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INTRODUCTION. 

In recent works on the geometric theory of supermanifolds, the fundamental importance 
of the Lie supergroup structure of R111 and its actions has been stressed in connection 
with the problem of integration of supervector fields [4-5]. The most striking fact in this 
direction is the following:_ even though R111 plays in supermanifold theory the role that 
R does in the coo category, R111 does not possess an e~sentially unique Lie supergroup 
structure, but it has three, non-isomorphic, equally acceptable ones. This fact was pointed 
out in [4] as a consequence of a new theory of integration of supervector fields developed 
after the methods of [3] and [5]. 

The three supergroup structures of R111 were obtained in [4] by representing each (1, I)­
dimensional Lie superalgebra as graded derivations of th:e structure sheaf of some (1, 1 )­
dimensional supermanifold, and then solving the differential equations they give rise to. 
This process yields the local coordinate expressions for the multiplication laws on the 
supergroups corresponding to the three different (1, I)-dimensional Lie superalgebras. It 
was then verified a posteriori that the graded derivations were actually left invariant for 
their corresponding. supergroup structures. 

In this note we give a direct analytic derivation of the three supergroup structures on 
R111. We thus provide an alternative proof of the results in [4]. Our proof, however, is 
independent of the integration theory of supervector fields and independent of the Lie theo­
retic relationship between Lie groups and Lie algebras via the exponential map. Moreover, 
using only.the notion of Lie supergroup homomorphism as in [1], we are able to describe 
directly the isomorphism classes of Lie supergroup structures on JR.111 . Finally, we also 
provide analogous results for the (1, I)-dimensional "supercircle" S11I, together with the 
corresponding "exponential covering maps". 
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1. LIE SUPERGROUP STRUCTURES ON ]R111 

A Lie supergroup consists of a supermanifold G, together with supermanifold morphisms, 
J.L: G x G-+ G, c:: G-+ G, and a: G-+ G, satisfying the usual group conditions ( cf. (1]): J.L 

is associative, which means that J.L o (J.L o ( 1r1 x 7rz) X 1r3) = J.L o ( 1r1 X J.L o ( 1r2 x 1r2)), where 
?ri denotes the projection of G x G x G onto the ith factor; J.L o ( c: x id) = id = J.L o ( id x c: ), · 
and J.L o (a x id) = c: = J.L o ( id x a). In this note we will only need the a.Ssociativity 
of the morphism J.L, and for its explicit description we shall make use of the fact that 
supermanifold morphisms are determined by their effect on global sections of the sheaf of 
superfunctions ( cf. [2]). 

Let G be the supermanifold IR111 = (IR, CR ® /\( r)), and let (t, r), and (t 1 , t 2 , r1 , r2 ) be 
sets of (linear global) supercoordinates for JR111 and JR111 x ~}1 1 , respectively. Then f.l is 
determined by the equations, 

where ji, a, b, and c are smooth functions of t 1 , and t 2 . 

Now the associativity of J.L is equivalent to the equations 

{J.L 0 (J.L 0 (1r1 X 7rz) X 1r3) }*t = {J.L 0 (1r1 X f.l 0 (7rz X 7rz)) }*t 
{J.Lo (J.Lo(?ri X7rz) X1r3)}*r= {J.Lo(7ri XJ.L0(7rz X7r2))}*r, 

and the explicit computation of these equations gives a set of functional relations among 
the coefficients ji, a, b, and c. The easiest to solve is the one for /I: up to a transformation 
of coordinates, ji(t1, tz) = t1 + t2. Using this fact we can state the following proposition, 
which describes all the possible Lie supergroup structures on JR1

1
1: 

Proposition 1. The functions a, b, and c define a Lie supergroup structure on JR.111 if 
arid only if, th_~re exists a smooth function g: lR-"""+ JR, and real constants K 1 , K 2 (K2 =f. 0), 
such that, either 

or, 

a(tbt2) = e(g(ti+t2)-g(td) 

b(tt, t2) = a(t2, t!) 

c(t1,t2) K1e-(g(ti)+g(t2)) 

a( tl' t2) = e (g(tl +t2)-g(ti)) 

b(t1, ti) = a(t2, t1) eK2t1 

c(t1, t2) = o. 
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2. THE ISOMORPHISM CLASSES 

An isomorphism between two supergroups ( G1 , J.LI), and, ( Gz, J.Lz), is a superdi:ffeomor­
phism w: Gl __.., Gz such that (cf. [1]) f.L2 0 (w X w) = w 0 f.Ll· Applied to the case of R1
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this translates into the existence of a non-zero constant ,\ and a smooth, non-vanishing 
function 'lj; : R __.., IR, such that the following set of equations is satisfied: 

'l/;(t1 +tz)ai(ti,tz) = az(,\tl,Atz)'lj;(ti) 

'l/;(t1 +tz)b1(t1,tz) = bz(,\tl,,\tz)'l/;(tz) 

Ac1 (t1, tz) = cz(,\tl, ,\tz)'l/;(ti)'I/;(tz). 

Here, ai, bi, and Ci correspond to the product f-ti· 

We then obtain the following classification theorem: 

Theorem 1. There are three equivalence classes of Lie supergroup structures on the 
(1, 1 )-dimensional superline. Each class is determined by the data: 

(1) Type I: a(t1,tz), b(t1,tz) = a(tz,tl), c = 0 
(2) Type II: a(t11 t2), b(t11 t2) = a(t2, t1), c = K1e-(g(tt)+g(t2)), for some K1 =I= 0. 
(3) Type III: a(t1, t2), b(t1, t2) = a(t2, t1)eK2t1, for some Kz =I= 0, c = 0 

where a and g are as in proposition 1. 

Remark. In particular, one has the following normal forms for the Lie supergroup struc­
tures on the (1, I)-dimensional superline (cf. [4]):_ 

Type I a . b = 1, c = 0 cl) * c2) = cl +t2) 
T1 T2 T1 +r2 

Type II a=b=c=1 cl) * c2) = cl +t2+r1 T2) 
n ~ n+~ · 

Type III a= 1, b(t1,t2) = et1, c = 0 cl) * c2) _ ( t1 +t2 ) 
T1 T2 · ~ T1+e1l T2 

3. SUPERGROUP STRUCTURES ON S111 

We now disc-qss the case of the supercircle S111 = ( Sl, coo ( S1) ® I\ ( u)). Let ( e io, u), be 
. a set of supercoordinates on S111 • We may write the smooth functions on the -eircle as 
products of the form ei8 f( ei8), with fa smooth real-valued function. 

Now, as in the case of the superline R111 , Lie supergroup structures on S111 are specified 
by triples of smooth functions, a, b, and c, defined on S1 x S1 . Thus, 

J.L*eia = ei81ei82 + c(ei'h, ei82)u1o-2 

f.L* O" = a( eiot, ei82) u 1 + b( ei81, ei82) u 2 

Similar considerations to those used for R111 yield the following proposition that completely 
· characterizes the Lie supergroup structures on the supercircle: 
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Proposition 2. The functions a, b, and c define a Lie supergroup structure on the su­
percircle 5111 if and only if there exists a smooth function g: 51 ---+ JR, with g(l) = 0, and 
real constants A, f.L, and K (f.L -=f. 0 ), such that, either 

or 

·a( eiBt' ei82) = ei>.82eg(eiot e;o2)-g(eiot) 

b( eilh, ei82) = a( ei82, ei81) 

c(ei81, ei82) = Kei(l->.)(81+82)-(g(ei81)+g(ei82)) 

a(eiBt, ei82) = ei>.82eg(eioleio2)-g(eiol) 

b( ei81, ei82) = eip.B1 a( ei82, ei81) 

c(eiBt,eiB2) = 0 

Similarly to theorem 1, one has the following characterization of the equivalence classes 
of Lie supergroup structures on S111 : 

Theorem 2. There are three equivalence classes of Lie supergroup structures on the 
(1, I)-dimensional supercircle. Each class is determined by the data: 

(1) Type I: a(eiBt, ei82), b(eiBt, ei82) = a(ei82, ei81 ), c = 0, 
(2) Type II: a( ei81, ei82 ), b( ei81, ei82) = a( ei82, eiBt ), 

c(eiet,ei82) = Klei(l->.)(Bt+82)-(g(eiBt)+g(eiB2)), for some Kl -=f. 0, 

(3) Type III: a(ei81 ,ei8_2), b(ei81 ,ei82 ) = a(ei82 ,ei81 )eiK281 , for some K2 -=f. 0 mod27r, 

c = 0, 

where a, g and ..\ are as in proposition 2. The notmal forms for these supergroup structures 
are: 

Type I a= b = 1, c = 0 (eio1) * (eiB 2) = (eio 1 eio 2) 
O't 172 171 +172 

Type II a= b = 1, c = ei(Bt+B2) (eiBt) * (ei82) = (eiBt ei82(1+17t0'2)) 
171 0'2 0'1 +172 

Type III a= 1, b(eiet,ei82) = eiBt, c = 0 (eio1) * (ei82) = ( eio1 ~io 2 .. ) 
O't 172 . u1+e'8lu2 

From the comparison of theorems 1 and 2, the existence of the corresponding "expo­
nential covering maps" from JR111 to S111 now follows: 

Corollary. Up to conjugacy by isomorphisms, there are unique Lie supergroup covering 
homomorphisms from each of the three types of Lie supergroup structures on JR111 onto 
their corresponding types on 5111 . 
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Valenzuela. The authors would like to thank him for his support and encouragment. 
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