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Abstract 

An occupation time approach for weak convergence of measure-valued pro

cesses is given, and it is exemplified by showing convergence of branching par

ticle systems to ( d, a, ,8)-superprocesses. 
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CONVERGENCE. 
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1 Introduction 

The idea of regarding processes as time random fields (which are occupation times) 

as a way of proving weak convergence was introduced in [3] assuming tightness, and 

extended in [18] to include tightness. This was done in the context of nuclear space

valued processes. The criteria proved in [3, 18] can be translated directly for measure

valued processes (Theorems rand 2). We exemplify the use of Theorem 1 by proving 

weak convergence of branching particle systems to superprocesses (Theorem 3). For 

this we use a martingale method inspired in [12, 27, 28]. 

·Existence of (Dawson-Watanabe) superprocesses as weak limits of branching par

ticle systems has been shown by several methods [4, 7, 9, 13, 16, 20, 24, 27, 28, 29]. 

Other ways of constructing superprocesses are given in [14, 22, 23]. The occupation 
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time of a superprocess was first studied in [20] (other relevant papers on the subject 

are [2, 8, 11, 15, 21)). The occupation time of the particle process is used in [25) 

in connection with an ergodic result. The recent works of Dawson [5], Dawson and 

Perkins [7], and Dynkin [10] contain extensive surveys on superprocesses. 

Our proof of existence of superprocesses as limits of branching particle systems 

is intended only to illustrate the occupation time approach by an example, although 

for this model it is not more efficient than the other known convergence proofs, and 

the main ingredients are the same. We will explore elsewhere applications of the 

occupation time approach to derive new information on the branching model. 

In the remainder of this section we introduce the notation we need and recall some 
technical points. 

Let Cc(Rd)+ denote the space of non-negative continuous functions on Rd with 

compact supports, and Kp(Rd) the space of continuous functions r.p of the form 

where cpp(x) = (I+ I X 12)-P, p > 0, X E Rd. Let Cp(Rd) (resp .. Cp(Rd)+) denote 

the _space of continuous (resp. non-negative continuous) functions on Rd such that 

supx I r.p(x)fcpp(x) I< oo. We designate by Mp(Rd) the space of Radon measures· p -. ----

on Rd such that f 'PP dp < oo, equi-pped with the p-vague topology, i.e. the topology 

generated by the maps p f-+ (p,,cp) = fr.pdp for all <p E Kp(Rd), and by Np(Rd) the 

subspace of Mp(Rd) of counting measures. If I is a subinterval of R+, we denote 

by C(I)+ the space of continuous non-negative functions on I, and by D(I, Mp(Rd)) 

. the space of right-continuous With left limits functions from I into Mp(Rd), endowed 

with the Skorokhod topology. 

We embed Mp(Rd) in the locally compact space Mp(Rd), where Rd = fld U { T }, .. 

T being an isolated point. Mp(Rd) is the space of non-negative Radon ~easures p 

on Rd such tha.t f lpp dp IRe~ +p({ 'T}) < oo, and the p-vague topology o~ Mp(.fld) is 

defined the same way as above taking all r.p in Kp(Rf), which is defined ~ Kp(Jrl) 

replacing <pp by c{;p(x) = cpp(x )lRc~(x )+ l{T}(x ), x E f.:ld. Let Cp(Rd) denote the space of 

continuous functions on f:ld such that limlxl-oo I r.p( x )jcpp(x) I = c E R+ and cp( 'T) =·c. 

The spaces Cp(Rd)+ and D(I, Mp(Rd)) and their topologies ar~ defined similarly as 

above. (p., cp) is extended for p, E Mp(Rd), r.p E Cp(Rd)+· 
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Other notations we will use are the following: 

.6.a = -( -.6.)af2 : the infinitesimal generator of the spherically symmetric stable pro

cess on Rd with exponent a E (0, 2]. 

Cc(R+, E) : the space of continuous functions h: R+-+ E with compact support. 

C1(J, E) : the space of continuous functions h: I-+ E with continuous derivative. 

CJ:(R+) : the space of real-valued continuous functions with bounded continuous 

derivatives up to order n. 

Regarding d, p and a above, we assume p > d/2, and in addition p < (d + a)/2 if 

a < 2 (see [6, 20] on this condition). 

We denote by ()t the translation 

and by { ~m}m C C([O, T])+ an arbitrary fixed approximation of the Dirac distribution 

8o such that supp~m C [0, T] and J[ ~m(t) dt = 1 for all m. 

We assume that all our measure-valued processes are defined on a fixed probability 

space (0, :F, P) with a filtration { Ft}t which satisfies the usual conditions. We may 

taken= D(I,Mp(Rd)), (I= [O,T] orR+}, and {Fth the natural right-continuous 

filtration (P-completed) .. Then for each 'if; E Cp(Rd)+ we denote by {:F( 'if; )t}t the 

sub-filtration generated by the projection II,p: D(I, Mp(Rd)) -+ D(I, R) defined by 

Il,p (X) = (X, t/J} = { (X ( t), 'if;) , t E I} . 

:::::> mean~ weak convergence of random elements. 

Given x E D(R+, Mp(Rd)), we define the (continuous linear) functional 

for any function'¢ E Cc(R+, Cp(k'-)+)· In particular we write (.J(x), t/J ® ~) if f/l{s) 

is of the form 'if;(s) = '¢ ® ~(s), 'if; E Cp(Rd)+, ~ E Cc(R+)+· This means that xis 

regarded as a "time field," and each (.J(x), '¢)represents a weighted occupation time 

of x. 
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2 Occupation time criteria for weak convergence of measure-valued pro

cesses 

The following criteria, which we present without proof, are direct translations of 

the convergence theorems for nuclear space-valued processes proved in (3] and (18]. 

The only changes are the underlying topological spaces and the use of the tightness 

theorem of (16], but otherwise the proofs are the same. 

Theorem 1. For each n ~ 0, let xn :::: {Xn(t), t ~ 0} be a process with paths in 
• d 

D(R+, Mp(R )). Assume 

1.1. (:! (Xn), 7/J 0 <p) =? '(:! ( X 0
) , 7/J 0 <p) as n ~ oo for all ?jJ E Cp(Rd)+. and 

<p E Cc(R+)+· 

Theorem 2. For each n ~ 0, let xn = {Xn(t), t E [0, T]} be a process with paths in 

- --- D([o, T], -Mp(Rd)). Assume 

2.1. {:! (Xn), ?jJ ® <p) =? (.1 (X0
), 7/J 0 <p) as n ~ oo for all ?jJ E Cp(Rd)+ and 

¢ E C([O, T])+. 

Cp(j:{:l)+, t E [0, T) and c > 0. 

2.9. lim limsupP(j(.J(.~n),?j;®(t?Tn+'Yn --:t?Tn)<pm)l ~ €] = 0 for all ?jJ E 
n-+oo m-+oo : . 

Cp(Rd)+, (Tn)n sequence ofF ( ,P )t-stoppin!1 times in [0, T], ('"{n)n C (0, T] 

such that In -+ 0, and € > 0. 

Remarks 

(a). Hypotheses 2.1 and 2.2 together imply weak convergence of finite-dimensional 

distributions. Hypothesis 2.3 is equivalent to the stopping time condition of Aldous 
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[1]. When the limit process is continuous, the hypotheses 2.1, 2.2 and 2.3 are necessary 

(see [18]). 

(b). In both theorems it suffices to take test functions '1/J and <.p in dense subsets. 

3 Convergence of branching particle systems to superprocesses via the oc

cupation time 

We recall first the minimum necessary background on superprocesses, their occupation 

times and the approximating particle systems. We restrict ourselves to the class of 

( d, a, ,8)-superprocesses [5], but the method can be used more generally. (Recall that 

we assume p > d/2, and in addition p < (d + a)/2 in case a< 2). 

The (d, a, ,8)-superprocess X = {X(t), t -~ 0} is a homogeneous Markov process 

with paths in D(R+, Mp(Rd)), whose transition Laplace functional is given by 

where u,p is the unique, global, non-negative (mild) solution of the non-linear equation 

8u(t) 
8t 

- (D.a + Vb) u(t)- V c(u(t))l+i3, 

u(x, 0) = 

with constants a E (0, 2], V > 0, bE R, c E (0, 1/(1 + ,B)J and f3 E (0, 1]. 

The occupation time process of X is the Mp(Rd)-valued process Y = {Y( t), t ~ 0} 

defined by 

More generally, looking at X as a "time random field" we define the space-time 

random field .J (X) by 

_(.J(X),t/1) -~1
00

(X(s),1/J(s)) ds, 

for any 7/J E Cc (R+, Cv(fi<l)+). 

For fixed T > 0, 7/J E Cv(Rd)+ and <.p E C([O, T])+, .J(X) is characterized by its 

conditional Laplace functional, given by 
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where u€ = u€,1/J,cp is the unique (mild) solution of the non-linear equation 

8ue(t) 
at 

ue(x, 0) 

(.6-cc + Vb)ue(t)- Vc(ue(t))l+.B + 'lj;r.p(T- t), 0 s; t s; T, (3.1) 

- e(x), e E Cp(Rd)+· 

[8, 11, 12, 20, 28]. The solution is classical if e E Dom (.6-cc) and r.p E C([O, T])+ n 
0 1([0, T]). 

The approximating particle system is constructed as follows. At time 0 the parti

cles are distributed by a random point measure on Rd, and then they independently 

migrate according to .6-cc during V-exponentially distributed lifetimes, at the end of 

which they produce partiCles according to the generating function 

F(s) = s + b(s -1) + c(1- s)l+.B, s E [0, 1], 

and the new particles evolve in the same manner, starting from the death site of 

their parent. (The fact that F is the generating function of a branching law requires 

bE ( -1,c), c E (0, (1 + b)/(1 +,B)]). 

The particle process N = {N(t), t :2:: 0} is defined by N(t) = Ei bx;(t), where 

{ xi(t)}i are the locations ofthe p_a~~icles present at timet: The process Nis homoge~

:neous Markov with paths in D(.R+, M;i(Rd)) and transition Laplace functional given 

.by 

E [ e-(N(t),'l/>) I N(O) = ll] = e(!l,log( 1-v.,(t))), .1. E C ( nd) E • r (Rd) r 'f' p .t£.- +, jl JV p , 

where v.p is the unique, global, non-negative (mild) solution of the non-linear equation 

ov(t) 
at 

_ v(x,O) -

(.6-cc.+ Vb)v(t)- Vc(v(t))l+.B, 

Note that this is thesame non-linear equation as for the superprocess, but the initi~ 

condition is different. 
····- ·-···-··· 

- - · The rescaling of the particle process which yields the superprocess is as follows. 

In the n-,.th rescaling the parameters V and b are Vn = Vn.B and bn = bn-f3, and 

-if Nn designates the corresponding particle process, then xn = n-1 Nn denotes the 

mass process obtained by giving each particle a mass n-1 • We then have the following 

well-known basic result (see e.g. [5]). 
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n-+ oo. --

We will prove Theorem 3 by means of Theorem 1. We may take a fixed time 

interval [0, T]. Hence we must work with .J(Xn) defined by 

Proof. Since we already know tightness [5], it suffices to verify hypothesis 1.1. (Tight

ness is not the main point here. It could be proved using Theorem 2, but the cal

culations would be basically the same as in [5]). From the Markov property of xn 

we know that for any f E Cl(R+), 1/; E Cc(R+,Dom(.6.a)) n C 1(R+, Cp(Rd)+), the _ 
process 

Ar(t) J((Xn(t),'!f;(t))) 

-lot [f' ( (Xn(s ), ~(s )) ) (xn(s ), ;
8
1/;(s)) +An f ( (Xn(s ), 1/;(s )) ) J ds, 

t ~ 0, 

is a martingale, where 

An J ( (f.L, 1/J)) = .6.af ( (f.L, 1/J)) 

+n~+Pv (,.., E Pk [f ( (p, .P) + n - 1(k- l).P) - f ( (p, .P)) J) , 
1/J E Dom(.6.a), nf.L E Np(Rd), 

and (pk)k denotes the branching law with generating function 

Taking f(x) =e-x we have 

and 
.6.ae -{Xn(t),,P) = e -{Xn(t),,P) ( Xn-( t)' e 1/J/n .6.a ( ne -1/>/n)) . 

Hence, denoting h(T- t) = ?jJ(t), it follows that 

Mn(t) = e-<xn(t),h(T-t)) 
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q ., 

-fat { _:_e-(X"(s),h(T-s)) ( Xn( s ), - a(l~s) h(T- s) 

-eh(T-s)/n .6-a ( ne-h(T-s)/n) 

-nl+.BVeh(T-s)fn [Fn (e-h(T-s)fn) _ e-h(T-s)fn])} ds 

0 ::; t ::; T, 

is a martingale. 

We now fix·\lf E Cp(Rd)+ and ci> E C([O,T])+nC1([0,T]), and assume that 

h n ( t) = h~ 41 ( t) satisfies the equation 
' 

-eh"(t)fn D. a ( ne -hn(t)/n) 

...,.ni+Pyeh"(t)fn [Fn (e-h"(t)fn) _ e-h"(t)fn] 

+lltcl> (T- t), 0::; t::; T, 

hn(o) = 0, 

in the classical se~~e, __ or equivale~t~y, u~(~) = u~,41 (t) = n ( t- e-h"(t)fn) solves the 

equation 

(D.a + Vb) un(t)- V c(un(t))l+,B 

+ (1- un(t)jn) \llci>(T- t), 0 ~ t ~ T, (3.2) 

un(o) = 0. 

The existence of a unique cla5sical solution of (3.2) follows from Theorem 1.5, Chapter 

6, of (26). Then 

' .. . t 
Mn(t) = e-<Xn(t),h"(T-t)}_ fa e-(X".(s),hn(T~s)) (Xn(s), w) ci>(s) ds, 0 ~-t ~ T,. ·. 

is a ·martingale, and consequently, by Corollary 3.3, Chapter 2, of [13], 

is a (local) martingale. Hence, since Ezn(T) = Ezn(O), we obtain 

E exp {-{(X" ( s ), W) <J;( s) ds} = E exp {(X"{O), n log{l- u"(T) / n))} . · {3.3) 
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of 

Now, un(t)-+ u(t) as n---+ oo, uniformly in t, where u(t) = UtiJ,w(t) is the solution 

ou(t) 
at 
u(O) 

(~a+ Vb)u(t)- Vc(u(t))l+J} + \li<I>(T- t), 0:::; t:::; T, 

0. 

This can be proven by a continuous dependence theorem (e.g., Theorem 3.4.1 of 

(19]), or directly, by showing that {un}n is relatively compact in C((O,T], Cp(Rd)+), 

because then every limit point is the unique solution of (3.1) withe = 0. Therefore, 
' since Xn(O) => X(O) as n---+ oo by assumption, from (3.3) we have 

E exp {-loT (Xn(s), w) <I>(s) ds} -+ E exp {- (X(O), u(T))} as n---+ oo. 

But we know that for the superprocess X, 

Eexp{- foT(X(s), w) <I>(s)ds} = Eexp{- (X(O),u(T))}. 

Hence we conclude that 

(.7 (Xn), W ®<I>) =? (.J (X), W ®<I>) as n -+ oo 

for all w E Cp(Rd)+, ci> E C ([0, T]),: n C1([0, T]). 

Remark. From (3.2) and (3.3) for n = 1 we obtain a characterization of the occupation 

time of the particle process N by its Laplace functional: 

E [exp {-JoT (N(s), 1/J) cp(s) ds} N(O) = p] = exp { (p, log(1- u(T)))}, 

'if; E Cp(~)+, cp E C ([0, T])+, f-L E Afp(Rd), 

where u(t) = u1/J,r.p(t) is the unique solution of the non-linear equation· 

Ou~t) - (~a+ Vb) u(t)- V c(u(t))1+~ + (1- u(t))tf;cp(T- t), 0:::; t ~ T, 

u(O) - 0. 

Putting cp = 1, this coincides with Proposition 1 of [25]. 

Acknowledgement. The authors thank Sylvie Roelly for comments. L.G.G. thanks 

CIMAT for its hospitality and support. 

-9 



<J 

i 
.. \ 

--

'-

.... 

References 

[1) Aldous, D. (1978). Stopping times and tightness, Ann. Probab. 6,.335-340. 

[2] Adler, R. J. and Lewin, M. (1992). Local time and Tanaka formulae for super

Brownian motion and superstable processes, Stach. Proc. Appl. 41, 45-67. 

[3) Bojdecki, T., Gorostiza, L. G. and Ramaswamy, S. (1986). Convergence of S'

valued processes and space-time random fields, J. Funct. Anal. 66, 21-41. 

[4] Dawson, D. A. (1977). The critical measure diffusion process, Z. Wahrschein

lichkeitsth. 40, 125-145. 

[5) Dawson, D. A. (1992). Measure-valued Markov processes, Preliminary manus-

cript. Ecole d'lhe de Probabilites de Saint-Flour. 

[6] Dawson, D. A. and Gorostiza, L. G. (1990). Generalized solutions of a class of 

nuclear space-valued stochastic evolution equations, J. Appl. Math. Optim. 22, 

241-263. 

(7] Da~son, D. A. and Perkins, E. A. (1991). Historical processes, Mem. Amer. 

Math. Soc. 454. 
[8) Dynkin, E. B. (1989). Superprocesses and their linear additivefunctionals, Trans. 

Amer. Math. Soc. 314, 255-282. 

(9] Dynkin, E. B. (1991). Branching particle systems and superprocesses, Ann;-Prob. 

19, 1157-1194. 

[10] Dynkin, E. B. (1992). Superproce-sses and partial differential equations (to ap

pear) . 

[11] El Karoui, N. (1985). Non-linear evolution equations and functionals of measure

valued branching processes. In Stochastic Differential Systems, ed. M. Metivier 

and E. Pardoux. Lecture Notes in Control and Information Science 69, Springer

Verlag, Berlin, 25-34. 

[12] El Karoui, N .: and Roelly, S. (.1991 ). Propietes-- de martingales, explosion et 

representation de Levy-Khintchine d'une classe de processus d~ branchement. 

a valeu~s mesures. Stach. Proc. Appl. 38, 239-266; 

[13] 

[14] 

[15] 

Ethier, S. N. and Kurtz, T. G. (1986). Markov-Processes, Characterization and 

Convergence. Wiley, New York. 

Fitzsimmons P. J. (1988). Construction and regularity of measure-valued Markov 

-branching.processes, Israel J. Math. 64, 337-361. 

Fleischmann, K. (1986). Critical behavior of so~e measure-valued processes, 

Math._ Nachr. 135, 131-147. 

10 



[16] Gorostiza, L. G. and L6pez-Mimbela, J. A. (1990). The multitype measure 

branching process, Adv. Appl. Prob. 22, 49-67. 

[17] Gorostiza, L. G. and L6pez-Mimbela, J. A. (1992). A convergence criterion 

for measure-valued processes, and application to continuous superprocesses. In 

Barcelona Seminar on Stochastic Analysis, (D. Nualart and M. Sanz, Editors), 

Progress in Probability, Birkhauser. (To appear). 

[18] Gorostiza, L. G. and Rebolledo, R. (1992). A random field approach to weak 

convergence of processes. Preprint. 

[19) Henry, D. (1981). Geometric Theory of Semilinear Parabolic Equations. Lect. 

Notes in Math. 840, Springer, Berlin. 

[20] Iscoe, I. (1988). A weighted occupation time for a class of measure valued branch

ing processes, Prob. Th. Rel. Fields 11, 85-116. 

[21] Krone, S. M. (1992). Local times for superdiffusions, Ann. Probab. (to appear). 

(22] Le Gall, J. F. (1991). Brownian excursions, trees and measure-valued branching 

processes, Ann. Probab. 19, 1399-1439. 

[23] Le Jan, Y. (1991). Superprocesses and projective limits of branching Markov 

processes, Ann. Inst. Henri Poincare 21, 91-106. 

[24] Meleard, S. and Roelly, S. (1991). Discontinuous measure-valued branching pro

cesses and generalized stochastic equations, !vfath. Nachr. 154, 141-156. 

[25) Meleard, S. and Roelly, S. (1991 ). An ergodic result for critical spatial branching 

processes. In Proceedings of Silivri Conference (to appear). 

(26) Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial 

Differential Equations. Springer-Verlag, Berlin. 

[27) Roelly-Coppoletta, S. (1986). A criterion of convergence of measure-valued pro

cesses: application to measure branching processes, Stochastics 17, 43-65. 

[28) Roelly, S. and Rouault, A. (1990). Construction et propietes de martingales des 

branchements spatiaux int~ractifs, Internat. Stat. Rev. 58, 173-189. 

[29] Watanabe, S. (1968). A limit theorem of branching processes and continuous .. 

state branching processes, J. Math. Kyoto Vniv. 8, 141-167. 

11 


