration theory of supervector fields is required to reproduce the coo theory 
under the canonical morphism AM -+ C]J, the underlying Lie group must be 1R with 
its additive structure. It is well known (and easy to see) that up to isomorphism 

... -----there are only three (1,_1)-dimensional Lie supera1gebras; labeling them with j = 1, 
2, and 3, their structure may be displayed as follc)ws-(IDultiplyibg-Do-by-a·constant 
if necessary, <me may assume that a= 1, or b = 1 in (1.4)): 

and, .. ,.:,'.· 

To realize Dn, and "Ih as supervector fields satisfying these commutation relations- ~.,., 
·.·on the (1, I)-dimensional Lie supergroup, local coordinates {t, r} may be chosen in .. · 

such a ~ar that, 

(2.4.1) Do= Ot + ar8.,., and, 

. where a and b are real constants satisfying a b = 0. {If the constraint on Do, 
and Dt, to generate one of the Lie superalgebras above is not imposed, a, and b 
would be arbitrary smooth functions oft). By formal exponentiation of the Lie 
superalgebra elements one obtains formally some 'Lie supergroup elements' from 
which the supergroup, 9peration may be. obtained.- Now, for the sake of clarity we . -~--
shall state first the~e:Jq>licit _operations, J.lj:IR111 x JR111 :--+ IR*;~(f=J,. 2, im~ 3) '"•';-, .. 

_.that endow :n:t111_ ~_§_;~ ~~e_s11pergroup structure (Prop. 2.4.1 below), and recover c .. " - '. 

a posteriori the corresponding left invariant supervector :fields (§5-below). ·:·Thus, , ':'' 
we have the iilllowing result whose proof is a straightforward verific_a.tion using the .. · _,,_ -
techniques of [lJ: - ----------------

2.4.1 PropositiOn. Let {t,r} be the standard supercoordinate s~m on nVI1 __ 

(i.e., t .is the linear functionaiJR-+ :R dual to the basis element 1- E JR,-and r is- the 

----------- -· '' --------- - -------- ·--·--------- ------
._ --------~-·----------~ -- --

--··--------------
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generator of /\(IR t)• rdual fo t• ). There are three different supergroup structures 
on JR.lll whose composition morphisms, J.'j:Rlll X JR.lll-+ JR.lll, (j = 1, 2, 3), are 
respectively given by the following superalgebra maps: 

I 

{ 

(pt*t+p2'"t,pt'"r+p2*r); i= 1 

(I'J"'t,pj"r)= (Pt'"t+p/t+r~·r P2'"r,pt'"r+p2'"r); i=2 
(p1*t+P2*t,eP~ 1pt*r+p2'"r); i=3, 

(2.4.2) 

where p1, and p2 are the projection morphisms ofJR.lll x JR111 into their factors. In 
all cases, the identity IllDrpllism is given by evl1:o, and the invertion superdiffeo
morphism a: JR.lll -+ ]illi is given by, 

(2.4.3) ( 
,. .., ) { ( -t, -r); j = 1, 2, 

a· t,n· r = 
J J (-t,-e- 1r); i= 3, 

Remark. It is shown in §5 below that the homogeneous generators for the corre
sponding Lie superalgebras ofleft invariant supervector fields are given by, 

(2.4.4) { 
Ot . j = 1, 2, 

Do= . · 
Ot + ri!r J = 3, 

,and, D _ { or j = 1, 3, 
t- 'llr+r~ · 2 v vt J= . 

In what follows, it will be assumed that D ~ o1 +Or+ r D/, with, 

(2.4.5) 

3. EXISTENCE AND UNIQUENESS 
OF SOLUTIONS TO SUPEK-ODE'S 

By Batchelor's theorem, any supermanifold (M,AM) is isomorphic (although not 
canonically) to a supermanifo]d of the form (M, f(/\ E)), where ;r : E -+ M is 
a smooth vector bundle. The proof of existence and uniqueness of solutions to 
super-ODE's in a superrnanifold (M, AM) can be reduced to the same problem in 
a graded manifold of the Batchelor kind. This is a consequence of the following, 

3.1 Lemma. Let u : (M.AM}-+ (N, AN) be a supermanifold isomorphism. Let X 
be a supervector field on (.M, .AM) and Jet Vx be the maximal domain of definition ' 
of soine solution, f : Vx -+ (M, AM), to the ODE defined by X 

- I 
(3.1.1) eujt£;., o Do r• = evlt=to of* oX. 

Let tT.X = (u-1Y oXoa* be the supervector field on (N,AN) induced by u 
and X, and let p1, and PJ be the projections of the product JR111 x M onto their 
corresponding factors. fieu, uoro(p1 x fT- 1 6 P2) is a solution to the ODE defined 
by u.X, and its domain efdelinition, u(Vx), is maximal. Furthermore, iff is a 
unique solution satisljrinx(2.2.6), then uofo(pt x u-1 o p2 ) is also a unique solution 
satisljring a similar condition for superfunctions in AN. 

- - i I Proof. We shall write iJM, and DN, for the lifts of D to JR11 x (M,AM), and 
JR111 x (N,AN), respectively: The fact that u of o (Pl x u-1 o P2) is a solution to 
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the equation defined by u.X, is a consequence of the following equalities: 

evlt=to 0 jjN 0 (plX0'-1 0 P2)* 0 r· 0 q* 

= evit=to o (P1 X q-1 o pz)* o jjM of* o q* 

= {0'-1 r o evlt=to o jjM of* o q* 

= (u-1 )* o evlt=to of* oX o q* 

= evit=to 0 (Pl X (1'-1 
0 pz)* 0 r· 0 q* 0 (0'- 1)* 0 X 0 q* 

= evit=to 0 (P1 X (1'-l 0 P2}~ 0 r· 0 q* 0 (O'.X), 

where_ the following facts have been used: 

jjN o {.Pl X q:-l o p2)* = (p1 X 0'-l o P2)* o jjM, 

evlt=to o {pt X 0'-l o pz)* = (0'-
1)* o evlt=to· 

11 

The maximality of the domain can be easily deduced arguing by contradiction, and 
using the facts that u is an 1som.orphism, and'that Vx was assumed to be maximal. 
The uniqueness part of the statement. is proved similarly 0 

Remark. This lemma implies that if we know how to integrate ODE's in Batchelor 
supermanifolds, then we also know how to integrate them in any supermanifold. 
Moreover, the non-canonicitY of the Batchelor isomorphism is not a problem: Let 
us suppose that O'i :(M,.A.u)- (M,f(;\Ei)), i = 1,2·;-·are two isomorphisms and 

· ---that-Xis a._super.veetor fteld __ on_(A{,A,M)·_ 'I'_h_~n, the supervector fields (qt).X 
and {O'z).X are related by the isomorphism (1'2 o (qt)-r;nence;-oy-tlielemma-;-their~~-----~-:.... ... 
integrals are also related, and once the uniqueness question 1s settled ( cf. 3.2, and 
3.5 below), they will definethe same solution in (M, AM). 

From now on we shall ag;um.e that (M,AM) = (M, f(/\ E)), where 1r ·: E-;. M 
is a smooth vector bundle. For the sake of simplicity, we shall occasionally write 
M for the pair (M,.AM)· Let X E 'VerAM(M) be asupervector field, ·and assume 
f is a morphism, V.x -+ .M, satisfying (2.2.4), and (2.2.5). As we pointed it out 
in the introduction, the fact that r·' and evlt=t are morphismS ofsup-eralgebras~--

. 0 . . - ... 

makes it possible to split the differential equation (2.~.4) into two equations: 

(3.1.1) 
· ev!~;o ~Do of*= ev!t=to o_f* o X 0 , 

•. c~vl,;t oD1 ol'* ~-~v!t-t• o r• o X1, 
< 04 ••• 

0 ' .- ···.-:--=·~ ._: !"<":l:·. ::- 0 -. ~ ..... 

and;· 

- . 
' . 

. wher~, X= XoA·~X~land D.= Do +.D1, are the ~~rr~~po~ding z;-decompQ&iti~ris~- .. ::;.~:_:---~---. 
of ;x, a_Dd D. :.w~"-m~ ~that Do, and D1 are ~he generators of.the-lef~~-:-:.!Lc. _._·. · 
invariant supe~~~ct<X fields on Rlllfor one of the Lie supergroup __ structures listed • ·· •· .. · 
in Propositio~ ~~~-L Due~ the first observation made in'2.4, the uite~al flo'Wr. · -
only depends _on_~he congruimee class of Do, and D1, modulo r; whence, only on --,..,.,- ------~ -- ---------"-
8t, and a~, resPectively.. .- --· - -----

Now, for the proof of the existence and u~iqueness theorem we shall follow the .. 
methods of [7]: Let X be the supervector field on Vx defined by the conditions, -

----~-
----~-~-----

_____ _:;_:.~---·~· -· -
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X op1* = 0 and X op2 • = p2 • oX. Since p2 • is monic, it is easy to see that the map 
X ~-+ X is monic. We shall make use of the Type 1 structure in our first few results, 
but only to apply the main result of [7] .(Proposition 3.2), and to find explicitly 
the integral-flow in terms of an auxiliary Type 1-R*-action, <I> (see Theorem 3.5 
below). Once this is done, the question of whether or not the integral flow defines 
a Lie supergroup action can be stated as in .Theorem 3.6 below, without having to 
compromise with any specific choice. 

3.2 Proposition. LetX0 be an even supervector field on (M,AM) = (M, r(A E)), 
and let the notation be as in 2.3 above. There exists a unique solution <I>: Vx

0 
-t M, 

to the equa~ion, ,..........___ 
at+ aT 0 <)* = <)'" oXo, 

satisfying the initial condition, ev lt=O o <)• = id. Furthermore, the solution <I> 
satisfies the following properties: 

(1) <I>* o X0 = Xo o <I>*. 
(2) <I> defines a Type 1-IR*-action. 

Proof. This is simply Theorem 3 of [7]. The only subtle point is this: According 
to [7}, <I> -defines a (local) R-action. The statement that it defines in fact a Type 
1-JR*-action follows easily because aT o <fl* i= 0 0 

Remark. The proof of this result in [7] was carried out with the help of a linear 
connection defined on the bundle E. The connection was only used to have man
ageable e:t..']>ressions of supervector fields as derivations. Its role is unessential; in 
fact, the solution found turns out to be independent of the linear connection, as 
expected (e.g., one may argue by uniqueness). On the other hand, it is interesting 
to note that an essential use of the underlying coo flow of X is made in [7] in order 
to determine the maximal domain of the solution. Now, if one proceeds naively 
integrating the local expressions (2.3.8) one can easily get convinced that, up to 
first order in the odd variables, there will b1e a unique solution r of (3.1.1), such 
that r = 1'(0) is the smooth flow on the coordinate neighborhood u generated by 

X= l:Aio..,;, and 9(l) is the parallel transport on E with respect to a connection 
'\1 uniquely determined by the order-one coefficients of the odd part of the field X. 
In fact, one may think oft 1-+ Y(l)(t) as a curve on End E, which in view of the ini-· 
tial condition (2.2.6) goes through the identity at t = 0. But then, the differential 
equation for g(l) in (2.3.8) is simply the equation that defines parallel transport on 
E along 1'(o)• with respect t~ the connection form whose matrix is (Bt). 

We shall n~w turn to the integration of odd supervector fields. 

3.3 Lemma. Let X1 be be an odd supervector field in (M,AM)· Let X 0 E 
Ver.AM(M) be even, and let 4>: V -t M = (M, AM) be its unique integral Row 
as in Proposition 3.2 (V C ]Rlll X M). Let Pt. and p2 be the projections of the 
product ]Rlll X M onto their corresponding factors, and Jet a:R111 -JR* be the 
invmion superdilfeomorphism on the. Type 1 Lie supergroup structure ofJR.lJl ( cf. 
(2.4.5) above). Deline, 

i 
<I>a = (Pl X <I>) o (a o Pl X P2): V -tV. 
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Then, 

(1) 4la is a superdiffeomorpbism whose inverse is. 4la - 1 = p1 x ~
(2) Bt o 4la - 1* o X1 o 4la* = 4la - 1• o [Xo,Xl] o 4la *. 
(3) The integral flow of~a -l* o X1 o 4la * is p: W- V, with 

• • ( • ) ( • "" -1* x- "" *) P = 11"2 + 11"1 T .. 11"2 0 '!!a 0 1 0 '!!a j 

13 

W C JRlll x V, and 71"1, and 11"2 the projections ofJR111 XV into their corr~sponding 
·factors. 

Proof The first assertion follows from the fact that 4l is an action: Indeed ( cf. [1]), 

(P1 X 4lo(aopl Xp2)) tl(PJ. X~) =pl X ~o (a_c:>Pl X~) 
= Pl x ~ o (Co x P2) = Pl x P2. 

The second assertion requires a little work to establish the following facts: 

(a) Bt o ~ x 4l).* = (Pl x 4l)*(Bt + Xo), i.e., (Pl x 4l) is the integral flow of 
lit + X0 , with no need of the ev-morphism ( cf. Proposition 3.2 ·above). 

(b) lit oX1 = X1 o Bt. . 
(c) (a o Pl 'X P2)* o Xo = Xo o (a: o Pl x P2t 
(d) (a o P1 X p2)* o ~ = -~ o (~X o Pl X P2)*. 

· Now, these may·be proved by showing that both sides of-the stated_equaliti~ yiEl}Q ____ ~-~------ '.·_:' · 
the same answer when applied to an arbitrary element of the form P1 * f p2*g, with --------- ----~---

!a superfunction in JRlll, and g a superfunction in (M,AM)- Thus, for (a), we 
have, 

~ o (Pl X 4l )* (Pl * f P2 *g) = Bt (Pl • f ~·g) ._ 
= {p1*(8tf)) (~*g)+ (p1* f)(~ o 4l*g) 

= ~*(8tf)) (4l*g) + (p1* /) (~* o Xog).c 

On the other hand, 

. - +(Pl x_~)*pl*f(p2*Xog) 

: ·- :;·: =·(pi*(od)) (~*g)+'(pi*f).(~: o-_X6g)::~ ---· ~:--.--- ~,-,____:~----
" •- • - •• ·~ .'~:>· ' '-i _;.~ ;-. •!-F •. >.: ,' 

··-··.--.: .. 

Similarly, for (b): ____ ~c-- _ ,_:_ -,_ .· 

.. · .. ~ 
. ' 

§', o Xt(Pl• f P2*g) = (P1*0i(fo- ft r)) P2 * X1 g = X1 o Bt(p1* f P2* g),- ---:-------- - ----_-":__ - --

where we have written f = fo + ftr, with fo, anf ft smooth functions on JR. 
The proof of (c) is -equally easy, and the proof of (d) comes down to show that,--------

·---~-· ""··--~---·-~-----~·------·--· --- -·- ----~-.- --·---·--·-----
" ___ _ 

! 

I 
i 
I 
I 
r 

I 
I 
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fJ1a* J = -a*f),J, for any superfunction in JR111 .. But this follows from the fact that 
llt*t = -4, and a• r = -1·. Indeed, 

8ta•I = o1(!0'o a-ft oar) 

=-fo 0 a+ If 0 aT= -a*(fb +If r). 

With (a)-( d) settled, the second statement is a straightforward computation: 

- 1* - - -Ot O· ~ .. - o X 1 o ~a • = Ot o (PI X <I>)* o X I o <I> 0' * 

=(PI x <I>)* o ~ o X1 o <I>Q' • +(PI x <I>)* o Xo o XI o <I>Q' • 

=~Q'-l*oX0 o-Xtocl}Q'*+<I>Q'-l*o XtoBto(aopl Xp2)*o <I>* 

~ -1• -v x- "' • "' -1* x- ( )* ;r ;o.• ="a o AO o 1 o "a - ':1.'0' o I o a o PI X P2 o Vt o ':1.' 

= 4-a -t• o X0 o ito c)Q' •- <I>Q' -l* o XI o (a o PI X P2)* o <I>* o Xo 
l* - - 1* - -= <I>or- 0 Xo 0 xl 0 <I>c:- cl}Q'- 0 XI 0 (a 0 PI X P2)* 0 Xo 0 <I>* 

=c) Ill -J* o (xo o X1- X1 o Xo): o <I>Q' •. 

Finally, tihe tliird assertion is just a straightforward check: On the one hand, 

(i+b'r) o p* = 1r:/~a-1 • X1<I>Q' • + (1r1*r) ( 1r2 *<I>Q' -I*[Xo, XI] <I>Q' •). 

On the other hand, 
I. 

• & -l·x- ;o,.. *.1'. -t•x- ;o,. .' I( • )(;o,. -I'"[x XJ;o,. •) P D'\l""' 1 '\l"ll' =1r2 '\l"ll' I ':1.'0' !+2 'lrt T ':l'a Ir 1 ':l'a , 

and il is dl':ar from both equations that the right hand sides. are congruent (mod 
:r1"'r) 0 

3.4 Corollary. Let the hypotheses be as in the previous lemma. The necessary 
and sadlicient conditions for having 

(o-;+8r)o p* = p* o (<I>Q' -t• XI <I>Q'*), 

withoot 4he ev-morpbism acting from the left are, 

and, 

Proof. The right hand sides of the two equations in the proof of the previous lemma 
ale equal, if and only if, 

.... -r• o [Xo,XI) o cJQ'* = ~ cJQ'-t• o [Xt.Xt) o cl)a*· 

Since both sides of this equation are homogeneous elements of different parity, 
since +a", and t>a - 1

" are isomorphisms, and since X t-t X is monic, the assertion 
follows fJ . I 

I 
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3.5 Theorem. Let X be a supervector field on (M, AM), and let X0 , and X1 be 
its homogenous components. Let ~: V -+ ..M = { M, AM) be tbe unique integr~ 
flow of Xo as in Proposition 3.2 (V C JR111 x M). Let ~a be as in Lemma 3.3, and 
let p: W -+ V (W C Jll111 x V) be the unique integral flow of <I> a -t• o X 1 o ~a*. 
Then, there is a unique integral flow, r, of X satisfying the initial condition evit=O 
0 r· = id. In fact, 

r• = 7)* o p*. o ~·, 

where 7): V-+ W is the unique morphism defined by the conditions, 

for all superfunctions, fin JRlll, and g in V .. 

Proof Note that, 

~ o <I> a= <P.o (P1X ~ o (a o Pt-X-.P2)) =<Po (Co X P2) ~ P2, 

because ~is an JR111-action. Therefore, <Pa *<I>* = p2*, and hence, 

• *"'* • ( •n.• + ( • ) ( •n. -t•x- *)) 7) P '*' = 7) 1r2 '*' 11"1 r . 11"2 '*'a 1 P2 

= 7)* ( 1r2*<l>* + (1rt*r)(1r2*~a -l* P2 * Xt)) 

= 7)* (1r2*<t>* + (1r1*r) (1r2·~· X:t)) 

=<I>*+ (Pt*r) <I>* Xt, -.. 
- ---- ------------ . -

where use has been made of <I>a -l*p2* = (P2 o ~~.:: 1i =<I>-* T~.f:Le~a 3.3-(1)). 
Now, on the one hand wehave, . 

----(Ot +or) of*= <I>* o (Xo +XI)+ (p1*r)( <P* o Xo o Xt)-

Whereas, 

. · r•o(Xo_+XI)=<P*o (Xo+Xt)+{Pt*r)(~* o Xt o(Xo+Xt)). 

It is now clear that the right hand sides of both equations ~e ~ongruent. (mod 
PJ."T) 0 

3.6 Theorem. Let X be a supervector field on (M, AM), and let Xo, and X1 be 
its homogenous components. Letj = 1, 2, and, 3, label the different Lie supergroup 
structures ofJR111 as in Prop. 2.4.1. Then, the following assertions are equivalent: 

(1) X0 , and.X1 ·ge~erateJhe following (1, l)~dimen,sional Lie supe~alg~br~;- -
.. .. . .. , . ;; . :}!/~~; -· ;'~:=r!. , ., ·:. "· •. ., . . , ~ ... · .. ~ ·. . . . . . '(~ . . . 

.[Xo,Xt] =-~:iXt; . and, [X1,X1]= cSj2 Xo. (i = 1, 2,3) .. 
•; ~ :, .... ' 

- (2) The fntegrBl fl~r of X satisfies· the equation -. -- ·- - - - ·:·: ..,.-- --- --------.. (ot +or + D/) o r• = r• o X,. 
-' 

without the ef1-morphism (D/ as in (2.4.5)). 
(3) The integaiflowf o{X defines a Typej-JRlll-action on (M,:.AM)· 

·-···- -- --·~ 

' 

- ~----~--------------- -----
-~----

---~-

.!. 

- - ------ ------ ~ 
----- ---- ~-~~~-
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I 

· Proof. The :.erlto the lll'.!lt equation in the pJ;oof of Theorem 3.5 above implies 
that, 

-- i 

It then folloWldhat, (a,+ aT + D/) 0 r· is actually equal to (and not just congruent 
(mod PI• r) to) f" o (Xo +X 1 ), if and only, if, 

(jl•., Xon X1 = ~· o Xt o Xo- Dj,a~· o Xt, and, 

4t• D X1 o X1 = Dj,2 ~* o Xo,! · 

and the equiianm:e between (1), and (2) follows. 

To prove the equivalence between (1) and (3). we shall need the specific Lie super
group structmes Dl1R.111 (cf. Prop. 2.4.1 above). Let {t1 , t2, Tt, r 2} be the graded 
coordinates !!ll'.lfll x.Rlll and {t, r} those ofJR111 • The map J.lj can be conveniently 
expressed in teJ:IIlliS of Pl as follows: 

for all f E A:.tlt(ll!.). 

Now, let the11.otation be as in Theorem 3.5 above. The integral flow f of X defines 
a Type j JRifl-actinn on M = (M, AM) iff the following diagram commutes: 

v r 
~M. 

We shall then med the fOllowing formula: 

(Pj 0 < 1r1 x PIG 1r2) X P2 9' 1r2 r = (Pl 0 ( 1rt x Pl 0 1r2) x P2 ° 1r2 r 
+ Dj,2 Tt T2 (Pl 0 {1rt X Pl 0 1r2) X P2 0 1r2). 0 a, 
+ Dja ( e1~ - 1) TJ (~1 0 ( 1rt X Pl 0 1r2) X P2 0 r2) ... 0 aT I 

. 

(a) 

where we hale •ritlen :Ft•r = Ttr 1r2• PI• t =r t2, and, 1r2• Pt•r = ~· This may be 
proved in a Stzaigtiforward manner by the methods of Lemma 3.3. 

I 
Since ~ is a 'J)rpe ll action, the diagram above commutes when ~ is placed instead 
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off, and Pi= Jli· Therefore, on the one hand we obtain, 

(JJj tl ( ?!'1 X PI 0 11"2) X P2 0 ?l"z). r· = 

= (Jlj o (1ri x PI o 7rz) x P2 o '11'2) • (<P" +(PI "r)(<P" XI)) 

= ( ~ o (PI o (1r1 X PI o 7rz) X P2 o 11'z) r 
+ ((rrt X P1 o 11'2fJJ1"r) ( ~ o (J.Lt o (11't X Pl o ir2) x pz o rr2) r o X1 

+ hj21'11'2 (/.11 o ( lrt X P1 o 11'2) X P2 o 11'2r Bt<P" 

+ hj31'l{e
1

l -l){JJ1 o (11'1 X Pl o 11'z) X P2 ~ 1l'z)" ~· X1 

= (~o(?rt x ~ o 11'z))" + (r1 + rz) (<Po (11't x <Po 1rz))" o X1 

+ Dj3 r1 (e
1

l -1)(~ o _(1rt x ~ o 11'z))" o Xt 

+ Djz1't1'2 (ii? o (11't x <Po 11'2))" o Xo. 

On the other hand, 

17 

(b) 

Thus, ererything comes down to compare <Po (11'1 x r o ~2 ), with <Po (11't x <Po 11'z). 
Now we daim that, - · 

---··---·-----· ---~ -.----···-·--··----'-·--- --

(<P o(?r1 )( r 0 7rz))" = (~ 0 (7rt X~ 0 11'2)) .. + 1'z( 11't-X <Pa - 1 
0 ;;r Xt <P~~-{d) 

To prove this we may again. assume that <P* f = l:i Pt* fi pz • Yi. (By completen~S 
of the product sheaf on V, if the result is true for this particular form of <P* f, the 
result mll be true in general). Now, ·~-

( <P 0 ( 71'1 X r ~ 11'2))* f =:= .2.) 11'1 ~ r 0 '11'2 t (Pt. fi P2. 9i) 

= 'E 11'1° fi((~ 0 11'2i9i + 7"2 (<P ~ 71'z)* xl-gi) 

· = (1r1 'x <Po 11'2)*(LP1• fi P2 •gi) + r2 (E 1r1* /;(<Po ?rz)* X1 9i), 
i - i 

where ~have, put,_ k=.(fi)o ~afi)1 ~ ••. be~ause we· permuted plaeeS with: the. odd· ·;; '-:;;-
.variable -rz: Note that,- • · - . •. ·;"··~--~-- , 

because, 

-. *<P*X- . - --~4; ~~·x • '~:- ~-
_;:~:~;~'!:f:::;;~.::-}g~ = .~2 _ a _ _ . _1 P2 ~i:__,_-:--- _ 

·-:...~-

- . 
··------- .. -- . 

·--~···-.-. -,-~ 

--- -~----------

. ·.·· · .. -- ·.::_ . .,.,_.:, .·::·. ;:.-: ·:.-:-;:: "-;"·.- .. 
.. :"-,. 

~ -- ----

\"' 
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Therefore, 

(<t>o(11'1 x ro7f2))*J= (<t>o(11'1 x <l>o11'2)ft 

+ 1"2 ( (11'1 X if> a ~ 1 o 11'2)* l)P1* ]; X1P2 • g;)) 
i 

= (c) o <11'1 x c),o 11'¥>r 1 

+r2((11'1 X <I>a - 1 011'2)* 2_)X1Pl* /; P2* g;)), 
i 

where we have used the f;;.ct that X1 is an odd derivation to revert from ]; to /;. 
Thus Eq. (d) above is true. In particular, the right hand side of Eq. (c) is, 

RHS of (c)= (<I> o (lf'1 X~ o 11'2))* + r2(11'1 X <I> a -
1 o 11'2)* X1<I>* 

r1 ( (<t> o (1r1 x <I> o 11'2))* x1 + r2(11'1 x 4> .. - 1 o 11'2t .X1ci>* x1). 

If we now compare this expression with the right hand side of Eq. (b), we conclude 
that the diagram (a) commutes, if and only if, 

(11'1 x <I>a - 1 o 11'2)* X1t• = (1 + Oja (et~- 1)) (4> o (11'1 x if> o 1r2)}*X1, 
and, 

(11'1 X <I> .. - 1 O'li2t X14>* x1:!::: Oj2 (4> 0 (11'1 X 4> 0 11'2))* 0 Xo. 
Equivalently, if and only if, 

X1 o ~· = (1 + Oj,a (e-t2
- 1)) <t>• o X1, and, 

(e) 

where we have used the fact that 11'1 x 4>a o 71'2 is invertible, and its inverse is 
?rl x <I>a - 1 o 11'2, and the fact that 

(<~~ o(ri X 4> o 11'2)) o {1r1 X <I>a -l o 11'2) =if>, 

(both assertions are easy to check). Note the appearance of e-t2 in the right hand 
side of the first equation. This follows from, ( 71'1 x <I> a o7!'2)* e(Pl 0 "2)• t = e( a 0 P1 ° "2r t, 

which is in turn a consequence of the definition of 4> 01 • In particular, it follows from 
these equations that, 

Oj2 <I>* o Xo = (1 + Oj,a (e-t~- 1)) 4>* o Xt o X1. 

For j = 1, and 3 this equallion says that 4>* o X1 o X 1 = 0, and since 4>* is monic, 
[Xl>Xl);:: 2 Xi o X1 = 0. Forj = 2, the same equatibn says <I>*(2X0-[Xl> X1]) = 0. 

On the other hand, for j = 1 •. 'and 2, the first equation in (e) says that, .X1 o <I>* = 
<I>* o X1. Applying 8, on both sides, and using both, Proposition 3.2, and the 
statement (b) in the proof of Lemma 3.3, we get 

.-Y1 o 4>• o Xo =if>* b Xo o X1. 
Now the original equation may be used again in the left hand side and replace 
X1 o <I>* by if>* o X1, to finally obtain, 4>*([Xo; X1]) = 0. For j = 3 the procedure is 
exactly the same: Apply ~ an both sides, the)l use Proposition 3.2, the statement 
(b) in the proof of Lemma 3.3, and finally eqm~tion (e) again t.o substitute the value 
~~or 0 · 
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Example. Let 0( M) be the sheaf of differentiable forms on the differentiable man
ifold M of dimensioo m. The pair (M, O(M)) is a supermanifold of dimension 
(m, m). Some distinguished supervector fields are: 

(1) The Lie derivative, Cx, with respect a vector field X in M, 
(2) The contraction, ix, with respect a vector field X, and, 
(3) The exterior deriViltive, d. 

Now, the integral flow of Cx is the pull-b~ck, <I>*, of the integral flow of X. The 
integral :flow of ix is given by the map r· = id* + T ix. Finally, the integral flow 
of d is given by the map f• = id* + T d. It is easy to construct a supervector 

. field that does not define any type of JR111 action. For example, X1 = d + ix. 
This is so because, [X11 X1] = 2Cx. The integral flow of X1 is given by the map 
I'"' = id* + T (d + i x ). The reader can also check directly that the integral flows of 
d and ix do not commute. 

An example of supervector field defining a Type 2 ]Rl/1 action is given by the 
derivatio~, ix + d+ 2C.x. Its integral flow is r• =<I>"' o (id* + r(d + ix )), where <I>* 
is the integral flow of the vector field 2X. 

For an example of a supervector field defining a Type 3 JR11l action let I d be 
the identity map of the cotangent bundle. I d can be viewed as a vector-valued 
differential form· of degree 1. The contraction of this form with differential forms"
defines an algebraic derivation of degree 0; the latter shall be denoted by iu. Note 
that if fJ(p) is a differential form of degree p th~n iu(fJ(F)) = pfJ(p)· The integral 
:flqw of iu is given by <I>" fJr;.) = ePt fJ(p)· Now, consider the derivation D = iu+ ix. 
This is of type 3 because [ix, ild] = ix. The associated derivation <I> a -l"' o X1 o<I>a • 

defined in Lemma 3.3 is just e-tix. By Theorem 3.5, the integral flow of Dis given 
·by r• fJ(pf= ePt(fJ(i>)+re-tixfJ(p-j):-----· ----------- -----

Our next result states precisely under w.hat conditions the integral :flows of two 
sU:pervector fields commnt.e. In order to keep the notation simple, the proof is given 
only for complete super-Vector· fields. The general case considers the intersection of 
the domains of the flows and it is handled similarly. Note that in the ceo category, 

·the statement that the Bows rp and tf; (of Xo, and Yo, resp.) coinrnute is that, for 
allt1, and all t2, ~ . 

.. - ·rfit~ 0 tPt2 = t/Jt2 ° <Ptl• . 

Thus, the statement for the Zrgraded category ha8 to use the twist morphism, 
T: ]Rl/1 x ]Rlll -rJR111 x JRlfl, defined by the conditions: 

P1"T'=p2•,_ and·,· P2*T*=p1*-,; 
. . 

·:' .... 

where, p1, and P2 are the projectionsofthe product R~ll x JR11!:. _ . 

3.7 Prop~siti~n. Let X-~ Xo+.X~,' ~d Y = Y~ + Yt:·be $~pervectoi:fields 'on:.~;.:'~~\~.---·,.c,'~"'~-,_"--'"--"--·'~c:.__-"~ 
• ·.\· ' • ••• • • • ' J,, -: ••• ,_;· ·: .. ,j ' ,.... . ' . . ·' .... . ' ' ... ., .. . _,._ . ..; ' ,. :,.;, "" ~-;.:. : '-~= ~- w •• 

M = ( M, AM),. and let J',. and~ :~e--J~efr~ co~re~ponding integra,J f1ow_s. ·~T_h~n, ·J;''; ;;, :~;"C;.'' -: ' and e commute, i.e., .... . . ... ··:·. _ .... ,,.... - ..... ,,. . . ' ,. - .. . . .. ... __ , .... _ ... 
. . ,, __ . 

{:;;;r~~:~)i(;~(~i·~'~;-~o1f;):;;~~;l) 
JRlll X JRlll X M JRlJl X M 

1fl xeo 1f21 
]Rlll X ,M ---·-·-- -- --- --· -· [' 

----+ 

.,. --·--· ,--·· 
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commutes, if and only if, 

[Xo, Y] = 0 and, [X1, Y] = 0. 

Proof The methods of the proof are the same as those of Theorem 3.6. We shall 
write, r* = !J'" + T1 !J" Xt, and e· = q;• + T1 q;• Yt, where both, ci>, and 'IIi-being 
the flows of Xo, and Yo, respectively-define Type 1 supergroup actions of IR111 in 
M. Thus, on the one hand one finds (cf. Eq. (d) in Thm. 3.6), 

( 7r1 xe 0 7r2)*f* = (ci> 0 ( 7r1 X 'IIi 0 7r2))* + r2( 7r1 X w a -l 0 7r2)*Y1 <I>* 

+ Tt (f<t>o (7ri x 'IIi o 1r2))* + r2(1r1 x 'Ilia - 1 o 1r2)*Y1 <I>* )x1. 

On the other hand, 

(11"t xr 0 r2)*a• = (w 0 ( 7rt X <I> 0 11"2))* + T2( 7rt X <I> a -
1 

0 7r2t Xt 'IIi* 

· + 1i ((w o (2r1 x <I> o 1r2))'" + r2(1r1 x <I> a-to 1r2)* Xt 'IIi* )Yt. 

Thus, acting on both sides of this equation with (To ( 1r1 x op1 o 1r2) x p2 o 1r2)*, we 
simply get r 1 , and T2 interchanged. Thus, the diagram in the statement commutes, 
if and only if, the following equations are satisfied: 

~ o (1r1 X W o 1r2) = W o (7rt X <1> o 1r2) 

(:rt x "ta - 1 o 1r2)*Y1 <I>* = (w o ( 1r1 x ci> o 1r2))*Y1 

(i) 0 (rt X \II 0 7r2))" x1 = (7r1 X <I>a -l 0 7r2)* Xt w* 

( ll'1 X i'a -l 0 7r2)*Yt <I>* Xt = -( 7rt X ci>a -l 0 7r2)* X 1 w*Yt. 

where the minus sig.n in the last equation is !the result of writing r 2r1 = -r1 r2. We 
now substitute the first. equation in the second and third, and the resulting three in 
the last one. We finally act on such equations from the left with, (1r1 X'lliao7r2)*, and 
( 7rt x 'IIi 01 o r2)*, appropriately, and end up with the following system of equivalent 
equations, 

ci>o(llft X ito 1r2) = \lfo(7rt X <I> o 1r2), 

iJ* 1) y1 = y1 0 <I>*, 

XtoYt=-YtoXt, 

qi* 0 Xt = Xt 0 1li*, 

and these equations hold true 
1
if and only if·, 

[Xo, Yo]= 0, 

[Xo,~Y1] = 0, 

[Xt, Yt) = 0, 

[X1, Yo]= 0. 

(Note that theS"e equations are not equivalent to [X, Y] = 0) 0 

Remark. In the C00-category there exists a bijection between the set VerC00 (M), 
of complete vcdOi' fields on a smooth manifold M, an'd the subset, 

I 

Hom(C00 (M),C00(1R x M))8
, 

of algebra maps, ~·:C00(M)-+ C00 (IR X M), satisfying 

(I) <Po* = id, and, 
(2) ~t. • o ci>12 • = ~t1+t2 •, for all t1, and t2 in IR, 
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where, <I>/= evlt o <I>* E Aut C00 (M), for each t E R 

In order to find a similar characterization in the ~-graded category, note first 
Jllll' 

that iff E ?iom(AM(M),ARll'xM(l!hM)) (where AR'''xM denotes the struc-
ture sheafofJR.1I1 x (M,AM)), then, 

r· J =<I>* J + r Z1 /, 

for any j E AM(M). It is easy to verify that Z1 must be an odd IR-Iinear map 
Z1: AM(M)-+ A:B_,ioxM(JR X M), satisfying;· 

Zt(fg) = Zt(f) <P*(g) + ( -l)lfi<P*(f) Zt(g), 

for all/, and g inAM(M), and furthermore, that <P E 1iom(AM(M),A:s.'i"xM(IR x 
M)). Our last result in this section says that there is a similar correspondence in 
the Z2-graded category. The statement and its proof are simple rephrasings of the 
proof of Theorem 3.5, and the previous lemmas. (We are indebted to Prof. J. 
Munoz Masque, for bringing this point to our attention). · -

3.8 Proposition. Let M = (M,AM) be a supermanifold, and let A:~.,ltxM 1 and 
AE'i"xM• be the structure sheaves ofthesupermanifoldsJRlll xM, andlRljO xM, re
spectively. Tlrere erists a one-to-one correspondence between the set Ver AM(M), 
of complete supervector .fields on (M,AM ), and the subset, 

:s.lll 
· 1iom(AM(M), ARtitxM(IR X M)) , 

of superaJgebra maps f"', such- that, .•. 

(1) fo"=evjt,;,
0

of"=id., "·· 
·· (2)···ne homomorphism- <I>"' E-1iom(AM(M), AR'i"x-M(IR K.Y))_~§Q~j~t!:_c!_!;o 

r, de.fines an JR-action on M, and naturally extends to an JR111-action. ---~-~-----~~-·-·· -"--
(3) The odd JR-linear map Zl: AM(M)- AJllliDxM(IR X M).associated tor is 

· such that, 
<P* o Z1 E P2"'DerAM(M); · 

that is, <I>* o Z1 comes from an odd superyector .field on ( M, Aw). 

(Note that the third condition means that the map <I>* o X 1 , which in principle is 
just-a derivation from AM into A]lliDxM> actually defines an odd supervector fi~ld 
on (M,AM)). . 

4. INTEGRAL FLOWS AND LIE 
·. SUPERDERIVATIVES OF SUPERFORMS 

This sectionis inclu~ed for .. the sake· of completeness. Weshall proceed along the . 
lines of[lOJ and [12]. Our aim iS to·define the Lie derivative of any superl'oim~~w;c;<m .:::::?''~>--· · ' - -~:,c"''' -,c;:.,C .· 

a given &uperdomam; with respect·'tc>"any supervector field, X: ;Moreovei:Twewant·-'·?·;; ..:..;:,_~': ;-:,·,;;;;. ·•- >~:~ .. 
to relate our defuiition to the integr~.rflow f, of X; and also,- be able to'prov~ that -,Jf:":·~ ~. : -. :-:~:;;_,··:.-·,.·~.,_.~ . 
the usual algebraic characterization~ given in terms of interior multiplication and • · ·· ~- - .. .. 

_ exterior differentiation holds true: O~rguiding principle ha.El b~n-th~- faet--that'tlie · ·. .. • .. _- ·-... ~,-_,_,,,_, ... ----
algebraic formula for Lie. superdei:fvatives, also called the Cartan formula, C x w =- _______ ;::::.:..__:.:::·' ~-~-~·-· .:.~~~-
d o i(X)w + i(X) o dw; makes sense regardless of the peculiarities of the field X --~~--- ....... __ .. 
(i.e., it is not necessary that its homogeneous components satisfy [X0 ,X1] = ~j3 Xlt ~ _ _ . ____ ...... 
and (Xt,XtJ = t5j2 Xo). We-thus-start with the following: - ----- __________________ _ 

....... ·~ -~ .: . 

.. -···.-~-; -,:·-.~. 

-·---~---- -- - -- - - -----· 
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4.1 Definition. Let X be a supervector field on a superdomain (M,AM ), and let 
r be its unique integral flow satisfying the initial condition, evlt=or- = id*. Let 
w be any superform on (M,AM)· The Lie superderivative of w is the superform, 
Cxw, given by, · 

Cxw=evi oDor•w. t::::O 
4.2 Proposition. The usual relationship between Lie derivatives on forms, exte
rior differentiation, and interior multiplication, holds true in the theory of super
manifolds; namely, 

£xw = di(X)w + i(X)dw. 

Proof. It suffices to verify that both sides yield the same answer when w = J, and 
whea w = dj, for any superfunction f. Now, for w = /, we have, 

Cx I = evlt::::O 0 D 0 r* I 
= evit=O or• 0 X I 

· =X/= i(X)df, 

where use has been made of the differential equation for the flow of X, the initial 
condition, and the definition (as in [3]) of the exterior derivative on superfunctions. 

Let ns mow assume that w = df. Let d, and da, be the exterior differentiation 
operators on the supermanifolds (M, AM), and IR111, respectively. Therefore, the 
exterior differentiation operator on JRlll X (M, AM) is defined by the conditions: 

and, 

"f'" commutes with d", then means that, do r• = f* o d. Moreover, the operators 
d, and iJ commute with each other, as can be checked directly from the definitions. 
With these preliminaries in mind, one now has the following: 

Cxdf = evit=O 0 jj 0 r* df = :evlt::::O 0 jj 0 Jr• f 
= evli:O 0 J 0 D 0 r* l = d 0 evlt=O oD 0 r· f 
=do evlt=D or• oX f = d'(i(X)df), 

where· we have used the superdifferential equation, and the initial condition 0 

In the ~ase when the integral flow r defines a Lie supergroup action of JRlll in 
(M,.A'M) we can say even ~ore: 

4.3 Vroposition. Let X be a supervector field satisfying any of the conditions of 
Tlroorem 3.6, and let r be its unique integral flow satisfying the initial condition, 
evf,·=flf'" = id*. Then, fo~ any superform w, 

r"Cxw=Dor*w. 

Proof. This ~ a straightforward verification using, w = f, and w = df, for an 
arbitrary superfunction f. The only difference with 4.2 above is that Thm. 3.6 
now parantees that the superdifferential equation satisfied by r is;_i) r• = r• X 0 
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5. LEFT INVARIANT SUPERFIELDS ON ~1 1 1 

Following (1], a Lie supergroup is a supermanifold ( G, Aa), with a prefered 

underlying point, e E G, and two morphisms, 

JJ:(G,Aa) x (G,Aa) _,. (G,Aa), 
..... --- ··-· 

and, a:(G,Aa)--+ (G,Aa), 

satisfying, 

( 1) J.L o (p o (P1 X pz) X P3) = J.L o (P1 X J.L i:J (pz X P3)) , 

(2) J.L 0 (Ce X id) = id = J.L o (id X Ce), 

(3) J.L o (a X id) = Ce = J.L o (id X a). 

The left action of ( G, Aa) on itself can be expressed in terms of J.L as follows: Let 
{xi ,,8"} be a localsystem of coordinates on (G,Aa). Assume, 

*.! -r-(· * i * _; *8" *B") P. = J" P1 x ,p2 x- ;p1 ,pz · 

Then, 

with, 
and, 

This morphism is invertible, and its inverse, L - 1
, is giv~n in terms of p, and a as 

follows: write, 

Then, 

with, ........... . 

{J.L o(a o P1 x pz)} * f = 'H(pt" xi ,p2 * zl ;p1"8", Pz *8"). 

L-l*J- v( i _;. B " B").·. 
- H X1 , X"' , 2 , , 

and, L-t*o "_ ll v 1 ·- [71 • 

. :We shall illustrate the use of Lin the following examples: 

Example 5.1. L~t JRlll be considered with its multiplic~tive structure; in terms 

of the local coordinates {x,8}, 

and, *8 .. *8 + *0 * J.L = P1 X P2 Pl P2 x. 

· Let GL(Ijl) b~ JR111 with tii~ p~i~t·;·~·.:o·~~ov'ed, and structuresheafthe restric-' ~.; 
. tion of that of ~111 to lR ~ {0}. The~, GL(lll) is a Lie supergroup'( if, [1]). "'rh~: .. ·: .. -~ .. '·"", ·c~·"· 

inversion morphism is iiveir by,' , · , .. .. · _ . ,.-· · · ' .· .. 
-; -. --·--·---·--

The morphism L refered to above is given by, 

L*x = ~i:i+-OtB, -,--·and, 

-----··,--- .. ---~--- -··-- .. 

--------=~~==========·~-=-=--_ -__ .--.. --~·--.. -. 
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and its inverse is, 

L-1* - 1 ( 81 8) :t-- z-- , 
Zl Z1 

and, 

Let X= (10+ fafl)8:c+(g0 + g18) 88 , be aQ. arbitrary supervector field on (JR111)•. 

Then, X is l~l irl'Variant, if and only if, · 

It is then easy ta check that X is left invariant, if and only if it is of the form, 

with Ao, and lt real constants. Note that in this case (assuming AoAt =/; 0), 

and, 

The integral :&w of X is found as follows: First, it is easy to check that tlie map, 

is the integral flow ofthe even part X0 , satisfying 8r <I>~ = 0 (i.e., as if X1 = 0). 
As we have set'.ll., the integral flow of Xo +X 1 is given by r· = ~· + T ~· 0 X 1· It 
is then easy ta c'hed that, 

Example 5.2 .. Now consider JR:111 with the Type 2 Lie supergroup structure: In 
terms of the local coordinates. { x, 8}, 

and, 

The left mult~lication morphism L is, 

and, L * 8 = 81 + 8, 

and its inveJ!se is, 

and, -1*8 8 L =- 1 +9. 

Let X = (/0 t /J.9) ()., + (g0 + g1 8) 8e, be a supervector field on JRlll. Then, the 
condition, X = L*XL-1*, for left invariance, leads to the following: X is left 
invariant, if a.r;d en.{y if it is of the form, · 
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with .\
0

, and .;11 real constants. Note that, if >.a .\1 =J 0, 

and, 

The integral flow of X is found as in the previous example and is given by: 

and,· 

Remark. It is interesting to note that there is a Lie supergroup homomorphism 
(local isomorphism). between the Type 2 supergroup structure of JRlll, and the 
supergroup GL(1!1) of Example 5.1 above. This is. the map· W':JRlll ......,. GL(1\1), 
given in terms of local coordinates {x, B} of JRlll, and {y, e} of GL(1\1) by, 

w* y = e"'' and, 

It is a straightforward matter to check that this is the unique (locally invertible) 

morphism satisfying, 

where p. an<l fJ'l are as in the previous examples . 

Example 5.3. Finally consider JR111 with the Type 3 Lie super~oup structure: In 

terms of the l~a1~~_<:>~i~ate~- { x, Bl_,__ 

and, 

The left multiplication morphism L is, 

L*x =xi +x, and, 

and its inverse is, 

L-1* x = -x1 + x, · ,:. and, 

Let X= (!
0
+/t(J) 8, +(go+ g1B) 88 , be a supervector field on JR

1
I
1
. The condition, 

X= L•XL-:1*, leads this time tothe following: X is left invariant, if and only if 
ihs ofthelorm,-;:. . .. -- . . .. '···""' ' 

t·: ~~ .)C.=:;=;:Ao(8,:;t-}8B)+>.t88,,; 

with >.o, ~d .\
1 

real constanis: N ol~ ~h?-t,~- · · ·. " 

-;.--····- . _.._ ____ _ 

.• "·t··,-:~--.. ·-:;.-" :-;-;·- - .. ,_7""--::'___:_2:.._• __ ~_·· •. _ ... :: __ ,_____ "'--". -\4 .· 

[Xo, Xt] = ->.o X1,. > and, [Xi,Xt] = 0.' :~· 

The integral ilow of X is found as 'fri-the·previous examples, and is given by: . --... ·---~------ -------

. f*z =X +'Ao t, ---. and, 

--~ ........ ~~~====-------- -~----- -------·-_____ .............. - .. -~----·~----------·-----·---

- ... ·. 
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In all these examples, the integral flows of the left invariant supervector fields 
under consideration do nat define Type 1JR111-actions on the supergroups they are 
respectively defined. In fio:t, [Xt. X 1] ::/= 0 in 5.1-5.2, and [Xo, Xt] ::/= 0 in 5.3 {See 
Thm. 3.6). On the other fland, the integral flows in 5.2, and 5.3, trivially recover 
the multiplication map Pi of" Prop 2.4.1 for >.o = 1 = >.1. 

Remark. Let VerAa(G)Aa(G) be the left invariant derivations on (G,Aa). Note 
that the Lie supergro1.1p structures we are dealing with here, do not satisfy the 
properties stated in [3]; aamely, that the function and exterior factors can be re
covered from the left invMial.'lt supervector fields. In particular, it is not true that 
C00 (G) is isomorphic to, 

Co(G) = {f E .AG~:G) I XJ = 0, for all odd X E 'VerAa(G).Aa(G)}. 

In both examples above ll!e obtain, 

Co( G)={/ E Aa(G) If= co; co constant}~ JR. 
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