
Empirical Probability Generating Function: 
an overview 

Miguel Nakam~ra & Victor Perez-Abreu 

Tech. Rept. I-92-2 .(CIMAT/PE) 

·•. 

Received: June 25, 1992 Aooroved: July 20, 1992 





EMPIRICAL PROBABILITY GENERATING FUNCTION: AN OVERVIEW
1 

Miguel Nakamura 

and 

Victor Perez-Abreu 

Centro de Investigaci6n en Matematicas 
Apdo. Postal 402, Guanajuato, Gto. 36000, Mexico 

Summary 

. A convenient approach to the statistical analysis of distr.ibutions for 
counts is possible using the empirical probability generating function. 
In this paper we give an overview of recent results and show th(: 
usefulness and advantages of this methodology. ·On one hand, there an: 
some stochastic models in which the probability generating function arise!: 
naturally and therefore it is consistent with nature to use its empiricai 
counterpart. On the other hand, this statistical tool has demonstrated tc 
be useful in the study of classical statistical problems of distributions 
for counts, · especially in exploratory data :analysis, rapid multi-parameter 
estimation and testing the goodness of fit. Our re.commendation is to make. 
allowance for the empirical probability generating function when dealing 

.. with statistical inference for discrete distributions. ·· · 
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1.- Introduction. 

The use of inference methods based on statistical transforms has been 

considered by several authors (see Feuerverger & McDunnough, 1984 and 

Csorg6 & Mason, 1989). For example, in dealing with inferences for stable 

laws, the empirical characteristic function appears as a fundamental tool 

since the characteristic functions of such laws are tractable while the 

corresponding densities or distributions functions are not (see Prakasa 

Rao, 1987, Ch. 8 and references therein). On the other hand, the 

empirical moment generating function has also proved to be a very useful 

transform in the study of several statistical problems as shown, for 

example, in the interesting papers by Read (1981), Epps et. al (1982), 

Feuerverger (1988), Csorg6 & Teugels (1990) ai:ld Baringhaus & Henze (1991). 

When dealing with inference for distributions for counts, the 

empirical probability generating function (epgf) appears as the natural 

statistical transform to be considered. It has been used in several 

contexts by Kocherlakota & Kocherlakota (1986, 1990), Kemp & Kemp (1988), 

Marques & Perez-Abreu (1989), Rueda, Perez-Abreu and O'Reilly (1991), 

Baringhaus & Henze (1992) and Nakamura & Perez-Abreu (1991), amongst 

others. Although all three statistical transforms are closely related, 

and one can be obtained from the others, the probability g~nerating 

function (pgf) possesses convenient features not shared by the Fourier or 

Laplace Transform such as being a real valued continuous analytic function 

which always exists in the range [0,1]. However, the main reason for the 

utilization of the pgf is its simplicity and the potential for use of its 

empirical counterpart in statistical analysis of distributions for counts. 

In this paper we give an overview of several applications of the epgf 
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to methods of statistical inference for distributions for counts. Section. 

2 presents the epgf and some of its main properties. Section 3 deals with 

the epgf as a tool for exploratory data analysis. Section 4 considers the 

use of the epgf in the problems of estimation of parameters, hypothesis 

testing, goodness of fit and change-point estimation for distributions for 

counts. Section 5 presents two applications, one related to a cumulative 

damage model and the other to the estimation of the distribution function 

of a maximum.- Both models share the feature that the pgf appears as an 

intrinsic tool whose properties may be exploited. 

2.- The empirical probability generating function. 

Let X , ... , X be a random sample from a discrete distribution F 
1 n 

over 0, 1, 2, ... ' with corresponding probabilities p k = 0, 1, 2, .... 
·-... k 

The empirical probability generating function is defined as 
n X 

¢ (t) ,;. (1/n) t t 1
, 

n 
I =I 

for t e [0,1]. This transform of the empirical distribution function F , 
n 

is an estimator of 
X 

¢(t) =E(t 1
) = 

co 
\' tk 
L pk It I ~ 1 

k=O 

the probability generating function associated to . F. The relation 

t M(t) =¢(e ) between the moment generating function M(t) and the 

probability generating function ¢(t) gives the corresponding relationship 

between their empirical counterparts M (t) and ¢ (t). 
n n 

Both are special 

cases of general statistical transforms (see Feuerverger & McDunnough, 

1984) of the form J gt(x) dF(x) with kerqels gt(x) equal to etx and tx 

respectively. While ¢(t) always exists for t e [0, 1], M(t) might not. 

Both ¢ (t) and ¢(t) are analytic (and therefore continuous) functions on 
n 

te [0,1]. The driving idea for constructing methods for statistical 



inference which are suitable for a distribution for counts F, is based on 

the· fact that ¢ (t) is an estimator of ¢(t). The efficiency of some of 
n 

these methods is then obtained from Feuerverger & McDunnough (1984). A 

pleasant feature of working with ¢ (t) · is that it is a continuous real 
n 

valued function, while the empirical distribution function F or the 
n 

empirical density are not. This allows us to adopt as a basic framework 

the well-known Banach space of continuous real valued functions C[O,l]. 

The reason for mentioning C[0,1] and not C[ -1,1] is that in some of what 

follows we shall also consider other useful transforms like 

Y(t) = log(¢(t)) and its empirical counterpart Y (t) = log(¢ (t)). 
n n 

For each fixed t, ¢ (t) is an unbiased estimator of ¢(t). Moreover, 
n 

by the law of large numbers ¢ (t) is a consistent estimator for ¢(t), and 
n 

by the central limit theorem n112{¢ {t) - ¢(t)} converges in distribution 
n 

to a Gaussian random variable with zero mean and variance 

More interesting limiting results can be 

obtained in functional form (uniformly in t) in the space C[O, 1]. Thus, 

for example (see Feuerverger, 1988 and Nakamura & Perez-Abreu, 1991), ·it 

holds almost surely that 

and 

sup [¢
0
(t) ~. ¢(tll ---7 0 

O:St:Sl 

sup 
O<e:St:S1 

I y (t) - Y(t) I --) 0 . 
n 

(2.1) 

Furthermore, if f(kl denotes the k-derivative of a function f, it follows 

from Feuerverger (1988) that almost surely 

sup I¢Ckl(t) - ¢ 0<l(tll --> 0 
O<t<1 n 

and 
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sup .I Y~kl(t) - y<kl(t) I ~ 0 . 
O<t<1 

The limiting behavior in C[0,1] of the empirical probability generating 

processes z (t) 
n 

·has been. studied in different 

situations. For a random sample the sequence of processes Z converges 
n 

weakly in C[0,1] to a zero mean Gaussian process with covariance function 

K(s,t) = cf>(st) - cf>(s)cf>(t). (2.2) 

Marques & Perez-Abreu (1989) consider weak convergence of Z (t) when . n 

X
1

, X
2

, ••• , is a sequence of stationary dependent integer valued random · 

variables, dealing as well with the case of multivariate discrete 

distributions. Assuming that X , X , . . . are independent and identically 
1 2 

distributed random variables, Feuerverger (1988) studies weak convergence 

in C[0,1] of Z(kl(t) while Rueda et. 
n 

al (1991) consider weak convergence. when observations come from a 

distribution having pgf cf>(t,a) arid the parameter 9 is unknown and must be 

estimated. In the latter case z (t) = n112{cf> (t) - cf>(t,e )} 
n n n 

converges 

weakly in C[O,l] to a continuous zero mean Gaussian process with 

covariance function given by 

· a · a 
R(s;t) = K(s,t) + (I(a) -2)) a

8 
cf>(s,8) ae cf>(t,e) ,(2.3) 

where 8 is the maximum likelihood estimator of. 8 and 1(8) is the Fisher 
.n 

information of p = p (8), k = 0, 1, 2, .... 
. . k k 

Other asymptotic properties. which have been studied include . the work 

by Csorg6 & Mason (1989) where bootstrapping of the epgf .cf> (t) and other ·· 
n 

statistical transforms are considered. All the above limiting results are 

important . to establish asymptotic properties of any statistical procedures 

based on the epgf cf> (t). 
n 

The preceding ideas may be defined as well for multivariate discrete 

distributions. Let X = (X , ... ,X ) be an r-dimensional discrete random 
1 r 
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vector- with 
X X 

multivar-iate pr-obability gener-ating function 

1 r) E(t ... t , 
1 r 

t = (t , ... ,t ), 
- 1 r 

and let Xn= (Xn Xn) , ... , , 
1 r 

n ~ 1, be a 

sequence independent r-andom vector-s fr-om this distr-ibution. The 

muLtivariate empiricaL probabiLity generating function of the first n 

observations is defined as 

n xn xn 
1 r = (1/n) L t ... t 

1 r 
1=1 

Limiting r-esults similar- to the univariate case can be obtained for · 

P.n (j;) (see Marques & Per-ez-Abreu, 1989). 

3.- Exploratory data analysis. 

In this section we discuss a graphical method considered previously 

by Nakamura & Perez-Abr-eu (1991) based on _the plot of Y (t) = log(¢ (t)) 
~ n n 

on [0,1] which may be useful in preliminary analysis of count data. 

Supplementary examples are provided in this section for illustration. 

This exploratory method is especially useful in identifying feasible 

models for r-andom counts as well as recognizing possible outlying 

observations or the homogeneity or- independence of several samples. This 

graphical scheme has appealing features in that it involves a plot of a 

continuous function instead of a "(unction which has jumps occur-r-ing at 

observed data points (as in the case of probability plots and cumulative 

distributions), it does not requir-e parameter estimation, and the 

occurrence of ties in data is unimpor-tant. 

The driving idea in this section is the result (2.1), which asserts 

that if the model is cor-rect, Y (t) should be close to Y(t), since it is a 
n 

consistent estimator- of Y(t) in C[0,1]. In this section obser-vations 

X , X , . . . are not assumed to be independent. 
1 2 
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consider· them as coming from a strictly stationary ergodic sequence, since 

(2.1) still holds in this case. 

3.1 Identifying distributions for counts·. 

The following facts are useful in identifying a possible model for 

random counts when plotting y (t) 
n 

for t e [0,1] (see Nakamura & 

Perez-Abreu, 1991). For a Poisson distribution with mean i\, 

Y(t) = i\(t-1), which is a straight line with intercept -i\ and zero at 

t = 1. If the Poisson model is correct, the intercept term in the plot of 

Y (t) yields a preliminary estimate of -i\. 
n 

For a binomial distribution 

Y(t) is a concave function while (or a negative binomial or. general 

mixtures of Poisson distributions, the shape of Y(t) is always convex. 

For a truncated distribution for counts, that 
.,, 

is, when p = 0, 
0 

Y(t~ 

diverges to -oo as t converges to zero. In particular, for a truncated 

Poisson distribution, this behavior near t = 0 is like the function log(t) 

and close to t = 1 it resembles a straight line. The shape_ of Y(t) under 

a heavy-tailed distribution is convex near t = while concave near t = 0. 

·This is the case of distributions with long positive tails, such ·as the 

logarithmic series or· zeta distributions (see Johnson & Kotz, _ 1969 p. 166 

and p. 240 respectively). Figure 2.1 plots the described behavior of Y(t) 

of selected distributions for counts of some of the types· specified above. 

As an illustration, in Figure 2.2 we have plotted· Y (t) ·for two different 
n 

sets of previously analyzed data. On the .one hand, we -have the yearly 

death by horsekicks in the Prussian army recorded by von 

Bortkiewicz (1898) over the twenty· years 1875-1894 (observations are 3, 5, 

7, 9, 10, 18, 6, 14, 11, 9, 5, 11, 15, 6, 11, p, 12, 15; 8 and 4). As 

the figure suggests there is no evidence that the data come from a Poisson 

7 

·-·-· ·---------------- .... -··--

,·:· 

··-------~----·- ·--· --------·-·-···-----·-- ---·--~--------·---------·-~·-------~-----·------~----·-·--·--·-·-·- - ---------~---~-----·--·--

------------~--------------··------------



distribution but rather from a truncated Poisson model. In the same plot 

we consider the plot of Y (t) for counts of characteristic subduction 
n 

earthquakes on Mexico's Pacific coast (from Jara & Rosenblueth, 1988) over 

periods of ten years between 1806 and 1985. This plot indicates that data 

cannot support the hypbthesis that this variety of earthquakes results 

from a Poisson process. Rather, tt?.ey display a mixture of Poisson or 

extra Poisson behavior. Actual observations are 1, 2, 0, 2, 1, 0, 3, 0, 

2, 4, 5, 0, 6, 3, 1, 3, 2 and 7. 

3.2 Detecting outLying observations. 

A way of looking for an outlying observation consists in evaluating 

the variation of Y (t) (as a function of t) by a leave-one-out procedure. 
n 

That is, leave out xl, construct Y (t) from the remaining n - l 
n 

observations and show all resulting n curves on the same plot. The curve 

that exhibits a small (large) change of Y (t) in 0 < t < 1 along with a 
n 

large (small) change for t > 1, indicates that the observation left out is 

possibly a large (small) outlier. This procedure is clearly extended if 

we are interested in looking for· more than one possible discordant 

observation. 

As an example of small outlier, in Figure 2.3 we applied the method 

just described to data on quality inspection of a manufactured item 

presented in Barnett & Lewis (1983, p. 201). Observations are 5, 4, 4, 5, 

4, 1, 4, 5, 3, and 4. The leave-one-out procedure for Y (t) indicates 
n 

that the value 1 is a small outlier. A discordancy test for this vaiue 

conducted by Barnett & Lewis (1983) gives weak evidence for regarding it 

as a discordant observation from a binomial random sample. 

For an example of possible upper outliers, we consider Figure 2.4 for 
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the data on Household Size on a Housing Allowance Demand Experiment 

(Hoaglin & Tukey, 1985, Table 9.4). Observations are 1, 2, 3, 4, 5, 6, 7, 

8, 9, 10, 11, 12 with corresponding frequencies 210, 315, 292, 176, 125, 

57, 38, 18, 6, 1, 0, 1. The leave-one-out procedure does not indicate the 

presence of any single upper outlying observation. 

3.3 Analysis of k-sampLes. 

The plot of t against Y(t) may also be useful in the statistical 

k-sample analysis of general distributions for counts, as . tests of 

homogeneity or trends and independence. The first approach is simply 

plotting, 

samples. 

on the same graph, the corresponding Y ( t) · for each of the k 
n 

For example, Figure 2.5 shows the graphs of Y (t) for two sets 
n 

of data presented in Stewart & Campbell (1970), who studied· the . claim 
"· 

experience of a single car in the entire driving . population of North ... 

Carolina over a four-year period and published the distribution of drivers . 

by number . of accidents during two consecutive two-year periods. As 

indicated by the plot, · there is evidence that the number of claims over 

the two periods do not arise from · the same distribution. ··In fact the 

figures suggest that one conforms to a Poisson distribution while the 

other to a mixture of Poissons. 

.. 
An exploratory procedure to test for independence of two random. 

discrete samples can be conducted· as follows using the multivariate 

version of the epgf. Let ¢
1
(\) and ¢

2
(t

2
) be the marginal pgf's a~~- ~~1) 

be the joint pgf, _ and let ¢~(\), ¢;(\) and ~\:!) be their empirical 

counterparts. 

for all 

log (ce\~l) 

Under the hypothesis of independence ¢(t) = ¢ (t ) ¢ (t ) 
-- 1 1 2 2 

t = (t ,t ), 
- 1 2 

so a three dimensional plot of 

log ¢~(\) + log ¢~(t/ .. should reveal that this function is 

9 
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identically zero. 

4.- Procedures in statistical inference based on the empirical 

probability generating function. 

4.1 Estimation and testing. 

Let X , ... , X be a random sample from a discrete distribution 
1 n 

F(x,e) over 0, 1, 2, ... , having pgf ¢(t,e) where the true value of e e e 

is unknown. 

A general framework for estimation phrased in terms of statistical 

transforms is given by Feuerverger & McDunnough (1984); it covers the pgf 

as a special case, although most investigations concern the empirical 

characteristic function and the empirical moment generating function as 

specific cases (see the aforementioned paper for a rich list of 

references). In their context, 8 is a real, open interval, and one clasr: 

(of three presented by Feuerverger & McDunnough) of estimates of e basec 

on the pgf is obtained in the following way. Fix 

t = (t, ... , t ) e [-l,l]k, define 
1 k 

~(t,al = (¢(t ,e), ... , ¢(tk,e)) 
- 1 

and estimate e by solving 

where d is a lxk vector of constants. -There are conditions under which a 

sufficiently extended grid \, ... , \ yields an estimator of 8 with 

arbitrarily high relative efficiency (provided _ d is chosen optimally). A 

continuous version of the previous estimating equation, in which all 

values of t instead of a finite subset of them play a role in estimation, 



is given by 
1 1 I ¢(t,8) dH(t) = I ¢ n (t) dH(t). 

-1 -1 

See Feuerverger & McDunnough (1984) for details, as well as other classes 

of estimators based on statistical transforms. In the same paper, a. 

Wald-type test of the hypothesis H : 8 = 8 is displayed, motivated by the 
0 0 

asymptotic normality of ~n (!). The test statistic in the context of 

pgf's, is 

2 T D = n(g (t) - g(t,8 ))Q(g (t) - g(t,8 )) 
Q -n - - - 0 -n - - - 0 

where Q is a nonnegative definite constant matrix which may be selected 

optimally. 

With the intention of obtaining rapid estimates of 8, Kemp & Kemp 

(1988) also propose approaches based on the pgf. Rapid, in the sense that 

iterations are not needed to obtain an estimate, which may then be used, 
~-

say, as an initial value for iterative methods. The simplest form for an 

estimator of a k-dimensional parameter ~ based on the pgf consists in 

fixing t , 
1 

... , t e [ -1,1] an·d establishing the simultaneous equations 
k 

¢ (t) = ¢(t ,8), i = 1, ... , k 
n 1 I -

which are then solved to obtain the vector 8 . Kemp & Kemp focus or.. 
-n 

k = 2, and show that certain limiting choices of t and t lead to other 
1 2 

rapid estimation methods such . as the method of moments, .the 

mean-and-zero-frequency method, or the method of even points. More 

generally, other possible. estimating equations based on the pgf may~ .be 

obtained by setting 

¢~ml(\) = ¢(m)(\,~), i = 1, ... , k. 

With regard to the selection of m and the t's, it appears that . 

choices are possible which lead to estimates with high rel8:tive efficiency 

(with respect to maximum likelihood), but these are not necessarily good 

11 
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for all distributions; in fact, generally speaking, even if the family of 

distributions is fixed, high relative efficiency is not obtained uniformly 

over all regions of 8 for any one choice of m and t , ... , t . This makes 
1 k 

it necessary to study particular families of distributions one at a time 

and to check the performance of methods by simulation. Other types of 

estimating equations also considered in Kemp & Kemp (1988) are ones 

obtained by considering 

(d/dt)log{tf>(t,e)} = (d/dt)log{t/> (t)}. 
n 

An immediate advantage of any of these methods is that they may be 

applied to problems where maximum likelihood is not operative, say for 

instance, if a closed form of the density is not available, or if solving 

likelihood equations is difficult. The first example in Section 5 is an 

instance of this latter case. Advantages are also apparent in the 
"· 

analysis of multivariate count data. 

4.2 Goodness of fit for discrete distributions 

The issue of testing the fit of a discrete distribution seems to be 

relatively underdeveloped when compared with the amount of literature 

devoted to the ·continuous case (see D' Agostino & Stephens, 1986). A 

general per.spective of this problem for discrete distributions is offered 

by the epgf. It was first used in this context by Kocherlakota & 

Kocherlakota (1986) and recently explored for the Poisson case by Rueda 

et. al (1991), Nakamura & Perez-Abreu (1991) and Baringhaus & 

Henze (1992). 

A quick method to test the composite hypothesis H that X , ... ,X 
0 1 n 

originates from a general (possibly multivariate or multiparametric) 

discrete distribution F(x,~) with pgf tf>(t) = tf>(t,~) (8 unknown) is based 
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on the following concept. As in the rapid estimation approach, consider a 

fixed number of t's, say 1 = <t
1

, ... ,\)· Then, under the null 

hypothesis, if ~ denotes the maximum likelihood estimator of ~. the random 

vectors 
1/2 ~ ~ 

Z (t) = n (¢ (t ) - cj>(t ,9), ... ,¢ (t ) - cj>(t ,9)) 
-n - n 1 1 - n k k -

a to converge 

k-valued normal distribution with mean zero and covariance matrix 

Q(9) = [q(t, t )], where 
- i J 

k 

q(t, t) = cj>(t t ,9) - cj>(t ,9)cj>(t ,9) - L 
lj lj- 1- j-

1=1 

and L = {<r } is the inverse of the Fisher information. When 9 is known 
lj . 

this expression simplifies to q(t ,t) = cj>(t't ,9) - cj>(t ,9)cj>(t ,9). 
lj lj- 1- j-

Thus, to test the hypothesis H , Kocherlakota & Kocherlakota (1986) 
. . 0 

suggest a test based on the statistic zn (1)Q -\ ~ lZ: Cil, and rejeCt if 

Zn(1)Q-1(~Jz:<1l > x~; 1-a the 100(1-a) 

distribution with k degrees of freedom. 

percent point in the 
2 

X 

The special · case of 9 known 

follows in a straightforward manner. From a simulation study Kocherlakota 

& Kocherlakota (1986) conclude that it is convenient to use a small number 

for k as well as values of t close to zero. Nakamura & Perez-Abreu (1991) 

find that in the Poisson case, although this procedure is. not consistent, 

it should not be dtsregarded, since it behaves well against distributions 

which do not display. upper heavy t.ails. The test might be convenient as a 

preliminary test in multivariate and multi-parametric·. situations. 

Inspired on an idea developed . in Epps et. al (_1982), Kocherlakota · & 

Kocherlakota (1990) have used ~this technique in the case of the weighted 

binomial distribution. 

To avoid the dependence on the number of selected t's as well as: 

their specific values, Rueda et. a:l (1991) propose a continuous extension 

of the previous method, which resembles the Cramer von-Mises statistic. 

The proposed test statistic is· 

13 
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d (9) = n J 1(tj> (t) - tj>(t,e))2 dt, 
n- 0 n . -

(4.1) 

which, under the null hypothesis, asymptotically possesses the 

distribution of d = J1(Z(t))2 dt, where Z(t) is a Gaussian process with 
0 

covariance given by (2.3) (or by (2.2) if 9 is known). The distribution 

of d is then tabulated as in Durbin (1973) using numerical methods to 

solve an eigenvalue problem and to invert a characteristic function. 

There is the disadvantage that this distribution depends on the parameter 

a. However, this is a general proced\}re that still has to be explored for 

many discrete distributions. The partiyular goodness of fit test of the 

Poisson (i\) distribution was considered in Rueda et. al (1991), in which 

case, (4.1) takes on the value 
n n X +1 X! 

-i\ (lin) E 1 icx + X + 1) -2 E [ ( -1) 1 1 

i\ X 1 +1 
e 

1 j 
1 'J= 1 1 =1 

~. n 

+ E c-llJ X! / {(X-j)!i\J+1}] + (n / 2i\) (1-e-2i\). 
1 - . j 

J =1 

Using characteristic properties of the Poisson pgf, recently two 

"Poissonness tests" have been considered. Here, 

hypothesis that the model is a Poisson distribution. 

H is the composite 
0 

On one side, using 

the distinguishing fact that for a Poisson distribution i\q>(t) = q,<1l(t), 

Baringhaus and Henze (1992) proposed the test statistic 

D = J1 (X 1> (t) - if>w(t))2 dt = 
n 0 n n 

n 

{1/n) E [X
2
/(X

1
+XJ+l) - X X /(X +X -1)] -(n-C

2 
/n)X · 

1j 1 J n ' 
I ,j= 1 

where C = Z:, I(X =0). The limiting distribution of D is derived by the 
n 1=1 1 n 

last named authors and it turns out to be a weighted infinite sum of 

2 independent ~1 random variables, which depends on the parameter i\. 

Baringhaus and Henze (1992) prove that this is a consistent test for 

alternative distributions with finite first moment. 
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On the other hand, Nakamura· & Perez-Abreu (1991) consider a test 

motivated by the graphical method of Section 3.1. In assessing the 

linearity of Y (t) = log(¢ (t)) 
n n 

as a function of t, they obtain the 

• -1 45 
statistic T = nT /X · , where 

n n 
n 

Tn = (1/n4) L X1(Xl-xj-1)Xk(Xk- xi- l)I{X +X = X +X}' 
1,j' k , 1 =1 1 J k 1 

• The test reJ'ects for T > q where the percentile values q of the 
n 1-a' 1-a 

• limiting distribution of T 
n 

were ·computed in Nakamura & 

Perez-Abreu (1991). This distribution is also a weighted infinite sum of · 

independent -;/ ra~dom variables and has the particular feature that it 
1 

seems to be independent of A.. In the latter work a simulation study was 

conducted to compare the behavior of this test with other well-known 

Poissonness tests. The conclusion is that, although not the most powerful 

·-.. 
for any particular alternative, the test T maintains 

n 
relatively high 

·-- --· 

power against a wider range of alternatives than any of· the other test~ 

considered. 

All of the procedures explained above show that the empirical 

probability generating function is potentially useful in constructing 

goodness-of-fit tests for discrete distributions. We expect that more 

work on the subject will be developed for distributions for counts other 

than the Poisson distribution. 

4.3 Change Point Estimation. 

Let X , ... ,X be independent random variables, such. that for an 
1 n 

unknown change point parameter 8, X , ... ,X 
8 

have discrete distribution 
1 [n 1 

F and X 8 , ... ,X a discrete distribution G, where F * G are unknown. 
[n ]+1 n 

Following an idea presented in Carlstein (1988), an easy nonparametric 

procedure to estimate 8 can be constructed using the epgf. The method is 
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as follows: For each ;>.. e T = {lln,2/n, ... ,(n-1)/n}, define the pre-/.. and 
n 

post-?.. empirical probability generating functions as 
[n/..1 X 

;>..¢ (t) = (1/[n?..]) L t 1 
, 

n 
l = 1 

n 

(1/[n(1-?..)]) t e [0,1] . 
l=[n/..1+1 

Consider the distance 

{ 

[ n/..1 [ n/.. 1 [ nA 1 n 
;>..(1-;>..) 1/(n/..)2 L E 1/(X +X +3) - 2/(n2?..(1-/..)) E E 

l J 
l = 1 J = 1 l = 1 J = [ nA 1 + 1 

+ ll(n2(1-?..) 2
) f f 1/(X +X +3) } 

l = [ n/.. 1 + 1 J = [ n/.. 1 + 1 
1 

J 

Then, the change point estimator ;>.. e T of 9 is the 
n 

A 

d (;>..) = max {d (;>..); ;>.. e T }. Apart from the fact that 
n n n 

1/(X +X +3) 
l J 

one such 

this is a 

intuitive and easy to compute estimator, it is consistent and a 

that 

very 

Monte 

Carlo experiment (Perez-Abreu, 1989) has shown that this estimator is as 

good as the best estimator presented in Carlstein (1988). 

5.- Two examples. 

We give a brief account of two situations in which a pgf emerges 

inherently in a statistical problem. A few ideas discussed in Section 4 

may therefore be applied. 

5.1 A cumulative damage modeL. 

:: Bogdanoff & Kozin (1985) describe stochastic models for cumulative 

damage based on certain Markov Chains. A simple version of their model 

involves a finite-state chain having transition probability matrix 

16 



.. -- -- ---- .. 

p1 q1 0 0 0 0 

0 P2 q2 0 0 0 

0 0 0 0 pb qb 
0 0 0 0 0 1 

where 1 > p > P2 > ... > p > 0. In their description, pgf's are used as 1 b 

standard tools for finding and/or identifying discrete distributions, in 

particular, for the distributions of waiting times between states. For 

estimation of parameters in the model, they recommend either the method of 

moments, or maximum likelihood, which is more difficult to implement. 

Having explicit expressions for the pgf's, it seems natural to consider 

one of the estimation methods based on the epgf described in Section 4._1. 

If appropriately selected, the epgf-based · method may provide higher 

efficiency than the method of moments, it would be more easily computed 
.-~-

"· 
than maximum likelihood, and it may still have high relative efficiency 

with respect to maximum likelihood· (Perez, 1991 and Kemp & Kemp,- 1988). 

Since engineers involved with cumulative damage are really interested in 

hazard functions or cumulative distribution functions for times to· 

failure, a matter of interest would- be to investigate the differences in 

the methods when estimating these functions. 

5.2 Nonparametric estimation of the distribution of a maximum. 
-

The probability generating function also arises nattmilly in 

Hydrology, in the estimation of the distribution function of the -annual 

maximum level of a river, or in the more general problem of nomi_nation 

sampling (Boyles ... , (X ,N ) 
n n 

Samaniego, 1986). & (X ,N ), (X ,N ), 
1 1 2 2 

Let 

be a random . sample_ from the bivariate vector (X;N) where X has 

distribution F and N has a distribution for counts with probability 

17 

- ---~========= 
--·-··-- --···--·-·---

--------~-----. __:_ __ , --------------------------------------------------------------------



00 

L lP. 
k 

generating function ¢(t) = 
k=O 

The observations X 's 
1 

(annual 

maxima) are independent random variables which are maxima of N (levels 
1 

above a certain amount) independent random variables. Then, the 

distribution function of each X is given by 
1 

F (x) = 
M 

00 
k L F (x)P = ¢(F(x)). 

k 
k=O 

Boyles & Samaniego (1986) introduce a nonparametric estimator, say F (x), 
n 

of F(x). Then, using the empirical probability generating function ¢ n one 

obtains the following nonparametric estimation of the distribution of the 

maximum F M(x) based on the nomination sampling (X ,N ),(X ,N ), ... , 
1 1 2 2 

(X ,N ): 
n n 

F (x) = ¢ (F (x)). 
M n n 

18 
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