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Abstract 

VIe prove that every semi-Fredholm operator on a.n arbitrary 
Banach space can be approxima.ted by injective or surjective op­
erators. In the case of a complex separable Hilbert space, we show 
that the set of semi-Fredholm operators having a fixed index is · 
connected. Last, we present a simple approach for calculating 
some .known distances from a bounded operator to certain sets 
related to semi-Fredholm operators. 
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1 INTRODUCTION 

There are several semigroups which appear naturally in connection with the 
Banach algebra B(X) of all (bounded linear) operators acting from a Banach 
space X into itself. We have the injective operators 

Jnj(X) = {T E B(X): Tis one-to-one and R(T) is closed}, 

the surjective operators 

Sttr(X) = {T E B(X): R(T) =X}, 

the upper semi-Fredholm operators 

<I>+(X) = {T E B(X): dim N(T) < oo and R(T) is closed}, 

and the lower semi-Fredholm operators 

<I>_ (X) = {T E B(X) :dim X/ R(T) < oo }; 

here N(T) denotes the null space of T and R( T) is its range. Clearly we 
have Inj(X) C <I>+(X) and Sur(X) C <I>_(X). Although this contentions 
are generally proper, Theorem 2.1 shows that Inj(X) U Sur(X) is dense in 
<I>+(X) U <I>_(X). 

Recall that the index of a (upper or lower) semi-Fredholm operator Tis 
ind T = n(T)- d(t), where n(T) = dim N(T) and d(T) = dim X/ R(T). 
Let z· consist of all the integers together with -oo and co. For m E z·, 
we define <I>m(X) as the set of semi-Fredholm operators T E B(X) such that 
ind T = m. \Vhen H is a complex separable Hilbert, we prove in Theorem 
2.2 that <I>m(H) is connected. . 

If His a complex separable Hilbert space, R. Bouldin [2-4], J. Zemanek [9] 
C. Apostol-L. A. Fialkow-D. A. Herrero [1 ), S. lzumino-Y. I<ato (6], and P. Y. 
\Vu (8] have calculated the distance ofT E B( H) to several subsets related to 
semi-Fredholm qperators on H. In Section 3 we develop a somewhat simpler 
approach for obtaining some of their results. 

2 TWO PROPERTIES 

Let us consider 

Fm(X) = <I>m(X) n Sttr(X), m 2:: 0, Fm(X) = <I>m(X) n Inj(X), m 50. 
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Theorem 2.1 Fm(X) is dense in il>m(X), mE Z~. 

Proof First we will assume that m ~ 0. Take T E <1> 111 (X). Since m ~ 0, 
note that· n = n(T) < oo. Thus we can express X = N(T) EB V, for some 
closed subspace V C X. Next, by using that d(T) 2 n, >ve can find a vector 
space W c X such that dim ~V = n and vV n R('F;) = 0. Take S to be any 
linear isomorphism from N(T) onto TV. Let us deAne Tk : X --+ X by 

Tk(u + v) = 1//..~ Su +Tv, u E N(T), v E V. 

Since the projections onto N(T) and V are continuous, as well asS, it follows 
that Tk E B(X). It is clear that Tk E Jnj(X) n il>m(X). Noticing that· 
Tk --+ T, we obtain the desired conclusion. 

Let us now consider m '2: 0. Then we ha.ve d = d( T) < oo and so we can 
expr~ss X = N EEl V where, N C N(T) and dim N =d. The rest. of the proof 
follows along similar lines as the above and we \viii omit. it. 

Remark 2.1. The proof of Theorem 2.1 shows that if T E il>m(X), _then. 
there is a compact operator ]( E B(X) such that T + J( E Fm(X). 

It will now be convenient to introduce some notation. Hereafter H is 
always a Axed complex separable Ililbcrl. space. If A C lf, then Ac =If\ A, 
a.nd A.L is the orthogonal subspace of A. For T E 13(11), ITI denotes the 
square root of T*T; here T* is the adjoint operator of T. Note that, in 
particular, we have the polar form T = UITI, for some partial isometry 
U E B(H) [5, Ch .. 4]. The group of invertible operators on H will be 
indicated by G(H), moreover <1>+ = <1>+(1-I), <P_ = <l>_(/f), <l>m = 4.>m(H). 

Theorem 2.2 Wm is connected, mE z·. 

Proof First we will assume that 1.n ~ 0. Take S', T E il>m. Next, choose 
compact operators C, ]( E B(X) such that S = S + C, T = T + ]( E Fm(H). 
Since the curves a(t) = ,?; + tC and ffi(t) = i' + tl(, 0 ::;; t ::;; 1, lie in <I>m 
and,respectively, connectS with Sand T wilh T, all we need is to show that 
Sand T can be connected by some curve in <I>m. 

Let us express Sand T in its polar form: S = UISI, T == VITI. Since U 
takes R(ISI) isometrically onto R(S), it follows that R(ISI) is closed. More­
over, lSI is one-to-one because N(S) = N(ISI). Since lSI is self-adjoint, this 
implies that lSI is invertible. Analogously, we have t.haL ITI is il1vertible. 
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Note now that VU- 1 : R(S) ~ R(T) is an isometry. Since dim R(S).i = 
-m = dim R(T)l. and H is separable (this is required when -m = co), 
VU- 1 can be extended to obtain a unitary operator J E B(H). 

Take a(t) to be a curve in G(H) connecting J with I, and {3(t) to be a 
curve in G(H) connecting ITI with lSI; this is possible because G(H) is open 
and connected (7, p. 317]. It is now easily verified that a(t)U{3(t) is a curve 
in @m(H) which joins T and S. 

Finally, let us consider the case m ~ 0. Since ind T* = - ind T, we 
can verify that <I>m( H) is the image of <I>_m under the map T ~ r·. The 
conclusion follows now from the continuity of this map and the connectedness 
of <P_m(H). 

3 APPROXIMATION BY SEMI-FREDHOLM OPERATORS 

Let us denote the semigroup of Fredholm operators on H by <P; notice that 
. <P = <P+ n <I>_, The essential spectrum ofT E B(H) is then given by cre(T) = 
{ >. : T - >.I rf. <P}, and the essential minimum modulus is 

me(T) = inf {>. :A E cre(ITj)}. 

VIe will also consider the set 

N(H) = {T E B(H) : me(T) = me(T*) = 0}. 

Our approach for calculating the distance dist(T, A) of T E B(H) to 
certains subsets A of B(H) is based upon the following result; part(i) is due 
to R. Bouldin [2, Thm.3], and part (ii) is due to .J. Zemanek [9] 

Theorem 3.1 
(i) If T E N(H), then dist(T, G(H)) = 0. 
{ii) me(T) = dist(T, <I>+), me(T*) = dist(T, <I>:). 

Remark 3.1. N(H) is a closed subgroup of B(H). 
Proof. Let T E B(H). The following properties are well known [2]: 

me(T) > 0 if and only if T E <P+. 

T E <I>_ if and only if T* E <P+. 
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This implies that, N(H):::: ev+ u <TI+)c a.nd so N(ll.) is clenrly closed. 

AssumeS, T E N(H). Sii1ce 

TS ~:: <J>_ implies T E iJl_, (1) 

a.ncl T S E ell+ implies S E W+ [5, p. 35], we have TS E N(H). 

In our next result bdy A denotes Lhe boundary o!' A C li. 

Proof 13y the conLinuity of the index on <I'+ U <l)_, it follows tha.t bdyci>m C 

N(H). 
Next, let us assume m E Z U { -oo}. Fix 1l E tpm C <1>.1 .• Notice rww tha.L 

we ca.n choose 8 E B(H) such tlmt 

''1.,- I 1' .vL- +~., (2) 

where /( E B(H) is C\. compnc.l opcra.t.or. Ta.ke T E N( If) a.nd note that 
T ~ chn. By (1), TS' tf. cJl._, Suppose tha.t TS E <[>.1 .. 'Then, using (2), vve 
would have T E II>+, vvhich is contradictory. 

The above shows that TS' E N(H). Thus, by Theorem 3.1, there is a 
sequence {Ld C G(IJ) such tlH\.L L;, -+ TS'. Hence, a.pplying (2), we .luwe 
Ldi-+ T ·+ Tf(. Since ind(LkR- 'J'f{) :::: ·m, it follows t.ha.\. T E bdy<:Dm. 
This shows that N( lf) ::: bdy<t>m. 

Finally let us treat the ca.se case m. =:: oo. Take T E N(If ). Tl1cn, T~ E II 
and 130, a.pplyiu6 wha.t. we have just proved, there is 11 sequence {S,J C ~1>-m 
such that Sk -~ T"'. Hence S'k -> 'T and the conclusiou follows. 

Coroll;:u'y 3.1 Let mE Z"'. If1' 1 <Pm, then 

dist(T, (1> 111 ) == max{me(T), rne(T~)} .. 

Proof. First, notice that 

{ (T) (1'")} ('/') 'l''f <1> ma.x T/1-e , Tile - 7TI·e . ' I . E + l 
rna.x{me(T),nl-e(T.)}_ = rnc(T .. ) il' T E <!>_, 



Take d = dist(T, <I>m). vVe will consider several cases. If T f/. <I>+ U <I>_, the 
conclusion follows readily from Theorem 3.2. 

Assume now T E <I>+. Since T tf. <I>m, from Theorem 3.1 and using the 
continuity of the index on <I>+, we find 

me(T) ::=;d. (3) 

Let c > 0. Applying again Theorem 3.1, we can obtain S f/. <I>+ satisfying 
liT- Sll :S me(T) + c Note now that, because of the continuity of the index 
on <I>+ U <l>_, the curve a(t) = (1- t)T + tS', 0 :S l :51, cannot be contained 
in <I>+ U <l>_. Thus we can find 0 :S t :::; 1 such that a(T) E N(H). Since 
liT- a(T)Il :5 me(T) + c, we have d :::; me(T) +c. Letting c ~ 0 and using 
(3) the conclusion follows. 

Finally, the case T E <l>_ can be proved analogously. 

Remark 3.2. Corollary 3.1 was established independently by Apostol­
Fialkow- Herrero [1, Thm. 12.2], and Izumino-Kato [6, Thm. 4.1]; it is 
also discussed by Bouldin [3]. However, our method of proof is different from 
the ones they employed. 

Corollary 3. 2 If n :::; 0, then 

dist(T, Fn) = { 
0
max{me(T), me(T*)} if indT =j:. n 

otherwise. 

Proof. It follows from Theorem 2.1 that Fn(H) is dense in <I>n. Thus, 
dist(T, Fn(H)) = dist(T, <l> 11 ). The conclusion is now obtained by using 
Corollary 3.1. 

Remark 3.3. Corollary 3.3 was established by Wu in [8]. 

Let us denote by v the function assigning n(T) to each T E B(H). 

Corollary 3.3 The function v is continuous at T E B(H) if and only if 
T E <I>+ U <l>_ and n(T) = 0 or d(T) = 0. 
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Proof. Let A= {T E <1?+ U <I>_ : n(T) = 0 or d(T) = 0}. If T tj_ A, it follows 
from theorems 2.1 3.2 that v is discontinuous at T. Assume now T E A. 
Take p > 0 such that liT- Sll ::S p implies S E (<I>+ U <I>_), n(S) :; n(T), 
and d(T) ::S d(S) [5, p. 36]. If n(T) = 0 and liT- Sll ::S p, we clearly have 
n(T) = n(S). If d(T) = 0 and !IT- Sll ::S p, then n.(T) = n(S) because 
ind(T) = ind(S). This proves our assertion. 
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