The index of holomorphic vector fields on singular varieties I^{3}

Ch. Bonatti \& X. Gómez-Mont

Tech. Rept. I-92-1 (CIMAT/MB)
FIE

Given a complex analytic space V with an isolated singularity at p, there is a way to associate to a holomorphic vector field X on V an index at p a la Poincaré-Hopf Ind (X,V,p) (see [Se], [GSV]). The objective of this series of papers is to understand this index. In the present paper we relate it to the V-multiplicity:

$$
\mu_{V}(X, p)=\operatorname{dim}_{\mathbb{C}} \frac{\mathbb{O}_{\mathbb{C}^{n}}, p}{\left(f_{1}, \ldots, f_{\ell}, X^{1} ; \ldots, X^{n}\right)}
$$

where f_{1}, \ldots, f_{ℓ} are generators of the ideal defining $V \in \mathbb{C}^{n}, X^{J}$ are the coordinate functions of a holomorphic vector field that extends X to a nelghbourhood of 0 in \mathbb{C}^{n} and the denominator denotes the ideal generated by. the elements inside the parenthesis. The main results are:

Theorem 2.2: Let $(V, 0) \subseteq B_{1} \subset\left(\mathbb{C}^{\dot{n}}, 0\right)$ be an analytic space in the unit bail B_{1} which is smooth except for an isolated singularity at 0 . Let θ_{r} denote the Banach space of holomorphic vector fields on V_{r} with continuous extensions to $\partial \dot{r}_{r}, \quad r<1$, with its natural structure as an analyc space of infinite dimension. Then:
a) The function V-multiplicity at 0

$$
\mu_{V}(, 0): \Theta_{r} \longrightarrow \mathbb{Z}^{+} \cup\{\infty\}
$$

is upper semicontinuous and it is locally bounded at those points X where X has an isolated singularity on V at 0 .
b) The subsets of Θ_{r} defined by $\mu(, 0) \geq K$ are analytic subspaces and the minimum value of $\mu_{V}(, 0)$ in θ_{r} is attained on an open dense subset $\tilde{\Gamma}_{1}$ of θ_{r}.

[^0]c) The subset of \oplus_{r} formed by vector ficldo whose critical set al 0 has positive dimension is an analytic subspace of Θ_{r}.

We introduce the Euler-Polncare characteristic $\chi_{V}(X, 0)$ of $X_{x} 0_{r}$ at 0 in (2.10) and show:

Theorem 2.5: For $X \in \Theta_{r}$ with an isolated singularity at $0, \quad s \ll r$ and $0 \ll \varepsilon$, we have:

1) For any family of vector fields $\left\{X_{t}\right\}_{t \in T}$, parametrized by a finite dimensional analytic space $(T, O) \rightarrow\left(\Theta_{r}, X\right)$ such that the v-multiplicity at 0 of the general vector field X_{t} of the family is minimal μ_{V}, we have:

$$
x_{V}(X, 0)=x_{0}^{\tan }\left(O_{Z_{\mathrm{T}, \mathrm{~s}}}, 0_{(X)}\right)
$$

where the right hand side is the Euler-Poincare characteristic of higher torsion groups.
2) For $Z \in U(X, \varepsilon)$ we have

$$
\chi_{V}(X, 0)=\chi_{V}(Z, 0)+\sum_{z\left(p_{j}\right)=0} \mu_{V}\left(Z, p_{j}\right)
$$

3) For $X \in 0_{r}$ with an isolated critical point at 0 , we have:

$$
0<\chi_{V}(X, 0) \leq 1_{V}(X, 0)
$$

and $x_{V}(X, 0)=\mu_{V}(X, 0)$ if and only if the universal crilical set z_{r} is π_{1}-anaflat at ($X, 0$) (in particular this happens in $\tilde{\Gamma}_{1}$).

Let $X \in \Theta_{r}$, we say that the critical set of X does not bifurcate if there is $\varepsilon>0$ and $s>0$ such that for $Y \in U(X, \varepsilon) \subset \Theta_{r}$ we have that the only critical point of Y on V_{s} is 0 , (that $1 s, \quad X$ has an isolated singularity at 0 as well as amy sufficiently near vector field in Θ_{r} and there is no other critical point uniforinly in a neighbourhood v_{s} of 0).

Theorem 2.6: Let $(V, 0) \subseteq B_{1} \subset\left(\mathbb{C}^{n}, 0\right)$ be an analytic space which is smooth except for an isolated singularity at 0 , then the set of polnts in Θ_{r} whose critical set does not bifurcate contalns the connected dense open subset $\tilde{\Gamma}_{1}$ c Θ_{r} conslsting of vector flelds with minimum v-multiplicity.

Theoren 3.1: Let $(V, 0) S B_{1:} \subset\left(\mathbb{C}^{n}, 0\right)$ be an analytic space which is smooth except for an isolated singularity at 0 , then there is an integer K such that

$$
\operatorname{Ind}_{W}(X, V, 0)=\chi_{V}(X, 0)+K
$$

for X in the dense open set Θ^{\prime} of vector fields $\ln \Theta_{r}$ with an isolated singularity at 0 . For X in the dense open set of Θ^{\prime} where the universal critical set Z_{r} is Θ_{r}-flat we have

$$
\operatorname{Ind}_{W}(X, V, 0)=\mu_{V}(X, 0)+K
$$

Corollary 3.2: Let $(V, 0) \subseteq B_{1} \subset\left(\mathbb{C}^{n}, 0\right)$ be an analytic space which is smooth except for an isolated singularity at 0 , then there is a constant. L such that $\operatorname{Ind}_{W}(X, V, 0) \geq L$ for every germ of holomorphic vector field X on V With an isolated singularity at 0 on V.

In the first section we analyse the index on smooth compact manifolds with boundary. We prove:

Proposition 1.1: Let X and Y be C^{1}-vector flelds defined on the compact manifold with boundary $(H, \partial W)$ and non-vanishing on ∂W and let $\left[\Gamma_{X}\right.$] denote the fundamental class of the graph of $X /\|X\|$ on the sphere bundle S of unit tangent vectors of W restricted to ∂W (with respect to some Riemannian metric on W). Then

$$
\operatorname{Ind}(X, \partial W, W)-\operatorname{Ind}(Y, \partial W, W)=\left[\Gamma_{X}\right] \cdot\left[\Gamma_{-Y}\right]
$$

where we do the intersection in homology of S.

In the second section we develop the properties of the V-multiplicity, and in the third we compare the v-multiplicity with the topological index.

Let W be a compact orlented manifold of dimension in whe boundary, ou, oriented in the natural way. Given a never vanishing C^{0}-vector field X in a neighbourhood of ∂W, the index of X on the boundary of W, Ind $(X, \partial W, W)$ may be defined by extending X to a vector field \tilde{X} on W with isolated singularities, and then adding up the indices at the singularities of \tilde{X}. The index is independent of the chosen extension \widetilde{X} (see [Mi], [Se]).

To understand the dependence of the index on the manifold W, we will prove that the difference of the indices of 2 vector fields may be compuled exclusively in terms of boundary data:

Proposition 1.1: Let X and Y be C^{1}-vector flelds defined on the conpact manifold with boundary $(W, \partial W)$ and non-vanishing on ∂W and let $\left[\Gamma_{X}\right]$ denote the fundamental class of the graph of $X /\|x\|$ on the sphere bundle S of unit tangent vectors of W restricted to ∂W (with respect to some Riemamian metric on (t). Then

$$
\operatorname{Ind}(X, \partial W, W)-\operatorname{Ind}(Y, \partial W, W)=\left[\Gamma_{X}\right] \cdot\left[\Gamma_{-Y}\right]
$$

where we do the intersection in homology of S.

Proof: Since the index and the fundamental classes do not change if we make a sinall perturbation, we will assume, that X an Y are in general position. Namely we will assume that if the zeroes $\mathcal{Z} \subset \mathbb{C} \times W$ of the vector fields $\{X$, $=(1-t) X+t Y\}_{t \in[0,1]}$ intersect ∂W, say at O_{t}, then at $O_{t}: X_{t}$ has a zero od multiplicity 1 and the projection of Z to W is transversal to the boundary ∂W.

The intuitive idea of the proof is very simple. The above fainily connects X with Y, and the only way the index as a function of $t \in[0,1]$ can change is if a zero leaves W at ∂W, or if a zero arrives at W through ∂W. By the transversality conditions we are assuming, this wlll happen every time X_{t} has a zero on ∂W, and it will give a contribution of ± 1, depending whether the Index of. X_{t} is ± 1 and whether the point is arriving or leaving W. One has to prove that one obtains the same sign from the contribution of the intersection $\left[\Gamma_{X}\right] \cdot\left[\Gamma_{-Y}\right]$ at the above point on ∂W.

Let p be a boundary point, and consider the convex hull $C=\langle X(p), Y(p)\rangle$ in $T_{p} W$. If. 0 is not contained in C, then the vector fields X_{t} do not vanisin at p for $t \in[0,1]$. If 0 is contained in C, then there is exactly one value of t Where X_{t} vanishes at p. Note that this condition means that $X(p)$ and $Y(p)$ are linearly dependent with distinct orientation, ; and this is equivalent to the fact that Γ_{X} and Γ_{-Y} intersect. Sp the only point left is to show that one obtains the same sign from the intersection $\left[\Gamma_{X}\right] .\left[\Gamma_{-Y}\right]$ at p as the difference of the indices $\operatorname{Ind}\left(X_{t+\varepsilon}, \partial W, W\right)-\operatorname{Ind}\left(X_{t-\varepsilon}, \partial W, W\right)$.

To simplify notation, let $\left(x_{1}, \ldots, x_{n}\right)$ be coordinates around $p=0$, where N and ∂W are defíned by $x_{n} \geq 0$ and $x_{n}=0$ respectively. Let $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ be a C^{1}-vector field with a critical point at 0 of multiplicity $1, \quad Y=\left(Y_{1}, \ldots, Y_{n}\right)$ a C^{1}-vector field with $Y_{1}(0)>0$, and we are interested in computing the contribution to the index of the family $Z+t Y$, when t passes through O in the positive direction.

Let $D Z(0)$ be the derivative of Z at 0 . It is an invertible matrix and the sign of $\operatorname{Det}[D Z(0)]$ is $\operatorname{Ind}(Z, 0)$, and hence it also $\operatorname{Ind}\left(Z_{t}, O_{t}\right)$, where O_{t} is the zero of Z_{t} near to 0 . (One may think that everything extends to a neishbourhood of ∂W outside of W, so as to "see" O_{t} for all small values of t, and not only for the ones that are in W). A simple calculation shows that the curve O_{t} intersects ∂W with velocity vector

$$
\left(d O_{t} / d t\right)(0)=-[D Z(0)]^{-1} Y(0)
$$

and hence the zero set is entering W if $d x_{n}\left[-[D Z(0)]^{-1} Y(0)\right]$ is positive, and is leaving W if it is negative. By Crammer's rule, we have

$$
\begin{gathered}
\operatorname{dx}_{n}\left[-[D Z(0)]^{-1} Y(0)\right] \frac{-1}{\operatorname{Det}(D Z(0)]}\left[\begin{array}{cccc}
\partial Z^{1} / \partial x_{1} & \ldots . Z^{n} / \partial x_{1} \\
\vdots & & & \\
\vdots & & \vdots & \vdots \\
\partial Z^{1} / \partial x_{1} & \ldots \ldots Z^{n} / \partial x_{n-1} \\
Y^{1} & \ldots \ldots & Y^{n} \\
\vdots
\end{array}\right](0) \\
\\
=-\operatorname{Det}[A] / \operatorname{Det}[D Z(0)]
\end{gathered}
$$

where the matrix A is defined by the above formula. Hence we obtain for $\varepsilon>0$:

$$
\begin{align*}
\operatorname{Ind}\left(Z_{E}, W, \partial W\right)-\operatorname{Ind}\left(Z_{-\varepsilon}, W, \partial W\right) & =\operatorname{Ind}(Z, 0) \operatorname{Sign}(-\operatorname{Det}[\Lambda] / \operatorname{Det}[D Z(0)]) \tag{1.2}\\
& =-\operatorname{Sign}[\operatorname{Det}[A]]
\end{align*}
$$

We will now compute $\left[\Gamma_{Z+Y}\right] \cdot\left[\Gamma_{-(Z-Y)}\right)$. Dividing by $Z^{1}+Y^{1}$ (respectively by $Y^{1}-Z^{1}$), which is positive, amounts to taking coordinates in the sphere bundle, so Γ_{Z+Y} and $\Gamma_{-(Z-Y)}$ are the graphs of the functions

$$
\begin{aligned}
& \gamma^{+}\left(x_{1}, \ldots, x_{n-1}\right)=\left(\left(Z^{2}+Y^{2}\right) /\left(Z^{1}+Y^{1}\right), \ldots,\left(Z^{n}+Y^{n}\right) /\left(Z^{1}+Y^{1}\right)\right)\left(x_{1}, \ldots, x_{n-1}, 0\right) \\
& \gamma^{-}\left(x_{1}, \ldots, x_{n-1}\right)=\left(\left(Y^{2}-Z^{2}\right) /\left(Y^{1}-Z^{1}\right), \ldots,\left(Y^{n}-Z^{n}\right) /\left(Y^{1}-Z^{1}\right)\right)\left(x_{1}, \ldots, x_{n-1}, 0\right)
\end{aligned}
$$

the intersection number $\left[\Gamma_{Z+Y}\right] \cdot\left[\Gamma_{-(Z-Y)}\right]$ is equal to the sign of determinant of the matrix obtained by grouping the derivatives of the graphs of γ^{+}and γ^{-}:

$$
\operatorname{Det}\left[\begin{array}{cc}
I_{n-1} & I_{n-1} \\
D \gamma^{+} & D \gamma^{-}
\end{array}\right](0)=\operatorname{Det}\left[D \gamma^{-}-D \gamma^{+}\right](0)
$$

A simple calculation shows that

$$
\left(D \gamma^{ \pm}\right)_{1 J}=\frac{1}{\left(Y^{1}(0)\right)^{2}} \operatorname{Det}\left[\begin{array}{ll}
Y^{1}(0) & \frac{\partial}{\partial x_{j}}\left[Y^{1} \pm Z^{1}\right](0) \\
Y^{1}(0) & \frac{\partial}{\partial x_{j}}\left[Y^{1} \pm Z^{1}\right](0)
\end{array}\right]
$$

Hence

$$
\left[D \gamma^{-}-D \gamma^{+}\right]_{1]}=\frac{-2}{\left(Y^{1}(0)\right)^{2}} \operatorname{Det}\left[\begin{array}{ll}
Y^{1}(0) & \frac{\partial}{\partial x_{j}} Z^{1}(0) \tag{1.3}\\
Y^{1}(0) & \frac{\partial}{\partial x} Z^{1}(0)
\end{array}\right]
$$

We now need to use a formula involving determinants: Let $A m\left[a_{1,}\right]$ bo an s:s matrix, and let $B=\left(b_{11}\right)$ be the $(s-1) \times(s-1)$ matrix whose general term is

$$
b_{1 j}=\operatorname{Det}\left[\begin{array}{cc}
a_{11} & a_{11} \tag{1.4}\\
a_{j 1} & a_{j 1}
\end{array}\right]
$$

then we have that

$$
\begin{equation*}
\left(a_{11}\right)^{s-2} \operatorname{Det}[A]=\operatorname{Det}[B] \tag{1.5}
\end{equation*}
$$

This formula may be proved first for diagonal matrixes; and then by showing that both sides are left invariant under the elementary operations of rows and columns.

Consider the matrix A in (1.1). . Let A be the matrix obtained by moving the last row to the first. We have $\operatorname{Det}[A]=(-1)^{n-1} \operatorname{Det}\left[A^{\prime}\right]$, and let B be the matrix obtained from A^{\prime} as in (1.4). Noting that $\because\left[D \gamma^{-}-D \gamma^{+}\right]=-2 B / Y^{1}(0)^{2}$ we ${ }^{-\cdots}$ have by (1.5):

$$
\begin{aligned}
\operatorname{Det}[A] & =(-1)^{n-1} \operatorname{Det}\left[A^{\prime}\right]=(-1)^{n-1} Y^{1}(0)^{2-n} \operatorname{Det}[B] \\
& =(-1)^{n-1} Y^{1}(0)^{4-n} \operatorname{Det}\left[\operatorname{D\gamma }^{-}-\operatorname{Dr}^{+}\right] /(-2)^{n-1}
\end{aligned}
$$

Hence $\operatorname{Det}[A]$ and $\operatorname{Det}\left[D \gamma^{-}-D \gamma^{+}\right]$have the same sign. Using (1:2) we obtain:

$$
\begin{aligned}
\operatorname{Ind}\left(Z_{\varepsilon}, W, \partial W\right)-\operatorname{Ind}\left(Z_{-\varepsilon}, W, \partial W\right) & =-\operatorname{Sign}[\operatorname{Det}[A]]=-\operatorname{Sign}\left[\operatorname{Det}\left[\operatorname{Dr}^{-}-D_{\gamma}{ }^{+}\right]\right]= \\
& =\left[\Gamma_{-(Z-Y)}\right] \cdot\left[\Gamma_{Z+Y}\right]=\left[\Gamma_{Z-Y}\right] \cdot\left[\Gamma_{-(Z+Y)}\right]
\end{aligned}
$$

This proves the Proposition.

If we denote by $V e c(\partial W)^{+}$the set of C^{1}-vector fields defined and never zero on a neighbourhood of ∂W, the Index is an integer valued function with $V \operatorname{Vec}(\partial W)^{+}$as a domain:

$$
\text { Ind: } \operatorname{Vec}(\partial W)^{+} \longrightarrow \mathbb{Z}
$$

Let ($W^{\prime}, \partial W^{\prime}$) be another compact manifold with boundary and $\phi: \partial W \longrightarrow \partial W^{\prime}$ an orientation preserving diffeomorphism of the boundaries. We may extend this diffeomorphism to a diffeomorphism of a nelghbourhood of the boundaries $\phi: W_{1}$ $\longrightarrow W_{1}^{\prime}$. Given a non- singular C^{0}-vector field X defined on the neighbourhood W_{1} of ∂W, we may transport it via ϕ to a vector field X defined on W_{1}^{\prime}.

It follows from Proposition 1 that for $X, Y \in V \in c(\partial W)^{+}$we have:

$$
\begin{aligned}
\operatorname{Ind}(X, \partial W, W)-\operatorname{Ind}(Y, \partial W, W) & =\left[\Gamma_{X}\right] \cdot\left[\Gamma_{-Y}\right]=\left[\Gamma_{\phi_{s} X}\right] \cdot\left[\Gamma_{\phi_{*}-Y}\right] \\
& =\operatorname{Ind}\left(\phi_{\bullet} X, \partial W^{\prime}, W^{\prime}\right)-\operatorname{Ind},\left(\phi_{.} Y, \partial W^{\prime}, W^{\prime}\right)
\end{aligned}
$$

And nence for varlable X, and a fixed Y we obtain:

$$
\operatorname{Ind}_{\partial W},\left(\phi_{\partial} X\right)=\operatorname{Ind}_{\partial W}(X)-\left(\operatorname{Ind}_{\partial W}(Y)-\operatorname{Ind}_{\partial W}(\phi(Y))\right.
$$

Hence we may complete (1.4) by a map α which is substraction by an integer. This integer may be computed by taking the difference of the two indices with respect to any palr of vector flelds $\ln \operatorname{Vec}(W)^{+}$. To see who this integer is, let Z be the vector field in $\operatorname{Vec}(W)^{+}$which is always pointing inward. In this case, by the relative Polncare-Hopf Index Theorem (see [Pu]), it is $\mathcal{X}(M)$ $\chi(\partial M)$, where χ is the Euler Poincare characteristic. Hence we obtain:

Corollary 1.2: Let ($W, \partial W$) and ($W, \partial W$) be manlfolds with diffeomorphic boundarles and ϕ a diffeomorphism of a nelghbourhood of the boundarles. Then for any C^{0}-vector field defined and non-vanlshing on a neighbourhood of ∂W we have

$$
\operatorname{Ind}(X, \partial W, W)=\operatorname{Ind}\left(\phi, X, \partial W^{\prime}, W^{\prime}\right)+\left[\chi(W)-\chi\left(W^{\prime}\right)\right]
$$

Remark: The above result may be also obtalned from Pugh's Polncaré-Hopf Index Theorem for compact manifolds with boundary ([Pu]) since it expresses the index as the Euler-Polncare characteristic of the manifold with boundary plis a contribution of the tangency behavlour of the vector fleld with the boundary. Hence taking the difference of both extensions we obtain that the difference of the indixes will be the difference of the Euler-Polncare characteristics of the manifolds, slnce the boundary contributions are equal and hence cancel each other.

We will now give another explanation of the ambiguity of the definition of the index as a number just from its behavlour at the boundary.

Let $(W, \partial W)$ be a compact manifold with boundary, choose a Riemannian metric on W and let $T^{1} W$ be the unit sphere bundle in the tangent bundle of W, and $S=$ $\left.T^{1} W\right|_{\partial W}$ its restriction to the boundary. The natural projection. $\rho: S \longrightarrow \delta W$ has the structure of an (m-1) sphere bundle over ∂W. S has dimension $2(m-1)$ and 1 ts cohomology groups $H^{q}(\partial W, \mathbb{Z})$ may be calculated using the spectral sequence of the fibration, slnce the cohomology bundles $R^{q} \rho_{*}\left(\mathbb{Z}_{S}\right)$ over ∂W are
non-vanishing except for dimension 0 and $n-1$ (since it is a sphere bundle) a is acting trivially (it sends the fundamental class to itself, since everything is oriented). The spectral sequence degenerates since $H^{p}\left(\partial W, R^{q} \rho_{q}\left(\mathbb{Z}_{S}\right)\right)$ is non-zero only for $q=0, n-1$. Hence the cohomology of S consists of 2 copies of the cohomology of ∂W glued together in the middle dimension:

$$
\begin{align*}
& H^{p}(S, \mathbb{Z})=H^{p}(\partial W, \mathbb{Z}) \text { for } 0 \leq p \leq m-2 \\
&: \quad H^{p}(S, \mathbb{Z})=H^{p-(m-1)}(\partial W, \mathbb{Z}) \text { for } m \leq p \leq 2 m-2 \\
& 0 \longrightarrow H^{m-1}(\partial W, \mathbb{Z}) \xrightarrow{\rho^{*}} H^{m-1}(S, \mathbb{Z}) \xrightarrow{u} H^{0}(\partial W, \mathbb{Z}) \longrightarrow 0 \tag{1.5}
\end{align*}
$$

We are.interested in the middle group $H^{m-1}(S, \mathbb{Z}) . \quad \cdots H^{m-1}\left(\partial W, \mathbb{Z}_{S}\right)=\cdots{ }_{j}$ $H^{m-1}\left(\partial W_{J}, \mathbb{Z}_{S}\right)$, where $\left\{\partial W_{J}\right\}$ are the connected components of ∂W, say r of them. Hence $H^{m-1}(S, \mathbb{Z})$ has a submodule canonically isomorphic to \mathbb{Z}^{r}, obtalned by. pulling back the fundamental classes of the boundary components. The quotient group is again canonically isomorphic to \mathbb{Z}^{r}, but there is no canonical splitting. $K^{m-1}(S, \mathbb{Z})$ is hence free of rank $2 r$.

If X is a C^{0} vector field on W, non-vanishing on ∂W, the fundamental class $\left[\Gamma_{X}\right]$ of the graph of $X /\|X\|$ restricted to ∂W is an element of $H_{m-1}(\partial W, \mathbb{Z})$. It is the class $\left[\Gamma_{X}\right]$ which carries the topological information of the index. Since it is a section of ρ, it projects to (1,...,1) in (1.5). The difference of two such fundamental classes will produce integers on each boundary component. If one wants to obtain an integer for a vector field, then one has to choose a splitting of (1.5), which is a non-canonical operation. This is carried out by choosing the bounding manifold.W.

Let $p \in V$ be a point of a complex analytic space of dimension N and let (V, p) s $B_{1} \subset\left(\mathbb{C}^{n}, 0\right)$ be a local embedding of V into the unit ball B_{1}. We will denote $V \cap B_{r}$ by V_{r}, where B_{r} is the ball around 0 and radius $r \leq 1$ in \mathbb{C}^{n}. The ring $O_{V, p}$ of germs of holomorphic functions at p may be represented by the quotient $\mathcal{O}_{\mathbb{C}^{n}, 0^{\prime} \mathcal{G}}$. where g is the ideal of germs of holomorphic functions on $\left(\mathbb{C}^{n}, 0\right)$ vanishing on V. A germ of a holomorphic vector field at p is a derivation

$$
x: O_{V, p} \longrightarrow O_{V, p}
$$

(see [Rol). Given a holomorphic vector field on (V,0), it gives rise to a diagram

We can always lift X to a derivation \tilde{X} on $O^{0} \mathbb{C}^{n}, O^{\prime}$ To see this let $\left(z_{1}, \ldots, z_{n}\right)$ be coordinates of \mathbb{C}^{n}, and let A, be π-liftings to $\mathbb{O}_{\mathbb{C}^{n}, 0}$ of $X\left(\pi\left(z_{j}\right)\right)$. One easily checks that $\tilde{X}=\sum A, \frac{\partial}{\partial z}$, makes the above diagram commutative on the generators z_{\jmath}, and applying linearity and Leibnitz's rule, we see that the diagram is commutative. \tilde{X} wlll send the ideal g defining V to itself, and conversely, any such derivation will induce a holomorphic vector fleld on V. A germ of a holomorphic vector fleld at ($V, 0$) induces a (usual) holomorphic vector field on the smooth points of V near 0 .

If X is a holomorphic vector fleld defined on the non-singular points of V, then using an embedding of V into \mathbb{C}^{n}, we may express $X=\sum X_{j} \frac{\partial}{\partial z}$, where X_{j} are holomorphic functions on $V-S i n g(V)$. If V has a normal singularity at p then, by the second Riemann's Removable Singularity Theorem ([Fi], p.120), the functions X, extend to holomorphic functions on V and the vector field obtained with these extensions glves a holomorphic extension of the vector field X from V-Sing V to V. Hence for normal singularities, holomorphic vector fields on V coincide with (usual) holomorphic vector fields on V-Sing(V).

If $(V, p) \subseteq B_{1} \subset\left(\mathbb{C}^{n}, 0\right)$ is an analytic space then the sheaf of holomorphic vector flelds θ_{V} is coherent ($\left.(\mathrm{Ro}]\right)$. We shall denote by Θ_{-}theBanach space of continuous vector fields defined on \tilde{V}_{r} and holomorphic in V_{r}, with the C^{0}-norm. We will also denote the ball $\left\{Y \in \Theta_{r} /\|X-Y\|<\varepsilon\right\}$ by $U(X, \varepsilon)$. The ring of germs of holomorphic vector fields $\Theta_{V, p}$ is endowed with the analytic topology. Recall that a sequence $\left\{X_{n}\right\}$ converges to X in $\Theta_{V, p}$ if they are all defined in a small nelghbourhood $\bar{V}_{r} \subset V$ of p, and they converge in θ_{r} (see [G-R]). Note that by the Weierstrass approximation theorems, Θ_{r} is dense in $\Theta_{V, p}$, so that many properties for germs will follow by considering similar properties in Θ_{r}.

Proposition 2.1: Let $(V, 0) \subseteq B_{1} \subset\left(\mathbb{C}^{n}, 0\right)$ be an analytic space which is smooth except for an isolated singularity at 0 , then the subset $\Theta_{r}{ }^{\prime} c \theta_{r}$ consisting of holomorphic vector flelds that have at 0 an isolated singularity is a connected dense open subset in θ_{r}.

Proof: Assume that X has an isolated critical point at 0 . For s<r small, X restricted to ∂V_{s} does not vanish. Let 2ε be the minimum value of $\|X\|_{\text {, on }} \partial V_{s}$. If $Y \in \Theta_{r}$ with $\|Y\|<\varepsilon$, then $X+Y$ cannot vanish on ∂Y_{s} (for then $X(q)=-Y(q)$). This implies that $X+Y$ will have an isolated critical point at 0 , since if it vanished on a set of positive dimension passing through 0 , this set would have to intersect ∂V (otherwise, one would have a compact complex manifold in V_{s} of positive dimension). This shows that $\Theta_{r}{ }^{\prime}$ is open in θ_{r}.

Let $X_{0} \in \theta_{r}$ and let $\varepsilon>0$ be given. To each vector field X in $U\left(X_{0}, \varepsilon\right)$ we can associate to it the dimension of its critical set at $0, \operatorname{dim}_{0}(\{X=0\})$. Let Y be a vector field where this minimum is attained. We claim that Y has an isolated singularity at 0 So assume that Y does not have an isolated singularity at 0 .

Let $\operatorname{PT}(V-\{0\}) \subset \mathbb{C}^{N} \times \mathbb{P}_{C}^{N-1}$ be the (complex) projectivized tangent bundle of $V-\{0\}$, denote by P_{r} its closure and $\Pi: P_{r} \longrightarrow V_{r}$ its projection to the first factor. P_{r} is an analytic space, Π is a proper holomorphic map which is a complex projective bundle outside of 0 and the fibre over 0 is the tangent cone of V at 0 (see [Wh]). Let $A=A_{1} U . . U_{m}$ be the decomposition in irreducible components of $\{Y=0\} \subset V_{r}$ passing through 0 . By assumption A does not reduce to 0 . Let $\Gamma_{Y} \subset P_{r}$ be the closure of the graph of Proj (Y) on $V_{r}-A$. Γ_{Y} has dimension $N=\operatorname{dim}\left(V_{r}\right)$. The intersection of Γ_{Y} with $\Pi^{-1}(A)$ has
dimension at most $n-1$, since it is contained in the boundary of the graph of Y, which has dimension N. Since $\Pi^{-1}\left(A_{j}\right)$ has dimension $N-1+\operatorname{dim}\left(A_{j}\right)>N-1$, we may choose points in $\Pi^{-1}\left(A_{j}\right)-\Gamma_{Y}$. That is, there are points $p_{j} \in A_{j}-\{0\}$ arbitrarily close to 0 and vectors v, tangent to v_{r} at p, such that Proj(v_{j}) is disjoint from Γ_{Y}. Since V_{r} is a Stein space, there is a vector fleld Z on V_{r} such that $Z\left(p_{j}\right)=v_{j}$. We clalm that $Y+t Z$, for small values of $t \neq 0$ will have singular set at 0 of dimension smaller than the critical set of X, contradicting the choice of γ.

To see this, let $s<r$ so that $A \cap V_{s}=\{Y=0\} \cap V_{s}$. Without loss of generality, we may assume that $p, \in V_{s}$ (since the set of points that do not satisfy the defining condition of p_{j} is a proper subvariety of each A_{j}). Let \mathbb{C} be the set of points of $V_{s} \times \mathbb{C}$ where $Y+t Z$ vanishes and let $\rho: V_{s} \times \mathbb{C} \longrightarrow \mathbb{C}$ be the projection to the second factor. We clalm that the A ' s are irreducible components of C. To see this, consider $(\gamma+t Z)(p)=0$ for p near to p_{j}. By the way we chose $Z\left(p_{j}\right)$, one may conclude that $Z(p)$ is linearly independent with $Y(p)$ if $Y(p) \neq 0$. Hence $(Y+t Z)(p) \neq 0$. If $Y(p)=0$, then for $t \neq 0$ we have $(Y+t Z)(p)=t Z(p) \neq 0$. This lmplles that the decomposition into irreducible components of C in a nelghbourhood of $(0,0)$ is of the form $C=A_{1} U \ldots U A_{m} U$ $C_{1} \cup \ldots \cup C_{r}$. Hence the irreducible components C_{k} are not contalned in $\rho^{-1}(0)$ and its intersection with $\rho^{-1}(0)$ does not contaln any A_{j}. Hence $C_{k} n p^{-1}(0)$ has dimension strictly smaller than the dimension of A. By the theorem of upper semicontinulty of the dimension of the flbers of a holomorphic map, we conclude that that $\left(C_{1} \cup . U C_{r}\right) \cap p^{-1}\left(t_{0}\right)$ has dimension smaller than the dimension of A, for $t_{0} \neq 0$. But this set is exactly the critical set of $Y+t_{0} Z$. This contradicts the hypothesis that the minimum dimension of its critical set is attalned at Y. Hence Y has isolated singularities. This shows that Θ_{r}^{\prime} is - dense $\ln \Theta_{r}$.

To see that θ_{r}^{\prime} is connected, let X an Y belong to $\Theta_{r}{ }^{\prime}$, then consider the famlly $\{X+t Y\} \in \mathbb{C} . \quad$ The critical set C of the family consists of $(t, p) \in \mathbb{C} \times V$ such that $(X+t Y)(p)=0$. C is an analytic subvariety, containg the line $\mathscr{L}_{0}=\mathbb{C} \times\{0\}$. By hypothesis $(0,0)$ and $(1,0) 11 e$ on \mathscr{L}_{0} and in no other Irreducible component of C. Hence \mathscr{L}_{0} is an irreducible component of C. The other irreducible components of C intersect \mathscr{L}_{0} on a finite number of points. Hence all points of \mathscr{L}_{0} except a finite number represent vector fields with lsolated singularities. Hence, $\Theta_{r}{ }^{\prime}$ is connected.

From now on, we assume that $V \subset B_{1} \subset \mathbb{C}^{n}$ is a smooth variety of dimension N except for an lsolated singularity at $0(V$ non-smooth at 0). Let $g=$ $\left(f_{1}(z), \ldots, f_{\ell}(z)\right)$ be the ldeal sheaf defining V_{r} in B_{r}. Consider the Banach space Θ_{r} as an infinite dimensional analytic space (see (Doll) and let $e: \theta_{r} \times V_{r} \longrightarrow \mathbb{C}^{n}$ be the evaluation map

$$
e\left(X, z_{0}\right)=e\left(\sum a_{1}^{j} z^{1} \frac{\partial}{\partial z_{j}}, z_{0}\right)=\sum a_{1}^{\prime} z_{0}^{I} \frac{\partial}{\partial z_{j}}=\sum e^{j}\left(X, z_{0}\right) \frac{\partial}{\partial z_{j}}=X\left(z_{0}\right)
$$

It is an analytic function on the Banach space $\theta_{r} \times V_{r}$, linear in the first variable. The universal critical set $Z=Z_{r}$ is the analytic subvariety of $\theta_{r} \times Y_{r}$ defined by the sheaf of Ideals

$$
\begin{equation*}
g_{r}=\left(f_{1}(z), \ldots, f_{\ell}(z), e^{1}(X, z), \ldots, e^{n}(X, z)\right) \subset O_{\Theta_{r} \times B_{r}} \tag{2,1}
\end{equation*}
$$

The above generators of the ldeal \mathcal{F}_{r} give a finite presentation of $\mathcal{O}_{\mathcal{Z}}$ as an $0_{\text {ex }}{ }^{- \text {module }}$.
where the map Φ is matrix multiplication with $\left(f_{1}, \ldots, f_{\ell}, e^{1}, \ldots, e^{n}\right)$.

Let π_{1} and π_{2} be the restriction to Z of the projections to the factors Θ_{r} and B_{r}, respectively. We analyse first π_{2}. Since V has an isolated singularity at 0 , all vector fields on V vanish at 0 , hence $\Theta_{0} \subset \mathcal{Z}$, where $\theta_{0}=\Theta_{r} \times\{0\}$ is the zero section. This means that $\pi_{2}^{-1}(0)=0_{0}$, whlch is a subvarlety of $\Theta_{r} \times B_{r}$ of codimension n. By restricting $\pi_{2}: Z-\theta_{0} \longrightarrow V_{r}-\{0\}$ we see that the flber $\pi_{2}^{-1}(p)$, with $p \in V_{r}-\{0\}$, is a vector space of codimension N in Θ_{r} (since V_{r} is Stein) and hence $\pi_{2}^{-1}\left(V_{r}-\{0\}\right)$ has the structure of a vector bundile over V_{r} whose fibers have codimension N in θ_{r}. Hence $\pi_{2}^{-1}\left(V_{r}-\{0\}\right)$ is smooth of codimension n in $\Theta_{r} \times B_{r}$ (the same codimension as Θ_{0}). Let $\Theta_{\operatorname{sing}} C \mathcal{Z}$ be the closure of $\pi_{2}^{-1}(V-\{0\})$. Set theoretically $Z=\theta_{0} \theta_{\text {sing }}$, but Z will in general have a non-trivial scheme structure on θ_{0}.

We now view Z as a space over θ_{r} via the projection $\pi_{1}: Z \longrightarrow \theta_{r}$. The fibre $n_{1}^{-1}(X)$ over the vector fleld X is set theoretically the critical set $\left\{z \in V_{r} /\right.$ $X(z)=0\}$ of X. Recall that the process of restricting to a m-fibre $\{X\} \times \mathbb{C}^{n}$ is
.carried out by tensoring with
 $\mathcal{O}_{X^{\otimes}} \mathcal{O}_{\Theta_{r} \times B_{r}} \mathcal{O}_{\{X\} \times B_{r}}$ has support on the critical set of X and for an isolated singularity of X at p, its dimension is the V-multiplicity of X at $p \in V_{r}$:

$$
\begin{equation*}
\mu_{v}(X, p)=\operatorname{dim} c \frac{O^{O} c^{n}, p}{\left(f_{1}, \ldots, f_{\ell}, X^{1}, \ldots, X^{n}\right)} \tag{2.3}
\end{equation*}
$$

Note that $\mu_{V}(X, p)$ depends exclusively on $\left.X\right|_{V}$, since the contribution from choosing another extension to C^{n} is cancelled by the terms (f_{1}, \ldots, f_{ℓ}) and that it is strictly positive exactly at the critical set $\{X=0\}$ of X. Note that (2.3) is the corank of Φ in (2.2) over the point ($X, 0$), or equivalently, (2.2) gives a way to express the V-multiplicity as a corank of a matrix with parameters. We will exploit this expression to describe the dependence of the V-multiplicity on X; but technically it will be simpler to consider an approximation of Φ on infinitesimal neighbourhoods of θ_{0}.

We will now analyse the structure of Z at the zero section θ_{0} Let, $g=$ $\left(z_{1}, \ldots, z_{n}\right) \subset \mathcal{O}_{\Theta_{r}} \times \mathbb{C}^{n}$ be the ideal of definition of Θ_{0}, and denote by θ_{0}^{f} the $f^{\text {th }}$ infinitesimal neighbourhood of θ_{0} defined by the sheaf of ideals $g^{f+1} c$ $0_{\theta_{r}} \times \mathbb{C}^{n}$ generated by the monomials in z of degree $j+1$. As a space, it consists of θ_{0} but its function theory remembers the Taylor series in the z-variables up to order f. Using the presentation (2.2) of \mathcal{Z}, we note that $\Phi\left(\mathscr{F}^{d+1}\right) \subset \mathscr{g}^{j+1}$, so that it will induce an exact commutative diagram

where \mathcal{X}^{\npreceq} is the analytic intersection of \mathcal{X} and $\theta_{0}^{\mathcal{d}}$, and its defining ideal is spanned by g and \mathscr{f}^{j+1}. From the inclusions

$$
\begin{equation*}
g=(9, q) \supset \ldots \supset\left(9, g^{j+1}\right) \supset\left(9, g^{+2}\right) \supset \ldots 2 g \tag{2.5}
\end{equation*}
$$

we obtain the inclusions of analytic spaces

$$
\begin{equation*}
\theta_{0}=z^{1} c \ldots c z^{j} \subset z^{j+1}<\ldots c z \tag{2.6}
\end{equation*}
$$

Φ^{7} in (2.4) is a sheaf map between free sheaves over θ_{0}, so it may be identified with a (finite dimensional) vector bundle map between (trivial) bundles over ϵ_{0}. Hence Φ^{j} may be represented by a (finite dimensional) matrix with parameters. Denote by $\Phi^{j}(X): O_{\{X\}}, B_{r}, 0^{\prime m^{j+1}} \longrightarrow O_{\{X\}, B_{r}, 0^{\prime m}}$, where m is the maximal ideal in $O_{\{X\}, B_{r}, O^{\prime} \text {, the restriction of } \phi^{j}{ }^{r} \text { to the point }(X, O), ~(X)}$ and define

$$
\mu\left(Z^{d}, X\right):=\operatorname{corank}_{C^{\prime}}\left[\Phi^{d}(X)\right]=\operatorname{dim}_{\mathbb{C}} \frac{O_{C^{n}}, p}{\left(\left\{_{1}^{n}, \ldots, f_{i}, X^{2}, \ldots, X^{n}, z_{1}^{j+1}, \ldots, z_{n}^{j+1}\right)\right.}
$$

We have for jink:

$$
1 \leq \mu\left(Z^{j}, X\right) \leq \mu\left(Z^{A}, X\right) \leq \mu_{Y}(X, 0)
$$

Theorem 2.2: Let $(V, 0) \leq B_{1} \subset\left(\mathbb{C}^{n}, 0\right)$ be an analytic space which is smooth except for an isolated singularity at 0 , and let Θ_{r} denote the Banach space of holomorphic vector fields on V_{r} with continuous extensions to $\partial V_{r}, r<1$, and let $Z, Z^{\prime}=Z n \Theta_{0}^{j} \Theta_{r} \times B_{r}$ be the universal critical set and its approximation sets. Then, there is a descending sequence of analytic subvarieties of Elite codimension $A^{A}, A^{k+1} C A^{k}$, and an integer J such that:
a) $z^{j} \cap\left(\theta-A^{J}\right)=\mathcal{Z}^{k} \cap\left(\theta-A^{J}\right)$ for $j, k \geq \mathrm{J}$.
b) $\mu_{V}(X, 0)=\mu\left(X^{J}, X\right)$ for $X \notin A^{J}$ and $j \geq J$.
c) The function V-multiplicity at 0

$$
\mu_{V}(, 0): \theta_{r} \longrightarrow Z^{+} \cup\{\infty\}
$$

is upper semicontinuous and it is locally bounded at those points X where X has an isolated singularity on V at 0 (e_{r} has for tins the topology whose closed sets are the analytic subsets).
d) The subsets of θ_{r} defined by $\mu(, 0) \geq K$ are analytic subspaces and the minimum value of $\mu_{V}(, 0)$ in θ_{r} is attained on an open dense subset $\tilde{\Gamma}_{1}$ of θ_{r} 。
e) The subset of θ_{r} formed by vector fields whose critical set at 0 has positive dimension is the analytic subspace of θ_{r} defined by $n A^{f}$.

Proof: For every f, the inclusion $\left(q, g^{j+2}\right) s\left(g, \mathscr{F}^{j+1}\right)$ induces an exact sequence of sheaves on $\theta_{r} \times B_{r}$

Where the first 2 columns may be interpreted as (finite dimensional) vector bundle maps over θ_{0}. The corank of $\Phi^{j+1}(X)$ is equal to the corank of $\Phi^{j}(X)$ if and only if $g^{d+1} / g^{j+2}(X)$ is contained in the image of $\Phi^{d+1}(X)$. The increase in the corank from $\Phi^{f}(X)$ to $\Phi^{f+1}(X)$ is the codimension of

$$
\text { Image }\left[\Phi^{j+1}(X)\right] n\left[g^{j+1} / g^{j+2}(X)\right] \quad \text { in } \quad g^{j+1} / g^{j+2}(X)
$$

A stratification of θ_{0} consist of a disjoint decomposition of θ_{0} by subsets $\Gamma_{1} \ldots . \Gamma_{\text {. }}$ where each Γ_{1} is an analytic subvariety minus another analytic subvariety (the ones that will actually appear have finite codimension). Since Θ_{0} is irreducible there is one and only one component that is open. We will assume that for any stratification of θ_{0} this open component is the first one Γ_{1}.

We may first find a stratification of θ_{0} so that the corank of $\Phi^{j+1}(X)$ is constant on each strata. Then one may further stratify according to the
dimension of $\operatorname{Im} \Phi^{j+1} \cap\left(g^{j+1} / g^{f+2}\right)(X)$. In all, we obtain a stratification $\left\{\Gamma_{1}^{j+1}, \ldots, \Gamma_{c}^{j+1}\right\}$ of Θ_{0} such that the codimension of $\operatorname{Im} \Phi^{j+1} \cap\left(\mathcal{g}^{j+1} / g^{j+2}\right)(X)$ is constant on the stratification, say d_{i}^{j+1} on Γ_{1}^{j+1}. Since the numbers d_{1}^{j+1} are defined as coranks of a matrix with parameters, they behave uppersemicontinuosly, in the sense that if Γ_{k}^{i+1} is in the closure of r_{n}^{j+1}, then $d_{k}^{j+1} \geq d_{h}^{j+1}$. Due to this property, we may assume that r_{1}^{j+1} consists of all those points X of Θ_{0} where the minimum is attained (i.e. $d_{1}^{j+1}<d_{k}^{j+1}$ for $k \geq 2$). We have

$$
\mu\left(z^{j+1}, x\right) \geq \mu\left(z^{j}, x\right)+d_{1}^{j+1} i \quad X_{0}
$$

d_{1}^{f} has to be 0 for f large, due to the fact that the sum of these numbers gives a lower bound to $\mu\left(X^{d}, X\right)$, which is finite for X with an isolated singularity at 0 . If $d_{1}^{j+1}=0$, in Γ_{1}^{j+1}. we have

$$
g^{j+1} / g^{j+2} \subset \text { Image }\left[\Phi^{j+1}\right]
$$

or equivalently on the open set Γ_{1}^{j+1} we have

$$
g^{j+1} \subset\left(9, g^{j+2}\right)
$$

This last implies also that on Γ_{1}^{f+1} we have

$$
\begin{equation*}
g^{j+k} \subset\left(g, g^{j+k+1}\right), k \geq 2 \tag{2.8}
\end{equation*}
$$

which means that $\left\{A^{k}=\Theta_{a}-\Gamma_{1}^{k}\right\}_{R}$ form a descending family of analytic spaces of a_{0} for $k \geq f$ where $d^{j}=0$. The intersection of the above family consist of those points where $\mu\left(\mathcal{Z}^{f}, X\right)$ is infinite. This set is exactly the set $(X, 0) / 0$ is not an isolated critical point of X at 0$\}$.
(2.8) also implies that if $d_{1}^{j=0}$ then for $A>f$ we have $\Gamma_{1}^{A} \subset \Gamma_{1}^{A+1}$. Let $\Gamma_{1}=$ \hat{k}_{1}^{k}, which by the previous remark reduces to a finite intersection. $\Gamma_{1} \frac{15}{}$ the open dense subset of Θ_{0} consisting of vector fields with minimum \underline{V}-multiplicity at 0 , and equal to $d_{1}^{1}+d_{1}^{2}+\ldots+d_{1}^{j-1}$. Let $\tilde{\Gamma}_{1}=\pi_{1}\left(\Gamma_{1}\right)$. From the above description, the theorem is clear.

Now we begin to analyse the other component $Z_{\text {aing }}$ of Z.

Lemma 2.3: The V-multiplicity of the holomorphic vector field X on V at a smooth point p of V coincides with the multiplicity (or the index) of the vector field $\left.X\right|_{V}$ at p.

Proof: We may find coordinates $\left(z_{1}, \ldots, z_{n}\right)$ around p such that $g=$ $\left(z_{N+1}, \ldots, z_{n}\right)$ and the condition that the vector fleld X is tangent to V is that $X^{J} \in \mathcal{G}$ for $J=N+1, \ldots, n$. Hence
$\mu_{v}(X, p)=\operatorname{dim}_{\mathbb{C}} \frac{O_{\mathbb{C}^{n}, 0}}{\left(z_{N+1}, \ldots, z_{n}, X^{1}, \ldots, X^{n}\right)}=\operatorname{dim}_{\mathbb{C}} \frac{O_{\mathbb{C}^{n}, 0}}{\left(z_{N+1}, \ldots, z_{n}, X^{1}, \ldots, X^{N}\right)}=$
$=\operatorname{dim}_{\mathbb{C}} \frac{0^{\mathbb{C}^{N} \times(0), 0}}{\left(X^{1}(\tilde{z}, 0), \ldots, X^{N}(\tilde{z}, 0)\right)}=\mu\left(\left.X\right|_{V}, p\right)$

A sheaf \mathcal{F} on $\Theta_{r} \times B_{r}$ is Θ_{r}-anaflat ($\left.(D 01], 66\right)$ if for every point (X, z) there is a finite locally free resolution

$$
0 \longrightarrow \mathscr{L}_{\mathrm{q}} \longrightarrow \ldots \longrightarrow \mathscr{L}_{0} \longrightarrow \mathscr{F} \longrightarrow 0
$$

In a neighbourhood of (X, z) such that its restriction to $(X) \times \mathbb{C}^{n}$ is also an exact sequence.

Proposition 2.4: If $p \neq 0$ is an isolated critical of $X \in \Theta_{r}$, then $O_{Z_{r}}$ is Θ_{r}-anaflat at (X, p).
Proof: If $(X, p) \in \mathcal{Z}_{r}$ with $p \neq 0$ an isolated singularity of X, then Lemma 2.3 shows that Z_{r} at (X, p) is a complete intersection:

$$
g_{X, p}=\left(z_{N+1}, \ldots z_{n}, X^{1}, \ldots, X^{N}\right)
$$

The generators of ${ }^{g} X, p$ form a regular sequence, so the Koszul complex of the regular sequence ($[\mathrm{G}-\mathrm{H}], \mathrm{p} .688$) gives a finlte locally free resolution of $\mathcal{O}_{\chi_{r}}$. The restriction of this complex to $\{X\} \times \mathbb{C}^{n}$ is the Koszul complex of the restricted generators, who also form a regular sequence. Hence the restricted sequence is also exact. So $O_{Z_{r}}$ is Θ_{r}-anaflat at (X, p).

Let now $X \in \Theta_{r}$ with an isolated critical point at 0 , let $s<r$ be such that X is non-vanishing on $\bar{V}_{s}-\{0\}$, and let $2 \varepsilon=\min \left\{\|X(z)\| / z \in \partial V_{s}\right\}$ and consider the ball $U=U(X, \varepsilon) \leq \Theta_{r}$. The projection map $\pi_{1}: Z^{\prime}=\mathcal{Z} \cap\left(U \times B_{s}\right) \longrightarrow U$ is a finite map by Proposition 2.1 (see [G-R], where a finite map is a closed map with finite fibers). We want to analyse the sheaf π_{1}. O_{Z}. . The points of $Z^{\prime}-\left(\Theta_{0} \cap U\right)$
are π_{1}-anaflat by Proposition 2.4 and the points of $\Gamma_{1} \subset \theta_{0}$, consisting of $(W, 0)$ with W of minimal V-multiplicity μ_{V} at 0 , are also $\pi_{1}-f l a t$ (since they have constant multiplicity (see (Do2], p.58)). Hence π_{1}, Z_{Z}, is locally free on $\pi_{1}\left(\Gamma_{1}\right)=\tilde{\Gamma}_{1}$ of rank

$$
\begin{equation*}
\mu_{V}+\sum_{y\left(p_{3}\right)=0} \mu_{V}\left(Y, p_{3}\right) \quad Y \in\{0\} \quad, \quad Y \tilde{I}_{1} \tag{2.10}
\end{equation*}
$$

where the V-multiplicity of Y at 0 is μ_{V}. This number is independent of s, for s sufficiently small and of $Y \in U \cap \tilde{\Gamma}_{1}$. We will call it the Euler-Poincaré characteristic of X at 0 , and denote it by $\chi_{V}(X, 0)$ (See [Ser]).

A family of holomorphic vector flelds parametrized by the irreducible and reduced complex space of finite dimension T is a holomorphic map $\phi: T \longrightarrow \Theta_{r}$. The family ϕ induces a map $\left(\phi, i d_{s}\right): T \times V_{s} \longrightarrow \theta_{r} \times V_{s}$, and we will denote $\left(\phi, i d_{s}\right)^{*}(Z) \subset \mathrm{TXV}_{3}$ by $Z_{T, s}$ Let $\pi_{1 T}: Z_{T, s} \rightarrow T$ be the projection to the first factor. If $\pi_{1 T}$ is a finite map, then $\pi_{1 T}, O_{T, s}$ is a coherent sheaf on T, and hence is locally free on a Zarizki dense set T of T, say of rank r. For $t \in T$ ' we have

$$
r=\mu_{V}\left(X_{t}, 0\right)+\sum_{X_{t}\left(p_{j}\right)=0} \mu_{v}\left(X_{t}, p_{j}\right)
$$

and for $t \in T$ we have

$$
\begin{equation*}
r=\chi_{0}^{t a r}\left(O_{Z_{T, s}}, O_{\{t\}}\right)+\sum_{X_{t}\left(p_{j}\right)=0} \mu_{V}\left(X_{t}, p_{j}\right) \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{0}^{\operatorname{tar}}\left(O_{Z_{T, s}}, O_{\{t\}}\right)=\sum_{q}(-1)^{q_{T} o r^{q}} O_{T \times B,(t, 0)^{\left(O_{Z_{T, B}}\right.}}(t, 0)^{\left., O_{\{t\}}\right)} \tag{2.12}
\end{equation*}
$$

is the Euler-Poincaré characteristic of torsion groups of ${ }^{O_{\mathcal{Z}_{T, s}}(t, 0)}$ over $O_{(t)}$, where $\operatorname{gar}^{0}\left(O_{Z_{T, 3}}, O_{\{t\}}\right)=\mu_{V}\left(X_{t}, 0\right)$ (see [Do2]).

Recall from Proposition 2.1 that $\theta_{r}^{\prime} \subset \theta_{r}$ Is the open dense subset consisting of vector fields having an isolated critical point at 0 .

Theorem 2.5: For $X \in \Theta_{r}^{\prime}, s \ll r$ and $0 \ll \varepsilon$, we have:

1) For any family of vector flelds $\left\{X_{t}\right\}_{t \in T}$, parametrized by a finite dimensional analytic space $(T, O) \longrightarrow\left(\Theta_{r}, X\right)$ such that the v-multiplicity of the general vector field X_{t} of the famlly is minimal μ_{V} we have:

$$
\begin{equation*}
\chi_{V}(X, 0)=\chi_{0}^{\operatorname{tar}}\left(O_{\mathcal{L}_{T, s}}, O_{\{X\}}\right) \tag{2,13}
\end{equation*}
$$

2) For $Z \in U(X, \varepsilon)$ we have

$$
\begin{equation*}
\chi_{V}(X, 0)=\chi_{V}(Z, 0)+\sum_{z\left(p_{j}\right)=0} \mu_{V}\left(Z, p_{j}\right) \tag{2.14}
\end{equation*}
$$

3) For $X \in \Theta_{r}^{\prime}$ we have:

$$
0<\chi_{V}(X, 0) \leqslant \mu_{V}(X, 0)
$$

and $\chi_{V}(X, 0)=\mu_{V}(X, 0)$ if and only if Z_{r} is π_{1}-anaflat, at ($X, 0$) (In particular in $\tilde{\Gamma}_{1}$).

Proof: Let $X \in \Theta_{r}$ with an isolated criticai point at 0 , let $s<r$ be such that X is non-vanishing on $\bar{V}_{s}-\{0\}, 2 \varepsilon=\min \left\{\|X(z)\| / z \in \partial V_{s}\right\}$ and consider the ball $U=U(X, \varepsilon) S \Theta_{r}$.

1) $\chi_{V}(X, 0)$ is defined by (2.10), where Y has minimal multiplicity μ_{V} at 0 . If an element X_{i} of a family $\left\{X_{t}\right\}$ has minimal V-multiplicity at 0 , then the general element will have at 0 minimal multiplicity μ_{V}. At these points $\mathcal{Z}_{\mathrm{T}, \mathrm{s}}$ will be $\mathrm{T}-\mathrm{flat}$, since they represent Θ_{r}-anaflat points of \tilde{Z}_{r}, and so the general rank of $\pi_{1 T^{*}} \mathcal{O}_{Z_{, s}}$ is again (2.10). (2.11) applied to X on V_{s} gives $r=\chi_{0}^{\text {tor }}\left(O_{Z_{T, s}}, O_{\{X\}}\right)$, hence we obtain (2.13).
2) Take a 1-parameter family $\left\{X_{t}\right\}_{t \in T=\mathbb{C}}$ in $U(X, \varepsilon)$ which contains X and Z such that the general element has minimal V-multiplicity at $0 . \quad \chi(X, 0)$ is defined by (2.10), where Y has minimal multiplicity μ_{V} at 0 . Since this is the only condition needed to apply part 1 of the theorem, assume that Y is. near to Z. Assume that Z vanishes at $0, p_{1}, \ldots, p_{c}$. Then part of Y is near to each part of the critical set of Z. Since $Z_{T, s}$ is $T-f l a t$ at p_{1}, \ldots, p_{c}, there
are actually as much multiplicity near p, for Y as for Z at p_{j}. The multiplicity of Y near 0 is $\chi_{V}(Z, 0)$ again by definition (2.10) applied to Z, where a new $\varepsilon^{\prime}<\varepsilon$ is used in the definition in order to get rid of p_{1}, \ldots, p_{c}. Hence we obtain (2.14).
3) Consider a 1-parameter family which contains X with 0 as only critical point in V_{s} and whose general element has minimal V-multipliclty. Then $\pi_{1} O_{\mathcal{Z}_{\mathbb{C}}}$ is a coherent sheaf on \mathbb{C} whose rank is $\chi_{V}(X, 0)$, by part 1 . Hence the dimension of $\pi_{1 *}{ }^{O} \mathcal{Z}_{\mathbb{C}}{ }^{\otimes O}(0)$ is greater than or equal to the general rank. If the rank is constant, then \mathcal{Z} is π_{1}-anaflat.

Let $X \in \Theta_{r}$, we say that the zero set of X does not bifurcate if there is $\varepsilon>0$ and $s>0$ such that for $Y \in U(X, \varepsilon) \subset \theta_{r}$ we have that the only critical point of Y on V_{s} is 0 , (that $1 s, X$ has an isolated singularity at 0 as well as any sufficiently near vector field in θ_{r} and there is no other critical point uniformly in a nelghbourhood V_{s} of 0). The critical set of a vector field X on V_{r} does not bifurcate if and only if the zero section θ_{0} coincides (as sets) With Z_{r} in a nelghbourhood of ($X, 0$) in $\Theta_{r} \times V_{r}$.

Theorem 2.6: Let $(V, 0) \subseteq B_{1} \subset\left(\mathbb{C}^{n}, 0\right)$ be an analytic space which is smooth except for an isolated singularity at 0 , then the set of points in Θ_{r} whose critical set does not bifurcate contains the connected dense open subset $\tilde{\Gamma}_{1} c$ θ_{r} consisting of vector flelds with minimum V-multiplicity.

Proof: Using previously introduced notation, what we have to prove is that $\theta_{s \operatorname{lng}} n \Gamma_{i}=\varnothing$, or equivalently that if $(X, 0) \in \Theta_{s i n g}$ then the V-multiplicity, at 0 cannot be minimal.

If $(X, Q) \in \Theta_{s i n g}$, then we may find a 1-parameter linear family $\left\{X_{t}=X+t Y\right\}$ in Θ_{r} such that its critical set

$$
C=\left\{(t, z) \in \mathbb{C} \times B_{r} / z \in V_{r}, X_{t}(z)=0\right\}
$$

has at least 2 local irreducible components at ($X, 0$), the zero section $C_{0}=\mathbb{C} \times\left\{0\right.$) and the others, say C_{1}. Formula (2.14) applled to $Z=X+\varepsilon Y$ is

$$
\begin{equation*}
\chi_{V}(X, 0)=\chi_{V}(X+\varepsilon Y, 0)+\sum_{X+\varepsilon Y\left(p_{j}\right)=0} \mu_{V}\left(X+\varepsilon Y, p_{j}\right) \tag{2.15}
\end{equation*}
$$

The polnts $p_{j} \in C_{1}$ have a strictly positive contribution to the right hand side of (2.15), hence $\chi_{V}(X, 0)>\chi_{V}(X+\varepsilon Y, 0)$. From this inequality we obtaln that $\mu_{V}(X, 0)$ cannot be minimal, for in that case $\chi_{V}(X, 0)=\mu_{V}(X, 0)$ would also be minimal.

Example: Let $X_{t}=t z_{1} \frac{\partial}{\partial z_{1}}+z_{2} \frac{\partial}{\partial z_{2}}+(2 t-1) z_{3} \frac{\partial}{\partial z_{3}}$ be a family of vector flelds on \mathbb{C}^{3} and let V be the surface defined by $f=z_{1}^{2}-z_{2} z_{3} . \quad X_{t}$ is tangent to V, since $\operatorname{df}\left(X_{t}\right)=2 t f$. As vector fields in \mathbb{C}^{3}, X_{t} has as only critical point 0 , except if $t=0$ or $1 / 2$. For X_{0} has a line of critical points, but on V, it has an isolated critical point. For $t \neq 0,1 / 2$ one has that

$$
\left(z_{1}^{2}-z_{2} z_{3}, t z_{1}, z_{2},(2 t-1) z_{3}\right)=\left(z_{1}, z_{2}, z_{3}\right)
$$

so that the v-multiplicity is 1 for $t \neq 0,1 / 2$. For $t=0$, one has
$\left(z_{1}^{2}-z_{2} z_{3}, t z_{1}, z_{2},(2 t-1) z_{3}\right)=\left(z_{1}^{2}, z_{2}, z_{3}\right)$
so that the V-multiplicity is 2 for $t=0$. So we see the upper semicontinulty behaviour of the v-multiplicity.

Remark: For a famlly $(X+t Y)$ with $X+\varepsilon Y$ of minimial V-multiplicity we have

$$
\left.x_{V}(x, 0)=\mu_{V}(x, 0)-\operatorname{dim}\left(\operatorname{Tar}^{1} O_{T \times B,(t, 0)}{ }^{\left(O_{Z_{T, B}}\right.}{ }^{(t, 0)}, O_{\{t\}}\right)\right]
$$

This second term can be computed as the codimension of

$$
\left(t f_{1}, \ldots, t f_{\ell}(z), t\left(X^{1}+t Y^{1}\right), \ldots, t\left(X^{n}+t Y^{n}\right)\right)
$$

in

$$
(t) n\left(f_{1}, \ldots, f_{\ell}(z), x^{1}+t y^{1}, \ldots, x^{n}+t Y^{n}\right)
$$

(see [Do2]).

3. THE INDEX OF HOLOMORPHIC VECTOR FIELDS

Let V be a (reduced complex) analytic space of complex dimension N, with compact singular set and with boundary, ∂V, a smooth manifold of real dimension $2 N-1$ oriented in a natural way. Let W be an orientable differentlable manifold of real dimension 2 N with boundary ∂W diffeomorphic to ∂V (orientation preserving). We may extend this diffeomorphism to a diffeomorphism of a neighbourhood of the boundaries $\phi: V^{\prime} \longrightarrow W^{\prime}$. Given a C^{0}-vector field X on V, non-singular on ∂V, we may transport it via ϕ to a vector field X^{\prime} defined on W^{\prime} and then define the index of X on V as the index of X^{\prime} on W^{\prime}, and denote it by Ind $_{W}(X, V, \partial V)$. This number depends on the choice of manifold W, but as we have seen in the first section, the choice of a different W ' changes the index by an integer uniformly for all vector fields.

Given an analytic space V, one may choose as W a desingularization of V. In case V is a germ of a hypersurface with an lsolated singularity defined by the equation $f=0$, then W can be defined by $f=\varepsilon$, for sufficiently small ε (or more generally, if V is a complete intersection, or a smoothable germ with an isolated singularity, then W can be the smoothening (see [Se]).

If p is an isolated singular point of V and X is a holomorphic vector fleld defined in a neighbourhood of p non-vanishing in a pointed neighbourhood of p, then the index of X at p Ind $W(X, V, p)$ is defined as Ind $W^{\prime}\left(X, V^{\prime}, \partial V^{\prime}\right)$, where V^{\prime} is a sufficiently. small neighbourhood of p in V, and W is a manifold with $\partial W \approx$ ∂V. The function $I_{W}(\ldots, V, p)$ is well defined up to adding an integer, choice that depends on the election of the bounding manifold. W.

The objective of this section is to compare the index with the V-multiplicity of X at 0. We recall that at a smooth point of V, if one uses the model of a ball as bounding a neighbourhood of the boundary of a smooth point, then the index coincides with the multiplicity (Lemma 2.3).

Theorem 3.1: Let $(V, 0) \subseteq B_{1} \subset\left(C^{n}, 0\right)$ be an analytic space which is smooth except for an isolated singularity at 0 , then there is a constant K such that

$$
\begin{equation*}
\operatorname{Ind}_{W}(X, V, 0)=\chi_{V}(X, 0)+K \tag{3.1}
\end{equation*}
$$

for X in the dense open set θ of vector flelds in Θ_{r} with an lsolated singularlty at 0 , where χ_{V} denotes the Euler-Polncaré characteristic of X at 0 . For X in the dense open set of Θ^{\prime} where the universal critical set \mathcal{Z}_{r} is θ_{r}-filat we have

$$
\begin{equation*}
\operatorname{Ind}_{W}(X, V, 0)=\mu_{V}(X, 0)+X \tag{3,2}
\end{equation*}
$$

Proof: If $X \in \Theta_{r}$ is a vector field on V whose critical set does not bifurcate, then the index is locally constant at X, since the index on the boundary remains constant, and it is equal to the sum of the local indices, but the only critical point is located at 0 . Hence the index is constant on the connected set \mathcal{B} of Theorem 2.6. By Theorem 2.2.d the minlmum of the V-multiplicity is attained on a dense open subset $\tilde{\Gamma}_{1} \subset \mathcal{B}$. Hence there is an integer K satisfying (3.2) for $X \in \Gamma_{1}$ (due to the fact that both functions are constant there).

Let now $X \in \Theta_{r}$ with an isolated critical poir.: at 0 , let $s<r$ be such that X is non-vanishing on $\bar{V}_{s}-\{0\}$, and let $2 \varepsilon=m \ln \left\{\|\chi(z)\| / z \in \partial V_{s}\right\}$ and consider the ball $U=U(X, \varepsilon)$. For $X+t Y \in \bar{\Gamma}_{1} \cap U$ we have

$$
\begin{aligned}
\operatorname{lnd}_{W}(X, V, 0)=\operatorname{Ind}_{W}(X+t Y, V, 0) & +\sum_{X}+\sum_{\substack{\left.p_{j} \in V_{s}\right) \\
-\{0}} \operatorname{lid_{W}(X+tY,V,p_{j})}
\end{aligned}
$$

And hence

$$
\begin{aligned}
& \operatorname{Ind}_{W}(X, V, 0)=\left[\chi_{V}(X+t Y, 0)+K\right]+\sum_{X+t y(p,)=0} \mu_{V}\left(X+t Y, p_{j}\right) \\
& p_{j} \in V_{s} \cdots\{0\}
\end{aligned}
$$

since $X+t Y$ has minimal V-multiplicity at 0 and (3.1) and the fact that at the smooth points the V-multiplicity is equal to the index (Lemma 2.3), Using now (2.15) we obtain (3.1). (3.2) follows now from Theorem 2.5.3.

Corollary 3.2: Let $(V, 0) \subseteq B_{1} \subset\left(\mathbb{C}^{n}, 0\right)$ be an analytic space wich is smooth except for an isolated singularity at 0 , then there is a constant L such that Ind $_{W}(X, V, 0) \geq L$ for every germ of holomorphic vector field X on V with an isolated singularity at 0 on V.

Proof: Let K be as in Theorem 3.2. Since $\chi_{V}(X, 0)>0$ for any $X \in \Theta^{\prime}$, we have $\operatorname{Ind}_{W}(X, V, 0)>K$

BIBLIOGRAPHY

[G-R] H. Grauert, R. Remmert, Analytlsche Stellenalgebren, Springer Verlag, Die Grundlehren 176, 1971.
[G-S-V] X. Gomez-Mont, J. Seade, A. VerJovsky, The index of a holomorphic flow with an isolated singularity, Math. Ann., 291, 737-751 (1991)
[M1] Milnor, J. Singular Points of Complex Hypersurfaces, Ann. Math. Stud. 61 (1.968)
[Pu]:Ch. Pugh, A generallzed Poincaré Index Formula, Topology, 7, 217-226, (1968)
[Ro] H. Rossi, Vector Flelds on Analytic Spaces, Ann. Math.., 78, 455-467 (1963).
[Se] J. Seade, The Index of a vector fleld on a complex surface with singularities. In Proc. Lefschetz Centennial Conf. Verjovsky (ed) Contemp. Math. 58, part III, 225-232 (1987)
[Ser] J.P. Serre, Multiplicites, LNM 11, Springer Verlag
[Wh] H. Whitney, Complex Analytic Varletles, Addison Wesley

Xavier Gomez-Mont
CIMAT
A.P. 402,
Guanajuato, 36000, Mexico
Chrlstian Bonattl
Dptm. Mathematique
Universite de Bourgone
BP 138
21004, Dijon, Cedex, France

[^0]: Research partlally supported by COHACYT-CNRS and cOMACYT-CMPq. The second author was a Guggenhelin fellou durling this research; and he would like to thank Bo Berndtson for useful conversations.

