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THE INDEX OF HOLCHORPHIC VECTOR FIELDS ON SIHGULAR VARIETIES I

CH. BONATTI and X. GOHEZ-HOKT

Given a complex analytic space V with an isolated singularity at p, there is a
way to associate to a holomorphic vector field X‘oh V an ind§x>at p a la
Poincaré-Hopf Ind(X,V,p) (see [Se], [GSV]). The objective of this series of
papers is to understand this index. In the present paper we relate it to the
V¥multiplicity: ’ | o

OCn,p
o

. n
(fl,...,fg,X y oo K)

uV(X,p) = dlmc-

vhere ‘f1""’f£ are generators of -the ideal defining .Vc@n, XJ are the

coordinate functions of a holomorphic vector field that extends X to a

nelghbourhood of 0-in ¢" and the denominator denotes the ideal .generated by .

the elements inslide the parenthesis. The main results are:

Theorem 2.2: Let (V,0) ¢ B1 c (€",0) be an analytic space in the unit pall

B1 which 1s smooth except for an isolated singularity at 0. Let ® denote the
: _ _ r

Banach space of holomorphic vector fields on Vr with continuous extensions to:

BVP, r<l, with 1its natural structure as an analytic space of infinite

dimension. Then:

a) The function V-multiplicity at O

uy( . 0):0 — 7' u{x)
r

is upper semicontinuous and it 1ls locally bounded at those points X where X

has an isolated singularity on V at 0,

b) The subsets of @r defined by pu( ,0) =z K are analytic subspaces and
the minimum value of uv( ,0) in @r is attained on an open dense subset F; of

e .

r
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c) The subset of © formed by vector ficlds whose critical set al O has
r

positive dimensicn is an analytic subspace of GK

Ve introduce the [FEuler-Polncaré characteristic xV(X,O)'of XcOr at 0 in (2.10)

and show:

Theorem 2.5: For Xe® with an ilsolated singularity at 0, s<<r and O0<<eg , we
r

have:

1) For any family of vector flelds (Xt} , paramctrized by a {linite

reT
dinensional analytic space (T,0) — (@ ,X) such that the V-multiplicity at O
"

of the general vector fleld Xt of the famlily Is minimal Ky we have:

tan

xV(X,O) = X, (0 , 0 )

Z..

I[s

(X}

where the right hand side 1is the Euler-Polncaré characteristic of higher

torslon groups.
2) For ZeU(X,e) we have

XV(X,O) = xV(Z,O) + Y uV(Z,pJ)
2(pj)=0

p eV -{0}
J 8

3) For Xe® wlth an isolated critical point at 0, we have:
r

0 <« xV(X,O) = (X,0)

Ity

and }N(X,O) = uV(X,O) if and only 1f the universal crilical set Z is
r
ni—anaflat at (X,0) (in partlicular thls happens in FI).

e

Let X € @, we say that the critical set of X does not bifurcate if there s
r

€>0 and s>0 such that for VYeU(X,e) ¢ ® we have that the only critical point
r
of Y onV 1is O, (that is, X has an isolated singularity at 0 as well as
8
any sufficlently near vector f{leld in @r and there I1s no other critical point

uniformly in a nelghbourhood V of 0).
s

Theorem 2.6: Let (V,0) ¢ B1 ¢ (€",0) be an analytic space which ls smooth
except for an isolated singularity at O, then the set of polnts in @r vwhose
critical set does not bifurcate contalns the connected dense open subset Fl <

@ conslsting of vector flelds with minimum V-mulliplliclity.
r



Theorew 3.1: Let (V,0) < B, < (c",0) be an analytic space which 1s smooth

except for an isolated singularity at O, then there 1s an integer K such that

Indw(X,V,O) = xV(X,O) + K

for X in the dense open set @' of vector flelds in @r wlth an isolated
singularity:at'o. For X In the dense open set of @' where the. universal

critical set Zr is @r—flat we have

Indw(X,V,O) = »uV(X,O) + K

Corollary 3,2: Let (v,0) ‘¢ Bilc (c",0) be an analytic space which is

smooth except for an lsolated singularity at 0, then there 1is a constant L
such that Indw(X,V,O) =z L. for every germ of holomorphic vector field X on V
with an lsolated singularity at 0 on V.

In the first section we analyse the Index on smooth compact'manifbids with

boundary. We prove:

Proposition 1.1: . Let X and Y be C'-vector flelds defined on the compact *
manifold with bouhdary (W,8W) and non-vanishing on .gW and let [FX] denote ‘the
fundamental class of the graph of X/IXI on the sphere bundle S of unit

tangent vectors of W restricted to 8W (with respect to some Riemannian metric

on W). Then

Ind (X, 8W,W) - Ind(Y,aw,wj = (I ).l

where we do the Intersection in homology of S.

In the second séction we develop the propértleslof the V-multiplicity,. and in
the third we compare the V-multiplicity.with the topological index.




1. THE INDEX OF VECTOR FIELDS ON HMANIFOLDS WITH DOUNDARY

Let W be a compact oriented manifold of dimension m wilh boundary, au,
oriented in the natural way. Glven a never vanishing c®-vector field X in a

neighbourhood of 8W, the index of X on the boundary of W, Ind(X,8W,W) may be

defined by extending X to a vector field X on W with isolated singularities;
and then adding up the indices at the singularities of X . The Iindex is

independent of the chosen extension ¥ (see [Mi]), [Sel).
To understand the dependence of the index on the manifold W, we wlll prove
that the difference of the indices of 2 vector fields may be compuled

exclusively in terms of boundary data:

Proposition 1.1: Let X and Y be C'-vector flelds defined on the compact

manifold with boundary (W,8W) and non-vanishing on 8W and let [Fy] denote the
fundamental class of the graph of X/ XN on the sphere bundle S of unit
tangent vectors of W restricted to W (with respect to some Riemannian metric

on Y). Then
Ind(X,aW, W) - Ind(Y,d84,W) = [ ]. [T ]

vhere we do the intersection in homology of S.

Proof: Since the index and the fundamental classes do not change 1f we make‘a

small perturbation, we will assume that X an Y are 1In general poslition.

Namely we will assume that if the zeroes Z < CxW of the vector fields { X,

= (1-t)X + tY } intersect AW, say at 0, then at 0 : X has a zero o.
te(o,1] t t t

multiplicity 1 and the projection of Z to W Is transversal to the boundary dW.

The intuitive idea of the proof is very simple. The above family connects X
with Y, and the only way the index as a functlon of t € [0,1] can change 1ls if
a zero leaves W at 8W, or 1if a =zero arrives at W through aV. By the
transversallty conditions we are assuming, this wlll happen every time Xt has-
a zero on dW, and it will give a contribution of #*1, depending whether the
index of Xt is *1 and whether the polint is arriving or leaving W. One has to
prove that one obtalns the same sign from the contribution of the intersection

[Fv].[F_Y] at the above point on aW.



Let p be a boundary'point, and consider the convex hull C = <}(p),Y(p)> in

TW. 1f 0 is not contained in C, then the vector fields X do not vanish at p
p

for te{0,1]. If 0 is contalned in C, then there ls exactly one value of t

where X vanishes at p. Note that this condition means that X(p) and Y(p) are

linearly dependent with distinct-orientatlon,;and this 1s equlvalent to the

fact that T and T;Y intersect. So the only point left is to show that one

X g :
obtains the same sign from the intersection [FX].[F_Y] at p as the difference

of the indices Ind(X ,8W,W) - Ind(X &4, W).
t+€ t-€

To simpiify notation, let (xl,...,xn) be cobrdinates around p = 0, where W and.

W are defined by x 20 and x =0 respectively. Let 2=(21,...,Za):be a Cl—vector
n n

field with a critical point at 0 of multiplicity 1, Y=(Y1,...,Yn) a Cl—vector

fileld with Y1(0)>O, and we are interested in computing the contribution to the
index of the family Z+tY, when t passes through -0 in the positive direction.

Let DZ(0) be the derivative of Z at O.
sign of Def[DZ(O)] is Ind(Z,0), and hence it also Ind(Zt,Otf, whefeﬂt is thé
zero of Zt near to O. (One may think ghat eyerything eXtehdg to a
neighbourhpod of 8W outside of W, so as to "see" OL for all small;valués of t{
and not only for the ones that are In W). A simple calculation shows that the

curve Ot Intersects W with veloclity vector

(d0, /dt)(0) = -{Dz(0)17'Y(0)

and hence the zero set is entering W if dxbf—[DZ(O)]T?Y(O)] is positive, and
:n ‘. . N .

is leaving W if it 1is negative. By Crammer’s rule, we have

az‘/ax1 ...... az" /ax
a -1 . )
©dx [-[D2(0)17'Y(0)] = | = . : (0) (1.1)
n | Det(DZ(O)]| ‘i o :
a2 /9x ... .. a7z /8x
o
I vt

= -Det[A]}/Det[DZ(0)]

where. the matrix A is defined by the above formula. Hence we obtain .for £>0:

Ind(Z_,W,84) - Ind(Z__;¥,a4) = Ind(Z,0)Sign(~Det[A]/Det{DZ(0)]):

o C ()
= -Sign{Det[A]], : : . :

It is an invertible matrix and the




1,1
3 3 j tively by
We will now compute [rZ+Y]'[l—(Z—Y)]' Dividing by Z +Y (respectively by

Yl—Zl), which is positive, amounts to taking coordinates In the. sphere bundle,
SO F2+Y and I—(Z—Y) are the graphs of the functlons
Yk, ox ) = (PR, @@ ey ) (kL x L 0)
1 n~-1 1 n-1
Pk, x ) = ((-2h -2l -2t -2k, L x L 0)
1 n-1 1 n-1

the intersection number [rZ+Y]'[r—(Z—Y)] is equal to the sign of determinant

of the matrix obtained by grouping the derivatives of the graphs of 7+ and ¥ :

n-1 n-1

(0) = Det[Dy -Dy*1(0)
Dy Dy

A simple calculation shows that

a 1,1
Y (0) 5;—[Y +2°1(0)

+ 1
(Dy™) = ———— Det
1
b vh0))? vy Sov'sz'y o)
ax
Hence
vioo)y & 2ho
de
[Dy-—D7+]1 = __Tiz—_ﬁ Det 1 a i (1.3)
(Y (0)) Y (0) — 2 (0)
dx
J
We now need to use a formula involving determinants: Let A = (a,,] be an sxs

matrix, and let B = (le) be the (s-1)x(s-1) matrix whose general term is

1 Y ‘
b ‘= Det (1.4)
1] ‘
a a
1 1
then we have that
(a )" Det[A] = Det[B] | (1.5)



Ind(X,8W,W) - Ind(Y,dW,W)

This formula may be ﬁ}oved first for diagonal matrixes, and then by
showing that Dboth sides are left invariant under the elementary

operations of rows and columns.

Consider the matrix A in (1.1). - Let A’ be the matrix obtained by moving the

last row to the first. We have Det[A] = (-1)" 'Det[A’], and let B be the
- X
)

: - 1
matrix obtained from A’ as in (1.4). -Noting that - [Dy -Dy'] = -2B/Y' (0 we-
have by (1.5): R

Det[A] = (-1)"'Det(A’] = (-1)""'Y' (0)* "Det [B]

| = (-0)"'v' (0)* "pet Dy -Dy 1/ (-2)"
Hence Det[A] and Det[Dy =Dy’ have the same sign. Using (1:2) we obtain:
Ind(Z_,W,84) - Ind(Z_C,W,aw) = -Sign(Det[A]] = -Sign(Det[Dy -Dy*1] =

= [r-(Z—Y)]”[rZ+Y] = [rZ—Yl'[r—(Z+Y)]

This proves the Proposition. o ' : B

If we denote by Vec(ﬁ\»I)+ the set ofACl—vector fields defined and never zero

on a neighbourhpod of 4dW, the Index is an linteger valued function with_.;

'Vec(éW)+ as .a domalin:

Ind:Vec(oW)' — 7

Let (W ,8W ) be another compact mahifold with boundary and ¢:8W — 8W’' an

orientation preserving diffeomorphism of the boundaries. We may extend this

diffeomorphism to a diffeomorphism of a _nelghbourhéqd_of the boundaries ¢:W{

—_— w;. Given a non- singular c°-vector field X defined on the neighbourhood

Wi of 4W, we may transpert it via ¢ to a vector field X' defined on w;ﬂ
Ind, :Vec(aW)" z
nd, :Vec —_— s

l¢ . o« : (1.4)

. . L A
Indaw,.Vec(aw ) — Z

It follows from Proposition 1 that for X,YeVec(aW)™ we have:

1l

Tyl (T = [0 10Ty )

i

Ind(,X, a4’ ') - Ind, (4,Y, 0 W)




And hence for varlable X, and a fixed Y we obtain:

Indg, ($,X) = Indg (X) - (Indg (Y) - Ind (6,Y))

aw’
Hence we may complete (1.4) by a map « which is substraction by an Integer.
This integer may be computed by taking the difference of the two indlices with
respect to any palr of vector flelds In Vec(W)+. To see who this integer lis,
let 2 be the vector fleld In Vec(W)' which is always pointing inward. In this
case, by the relative Polncaré-Hopf Index Theorem (see [Pu]), it 1is x(M) -

x(8M), where x is the Euler Polncaré characteristic. Hence we obtain:

Corollary 1.,2: Let (W,8W) and (W,8W") be manifolds with diffeomorphic

boundarlies and ¢ a diffeomorphism of a nelghbourhood of the boundarles. Then

for any ®-vector fleld defined and non-vanishing on a nelghbourhood of dW we
have '

Ind(X,8W,W) = Ind(¢ X,8W' ,W') + [x(W) - x(W')]

Remark; The above result may be also obtailned from Pugh’s Polincaré-Hopf Index
Theorem for compact manifolds with boundary ([Pu]) since 1t expresses the
index as the Euler-Polncaré characteristic of the manifold with boundary plus
a contribution of the tangency behaviour of the vector field with the
boundary. Hence takling the difference of both extensions we obtain that the
difference of the indixes will be the difference of the Euler-Polncaré
characteristics of the manifolds, slince the boundary contributions are equal

and hence cancel each other.

We willl now give another explanation of the ambigulty of the definition of the

index as a number Jjust from its behaviour at the boundary.

Let (W,8W) be a compact manifold with boundary, choose a Riemannian metric on
W and let le be the unit sphere bundle In the tangent bundle of W, and S =
T1w|aw its restriction to the boundary. The natural projection p:5 — 6&W
has the structure of an (m-1) sphere bundle over &V, S has dimension
2(m-1) and its cohomology groups H¥(8W,Z) may be calculated using the spectral

sequence of the fibratlion, since the cohomology bundles qu_(zs) over A% are



non-vanishing except for dimension 0 and n-1 (since it is a sphere bundle) aa
s acting trivially (it sends the fundamental class to 1itself, slnce

everything 1is orlented). The spectral sequence degenerates since

Hp(aw,qu&.(zs)) 1s non-zero only for.q = 0, n-1. Hence the: cohomology of S -

consists of 2 copies of the cohomology of W g'lued together in the middle

dimension:
HP(S,2Z) = HP(8W,Z) for Ospsm-2
HP(s,Z) = W™V (oW, 7) for msps2m-2
0 — " aw,2) B NS, 7) - HO(8W,Z) — O (1.5)
We are . .interested 1in the middle group  H"'(S,Z). .. }P'?(awrzs) =0

Hm-l(awj,ls). where (6WJ) are the connected components of 8W, say.r of. them.

Hence Hm-l(S,Z). has a submodule canonically isomorphic to Z", -obtained by.
pulling back the fundamental classes of the boundary components.  The quotient.

group 1s ‘agaln canonlcally Isomorphic to Z", but there :is no «canonlical "

splitting. H"'(S,Z) 1s hence free of rank 2r.

If X is a CO vector fleld on W, non-vanishing on &W, the fundafnental class

[l“x] of the graph of X/IXIl restricted to 8¥ is an element of Hm_l(aw,l). It

~is the class [T‘X] which carries the topological information of the index.
" Since it is a section of p, it projects to (1,...,1) in (1.5). The

difference of two such fundamental classes will produce Iintegers on each

boundary component. If one wants to obtain an integer for a vector field,

then one has to choose a splitting of (1.5), which 1is a non-canonical

operation. This is carrled out by choosing the bounding manifold W.




2. HOLOMORPHIC VECTIOR FIELDS ON SINGULAR SPACES

Let peV be a point of a complex analytic space of dimension N and let (V,p) &
B1 ¢ (€",0) be a local embedding of V into the unit ball B1' We will denote
VnBr by Vr, where Br is the ball around O and radius rsi in C". The ring
OV,p of germs of holomorphlc functlons at p may be represented by the quotient
OC",O/}' where $ is the ideal of germs of holomorphic functions on (C",0)

vanishing on V. A germ of a holomorphic vector field at p is a derivation

X: 0 — 0

V,p V,p
(see {Rol). Given a holomorphic vector field on (V,0), it gives rise to a
diagram
X
OCn,O _)OCD,O
n l ln
o, X o
V.p V.p
We can always lift X to a derivatlion X on OC" 0 To see this let (21,...,2)
) n

be coordinates of C", and let A‘1 be n-liftings to OC" 0 of X(n(zj)). One

easily checks that X = T AJ'%E makes the above dlagram commutative on the
J
generators zJ, and applying linearity and Leibnitz's rule, we see that the

dlagram is commutative. X will send the ideal 3 defining V to itself, and
conversely, any such derivation will iInduce a holomorphlic vector field on V.
A germ of a holomorphic vector field at (V,0) induces a (usual) holomorphic

vector field on the smooth polnts of V near 0.

If X 1s a holomorphic vector fleld defined on the non-singular points of V,

then using an embedding of V into Cn, we may express X =} XJ~%— , where XJ

. 3
are holomorphic functions on V-Sing(V). If V has a normal singularity at p

then, by the second Riemann's Removable Singularity Theorem ({Fi], p.120), the
functions XJ extend to holomorphic functions on V and the vector field
obtained with these extensions glives a holomorphic extension of the vector
fleld X from V-SingV to V. Hence for normal slngularities, holomorphlic vector
fields on V coincide with (usual) holomorphic vector fields on V-Sing(V).



If (v,p) < 81 ¢ (€",0) 1s an analytic space then the sheaf of holomorphic
vector flelds GV i1s coherent ([Ro]). We shall denote by Qr theBanach space of
continuous vector flelds defined on Vr and holomorphic in Vr, with ‘the

°-norm. We will also denote the ball'{Ye@r /IIX-Yli<e} by U(X,e). The ring of

germs of hoibmorphlc vector flelds © is endowed with the analytic topology.
V,p if they are all defined in

a small nelghbourhood Vr ¢ V of p; and they converge in @r_(see [G-R]). Note

v,p
Recall that a sequence {Xn) converges to X in ®

that by the Welerstrass approximation theorems, @r {s dense in @v p,‘so that

many properties for germs will follow by considering similar properties in @r.

Proposition 2.1  Let (v,0) ¢ B1 ¢ (c",0) be an ahalytic space which 1is
smooth except for an lsolated singularity at 0, then the subset @r'c ar
conslsting of holomorphic vector flelds that have at 0 an Lso;ated singularity
is a connected Qense open subset 1p er. ‘

Proof: Assume that X has an isolated critical point at 0. For s<r small, X
restricted to GVB does not vanish, Let 2e be the minimum value of IIXll_on avs.

If Ye@r with liYli<e , then X+Y cannot vanish on avs (for then X(q)=-Y{(q))

_This implies that X+Y will have an isolated critical pdint'at 0, since 1if it

vanished on a set of positive dimension passing through 0, this set would have
to intersect av' (otherwise, one would have a compact complex manifold in Vs
of positive dimensicn). This shows that ® ' is open in ® .

. . r r

Let X° € Gr and let €>0 be given. ' To each vector field X.in U(Xo,e) we can
assoclate to it the dimension of its critical set at 0, dimo({X=O}). Let Y be
a vector fleld where this minimum is attained. We claim that Y has- an

isolated singularity at 0 So assume that Y does not have an isolated

singulariﬁy at 0,

Let PT(V-{0}) < CNx{Pg-1 be - the (complex) ﬁrojectivized tangent bundle of
V-{0}, denote by,Ph its closure and miP — v 1ts.projeqtion to the first
factor, Pr is an analytic space, I is a proper holomorphic map which 1S.a
complex projective bundle outside of 0 and the flbre over 0 is the tangent
cone of V at 0 (see [Wh]). Let A = A1U...UAm be the decomposition in
irreducible components of {Y=0} ¢ Vr passing through 0. By assumption A does
not reduce to O. Let-r‘Y < Pr be the closure of the graph of Proj(Y) on Vr-A.
FY has dimension N = dim(Vr). The Intersection of FY with T'(A) has




dimension at most n-1, since it is contalned in the boundary of the graph of
Y, which has dimension N, Since Hnl(AJ) has dimension N—1+d1m(AJ)>N—1. we may
choose points in H-l(AJ) - T, That is, there are polnts pJeAJ-(O} arbitrarily
close to 0 and vectors v, tangent to Vr at P, such that ProJ(vJ) is disjoint
from Fy. Since Vr is a Steln space, there ls a vector fleld 2 on Vr such that
2(pj) = VJ. We claim that Y + tZ, for small values of t®#0 will have singular

set at 0 of dimension smaller than the critical set of Y, contradlcting the
cholce of Y.

To see this, let s < r so that A n VB = {Y=0} n VB. Without loss of
generality, we may assume that pJ € V8 (since the set of polnts that do not
satisfy the defining conditlion pf pJ is a proper subvariety of each'AJ). Let
C be the set of polnts of VBxC where Y+tZ vanlishes and let p:stC —3 € be the
projection to the second factor, We clalim that the AJ’s are lrreduclble
components of C. To see this, consider (Y+tZ)(p) = O for p near to Py By
the way we chose Z(pj), one may conclude that Z{p) 1is 1linearly independent
with Y(p) If Y(p)#0. Hence (Y+tZ)(p)=0, If Y(p)=0, then for t#0 we have
(Y+t2) (p)=t2(p)=0. This limplles that the decompositlon into irreducible
components of C in a nelghbourhood of (0,0) is of the form C = AlU...U AmU
CIU...U C. Hence the irreducible components C are not contalned in p 1 0)
and its intersection with p—i(O) does not contaln any AJ. Hence Cknp"l(O) has
dimension strictly smaller than the dimenslion of A.: By the theorem of upper
gemlcontlnulty of the dimension of the f{lbers of a holomorphic map, we
conclude that that (Clu..uCr)npd(to) has dimenslon smaller than the dimension
of A, for toio. But this set is exactly the critical set of Y+t02. This
contradlicts the hypothesis that the minimum dimension of its critical set s

attalned at Y, Hence Y has lsolated singularitlies. Thls shows that @r' is
- dense In @K

To see that Gr' is connected, let X an Y belong to Gr'. then conslider the
family (X+tY)tGC. The critical set C of the famlily consists of (t,p)eCxV such
that (X+tY)(p)=0. C is an analytic subvariety, containg the line 20 = Cx{0}.
By hypothesis (0,0) and (1,0) lle on 20 and in no other lIrreducible component
of C. Hence 20 is an irreducible component of C, The other Airreducible
components of C intersect 26 on a finlte number of polints. Hence all ppints
of £0. except a finlte number represent vector flelds with 1isolated

singularities, Hence, @r’ is connected. (]
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From now on, we assume that V ¢ B1 ¢ € is a smooth variety of dimenslbn N
except for an lsolated singularity at 0 (V non-smooth at 0). let & =
(f1(2)""’f£(2)) be the ideal sheaf defining Vr in Er. Consider the Banach
space @r as an infinite dimensional analytic space (see [Dol]) and let

e:@rxvr——a c" be the evaluation map

1

=7 eJ(X,zo)gE— = X(z)

- J
z) =} a2 z,

9_
dz ' "o

e(X,z ) = el} alz
. 0 1
. ‘ J ' J J

It is an analytic function on the Banach space ervr, 1inear in the flirst

variable. The universal critical set Z = Zr is the analytic subvarlety -of
@rer defined by the sheaf of ideals

xB

r r

Er = (fl(z).....fe(z).el(x,z),...,e"(X.z)) c'Oa (2.1)

The above generators of the ldeal SP give a finite presentatlon of OZ as an

OGXB—module{,
®l+n & : ‘
% x8 Y%, 0 —0 .. (2.2)
ror r r , :
where the map ¢ is matrix multiplication with (f,...,f,e ... e").

Let’n1 and“n2 be the restriction to Z of the projections to the factors ar and
Br, respectively. We analyse first . Since V hasi'an lsolated singularity
at 0, all vector flelds on V vanish at 0, hence @0 ¢ Z, where 80 = @rx(O)-is
the zero section. This means that n;l(O) = @o, which is a subvarlety of
Bprr of codlimension n. By restricting nz:Z—@o — Vr-(O) we see that thg
fiber ‘n;l(p), with_peVr-{O} Is a vector space of codimenslon N in @ (since
Vr is Stein) and hence na(V -{0}) has the structure of a vector: bundle over
Vr whose flibers have codlimension N in Gr. Hence ﬂz (Vr~(0}) 1s® smooth of
codimenslon n in @pr (the same codimension as @0). Let CLlnq ¢ Z be the
closure of n (V {0}). Set theoretlically Z = Qoyenhw, but Z will in general

have a non~ Lrivial scheme structure on @O.

Wp'now view Z as a space over 8‘ via the projection n, 4 ——4.8 The flibre
(X) over the vector field X ls set theoretically the critical set (zeV /
X(z) 0 } of X. Recall that the process of restricting to a n- fibre {x}xC" s




.carried out by tensoring with ® In partlcular,

0., .

oeprr (X)xBr
» d for an lisolated

OZ®08 - O(X}XBP has support on the critical set of X an or a

r r

singularity of X at p, its dimension is the V-multiplicity of X at peVr:

Ocntp

1
(fl,...,ft,x.....x")

u,(X,p) = dim, (2.3)

Note that p.v(X.p) depends exclusively on X|V, since the contribution from
choosing another extension to C" is cancelled by the terms (f1,...,f€) and that
it is strictly positive exactly at the critical set {X=0} of X. Note that
(2.3) 1s the corank of & In (2.2) over the point (X,0), or equlvalently, (2.2)
gives a way to express the V-multiplicity as a corank of a matrix with
parameters, We will exploit thils expresslon to descrlbe the dependence of the
V—multipllcity on X; but technlically it will be simpler to consider an
approximation of ¢ on Infinlitesimal neighbourhoods of 80.

We will now analyse the structure of Z at the zero sectlon 90. Let ¢ =

$
(zl,...,zn) c Oeer" be the ideal of definition of 80, and denote by @o the

Jth Infiniteslmal nelghbourhood of 80 defined by the sheaf of ldeals fm c

(98 " generated by the monomials in 2z of degree 4+1, As a space, |t
r . .

conslists of 80 but its function theory remembers the Taylor serles in the
z-variables up to order j4. Using the presentation (2.2) of Z, we note that
Q(-}JM) c f‘l“, so that 1t will induce an exact commutative diagram

OZ‘;; 2, 0 - — 0, — 0

l ) 1 ' l (2.4)
oot #t 0, LB = 04 — 0

r r r r

! | |

0 0 ) 0

where Z% is the analytlc intersection of Z and ei, and its defining ideal 1is
spanned by } and 3}”. From the inclusions



o

15 the maximal ideal in ©

-

$a(5,8) 5 ... 5 (5,8 > "2) 5.2 ¢ (2.5)
we obtain the inclusions of analytic spaces
e =2c...c Pec...cz (2.6)

0

¢$v_in (2.4) is a sheaf map between free sheaves over '80, so it may be
ldentified with a (finite dimensional) vector bundle map between (trivial)

bundles over 80. Hence ¢* may be represented by a (finite dimensional) matrix

i+

with parameters. Denote by &* (X) O(X} B 0/m — 0 % 1, where m

{X},B_ ,0”

{X},B ,0’ the restriction of @J to the point (X,0)
» r’

and define

ks 3 Ogn ' P
w(Z%,X) := corank. {9 (X)] = dim :
c c (fa""fi’ ,..,Xn z*+1,..,zi71)

We have for gsk:
15 (2% s pEh % s %0

Theorem 2.2: Let (V,0) s B1 c (€",0) be an analytlc space which ls smooth

except for an isolated singularity at 0, and let 8 denote the Banach space of
holomorphic vector flelds on V with continuous extensions to BV r<1, and
let Z , 2% = zpe’ce xB be the universal critical set and its aporoximation

sets . Then, there 15 a descending sequence of analytic subvarieties of

finite codimension Ak R k+1 Ak , and an 1nteger J such that:

a) Z¢n(8 Ay =z n(e A7) for 1LkzJ.
| b) uv(X,O) = u(ZJ.X) for X#A’ and J=J.
c) The function V-multiplicity at O
(4008 — Z'0{=)}

1s upper semicontlinuous and it is locally bounded at those polnts X where X

has an isolated singularity on V at O (8r haé for this the topology whose

" closed sets are the analytlc subsets).




d) The subsets of 9 defined by u( ,0) = K are analytic subspaces and
‘the minimum value of p.v( ,0) in 8 is attalined on an open dense subset I‘ of
er.

e) The subset of 8 formed by vector flelds whose critical set at 0 has
posltive dimension is the analytic subspace of 9 defined by r\A"l

Proof: For every 4, the incluslon (3,3’1*2) < (3.5}”) induces an exact
_ sequence of sheaves on eprr

Q

l
fln/};\tz

4+2
—_ 08 B 3 —3 OZ}u —3 0

lr ' lr l (2.7)

®£+n +1 [+ }41
A A2 o g — 0,4 — 0

8 xB
r r r r
| | |
¥ &
0 0 0

where the first 2 columns may be interpreted as (finite dimensional) vector
bundle maps over © . The corank of dJ“(X) is equal to the corank of d?i(}() if
and only 1if fm/,‘l *2(X) 1s contained in the image of tb’m(){). The increase in
the corank from ¢‘¢(X) to @iﬂ(x) is the codimension of

Image [0 (X) Inl#' L 8#2(x))1  1n #N82x)

A stratification of 8O consist of a disjoint decompositlon of 80 by subsets
1‘1,....1" where each I“ is an analytic subvarlety minus another analytic
subvariety (the ones that will actually appear have finite codimension).
Since 90 is irreduclble there 1s one and only one component that is open. We

will assume that for any stratificatlion of 80 this open component is the first .
one 1‘1.

We may first find a stratiflication of 80 so that the corank of df'l”(x) is

constant on each strata. Then one may further stratify according to the

6
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dimension of Im¢*+1n(jJ+1/J¥+2)(X) - In all, we obtain a strstification
(IJ"1 f+1} of @ such that the codimension of Im¢i+%w(j%”/}¥’?)(X) is
constant on the stratification, say d’“1 on rdfl Since the numbers df+1 are
defined as coranks of a matrix with parameters, they behave
uppersemicontinuosly, in the sense that 1f F¥+1 is iIn the closure of Fi*i

then di+1 d¥+l Due to this property, we may assume that r* consists of

~all those points X of 80 where the minimum is attalined {i.e. df”<di*1 for

kz2). We have

w3y = px) ¢ att XeB,

;df has to be O for 4 large, due to the fact that the suﬁ of_these numbers

glves a lower bound to u(Z},X), which 1is finite for X with én isolated
singularity at 0. If df*‘=o, in I#*! ve have

j¥+l/j¥+2 c Image[¢¥+1]

or equivalently on the open set Ff” we have

J4+1 c (3, ‘+2)
This last implies also that on'rf” we have
F*oc g, 7Y, w2 : (2.8)

which means that (Ak=® -Fk) form a descending family of ahalytic spaces of

@O, for k = ] where d’—O The 1ntersection of  the above family consist of

. those polints where p(Z* X) is infinite. This set is exactly the set ((X 0)/ 0

is not an 1solated critical point of X at O }.

(2.8) also implies that if df=0 then for &>/ we have FT < FT+1 . Let r, =
QFT, which by the previous remark reduces to a finite intersection,
51 1s the open dense subset of @ consisting of vector flelds with minimum

V-multiplicity at 0, and equal to di + df FoH df"l. Let F1=HILF1). From

the above description, the theorem is clear. |

Now we begin to analyse the other component Z : of Z.

sling

Lemma 2.3: The V-multliplicity of the holomorphic vector field X on V at a
smooth polnt p of V colncides wlth the multiplioity (or the index) of the
vector field X]v at p.




Proof: We may find coordinates (21,...,zn) around p such that ¢

(zN+“...,zn) and the condlition that the vector fleld X is tangent to V ls
that Xje} for J=N+1,..,n. Hence
0 n O n
c,o c,o
p, (X,p) = dim ! = dim d =
v oz oozuxh ™ oz ez xh X
N+1 n N+1 n
O_N
= ding —— C "“”’3 - = u(x|,.p) (2.9)
(X' (z,0),...,X(z,0)) L

A sheaf ¥ on Bprr is Gr—anaflat ([Dol], 66) if for every point (X,z)

there 1s a finite locally free resolution

0 — 2q _ ., 20 —_— F — 0

in a nelghbourhood of (X,z) such that 1ts restrictlon to {X}xC" is also an
exact sequence,

Proposition 2.4: If p*0 1s an 1solated critical of Xe@r, then 0Z is

r

@r~anaflat at (X,p).
Proof: If (X,p)eZr with p#0 an lsolated singularity of X, then Lemma 2.3
shows that Zr at (X,p) is a complete intersection:

_ 1 N
9X,p = (zN+1,..zn.X v, X))

The generators of 3X b form a regular sequence, so the Koszul complex of the
regular sequence ([G-H], p.688) gives a finlte locally free resolution of 0Z .
r
The restriction of this complex to {X}x€" 1s the Koszul complex of the
restricted generators, who also form a regular sequence. Hence the restricted

sequence is also exact. So OZ is Gr-anaflai at (X,p). n
r

Let now Xe® with an lsolated critical point at 0, let s<r be such that X is
non—vanishigg on Vs—(O), and let 2e = min{lX(z)W / zeavs } and conslider the
ball U = U(X,e)ser. The projection map nl:Z’ = Zn(UxBn) —3 U is a finite
map by Proposition 2.1 (see [G-R], where a flinite map ls a closed map with
finite fibers). We want to analyse the sheaf nl'OZ,. The points of Z’-(@ooU)

13
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are ni-anaflat by Proposition 2.4 and the polnts of Fl < 80, consisting of
(W,0) with W of minimal V-multiplicity Hy at 0, are also nl-flat (since they
have constant multiplicity (see [Do2], p.58)). Hence n1~02’ is locally free
on nl(ri) = I‘1 of rank

L, ) yV(Y,pJ) YEUnTI (2.10).
Y(pj)=0 v
» €Y -{0}
} 3

whefe'the V-multiplicity of Y at O is Hy- This number is Independent of s,
for s sufficlently small and of YeUnFl. We will call it the Euler-Poincaré
characteristic of X at 0, and denote it by xv(X,O) (See [Serl]).

A famlly of holomorphic vector flelds parametrized by the irreducible and

reduced complex space of finlte dimension T is a holomorphic map ¢: 7T — GH

The family ¢ induces a map (¢,idg):TxV8——ev ersz, and we will denocte
* s - .

(¢,1d’) (Z) < Tsz by ZT,s' Let n1T:ZT,s _—9.T be the projection to the

first factor. If Tr ls a finite map,. then niT’OZ i1s a coherent sheaf on
’ T.s -

T,‘ajd'hence is locally free on a Zarizki dense set T' of T, say of rank r..

For teT’ we have

r= “V(Xg{O)_+ X pv(Xt,pJ)

| Xt(pj)=0 .
p €Y -{0}
. j 8
and for t&T we have
- o e | '
ro=xg (0ZT .O{t}) + ) uv(Xt,pJ) _ (2.11)
)8 X (p )=0 .
vt
p €V -{0}
} s
where -
ton q q . '
x. (0 0,0 =T (-1)°Ton (0 O, ) (2.12)
° Ry g T O0g ,0) A1, (ROVTLEY ;
is the Euler-Poincaré characteristic.of torsion grbups -of“ OZ .0y °OVer
. ' T,s' "’ "
0 - g .
O(h), where ?qn (0ZT g,O{t}) = pv(Xt,O) (see [Do2l).

Recéllvfrom Proposition 2.1 that 9; < Gr {s the open dense subset‘coﬁsistlngv

of vector flelds having an isolated critical point at 0.




Theorem 2.5: For Xe@; , 8<<r and 0<<e , we have:

1) For any family of vector flelds X Vet
dimensional analytic space (T,0) — (GF.X) such that the V-multiplicity of
the general vector fleld XL of the family 1ls minimal My we have:

parametrized by a flnite

_ ton
xv(X.O) = xo (OZT."O(X}) | (2.13)
2) For ZeU(X,e) we have
xV(X.O) = xV(Z,O) + ) uV(Z,pJ) (2.14)
‘Z(pj)=0
pJEVs—(O}

3) For XEG; we have:

and xv(X,O) = uv(X,O) if and only if Zr is n1~anaflat‘ at (X,0) (in
particular in Fl).

Proof: Let Xe@r with an isolated critical point at 0, let s<r be such that X

is non-vanishing on V'—(O). 2e = min{lX(z)N / zeavB } and consider the ball
U= U(X,e)SGr.

1) xV(X,O) is defined by (2.10), where Y has minimal multiplicity
My at 0. If an element X1 of a family {Xt) has minimal V-multiplicity at O,
then the general element will have at O minimal multiplicity VR At these
polints ZT,- will be T-flat, since they represent Er—anaflat points of Zr, and

so the general rank of n:T*OZ is again (2.10). (2.11) applied to X on
T,s
V glvesr = xton(O 0 ), hence we obtain (2.13)
8 0 ZT a' {X}"’ ) '

2) Take a l-parameter family (XL)LET=C in U(X,e) which contaihs X
and 2 such that the general element has minimal V-multiplicity at 0. x(X,0)
1s deflned by (2.10), where Y has mlnimal multiplicity Ky at 0. Since this ls
the only conditlion needed to apply part 1 of the theorem, assume that Y 1is
near to 2. Assume that 2 vanishés at Ofpv...,pc. Then part of Y 1is near‘to

each part of the cfltical set of 2. Since 2T . 1s T-flat at PyvecesPs there

LO
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. are actually as much multiplicity near pJ fof Y as for 2 at pj. The
multipliclity of Y near 0 is xv(Z 0) agaln by definitlon (2.10) applled to Z,
where a new €'<e is used in the definition in order to get rid of Pov P
Hence we obtaln (2.14).

3) Conslider a 1-parameter ‘family which contains X with O as only‘ .
critical point in V and whose general element has minimal V-multlplliclty.
-}

Then ni*OZ is a coherent sheaf on C whose rank is xV(X.O), by part 1. Hence
C ' :

the dimens}gn Of'n1*OZC®O(o)

the rank Is constant, then Z 1is nl—anaflat. ' L]

s greater than or equal to the general rank. If

. Lét X e er, we say that the zero set of X does not bifurcate if there s
e>0 and s>0 such that for YeU(X,e) < er we have that the only critlcal point
of Y on V'I is 0, {(that 1s, X has an isolated singularity at 0 as well as

any sufficlently near vector fleld In @r and there 1s no other critical point
unifqrmly in a neighbourhood Vs of 0). The critical set of a vector fleld X
on Vr does not bifurcate if and only if the zero section 80 coinc;des‘(as
sets) with‘Zr in a nelghbourhood of (X,0) in erVE.

+
|

Theorem 2.6: Let (V,0) & B1 ¢ (€",0) be an analytlic space which is smooth

except for an lsolated singularity at 0, then the set of points in @r whose
critical set does not bifurcate contains the connected dense open subset'Fr <

Br consisting of vector flelds with minimum V-multiplicity.

Proof: Using previously introduced notatloh, what we have to prove ls that

® M=o, or equivalently that 1f (X,0)e8  then the V-multipliclty at O
sing 1 . sing

cannot be minimal.

If (X, Q)e@ ng’ then we may find a 1-parameter linear family 1 X =X+tY } in 9
such that its critical set

= ((t,z)erBr / zeV}, Xt(z);O)

has 'at least 2 local irreducible components at (X,0), the zero sectlion

C0=Cx(0) and the others, say Cl. Formula (2.14) applled to 2 = X +egY is

2.\




Xy, (X,0) = x,(X+eY,0) + ) u,, (X+eY,p ) (2.15)
\) v v )
X+€Y(pj)=0

pJEV"(Q)

The points pJeCl have a strlctly positive contribution to the right hand slde
of (2.15), hence xv(X,O) > xV(X+eY,O). From this lnequality we obtain that
uv(X,O) cannot be minlmal, for in that case xv(X,O) = uv(X}O) would also be
minimal. -

- a 8 _ )
Example: Let Xt = tzléE: + 22552 + (2t 1)23553 be a famlly of vector flelds

on C° and let V be the surface defined by £ = zf = 2,2, Xt is tangent to V,
since df(Xt) = 2tf. As vector flelds in Ca. XL has as only criltical point O,

except If t=0 or 1/2. For XO has a line of critical polnts, but on V, it has
an lsolated critical point. For t#0,1/2 one has that

y Z)

2
(z, ~zz,tz, z , (2t-1)z) = (z , z, 5

s0 that the V-multlplicity is 1 for t#0,1/2. For t=0, one has
2 - 2
(z1 A zg,tzl, zZ, (2t 1)23) = (z1 T )

2 3

so that the V-multiplicity 1s 2 for t=0. So we see the upper semicontinuity
behaviour of the V-multiplicity,

Remark: For a family {(X+tY} with X+eY of minimlal V-multiplicity we have

xv(X,O) = uV(X,O) - dim(Tor!

O (Oz s’(t'o)iO{t})] (2»16‘

TxB, (t,0) T,
This second term can be computed as the codimenslion of

(tfi,....tfz(z),t(xl+tY1)....,t(X"+tY"))

in

(t)n(fl,...,fe(z),xl+tYl,....X"+tY")

(see [Do2]).

1T
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3. THE INDEX OF HOLOMORPHIC VECTOR FIELDS

Let V be a (reducéd complex) anaiytic space of complex dimension N, with
compact singular set and with boundary, 48V, a smooth manifold of real
dimension 2N-1 oriented in a natural way. Let W be an orlentable
differentiable manifold of real dimension 2N with boundary &8W diffeomorphic
to 8V (orlentation “preserving). We may extend this diffeomorphism to a
diffeomofphism of a nelghbourhood of the boundaries ¢:V' — W', Glven a
c®-vector field X on V', non-singular on 8V, we maybtransport it via ¢ to a
vector fleld X' defined on W’ aﬁd then define the index of X on V as the index
of X' on W', and dengte it by Indw(X{V,BV). This_number depends on the choice

of manifold W, but as we have seeh in the first section, the cholce of a

different W' changes the index by an integer uniformly for all vector flelds.

%Given an analytic space V, one may choose as W'a;desingularization of V. .In

case V is a germ of a hypersurface with an isolated singulafity def ined bybthe
equation f = 0, then W can be defined by f = ¢, for sufficliently small . (or
more generally, If V is a complete intersectlion, or a smoothableAgerm with an

isolated singularity, then W can be the smoothening (see [Se]l).

If p is an lsolated singular point of V and X 1is a holomorphic vector fleld
defined Ln a nelghbourhcod of p non-vanishing in a pointed nelghbourhood of p;
then the index of X at p Ind”(X,V,pT is defined as Indw(X,V’,6V’), where V' is

a sufficiently.small neighbourhood of p in V, and W is a manifold with W =»

8V. The function Ind, (_,V,p) is well defined up to adding an integer, cholce

that depends on the electlion of ;hé bounding manifold W.

The objective of this sectlon is‘fo compare the.indek with'the V-multiplicity
of X at 0. We recall that at-a smooth point of V, 1f one uses the model of a
ball as bounding a nelghbourhood of the boundary of a smooth point, then the
index colncldes with ‘the multiplicity (Lemma 2.3). .

Theorem 3.1: Let (V,0) s B1 ¢ (€",0) be an analytic space which is smooth

except for an isolated singularity at O, then there is a constant K such that

Indw(X,V,O) = xv(X,O) + K (3.1)
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for X in the dense open set ©' of vector flelds In Br with an \1solated
singularlity at 0, where Xy denotes the Euler-Poincaré characterlstic of X at

0. For X in the dense open set of 8' where the universal critical set Zr is
er—flat we have

Ind, (X,V,0) = u (X,0) +K | (3.2)

Proof: If Xe_@r is a vector fleld on V whose critical set does not bifurcate,
then the index 1is locally constant at X, since the Index on the boundary
remalns constant, and it is equal to the sum of the local indlices, but the
only critical point 1s located at O, Hence the index is constant on the
connected set B of Theorem 2.6, By Theorem 2.2.d the minimum of the
V-multipllicity is attalned on a dense open subset Flcﬁ. Hence there 1ls an

Integer K satisfying (3.2) for Xel‘1 (due to the fact that both functlions are
constant there).

Let now Xe@r with an lsolated critical poinw at 0, let s<r be such that X is
non-vanishing on Vs-(O). and let 2¢ = min{Wi(z)IN / zeavs) and consider the

ball U = U(X,e), For X+tY e Fan we have

Indw(X,V,O) = Ind,,(X+tY,V,0) + L lldw(X+tY.V,pJ)

W X+tY(pJ)=0
. p €V {0’
J L3
And hence
Ind, (X,V,0) = [x,(X+tY,0) + K] + Y M, (X+tY,p )
W v v 3
: X+ty (p ) =0
p €V {0}
J s

since X+tY has minimal V-multipliclity at O and (3.1) and the fact that at the
smooth points the V-multipllicity is equal to the index (Lemma 2.3). Using now
(2.15) we obtain (3.1). (3.2) follows now firom Theorem 2.5.3.

Corollary 3.2: Let (V.,0) & B1 ¢ (€",0) be an analytic space wich is smooth

except for an isolated singularity at O, then there ls a constant L such that

Indw(X,V,O) = L for every germ of holomorphic vector field X on V with an .
isolated singularity at 0 on V.

Proof: LLet K be as In Theorem 3.2. Since xV(X,O)>O for any Xe®', we have
Indw(X.V,O) > K , n

24
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