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Abs.tract

We prove that every semi-Fredholm operator on an arbitrary
Banach space can be approximated by injective or surjective op-
erators. In the case of a complex separable Hilbert space, we show
that the set of semi-Fredholm operators having a fixed index is-
connected. Last, we present a simple approach for calculating
some known distances frem a bounded operator to certain sets
related to semi-I'redholm operators.
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1 INTRODUCTION

There are several semigroups which appear naturally in connection with the

Banach algebra B(X) of all (bounded linear) operators acting from a Banach
space X into itself. We have the injective operators

Inj(X)={T € B(X): T is one-to-one and R(T) is closed},
the surjective operators
Sur(X)={T € B(X): R(T) = X},
the upper semi-Fredholm operators
®.(X)={T € B(X) :dim N(T) < o0 and R(T) is closed},
and the lower semi-Fredholm operators
®_(X)={T € B(X) :dim X/R(T) < o0};

here N(T) denotes the null space of T and R(T) is its range. Clearly we
have Inj(X) C ©4(X) and Sur(X) € ®_(X). Although this contentions
are generally proper, Theorem 2.1 shows that nj{(X)U Sur(X) is dense in
oL (X)UD_(X). .

Recall that the index of a (upper or lower) semi-Fredholm operator T is
ind T = n(T) — d(t), where n(T) = dim N(T) and d(T) = dim X/R(T).
Let Z* consist of all the integers together with —co and co. For m € Z7,
we define ®,,(X) as the set of semi-Fredholm operators T € B(X) such that
ind T = m. When H is a complex separable Hilbert, we prove in Theorem
2.2 that ®,,(H) is connected,

If H is a complex separable Hilbert space , R. Bouldin [2-4], J. Zemdnek [9)
C. Apostol-L. A. Fialkow-D. A. Herrero [1 |, S. Izumino-Y. Kato [6], and P. Y.
Wu (8] have calculated the distance of T € B(H) to several subsets related to
semi-Fredholm operators on H. In Section 3 we develop a somewhat simpler
approach for obtaining some of their results.

2 TWO PROPERTIES

Let us consider

Fu(X) = 8m(X) N Sur(X), m 20, Fu(X) = @a(X) N Inj(X), m <O0.
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Theorem 2.1 F,(X) is dense in ®,,(X), m € Z".

Proof. First we will assume that m < 0. Take T € &,,(X). Since m < 0,
note that n = n(T) < co. Thus we can express X = N(T') @ V, for some
closed subspace V C X. Next, by using that d(1') 2 n, we can find a vector
space W C X such that dim W = n and W N R(T') = 0. Take S to be any
linear isomorphism from N(T') onto W. Let us define T, : X — X by

Ti(u+v)=1/k Su+Tv, ue N(T), veV.

Since the projections onto N(T) and V are continuous, as well as S, it follows
that Tx, € B(X). It is clear that Ty € Inj(X) N <I’m(/\’) Noticing that
Ty — T, we obtain the desired conclusion. '

Let us now consider m > 0. Then we have d = d(T) < oo and so we can
express X = N@V where, N C N(T') and dim N = d. The rest of the proof
follows along similar hnes as the above and we will omil it.

Remark 2.1. The proof of Theorem 2.1 shows that if 7" € @,,(X), t hen.
there is a compact operator ' € B(X) such 'that T+ K € Firp(X).

It will now be convenient to introduce some notation. Herealter H is
always a fixed complex separable Ililbert space. If A C [, then A° = H \ A,
and At is the orthogonal subspace of A. For T € B3(I1), |T| denotes the
square root of T™T; here T is the adjoint operator of T. Note that, in
particular, we have the polar form T = U|T|, for some partial isometry
U € B(H) [5, Ch. 4]. The group of invertible operators on H will be
indicated by G(H), moreover &, = &, (H), d_ = C_(l), b,, = ¢ (H).

Theorem 2.2 ®,, is connecled, m € Z*.

Proof. First we will assume that m < 0. Take 5,7 € ®,,. Next, choose
compact operators C, ' € B(X) such that 5 = S4+C,T=T+K € F,(H).
Since the curves a(t) = q+ {C and ﬂ( ) = TH+iK,0< ¢t < 1, lie in &,
and,respectively, connect S with § and T with T, all we need is to show that
S and T can be connected by some curve in ®,,. .

Let us express S and T in its polar form: S = U|S|,T = V|T|. Since U
takes R(|S]) isometrically onto R(S), it follows that R(]S|) is closed. More-
over, |S| is one-to-one because N(S) = N(|S|). Since |S| is self-adjoint, this
implies that |S] is invertible. Analogously, we have that |T'| is invertible.
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Note now that VU~! : R(S) — R(T) is an isometry. Since dim R(S)* =
—m = dim R(T)* and H is separable (this is required when —m = o0),
VU! can be extended to obtain a unitary operator J € B(H).

Take oft) to be a curve in G(H) connecting J with I, and B(t) to be a
curve in G(H) connecting |T'| with |.S]; this is possible because G(H) is open
and connected {7, p. 317). It is now easily verified that a(t)US(t) is a curve
in @,,(H) which joins T and S.

Finally, let us consider the case m > 0. Since ind T* = —ind T, we
can verify that &, (H) is the image of ®_,, under the map T — T*. The
conclusion follows now [rom the continuity of this map and the connectedness

of O_.(H).

3 APPROXIMATION BY SEMI-FREDHOLM OPERATORS

Let us denote the semigroup of Fredholm operators on H by ®; notice that

- ® =@, NP_. The essential spectrum of T € B(f) is then given by ¢.(T) =

{A:T - AI ¢ &}, and the essential minimum modulus is
me(T) = inf {A: X € o.(|T]}.
We will also consider the set
N(H)={T € B(H) : m(T) = me(T") = 0}.

Our approach for calculating the distance dist(T,A) of T € B(H) to
certains subsets A of B(H) is based upon the following result; part(i) is due
to R. Bouldin [2, Thm.3}, and part (ii) is due to J. Zemanek [9]

Theorem 3.1
(i) If T € N(H), then dist(T,G(H)) =0
(it) me(T) = dist(T, @%), m.(T™) = dist(T, ®<).

Remark 3.1. N(H) is a closed subgroup of B(H).
Proof. Let T € B(H). The following properties are well known [2J:

me(T)>0 ifandonlyif T e ..
Ted ifandonlyif T € 9..
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9.

This implies that N(H) = ($y UDy)C and so N( 11,)""15 clearly closed.
Assume S, 1" € N(H). Sivce |

TS ¢ P impliesT € P, ' (1)

and TS € ®y implies S € @ [5, p. 35), we have T'S € N(H).

In our next result bdyA denotes the boundary of A C i,
Theorem 3.2 N(H) = bdy®,, » & 2.

Preof. By the continuity of the index on ¢, U ®_, it follows that bdy®,, C
N(H). " _

Next, let us assume m € ZU {-~oo}. Fix R € ¢, C ¢, Notice now that
we can choose § € B(H) such that ‘

SR=I+K, (2)

where & € B(H) is a compact operator. Take T € N(H) and note that
T & Om. By (1), T'S ¢ ... Suppose that T'5 € $y. Then, using (2), we
would have 1" € ©,, which is contradictory,

The above shows that TS € N(H). Thus, by Theorem 3.1, there is a
sequence {Ly} C G(H) such that Li — I'5. Hence, applying (2), we have
LR = T 4+ TK. Since ind(Li R — 1'I) = m, it follows thal T' € bdy®,,.
"This shows that N(I) = bdy®,,. - '

Finally let us treat the case case m = oo, Take I" € N(/). Then, ™ € I
and 50, applyiug what we have just proved, there is a sequence {51} C @on
such that S — 7™, Hence S; — T and the conclusiou lollows. :

Corollary 3.1 Letme 2. IfT ¢ (I?,,I,',tlz,en.
dist(T, @) = max{m.(T), me(T™)}.

Proof. First, notice that

max{me(T),me(T*)} = m(T)il T € by,
} me(T™) il T € b,

max {m. (1), me(T")}

il




Take d = dist(T, ®,,). We will consider several cases. If T ¢ ©, U®_, the
conclusion follows readily from Theorem 3.2.

Assume now T € ®.. Since T ¢ @,,, from Theorem 3.1 and using the
continuity of the index on ®,, we find

me(T) < d. (3)

Let ¢ > 0. Applying again Theorem 3.1, we can obtain S ¢ &, satisfying
IT — S)| £ me(T) +e. Note now that, because of the continuity of the index
on &, Ud_, the curve a(t) = (1 = )T + 15, 0 £ 1 < 1, cannot be contained
in @, U®_. Thus we can find 0 £t < 1 such that «(T) € N(H). Since
T — (T} £ me(T) + ¢, we have d < m.(T) + ¢ Letting ¢ — 0 and using
(8) the conclusion follows.

Finally, the case T € ®_ can be proved analogously.

Remark 3.2. Corollary 3.1 was established independently by Apostol-
Fialkow- Herrero [1, Thm. 12.2}, and Izumino-Kato [6, Thm. 4.1]; it is
also discussed by Bouldin (3]. However, our method of proof is different from
the ones they employed.

Corollary 3.2 Ifn <0, then

max{m¢(T),m.(T")} if indT #n

0 otherwise.

dist(T, Fy,) = {

Proof. Tt follows from Theorem 2.1 that F,(H) is dense in ,. Thus,
dist(T, Fo(H)) = dist(T,®,). The conclusion is now obtained by using
Corollary 3.1.

Remark 3.3. Corollary 3.3 was established by Wu in [8].

Let us denote by v the function assigning n(T') to each T' € B(H).

Corollary 3.3 The function v is continuous ot T € B(H) if and only if
Ted, Ud. andn(T)=0 ord(T) = 0. '
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Proof. Let A= {T € ®,U&_:n(T)=00rd(T)=0}. T ¢ A, it {ollows
from theorems 2.1 3.2 that v is discontinuous at T. Assume now T € A.
Take p > 0 such that ||T - S|| < pimplies § € (&4 U @_), n(S) < n(T),
and d(T) < d(S) {5, p. 36]. I n(T) =0 and ||T — S|| £ p, we clearly have
n(T) = n(S). I d(T) = 0 and ||T - S|| £ p, then n(T) = n(S5) because
ind(T") = ind(S). This proves our assertion.
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