On semi-Fredholm Operators

114

Fernando Galaz-Fontes

Tech. Rept. I-92-5 (CIMAT/MB)

14

Received: July 15, 1992

Approved: August 7, 1992

ON SEMI-FREDHOLM OPERATORS

Fernando Galaz-Fontes[‡]

Centro de Investigación en Matemáticas

Abstract

We prove that every semi-Fredholm operator on an arbitrary Banach space can be approximated by injective or surjective operators. In the case of a complex separable Hilbert space, we show that the set of semi-Fredholm operators having a fixed index is connected. Last, we present a simple approach for calculating some known distances from a bounded operator to certain sets related to semi-Fredholm operators.

1980 Mathematics Subject Classification (1985 Revision) 47A53, 47A55 Key words and phrases. Semi-Fredholm operator, index, injective operator, surjective operator, polar form.

1

 $\hat{*}$ This work was supported by CONACYT

1 INTRODUCTION

There are several semigroups which appear naturally in connection with the Banach algebra B(X) of all (bounded linear) operators acting from a Banach space X into itself. We have the injective operators

 $Inj(X) = \{T \in B(X) : T \text{ is one-to-one and } R(T) \text{ is closed}\},\$

the surjective operators

$$Sur(X) = \{T \in B(X) : R(T) = X\},\$$

the upper semi-Fredholm operators

 $\Phi_+(X) = \{T \in B(X) : \dim N(T) < \infty \text{ and } R(T) \text{ is closed}\},\$

and the lower semi-Fredholm operators

 $\Phi_{-}(X) = \{T \in B(X) : \dim X/R(T) < \infty\};\$

here N(T) denotes the null space of T and R(T) is its range. Clearly we have $Inj(X) \subset \Phi_+(X)$ and $Sur(X) \subset \Phi_-(X)$. Although this contentions are generally proper, Theorem 2.1 shows that $Inj(X) \cup Sur(X)$ is dense in $\Phi_+(X) \cup \Phi_-(X)$.

Recall that the index of a (upper or lower) semi-Fredholm operator T is ind T = n(T) - d(t), where $n(T) = \dim N(T)$ and $d(T) = \dim X/R(T)$. Let Z^* consist of all the integers together with $-\infty$ and ∞ . For $m \in Z^*$, we define $\Phi_m(X)$ as the set of semi-Fredholm operators $T \in B(X)$ such that ind T = m. When H is a complex separable Hilbert, we prove in Theorem 2.2 that $\Phi_m(H)$ is connected.

If H is a complex separable Hilbert space, R. Bouldin [2-4], J. Zemánek [9] C. Apostol-L. A. Fialkow-D. A. Herrero [1], S. Izumino-Y. Kato [6], and P. Y. Wu [8] have calculated the distance of $T \in B(H)$ to several subsets related to semi-Fredholm operators on H. In Section 3 we develop a somewhat simpler approach for obtaining some of their results.

2 TWO PROPERTIES

Let us consider

$$F_m(X) = \Phi_m(X) \cap Sur(X), \ m \ge 0, \quad F_m(X) = \Phi_m(X) \cap Inj(X), \ m \le 0.$$

Theorem 2.1 $F_m(X)$ is dense in $\Phi_m(X)$, $m \in \mathbb{Z}^*$.

Proof. First we will assume that $m \leq 0$. Take $T \in \Phi_m(X)$. Since $m \leq 0$, note that $n = n(T) < \infty$. Thus we can express $X = N(T) \oplus V$, for some closed subspace $V \subset X$. Next, by using that $d(T) \geq n$, we can find a vector space $W \subset X$ such that dim W = n and $W \cap R(T) = 0$. Take S to be any linear isomorphism from N(T) onto W. Let us define $T_k : X \to X$ by

$$T_k(u+v) = 1/k Su + Tv, \ u \in N(T), \ v \in V.$$

Since the projections onto N(T) and V are continuous, as well as S, it follows that $T_k \in B(X)$. It is clear that $T_k \in Inj(X) \cap \Phi_m(X)$. Noticing that $T_k \to T$, we obtain the desired conclusion.

Let us now consider $m \ge 0$. Then we have $d = d(T) < \infty$ and so we can express $X = N \oplus V$ where, $N \subset N(T)$ and dim N = d. The rest of the proof follows along similar lines as the above and we will omit it.

Remark 2.1. The proof of Theorem 2.1 shows that if $T \in \Phi_m(X)$, then there is a compact operator $K \in B(X)$ such that $T + K \in F_m(X)$.

It will now be convenient to introduce some notation. Hereafter H is always a fixed complex separable Hilbert space. If $A \subset H$, then $A^c \equiv H \setminus A$, and A^{\perp} is the orthogonal subspace of A. For $T \in B(H)$, |T| denotes the square root of T^*T ; here T^* is the adjoint operator of T. Note that, in particular, we have the polar form T = U|T|, for some partial isometry $U \in B(H)$ [5, Ch. 4]. The group of invertible operators on H will be indicated by G(H), moreover $\Phi_+ \equiv \Phi_+(H), \Phi_- \equiv \Phi_-(H), \Phi_m \equiv \Phi_m(H)$.

Theorem 2.2 Φ_m is connected, $m \in Z^*$.

Proof. First we will assume that $m \leq 0$. Take $\tilde{S}, \tilde{T} \in \Phi_m$. Next, choose compact operators $C, K \in B(X)$ such that $S = \tilde{S} + C, T = \tilde{T} + K \in F_m(H)$. Since the curves $\tilde{\alpha}(t) = \tilde{S} + tC$ and $\tilde{\beta}(t) = \tilde{T} + tK$, $0 \leq t \leq 1$, lie in Φ_m and, respectively, connect \tilde{S} with S and \tilde{T} with T, all we need is to show that S and T can be connected by some curve in Φ_m .

Let us express S and T in its polar form: S = U|S|, T = V|T|. Since U takes R(|S|) isometrically onto R(S), it follows that R(|S|) is closed. Moreover, |S| is one-to-one because N(S) = N(|S|). Since |S| is self-adjoint, this implies that |S| is invertible. Analogously, we have that |T| is invertible.

3

Note now that $VU^{-1}: R(S) \to R(T)$ is an isometry. Since dim $R(S)^{\perp} = -m = \dim R(T)^{\perp}$ and H is separable (this is required when $-m = \infty$), VU^{-1} can be extended to obtain a unitary operator $J \in B(H)$.

Take $\alpha(t)$ to be a curve in G(H) connecting J with I, and $\beta(t)$ to be a curve in G(H) connecting |T| with |S|; this is possible because G(H) is open and connected [7, p. 317]. It is now easily verified that $\alpha(t)U\beta(t)$ is a curve in $\Phi_m(H)$ which joins T and S.

Finally, let us consider the case $m \ge 0$. Since ind $T^* = -$ ind T, we can verify that $\Phi_m(H)$ is the image of Φ_{-m} under the map $T \to T^*$. The conclusion follows now from the continuity of this map and the connectedness of $\Phi_{-m}(H)$.

3 APPROXIMATION BY SEMI-FREDHOLM OPERATORS

Let us denote the semigroup of Fredholm operators on H by Φ ; notice that $\Phi = \Phi_+ \cap \Phi_-$. The essential spectrum of $T \in B(H)$ is then given by $\sigma_e(T) = \{\lambda : T - \lambda I \notin \Phi\}$, and the essential minimum modulus is

$$m_e(T) = \inf \{\lambda : \lambda \in \sigma_e(|T|)\}.$$

We will also consider the set

$$N(H) = \{T \in B(H) : m_e(T) = m_e(T^*) = 0\}.$$

Our approach for calculating the distance dist(T, A) of $T \in B(H)$ to certains subsets A of B(H) is based upon the following result; part(i) is due to R. Bouldin [2, Thm.3], and part (ii) is due to J. Zemánek [9]

Theorem 3.1

(i) If $T \in N(H)$, then dist(T, G(H)) = 0. (ii) $m_e(T) = \text{dist}(T, \Phi_+^c)$, $m_e(T^*) = \text{dist}(T, \Phi_-^c)$.

Remark 3.1. N(H) is a closed subgroup of B(H). *Proof.* Let $T \in B(H)$. The following properties are well known [2]:

> $m_{\epsilon}(T) > 0$ if and only if $T \in \Phi_+$. $T \in \Phi_-$ if and only if $T^* \in \Phi_+$.

> > 4

This implies that $N(H) = (\Phi_+ \cup \Phi_+)^c$ and so N(H) is clearly closed. Assume $S, T \in N(H)$. Since

$$TS \in \Phi_{-} \text{ implies } T \in \Phi_{-},$$
 (1)

4

and $TS \in \Phi_+$ implies $S \in \Phi_+$ [5, p. 35], we have $TS \in N(H)$.

In our next result bdyA denotes the boundary of $A \subset H$.

Theorem 3.2 $N(H) = bdy \Phi_m, \ m \in Z^*$.

Proof. By the continuity of the index on $\Phi_+ \cup \Phi_-$, it follows that $bdy\Phi_m \subset N(H)$.

Next, let us assume $m \in Z \cup \{-\infty\}$. Fix $R \in \Phi_m \subset \Phi_+$. Notice now that we can choose $S \in B(H)$ such that

$$SR = I + K, \tag{2}$$

where $K \in B(H)$ is a compact operator. Take $T \in N(H)$ and note that $T \notin \Phi m$. By (1), $TS \notin \Phi_{-}$. Suppose that $TS \in \Phi_{+}$. Then, using (2), we would have $T \in \Phi_{+}$, which is contradictory.

The above shows that $TS \in N(H)$. Thus, by Theorem 3.1, there is a sequence $\{L_k\} \subset G(H)$ such that $L_k \to TS$. Hence, applying (2), we have $L_k R \to T + TK$. Since $\operatorname{ind}(L_k R - TK) = m$, it follows that $T \in \operatorname{bdy}\Phi_m$. This shows that $N(H) = \operatorname{bdy}\Phi_m$.

Finally let us treat the case case $m = \infty$. Take $T \in N(H)$. Then, $T^* \in H$ and so, applying what we have just proved, there is a sequence $\{S_k\} \subset \Phi_{-m}$ such that $S_k \to T^*$. Hence $S_k^* \to T$ and the conclusion follows.

Corollary 3.1 Let $m \in Z^*$. If $T \notin \Phi_m$, then

$$\operatorname{dist}(T, \Phi_m) = \max\{m_e(T), m_e(T^*)\}.$$

Proof. First, notice that

$$\max\{m_{e}(T), m_{e}(T^{*})\} = m_{e}(T) \text{ if } T \in \Phi_{+}, \\\max\{m_{e}(T), m_{e}(T^{*})\} = m_{e}(T^{*}) \text{ if } T \in \Phi_{-}.$$

Take $d \equiv \operatorname{dist}(T, \Phi_m)$. We will consider several cases. If $T \notin \Phi_+ \cup \Phi_-$, the conclusion follows readily from Theorem 3.2.

Assume now $T \in \Phi_+$. Since $T \notin \Phi_m$, from Theorem 3.1 and using the continuity of the index on Φ_+ , we find

$$m_e(T) \le d. \tag{3}$$

Let $\epsilon > 0$. Applying again Theorem 3.1, we can obtain $S \notin \Phi_+$ satisfying $||T - S|| \le m_e(T) + \epsilon$. Note now that, because of the continuity of the index on $\Phi_+ \cup \Phi_-$, the curve $\alpha(t) = (1 - t)T + tS$, $0 \le t \le 1$, cannot be contained in $\Phi_+ \cup \Phi_-$. Thus we can find $0 \le t \le 1$ such that $\alpha(T) \in N(H)$. Since $||T - \alpha(T)|| \le m_e(T) + \epsilon$, we have $d \le m_e(T) + \epsilon$. Letting $\epsilon \to 0$ and using (3) the conclusion follows.

Finally, the case $T \in \Phi_{-}$ can be proved analogously.

Remark 3.2. Corollary 3.1 was established independently by Apostol-Fialkow- Herrero [1, Thm. 12.2], and Izumino-Kato [6, Thm. 4.1]; it is also discussed by Bouldin [3]. However, our method of proof is different from the ones they employed.

Corollary 3.2 If $n \leq 0$, then

$$\operatorname{dist}(T, F_n) = \begin{cases} \max\{m_e(T), m_e(T^*)\} & \text{if } \operatorname{ind} T \neq n \\ 0 & \text{otherwise.} \end{cases}$$

Proof. It follows from Theorem 2.1 that $F_n(H)$ is dense in Φ_n . Thus, $dist(T, F_n(H)) = dist(T, \Phi_n)$. The conclusion is now obtained by using Corollary 3.1.

Remark 3.3. Corollary 3.3 was established by Wu in [8].

Let us denote by ν the function assigning n(T) to each $T \in B(H)$.

Corollary 3.3 The function ν is continuous at $T \in B(H)$ if and only if $T \in \Phi_+ \cup \Phi_-$ and n(T) = 0 or d(T) = 0.

6

Proof. Let $A \equiv \{T \in \Phi_+ \cup \Phi_- : n(T) = 0 \text{ or } d(T) = 0\}$. If $T \notin A$, it follows from theorems 2.1 3.2 that ν is discontinuous at T. Assume now $T \in A$. Take $\rho > 0$ such that $||T - S|| \leq \rho$ implies $S \in (\Phi_+ \cup \Phi_-), n(S) \leq n(T)$, and $d(T) \leq d(S)$ [5, p. 36]. If n(T) = 0 and $||T - S|| \leq \rho$, we clearly have n(T) = n(S). If d(T) = 0 and $||T - S|| \leq \rho$, then n(T) = n(S) because ind(T) = ind(S). This proves our assertion.

REFERENCES

1. C. Apostol, L. A. Fialkow, D. A Herrero and D. Voiculescu. Approximation by Hilbert space operators. Vol. II, Pitman, Boston, 1984.

2. R. Bouldin, The essential minimum modulus. it Indiana Univ. Math. J. 30(1981), 513-517.

3. R. Bouldin, The distance to operators with a fixed index. Acta Sci. Math. 54(1990), 139-143.

4. R. Bouldin, Approximation by operators with fixed nullity. Proc. Amer. Math. Soc. 103(1988), 141-144. 5. D. E. Edmunds and W. D. Evans, Spectral theory and differential operators. Clarendon Press, Oxford, 1987.

6. S. Izumino and Y. Kato, The closure of invertible operators on a Hilbert space. Acta Sci. Math. 49(1985), 321-327.

7. W. Rudin, Functional Analysis. McGraw-Hill, New York, 1973.

8. P. Y. Wu, Approximation by invertible and noninvertible operators. J. Approx. Theory 56(1989), 267-276.

9. J. Zemánek, Geometric interpretations of the essential minimum modulus in Invariant subspaces and other topics. *Operator theory:* Adv. Appl. 6, 225-227, Birkhäuser Verlag, Basel 1982.

7

CIMAT,

A. P. 402, Guanajuato, Gto., 36 000, México.