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Introduction 

The first treatise on Lie supergroups and superhomogeneous spaces was given by 

r::ost2nt in his pioneering work [21. His definition of supermanifold, however, is very 

general. For the e)<amples that have appeared elsewhere (cf., [4], [7]) and those we are 

ab::;ut to present in this paper, supermanifolds in tr1e sense of [3] and [4] suffice. (We 

sr.all refer the reader to section A .4 in the appendix, for a brief discussion on how 

Ko::tz:nt's approach ·cannot be immediately compared to that of other authors). 

t~ever~he 1 ess, Kostant's Lie supergroups are actually supermani folds in the more 

re::tncted sense. Indeed, tr1ey are characterized by means of abstract group-like 

properties and one can prove quite generally that the supertangent bundle (in the sense 

of [6]) of a Lie supergroup is trivial. The trivialization is accomplished by the existence 

of a basis of left invariant superderivations which can also be used to pick up function 

an(j e:<terior factors globally (cf., [2]); hence the structural sheaf of a Lie supergroup is 

e)<hibited from the outset in the Batchelor-trivial form (cf., ( 1] ). The odd generators are 

the elements of a basis for the dual of the odd subspace of the Lie superalgebra of the 

sup~rgroup. In sheaf-theoretical terms, the Lie superalgebra is a constant sheaf (cf., 

2.?) <Jnd this makes the pressumed complications in Kostant's definition to be abscent 

from the theory. (Lie supergroups are defined in § 1. Left invariance is discussed in § 2 

wr~ere the Lie superalgebra of a Lie supergroup is defined.) 

our discussion of Lie supergroup actions on supermanifolds is differential-geometric 

oriented, too. Our original motivation was to obtain the isotropy subsupergroup of an 

act i en, say 1~ : ( G, A 6 ) x (M, AM ) --:- (M, AM ), in the same way one does in the smooth 

thcorv. Thus, for each pEn, we make sense of the partial map 1~p: (G, A6 ) --7 (1"1, AM), 
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point (p, R) of (M, AM). The isotropy subsupergro11p at p, (Gp~ A6P ), is obtained by 

making sense of the Locus tn ( G, A 6 ) wh.ere 111 p =-8p. It turns out to be an embedded 

subsuperrnanifold of (G) A6 ) and 1t inherits naturally a Lie supergroup structure. The 

precise result is stated in theorem 4.6. Concrete examples are _given in § 5. 

Then} following the Ideas In [2L It Is Immediate to define a superman! fold sheaf, A616 J 
.· . p 

on the space of cosets G /G p, giving thus r1se to a superh.omogeneous space. There is 

also a morphism 

naturally Induced by ljfp. The orbit through p, (OP J Aop )1 Is the Image of \jfp In the 

category of supermanifolds (cf., 4.9); it is a subsupermanifold of (t1, AM) and its 

supermanifold structure is the one that makes_(G/Gp,A 616P)~(Op,Aop) into a 

superdi ff eom orph ism. 

- -
Acq'jintance with some of the references will be-assumed (particularly, [2], [31 and 

[5]). Our Inclusion of an appendix Is to provide an appropriate setting for the comparison 

of the definitions 1n[2] and [311 t is by no means complete} E:ven though it may be useful 
as a quick reference for basic definitions and notation. 

Acknowledgements 

one of us CO.AS.VJ would like to thank professor R Berlanga for the helpful discussions 

·maintained .during the preparation of this work and for his most valuable criticism. 



3 

i. Abstract characterization of a Lie supergroup 

1.1 Definition: A Lie supergroup ls a finite dimensional supermanifold, (G, A6 ), 

equipped with the following additional structure: 

(i) a supermanifold morphism 

~: (G, AG) X (G, A6 ) ~ (G, AG) 

satisfying the associativity property, 

( Botl1 sides are morpt11sms (G I A G) x (G I A 6) x (G, A 0 ) --t (G, A 6 ); TT 1 denotes the 

projection of (G, A6 ) x (G, A6 ) x (G, A6 ) onto the ith factor ( 1 =1,2,3)]. 

(ii) a distinguished point in the underlying manifold, e E G, and hence, a distinguished 

suoermanifold morphism 

that satisfies the identity property, 
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(iii) an involutive superdiffeomorphism 

that satisfies the inverse property, 

!J. 0 ( id X (} ) = G e = 1J. o ( (} X id ). 

Reca 11 from [2] and [3] that the sheaf R mIn of the superaflne space R mIn is 

where { 81 , •.• ) 80 } Is a set of generators for an n-dln1enslonal ve=ctor space over H. 

Thus, for ~ny non-empty open subset U C R m, R mIn (U) .:._ C00Rm (U) ® 1\ [ 61 , ... , en 1 . 

Let {e 11 .•• ,em} be a~basis of Rm and let {x1 , ... ,xm} be the dual basis. TQ_~n,. 

{ x1 , ... , xm; 81 , •.• , en} is a global coordinate system'for the supermanifold Rmln. We 

shall keep this coordinate system fixed. 

Associated to the vector spaces Rm and 1\ [61 , ••• , en] there is a natural morphism 

l 
. .I 
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deflned over each non-empty open subset U C R m as the one that corresponds to tr1e 

supera1gebra morphism 

glvc-;1 in terms or the specified coordinates by, 

"#X 1 =p-~~xf +p#x 1· 
I'""' 1 2 J 

Tile origin e = ( 0, ... ·' o) E R m ls obviously a d1st1ngulshed point for which the morphism 

8e t',aS the ldentl ty property. Furthermore, there Js an invo Jut ive Isomorphism 

CJ: 0~ m, R mIn)~ (R m, Rm In) having the lnverse property; namely, the one defined over 

each non-empty open subset U cRm, via the superalgebra morphism, 

wlwse effect on the flxed set of coordinates Is, 

.;t • ' 

o x 1 =- .:r'; I =i, ... ,m, 

C('.rc ,. dcr;~ :- j (' r'C: 1\1 ;'.'1'1< r· o~, rr~ = 0 
J !-· .._.t .._..,.,vi • ..., 11 v i Ill , 

and r;#" - A . 
v vv-- "'V' Y =1~ ... ,n. 

!ndesrj, R0 :::: ( ~}. Tr:e sheaf Rain becomes the 
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constant sheaf, ;\ [ 61 , ••• , e"' ]} over ( * }. The morphlsm 8e has no choice. The morphisms 

~1 and a are those given by tl1e same expressions above on the odd coordinates ev; 

v =t ... ,n. What results ts then a (O,n)-d1mens1onal Lie supergroup. 

1.3 Example: (R*~ R1 '·1 IR*), where R*=R -{0}. 

In this case, the morphism ll is the supermulttp.lication morphism of R 111 = (R, R 111 ), 

as defined in [6L restricted to the open subsupermanifold (R *, R 1 111 R* ). Thus, in terms 

of the standard coordinate system·{ i:, e} of R 1 11, 

ll# x = Pt x P/ x + P/ e p2* e 
ll # e = pi# x p

2 
# e + p

1 
* e p

2
# x 

The distinguished point in R * is the unit 1 E R *, and the superdiffeomorphism 

a: (R *, R1 ' 1 IR*) --4 (R *, R1 ' 1 IR*) is the one that corresponds to the superalgebra 

morpllism a#: R1 11 (R*) -+Ril! (R*) given on generators by, 

and, 

Remark: one may slmplyassumethat a"'x=f, and a"'e=ge, with f and g some coo 
' ' . i 

functions on R *.Then, by requiring !J. o ( td x a) to be Identical to the morphism 01 , one 

concludes that f(x)=1/x; and g(x)'=-(1/x) 2 • 



7 

associated to an (m,n)-dlmenslonal supervector space V =V 0 E9 V 1 . 

Rec:~ill trlat Hom(V,V) ls a supervector space of dimension (m 2 +n 2 , 2mn) wr,ose 

supermanifoldification) Hom ( V) V )5 ) as defined in [6], is an a fine supermanifold of 

dirnensi on ( (m +n )2, (m +n )2 ); its underlying smooth manlfo ld fs Hom (V, V) itself. 

Following [71 we can introduce even and odd linear coordinates 

( {AbJ, TTfbJ, TT0BJ,DBJJ and {TTAbJ, fbJ, eBJ, TTDBJ }, respectively) on lt, arrange them 

in matrix form, 

( 

AbJ+TTAbj 

esJ + rr esJ 

rbJ+nfbJ ) 

D B J + TT DB J }, 
(1) 

and define a composition map ~:Hom (V, V )5 xHom (V, V )5 -4Hom (V, V )5, according 

to the rules of linear superalgebra for left supermodule morphisms (cf., [9]); that is, 

( 

P/; (AbJ + rrAbJ) 

- P/(GBJ+rreBJ) 

( ~·(AbJ+nAbJ) 

\ !J.#(081+TT08J) 

~·(rbJ+nfbJJ ) = 

!J.#(D 8J+nDBJ) ) 

P/ ( r b J + rr f b J) ) ( P/ (A b J + rr A b J ) 

P1 # (DBJ + rrDBJ) P/ ( eBJ + rr eBJ) 

P2 # ( r b J + rr r b J ) ) 

P/ (DBJ + rrDBJ) 

where p1: Hom ( V, V )5 x Hom (V, V )5---:> Hom (V, V )5 denotes the project! on morphism 

onto t11e Jth factor (i =1 1 2). Tl1US1 
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~L ,f ( Ab J + TT A b J ) = I: k p 1 ,f (A b k + 1T A b k ) p / (A k J + TT A k J ) 

+ ~ 1 P/ ( t b J + 1T r b J) p
2 

# (- eJ J + rr eJ J ) 

"# (fbJ + rrrbJ) = v p .r (Abk + TIAbk) p # (fkJ + rrrkJ) ,.... .. .L.-k 1 2 

+ I:a P/ (fbB + 1TfbB) P/' (DBJ -TIDBJ) 

~# (eBJ + rreBJ) -~1 P/' (DBJ + TIDBJ) P/ (eJJ + rreJJ) 

+ L~: P/, (eBk +neBk) P/ (AkJ -TIAkj) 

~# (DBJ + rrDBJ) = LK P/ (DBK + TIDBK) P/ (DK J + rrDK J) 

+ Lk P/ ( eBk + rr eBk) P/ (- rkJ + rr fk J) 

(2) 

Now, any square matrix with entries 1n a superalgebra like AM (U), ·AM being the 
·•. . . ~-. ~ . 

structural sheaf of a given supermanlfold, ts Invertible, If ·and only If the matrtx 

. obtained by projecting the entries onto the commutative alge.bra (AM I JM )(U) =C 00 (U), · 

is (cf:, [2], [3]). Since the condition, 

· ·( A bJ · 
det · . 
· ·· ne8 J 

(3) 

det'lnes tl1e open subset GL (V) =GL (V 0 EB V 1 ) of Hom (V, V ), the same condition picks up 
~. : . . . 

an open subsupermanlfo ld of Hom (V, V )5; such subsupermanlfo ld ls, by definition, 

GL s (V 0 1 V 1 ). Thus, for Its structural sheaf, GL s (m + n I m +n ), we have, 

GLs(m +nlm +n) :::::R(m+n)21(m+n)21GL(m+n) (4) 

---~·-····~··· -------- ------------ -~- -----. --~-~-----·---------··--·-- ~--~-~-~-----~~--

--~-------~ 
--~--~-~ -~-------
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Then, by restricting the morphism !J. above to such an open subsupermanlfold and 

cer1ning the Inverse morphlsm a ln terms of the glven coordlnates so as to obtain the 

inverse matrix of Ut GL 5 (V 0! V 1 ) becomes a Lie supergroup. 

1. 5 Rem ar .k : Recall how Inverse matrices are obtained. Let 8 be any glven 

supercommutative and associative superalgebra. If the supermatrix associated Cas in 

[9]) to a left B-supermodule morprdsm has the block decompos1t1on 

then, such a morphism is invertible if and only if the blocks A and Bare both invertible, 

in which case the left inverse corresponds to the supermatrix, 

( 

(A -s(D-t)*C*)-1 

-(D -C(A-1)*B*)-1 C(A-1 )* 

where, f'or any (non-graded) matrix F, F* denotes the matrix obtained from F by changmg 

the signs of the odd components of its entries (cf., [9]). On the other hand, the right 

inverse is given by 

( 

(A- 8 (D-i)*C*)-1 

- o-1 c (A*·- B *o-1 c )-1 

-A-1 8(0*-C*A-1 8)-1 ) 

(D - C (A - 1 ) *B * )-1 . 

1 t is easy to check that both, left and right inverses, are actually the same. 

bein1; 211 (rn ,n )-dimensional supen~ctor space. 
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For the supergroup GL5(V0 IV1) of the example above) the conditions 

nrbJ =O , n e8J = o, nAbJ =0 
) 

nDBJ=O, det(AbJ)det(D 8 J) f:. 0, 

define an embedded (m 2 + n2 ~ 2m n )-dimensiona 1 subsupermanifold of GL (V ). The 

r-estrict ion of the same morphisms ~ and ·o and the same identity element make this 

subsupermanifo ld into a Lie supergroup. This is the Lie supergroup { S Hom (V ~ V)} *~ al~o 

introduced in [6] and studied from an algebraic point of view in [7]. 

1.7 Definition: Let (G,A 6 ) be a Lie supergroup and let ~0 ~ 86 ,"o6 , be its 

multiplicatron, identity ·and inversion morphisms~ respectively. Let (H,AH) ·be an 

immersed <resp., embedded) subsuperman-ifold of (G)A 6 )·and let i:(H,AH)___,)(G,A 6 ) 

·· be the corresponding immersion Cresp., embedding); Then, (H, A H) is a Lie sub supergroup . 

of (G, A 6 ) if (H, AH) is a Lie supergroup t~self and i is a homomorphism Ccf., [10]); that · 

is, if !J.H, 8H 1 a H, are the multiplication, identity and inversion morphisms of (H, AH )1 

then, 

(5) 

regarded as morphlsms from (H,AH)x(H,AH) Into (G,A 6 ). As usual, 111 denotes the 

project l on ot ~he product (H, A H) x (H, A H) tnto the t . .lli factor. 

1.8 Rem ark: Just as tn the theory ot' Lie groups, from the slngle condltlon above, one 

obtains, 

and .. (6) 

-------- -----------~- ·-·· 
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n~,e proof or t1~1ese properties follows easily from the following two lemmas which we 

shalll'1ave eccaslon to use again in this work. 

i.9Lernma: Let (M,AM) be a supermanlf'old and let pEM be an arbitrary point. Let 

8p: (M,Ar1 )---4(M,Af"1) be tile composition opoC(M,AM)· Then, for any morphism 

a: (M, AM ) ---4 (M, AM), 

and 

11·oof: Notej on the one hand, that for any fEAM(M), and for any qEM, we have, 

Eq $ f = 7 (q) 1A(t-l). On the other hand, (a:* f )(p) = 7 (a(p)) (cf., [3]). Hence, 

Sim llarly, since a# :AM (M) --1- AM (M) is a morphism of R-superalgebras, we have, 

This verifies that the eft"ect of (a o ep r' ( resp., ( f.,P o a)"' ) on the sup era lgebra AM (M) 

of global sections Is the same as that of Ea(p) # ( resp., ep # ). Therefore, the morphlsms 

are tile same o 

1.10Lemma: Let (G,AG) be a Lle supergroup and let fJ. be its composition morphism. 

Tt1er-1, IJ. is an epimorphism. tvlore generally) the following cancellation Jaws holds true: 

for any morphlsms a, p, y: (GJ A6 ) ____,. (G, AG \ 
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and 

Proof: Let o and 8e be the inversion and Identity morphims of the supergroup. Assume 

that 1.1 o ( o:. x ~) = p. o ( y x ~ )) and consider the composite 

wt1ere A=~ 0 
( a.x ~)X 0° ~-By hypothesis) A= IJ- 0 ( y X~) X ao ~·If we denote by TT; the 

projection morphism of the product o-f three copies of (G, A6 ) onto the i th factor, we 

have, 

~ •) ( ~ o (a X ~)X a o ~) = 1J- o ( 1J- o ( 1T 
1 
X 1T 

2 
) X 1T 

3
) o (a. X ~X(] o ~) 

= 1-J. o (TT X 1-J.o(TT XTT )) o (ax ~X(J'o~) . 1 2. 3 

= 1J- o ( TT 1 X 1J- o ( id X a ) ) ~. ( a. X ~ X ~ ) 

=IJ.o(TT1 X8e)o(a.X~X~) =TT1 o(a.x~x~) =a 

·.But) the same string of equalities) with a. replaced by y,,shows that 

llo (!J-o(yx~)xao~) = y 

Therefore, !J- 0 (a.x~)=IJ..o(yx~)~a.=y. The other cancelation law Is proved 

similarly D 

1.11 Remark : There Is another point which Is worth observing from 1.7. The 

definltiOT\ as It stands} allows the Irrational flow on the torus (H ===Rand G =S 1 xsl) to 
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be trH~ underlying manifold of a Lle subsupergroup. This degree of genera11ty, on the 

ott·ler r1and, keeps the morphism t: (H, AH) __,. (G, AG) rrom being a monomorphism (i.e., 

a left cancelable morphism). It follows, however, ln a straightforward manner, that t 

\Vi 11 be a monomorphism 1f and only If (H, A H) is an embedded subsupermanlfold of 

(G,A 6 ), which is true, if and only lf His a closed Lie subgroup of G and i#:A 0 --; 

7 *A H is an epimorphism; 1 being the embedding of H into G. 

As it was pointed out to us by R. Berlanga, this raises the question of classifying the 

di fr"erE:nt subsupergroup structures t: (H, AH) ~ (G, A6 ) that a given closed subgroup H 

of G can support. We shall deal wfth the class1ffcat1on problem elsewhere. However, we 

would only like to observe here that there can be several different such structures. In 

fact, this Js evident from the example 1.2 above with (G)A 6 )=(Rm,Rmln)) and 

H = {eJ =::{*};there are n different subsupergroup structures in this case. 
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2.Left and right invariance on Lie supergroups 

2.1 Let (G, A 6 ) be a L1e supergroup. For each point g E G, we define left and right 

ti'anslatlons by g, as the supermanifold l]orphisms, 

Lg : = ~ 0 ( 8 g X td) and ( 1)-

respectively. Here, eg :. (G,A 6 )----1(G,A 6 ) denotes the morphism 6g°C(G,Ae), whose 

correspondin,g superalgebra morphism 8g# :A 6 (U) ----1 A 6 (eg - 1 (U)) Is, 

. { f{g) 1 AG<&2~l(U)) if -g EU 
8 # f = . (2} g ·- . . 

. 0 1f giU 

We. claim that both, Lg and Rg are superdtjjeom_orphtsms whose inverses are 

respectively gtven by) 

(L )-1 = L -1 g . g and (R )-1 = R -1 g g (3). 

2. 2 P r oaf :-We shall only prove here that ( Rg )-1 = Rg-t; that is) 

as rnorphisms from (G, A6) Jnto itself. We start by making use of the definition of the 

product; tnus, 
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p. o ( id X E; g -1 ) o ~ o ( id X 8 g ) = ~ o { id o [ ~ o ( id X 8 g ) ] X E; g -1 o [ ~ o ( td X 8 g ) ] ) 

= ~ o ( [ ~ o (td X 8 g) ] X 8 g -1 o ~ o (id X 8 g) ) 

But now, it follows fr-orn 1. 9 above tt1at, 

8 -1 ° II o ( td X 8 ) = 8 -1 g ~ g g 

Therefore, 

~ o (id X 8 g-i) o ~ o (id X 8 g) = ~ o ( ( ~ o (td X 8 g) ] X 8 g -1 ) 

= j..1. o ( j..1. o ( TT 1 X TT2 ) X TT3 ) o ( id X 8g X 8g-1 ) 

(5) 

w11ere ln the last step we have used again the deflnltlon of the product. Now, in view of 

the associativity proper,ty of j.J., we get, 

j..1. o ( id X 8 g -1 ) o ~ o (id X 8 g) = j..1. o ( TT 1 X ~l o ( TT 2 X TT 3 ) ) o ( id X 8 g X 8 g -1 ) 

= j..1. o ( id X ~ o ( 8 g X 8 g -1 ) ) 

But since, a (g) =g-1, it follows from 1.9 again that 

e -1 =a o c; g g 

Hence, 

(6) 

IJ u ( td >~ Bg-1) •) j..l. o Ud x eg) = j..l. o ( td x j..l. o ( e& ~< sz-1 ) ) = ~ o ( td x j..l. o (td x a) o eg) 

= I I 0 ( id X 8 0 G ) 
t-"' e g 
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wr·1ere in u·1e last step use has been made of the 1nvers€ property for a. F1na11y, using 1.9 

one more time to conclude that Be o Bg :- Be, we end up with, 

In a sirn\lar manner one proves that Rg-t rs a right inverse, too. Thus, (Rg )-1 = R&-1 o 

.~.3 Proposition: Let (G,Ae) be a Ue supergroup and let Lg and Rg be the left and 

rigM translations by g EG, as in 2.1(1). Then, for any other h EG, 

L oLh· = L h g g and 

Proof: This is a straightforward consequence of the definitions and lemma 1.9. In fact,· 

R g o R h = ~ o ( id X 8 g ) o ~ .0 ( id X 8 h ) ·= ~ o ( ~ o ( id x 8 h ) X 8 g o ~ · o ( id x 8 h ) ) 

= ~ o ( ~ o ( id X G h ) X 8 g ) = ~ o ( id X ~ o ( 8 h X 8 g ) ) = ~ o (id X 8 'ii ( h, g) ) 

= ~ 0 (id X 8 h g ) = R h g 

Tr'e corresponding property for left translations is similarly verified o 

2.4 In what follows we shall be concerned with the left invariant supervector fields on 

(G, A6 ). We shall show that their characterization is exactly the same as in the smooth 

theory. Let Der A6 be the sheaf (over G}of.superderiyations of the structural sheaf A6 . 

Let Der A6 (G) be its corresponding superspace of global sections. Re~all that Der A6 (G) 

is the real subsupervector space of E~d A6 (G), 

·-·--

----- -~ ----··----~--- ---- - -- - - -~- ~- -- -~---
--~----~- ------ --- - --

---~ -- --~~-
-----~-~-

~---------
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where, 

(Der A G (G )) 11 ={X EEndAG (G) I ('Iff, g E A 6 (G); f homogeneous) X (fg) =X (f)g + ( -1)1flll fX (g)} 

Also recall that the supervector space DerA 6 (G) inherits from EndA 6 (G) alle 

superalgebra structure, the Lle superbracket of which Is given on homogeneous elements 

X zmd Y by, 

[X,Y]=XoY- (-1)1XIlYiyoX (7) 

2.5 Definition: We shall say that a superder1vat1on, X EDer A6 (G), Is left-invariant 

if for each g EG, Lg *X =X (compare with [2]), where, 

(8) 

2.6 Remark: The map g HLg* defines a representation of the Lle group G on 

Der A G (G) act1ng vla automorphlsms of the Lle superalgebra structure. In particular, the 

subsuperspace consisting of left invariant superderlvations Js ltself a Lie 

superalalgebra. It wlll be denoted by 9 ( =90 !B 9
1 

). 

2.7 Proposition: There exlsts a supervector space Isomorphism 

9 =g
0

EB9
1

----:. (ST)e(G,AG) = {(ST)e(G,A 6)}0 E9 {(ST)8 (G,AG)}1 

where, { (S T) e (G, A 6) }11 1s the space of germs at e of homogeneous superderivations of 

degree ~of the superalgebra A G (U ), with U:;, e. 
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Proof : We claim that the Isomorphism Is given by assigning, to each left invariant 

superderlvation, its germ at the Identity, Let us verify first that thfs yfelds a 

surjection. 

Let.~ E (S T )e (G, A6) be arbitrary and consider, for each g E G, the following morphism 

Induced on the stalk of A6 over g: 

... 

(LgY''g ~· (Lg-d•e 

(A G )g ' (A G )e ---?-· · (A G )e (A G )g 

. : ,;..· . . . 

T~en, deffne the section g H ~g = (Lg-1 )#eo~ o (Lg )#g of the sheaf space, LDer A6 , 

associated to the presheaf Der A6 (cf., [11]); Sinc·e Der A6 is 1n fact a sheaf, we have, 

· De r A 6 ( • ) === tt · , l De r A 6 ) (9) 

~ . A 

and Ulerefore, g ~ ~a defines a global section, ~ EDer A 6 (G)~ We shall now show that 

this section is left-invariant. In fact, for each hE G, 

"' # ~ . # # ~.. . =It. 

(L h * ~) g ::= { {Lh -d o ~ o (L t) ) g 7 {L h -t) h-1 s o ~ h""1 g o (L h) g 

·. = (Lh-1 Yh'""1g o (L(h-1g)"""'1 Yeo~ o (Lh-1-g )\-1g o (Lh )~g 

= (L(.h-1g)-t oLh-1 Y''e o ~ o (Lh o,Lh-1g )#g 

= ( L -1 )•e o ~:: o ( L )• = 't g _ S g g Sg 

where use has been made of the contravariance of#, and the multlplfcatlvlty property 

_of left translations given ln 2.~. 

- ~---- -------------------~-------~----------~- ----
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Finally, to prove that the morphism X H Xe is injective, note that if Xe = Y e, then X 

and Y coincide in some open neighborhood of the identity. By left invariance, they 

coincide everywhere (this actually means that we cover G by open subsets which are 

left translates of an open neighborhood of e, over each of which the restrictions of X 

andY coincide; since Der A 6 is a sheaf, X= Y) o 

2.8 Remark: It has been proved in [2] and [3], that for any (m,n)-dimensional 

supermanifold (M,AM ), the sheaf Der AM is a locally free sheaf of AM-modules over M, 

with m even generators and n odd. Hence, for any point p EM, the supervector space of 

superderivations at p is an (m,n)-dimensional supervector space. In particular, 

(S T )e (G, A 6 ), and hence 9, is a finite dimensional supervector space, whose dimension 

is precisely that of the supergroup. 

More importantly, via the isomorphism given in 2.7, one can define a global frame on the 

supermani fold (G, A 6) consisting entirely of left Invariant supervector fie Ids; namely, 

by choosing any homogeneous basis { ~ 1 , ... , ~r; ' 1 , •.. , 's} of (S T) e (G, A 6) and looking 

at their corresponding left invariant superderivations. In this way} we get, 

(10) 

and therefore, the supertangent bundle of (G, A 6), is trivial; that is, 

(11) 
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I 

where (g 0 EB 91 ) 5 is the superm.anifoldification of the supervector space 9 = 'Jo EB 9
1

; 

it is a (dim 9
0 
+dim 9

1
, dim 9

0 
+dim 9

1 
)-dimensional supermanifo ld (cf., [6]). 

Let us include here a brief argument, based on the approach of [6], that proves that a 

frame over some open subset U CG yields a trivialization of the supertangent bundle 

over the same open subset (and hence, provide a proof for ( 11) ). That is, we shall see 

how, to give such a frame, is the same as to give an isomorphism CfJu which makes the

following diagram to commute: 

<Pu 

. ( 1--1 (U), S T A 6 h~-1(U)) ~ (U, AG lu) X (t;J
0 

EB 9
1 

)s 

T ~ / p, ( 12) 

(U, AG I u) 

where, 1- denotes the submersion morphism of the supertangent bundle tnto the ba·se · 

· supermanifold; and p1 the projection morphism of the product onto the first factor. 

We racall that vector bundles ·were approached .in [6] in such a way that supermanifold 

rnorphisms a: (U' A G I u) ---1 c'T-qu ), sTAG h: -i (U) ), satisfying. T 0 a~ i'd: (U' A el u) ~ .. 

(U,A 6 Iu), correspond in a one-to-one fashion with sections aEDerA 6 (U). If ~-•-

{ ~i ' .... I ~r; ' 1 I ••• I 's} is a graded frame over U, with I ~i I ~ 0 and I ' 111 = 1, each 

a E Der A6 (U) can be written uniquely in the form a = 2:)i ~i + ~ cp~ '~ where 

f.i, <fJP· EA 6 (U). That is, a is uniquely characterized by the ordered (r+s)-tuple 

{ fl, : .. , f r; cp~1, . , . , C{) 5 } E A 6 (U )rEB A 6 (U )S. Now, the key point observed in [6] is that 

---- ~~----~~-~--------- ~-

----- ~---------------------~--~-- ---~--------~----
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AG(UVEBA 6 (u)s is isomorphic to the set of all supermanifold morphisms from 

(U, A G l u) into the supermani foldi ficat ion of any (r, s )-dimensional supervector space. 

That is, 

(13) 

Thus, if we denote by 1.¥0 the morphism (U,A 6 lu) ___, (t:j
0 

EB 9
1 

) 5 that corresponds to the 

(r+s)-tuple {fi, ... , fr; <(J 1, ... , qJ 5 }EA 6 (U)rEBA 6 (U) 8 that a gives rise to, then the 

trivialization <Puis uniquely determined by the pair of conditions: 

(14) 0 

2.9 Remark: once the triviality of the supertangent bundle of a Lie supergroup (G,A 6 ) 

is settled, one may argue as in [2] to conclude that for the superalgebra of global 

sections of its structural sheaf one has, 

( 15) 

where, 9/ is the dual of the odd part of the Lie superalgebra of the supergroup. 

t"lore precisely, one may regard { ~1 , •.• , ~r; ' 1 , .•• , 's} as the basis for 9 obtained via 

2. 7 from the germs at e E G of the set { 8z1 , ... , 8z r; 811 1 , ... , a11s} of superderivat ions 

of the superalgebra AG (U), with (U, {z1, ... , zr; TJ1, ... , Tls }), a coordinate neighborhood 

around e. Then, 
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and 
(16) 

In fact, the idea 1s simply to propagate the superman if old .structure over UJ wh1ch 1s 

already given locally by definition, to the entire group via left transl.atlons. G ls thus 

covered by the family of open subsets {Lg (U): g EG }, and an easy sheaf-theoret1cal 

'irgument then proves ( 16) o 
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3. Lie supergroup actions on supermanifolds 

3.1 Definition: Let (G, A6 ) be a Lle supergroup and let (M, AM) be a supermanlfold. 

( G, A 6 ) Is sa1d to act on (M, AM) from the left lf there Is a supermanlfo ld morphism 

satlsfying the follow1ng two 1dent1t1es: 

and 

(i) 1ft o ( TI X 1ft o ( TI X TI ) ) = 1lt o ( 1 1 o ( TI X TI ) X TI ) 
't' 1 't' 2 3 't' r- 1 2 3 

[Both sldes are morph1sms (G, A6 )x (G, A6 )x (M, AM)---; (M, AM) and 

this time, the projections Tii are defined on (G, A 6 ) x (G, A6) x (M, AM)] 

(ii) 

3.2 Example: GL 5 (V0 1 V1 ) acting on V5 ; V =V0 EB V1 being an (m,n)-dlmensional 

supervector space and V s its supermanifoldification (cf., [6] and [7]). 
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coordinates in Hom (V, V )5 , respectively, introduced in 1.4 above. Also, Jet ( xJ, n ~J} 

and { nxJ, ~J} respectively be even and odd (]!near) coordinates In V 5 (as explained In 

[ 9J). Define the morphism 

so as to have a left action in the sense of [9]; that ls, 

o/-# ( xb + 1T xb ) = Lk p / (A b k + 1T A bk ) P/ ( xk + TT xk ) 

+ .L 1 P 1 # ( r b J + n r b J J P/ <- ~ J + n ~ J J 

*# <ea + n~B) = LJPt (DBJ +nDBJ) P/ (~J +TT~~). 

+ Lk P/ ( eak ~ 1T eBk) P/ ( xk - !T xk ), 
P".· 

where p1 :Hom (V, V )5 x V 5 ----1- Hom (V 1 V )5 and p2 : Hom (V ~V )5 x V s ----1- V s are the 

projection morphfsms onto the first and second factors} respectively. It is now easy to 

see that tfryieldsan action in the sense of 3.1. 

3.3 Example: GL(V0 IV1 ) acting on the Grassmannian supermanifold Gklh(ymln); 

V =V0 EB V1 =vmtn belng an (m 1 n)-dfmenslonalsupervector space. 

Let Gklh(ymln) be.the Grassmann1an supermanifold of (k 1 h)..;dimens1onal supervector 

s.ubspaces In ymln(cf., [4] and [8]). There Is obviously a natural action of the Ue group 

----------·-~.---~~~ -------------------- --·--~~ ~~-
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GL(m)xGL(n) on Gklh (ymln). But more generally, it was emphasized fn [8] that there ls 

also a natural actlon of the Lie supergroup GL (V 0 IV 1 ) Ccf., 1.6 above). In fact, one may 

introduce local coordinates in Gk lh (Vm In) and arrange them fn matrix form as follows 

<cf., [4]and [8]): 

where, x = ( xiJ) and y = ( yab) are the even coordinates, and ~ = ( ~lb) and '= ( 'aJ) are the 

odd ones (1;'§i ;'§m-k; i;'§j ;'§k; i;'§a;'§n-h; i;'§b;'§h). According to [8], thfs set of local 

coordinates can be used to define the following eLement of GL (V0 IV 1 ), (supercoset 

representative), 

1 X 0 ~ 
0 1 0 0 
0 ' 1 y 
0 0 0 1 

Therefore, In terms of local coordinates, the action of the supergroup can be explicitly 

obtained (under the assumption that the transformation takes place within tt)e same 

coordinate patch), by solving for the coordinates i, y, t and Z of the new supercoset 

representative fn the equation Ccf., [8]), 

r ~ 
\ (J 

b a: 
d y 
p p 
'T s 

X 

1 

' 0 

0 
0 
1 
0 

0 
0 
i 
0 

~)(~~ ~ ~) 
'YIIu o H ol 
1 )\ a W s N ) 

There is, however, a more succint way of writing the action in terms of matrices; the idez 

(suggested by J. A Wolf) is to conjugate both sides of this equation by the matrix tha 

interchanges the seccnd and_third rows. The inverse or such a matri;< Is evidently Itself 
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Since (cf. 1 [9] for an explanation of how matrix computations are performed)) 

1 0 0 0 ·a b a ~ 1 0 0 0 a a b ~ 
0 0 1 0 c d y .8 0 0 1 0 -TI p -p r 
0 1 0 0 1T p p r 0 1 0 0 c -y d -6 
0 0 0 1 (J T s t 0 0 0 . 1 (J s T t 

and 

1 0 0 0 1 X 0 ~ 1 ·o 0 0 1 0 ·x ~ 
0 0 1 0 0 1 0 0 0 .o 1 0 0 1 -c· y 
0 1 0 0 0 ' 1 :Y 0 1 0 -0 0 0 1 0 
0 0 0 1 0 0 0 1 0 0 0 1 0 ., 0 0 1 

the redifinition of the original blocks as· 

a a. b ~ 1 0 X ~ 

( A' I B' ) -TI p -p . r ·.(~:f)= 0 1 
_, 

y .. 

·CollY = . c -y d -6 ·a 0 1 0 

a s T t 0 0 0 1 

and 
~ 

1 0 X ~ 

( 1 I Z' )- . 0 
_, ~ 

1 y 
---

o I 1 . 0 0 1 0 

0 0 0 1-

yields) 

wt1ere the multiplication of the matrix blocks lsi in this equation} the usual one. It is 
.· .·· '• 

easy to verify) however) that the same result can be rewritten In the form) 

Z = (A Z + B ) ( C Z + D )"'"1; 
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thls time the multiplication of matrices is to be performed according to the rules of 

linear superalgebra Cas in [9]), and, 

a alb ~ 

(~:: )= 
TT p p r 

z = (--=-1~) Z=(~J_!_l c y d 0 

. ' I y 
~ I ~ 

a s T t • ( . y , 
' 

Therefore) the act1on morphism for the action of GL (V 0 IV 1 Y In the gras~mannlan 

supermanifold Gklh (ymln) is given 1n local coordinates by, 

where, the p1 s are the projection morphlsms of the product supermanifold 

GL ( V 0 I V 1 ) x G k lh (V m ln) and the blocks A, B, c. and D are to be understood as In the 

decomposition above, but wlth the entries given In terms of the corresponding local 

coordinates of GL (V 0 IV 1 ) introduced In 1.4 and 1.6 (see also 5.2 below). 
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4. The isotropy subsupergroup of an action 

4.1 Let (G,AG) be a L1e supergroup act1ng on the superman1fold (M, AM) v1a the 

morphism 

ltf : ( G, A G ) X (M, AM ) ~ (M, AM ) _ . (1) 

and t'ix some po1nt p EM. Then, \jf 1nduces a morph1sm 

(2) 

by letting, 

(3) 

where, Bp:=Sp°C(G,AG) :(G,A6 )--4(M,AM) ls the supermanlfol~ morphism whose 

corresponding map of presheaves is given by 

( V V CM, open) ( V f E AM (V)) (4) 

The underlying continuous maps- lVp and Bp of .1\Jp and ep, respectively, are 
. . 

and Bp : h -~ p (constant map) 

In a similar way, each point g EG gives rise to a superdiffeomorphism 

~---~--------~---- ----- --- -------- --~~-------~-~- ~~----"··=----~-~~-----------
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defined by, 

(5) 

and whose underlying continuous map is $-g : q ~ ~ (g, q ). By the methods of § 2, one 

proves that, 

4.2 Definition: Let (G, A6) be a Ue supergroup acting on the supermanlfold (M, AM) 

via l.lf as in (1). We shall say that the action is transtttve If there exists a point p€M, 

such that, $p: (G, A 6 )---* (M, AM) ls an epimorphism (that is, 1f for any supermanifold 

( N, AN) and for any pair of supermanifold morphisms a, ~ : (M, AM)__,. (N, AN), 

aoiJ!p = ~o4fp ~a=~). 

Note that if $p 1s an epimorphism for some p EM, then $q fs an epimorphism for any 

q er--1. Indeed, 4f transitive Implies \fr transitive and hence, 3 g EG such that, q = \fr(g, p); 

since R g is a superdiffeomorphlsm, o/q = o/p o Rg ls an epimorphism o 

4.3 Observ_ation: Roughly speaking, we would llke to define the orbtt through. pas 

the image of the morphism l!fp and the isotropy subsupergroup at pas the Locus tn 

(G, A G) on which the morphisms o/ P and f,P coi71Cide. On ordinary smooth or holomorphic 

manl f o Ids these notions can be defined immediately because one can evaluate functions 

on points and the set of all posslble values of a function completely determines the 

t'unction ltselt'. In supermanifold theory, however, the values ot a given morphism on all 
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tJ1e polnts of tile underly1ng domaln do not determ1ne the morphism completely; a fact 

stressed in [2L [3], and [5]. What does determine it, is a knowledge of the superalgebra 

map from the global sections of the sheaf of the target 1nto the global sections of the 

direct image sheaf of the source (cf., the appendix). 

Thus, even though the notions of image and LoC?lS over which two given morphism.s 

coin.dde in supermanifold theory have to be defined in a sheaf theoretical manner, this 

observation gives at least an easy way to state- some defining conditions for the 

isotropy subsupergroup; namely, if we are given ·an action of (G, A6 ) on (M, AM) as in 

( 1 ), we should be able to extract a supermanlfold (and 1n fact, a supergroup) structure 

on the underlying isotropy subgroup G P = { g EG : llcp (g)= p }, from the condition, 

(7) 

where both, ¢p # and ep #, ._a.re the superalgebra maps determined from their 

.. corresponding sheaf morphisms. (At this point the reader might want to loo~ first at 

the explicit examples given in §5 below, and come back for_the general argument later).· 

Once the problem Is put this way, the superalgebra of global sections ·of .. the 1sotropy 
. . . . . I 

· subsupergroup fs, tf tt exists at all, a coequalfzer for the diagram 

. . .. ~ 

AM (M) (8) ., 

Hence, up to isomorphism, it must be the superalgebra 
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( ~ p 1 A G ) (M ) /1 m ( tV p # - Sp,. ) (M ) (9) 

where, 

and of course, 

{11) 

4.4 Observation: We pause 7Jr a moment ln order to further expla1n the 1deas 

lnvolved 1n 4.3. What we are lm=:ylng fs that the 1sotropy subsupergroup of the given 

action must be defined as an obje::, (Gp, A 6P), together with a morphism 

(i2) 

that rnakes the diagram 

unique 

(G;,A 0p) ({:t},R) 

ip l l BP (13) 

to commute, and with the fo llowii1; universal property: for any other object (H, AH) and 

morphism J: (H, AH )__....,. (G, A 6 ) making commutative an analogous square, the 

existence of a unique morphism 

can be deduced, with tP ~ fJ- = J 'l particular, 1t follows that the morphism ip is 

necessarily monic . 
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Now I the problem of determining both, the superalgebra of global sections A6 (Gp) and . p 

the morphism ip, is that of constructing a pushout diagram for 

6 # p 

AM (M) R 

*p' 1 

Or, since ep"' is just t~e composition 

8 • unique p 

AM (M ) -----1- R 

t!1e problem Is that of constructing a coequal lzer for_the diagram (8)as we claimed. 

Our immediate goal is to prove in the next .few paragraphs that l~deedJ (9) carries all 

the information needed to deflne an embedded subsupergroup of (GJ AG ). The first 

observation to be made is the following: 

4.5 Proposition:There 1s a natural bijection 

Hence, if the supera1gebra of global sections of the sheaf of a supergroup is to be given 

by (9), its underlying smooth manifold is, up to diffeomorphism, G P (cf., [2], [3]). 

·····-·------------· 
--· -------~---··--~~--···--· ~~ ---·-·-----··-··-------~ 
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proof: Each superalgebra map (lfip:~: A 6 )(M)/1m(J11p"-E;p#)~R corresponds naturally 

to a superalgebra map, (~P* A6 )(M) ~R, whose kernel contains Im(Wp*-E;p#). Since, 

the points of G are tn natural one-to-one correspondence with the superalgebra 

morphisms A 6 (G)~R, via g ~s'l.#' it follows that og::oe·defines a superalgebra map 

(lJrP* A6 )(M)/Im (tlfp"'-Bp"')-1R, If and only lf, Kerog"' ::llm(tifp"'- t:p"'); that Js; If and 

only If, 

6 .. < lll #r - e ;tl r) = 6 - < lfl " r ) - s " < e "n = o g '-t'p p g '-t'p g p . 

Hence, lf and only H, (\7 r EC00 (M)) f(\frp(g)) = f(8p(g)), whlch obviously holds true, 

if and only lf, \ffp(g) = p= Bp(g); that 1s, lf and only lf, g EGp o 

4.6 Theorem: Let tp :Gp ---+G be the embedding of the closed Lie subgroup Gp Into G. 

Let A Gp be the pullback to G P, via tp, of the sheafification of the presheaf of 

superalgebras over G, 

U ~ A 6 (U ) I ( \ft p * 1 m ( $ p # - Bp # ) ) (U ), 

where, $p *I m ( \ffp # - Bp"') denotes the pullback to G of the sheaf I m ( Wp"' - Bp"') under 

~p:G~M. Then, (Gp,AGp) 1s an embedded Lie subsupergroup of (G,A 6 ). The 

embedding tp : (Gp, A 6P)---+ ( G, A G) ls defined by the natural sheaf morphism obtained 

from the compos1t 1on, 

n·,e supergroup structure ls inherited from (Gp
1 
AGp) by deflnlng the composltlon 
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-p_*(A 6 xA 6 ) 

- l (lp•rr,xlp•1T2l' 

Flnal ly, the embedding ip : (Gp, A 6 ·) 4 (G, A 6 ) has the universal property stated In 4.4 
. p . . 

·wIth respect to any othermorph 1 sm J : ( H, A H ) 4 ( G, A 6 ), such that 

\jf p o J 6p o C ( H' A H) . 

Proof: We shall keep pEM fixed. The map \!rp :G~M, can be thought of as a map Into 

the orbit through p, say OP. We shall endow OP with the topology and d1fferent1able 

structures that make the Induced map G/Gp---:+ Op a diffeomorphism. In particular, 'fip 

becomes an open map onto Op· This condition is sufficient for the natural \lrp-morphism, 

A6 ~ '*P * A6 I Op Ccf., [ 11]), tol~duce .isomorphisms on each stalk. In fact, given g EG, 

. and ~~tt lng W run through a II open neIghborhoods of ~ P (g ), the stalk (A 5 J 1 be~~mes a 
. . 

targetfor the direct system defined by ~he shea·f lfip * A6 ;. Hence, we have the following 
. . 

commutative diagram: 
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(\jJP*A 6 )(W) == A 6 <\fip -!(W)) ---- ~ A6 (V.;) 

~ / 
(\fip *AG)~p(&) (g e v c\11) 

/ 
A 6 ( \fJ p -1( v) ) - - - - ~ A G (V ) 

3 V C\ftp-i(V) 

where the dotted horizontal arrows can be drawn simply from the continuity of $p. But, 

we can reverse the arrow <\irp *AG)Wp(g) ___,. (A 6 )g· Indeed, since ·*P 1s open, for each 

open neighborhood V of g E G, there exists an open neighborhood V of \irp (g) EM, with 

~-P-1 (V) CV; hence, the dotted arrows may be reversed by means of restriction maps. 

Therefore, <\irp *A 6 )1ftp(g) ls a target for the directed system of A6 . By un1queness of 

direct limits, we get 

(Vg EG) ( 14) 

for all g eG. In particular, we obtain a sheaf epimorphism 

( 16) 

Note next that the natural morphism 
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Is an Isomorphism. In fact, since G p Is a closed L le subgroup of G, the sheaf on the right 
- . 

1s the extension of A Gp = 1p * {A 6 I W. *I m ( * "' -e "')}by zero (cf., [1 i]). Therefore, . p p p . 
for any open subset U C G, _the map 

1p * 1p * {A 6 I Wp *1m ( *P"' - eP"') HU) ~ 1P * (A 6 I Wp *I m ( lVp .. - eP .. ) HU nGP) 

z ' ) zlunGP 

1s an 1somorph1sm and the same conclusion holds true stalkwise. In summary, we get a 

sheaf epimorphism 

(18) 

Now, if this sheaf morphism is to be combined with ip so ·as to define a supermanifold 

morphism, the following compatibility condition must be established: 

( V f E A 6 (U) ) ( 'd·g E G p nu ) ( ip • f r (g) = r o 1p (g) - (19) 

This follows easily: by definition of t~e pullback sheaf, and taking the isomorphism (17) 

into account, the sections of lm ip • over lm tp ~G are presicely of the form ip (g) H 
. . . 

germ at · ip (g) of some section of the sheaf A6 11ftp *Im (1Vp ... - ~P * ). Since both, 

A6 ~A 6 1$p*Im(I.Vp*-8p*) and A6 ~cco6 _I~P' are morphisms of sheaves· of 

superalgebras, the compatibility condition follows. 

, .... · 
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Now J to s11ow tl1at tile super-group structure { ~ J a) 88 } of { G I A 6 ) restricts to 

(G P' A6P) In the appropriate manner so as to yield a subsupergroupl we shall make use 

of the fact that~# ls a monomorphism (cf.l 1.10) In comblnatlon wlth the epimorphism 

tp #. The Idea Is to show that there Is an unambiguous way of closslng the following 

diagram so as to make It commutative for each pair (g) h) E G P x G P: 

(ip")~(~(g),i'JI(h)) = 

= <ip"')~(v(g,h)) 

( ~ # ) U< ~<g). i,< 11'' 
(AG)~(~(g).~(h)) (AGXAe )(~(g).~(h)) 

Note that, since GP is already a Lie subgroup of G, Its smooth composition map, 

v:GpxGp -1Gp 1 satisfies (V(g 1 h)EGpxGp) ~(Ip(g) 1 tp(h))=tp(V(g,h)). 

Thus, we shall define ( J.n')v(g,h) germwlse by going first to (A 6 )U<~(g),~(h)) using the 

surjectivity of (ip"')~(v(g,.b)) and then to (A 6PxA 6p)(g,h) by just following the 

arrows in the diagram. The only point that has to be checked, Is that this prescription Is 

well defined; that is) 

which amounts to check that, for any germ) f P E (AM )P) 
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Hlis Is so because the morphism tp• has been defined so as to have fts kemel 

Isomorphic to Im (o/p #- 8p• ). In fact, since (17) Is an Isomorphism, we have, 

Ke r ( ip • ) ~ (~(g) • ~<b) ) ~ ( \fr p *I m ( \jf p • - 8 p • ) ) U ( fj g j . ~<b) ) 

~ Om (o/p• -eP• ))~ < U<~(g).~(b))) 

~ (lm (\jf p •- 8J:/") )p · (22) 

(llr o·i·)·f=t •(llr •f)=i #(llr •f-8 #f+8 •f)=t •(e •f)=(e ot ·)-f 't'p p p 't'p . p 't'p p p p . p p p 

for each f E AM (M t and therefore, 

. {23) 

But now, (21) follows when this Identity fsused In conjunction wfth the results of the 

fo]lowing:. 

4.7 Lemma: Let (G, AG) be a L1e supergroup acting on the supermanlfold (M, AM) via 
J. 

the morphism \jf as In (1), and let p EM be a given point. Let {~'a, Be} be the 

multiplication, Inversion and Identity morphlsms of (G, A6 ). Let q1 and q2 be the 

projection morphisms of the product (G, A 6 ) x (G, A 6 ) onto the first and· se.cond 

factors, respectively. Then, 
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(i ) Bp o ~ = ep o q 1 = Bp o q 2 

(ii ) 1ft p o 1J. = ~ o ( q 1 X llJ p o q J 
(iii) 1ft o (a X 1ft p ) = 1ft o ( Ge X 8p ) = Gp 

Proof: The proof of (i) reduces to compute the effect of (8po~)*, (8poq1 )* and 

(8p oq2 )" on global sections, but this is simple With the help of (4). Now, for (ii), let -r1 

be the projection morphism of the product (G, A6 ) x (G, A6 ) x (G, A6 ) onto the illi factor 

( i = 1, 2, 3 ). Then, 

\jf p o 1J. = \jf o ( td X Ep ) o 1J. = \jf o ( ~ X 8p o 1J.) = \jf o ( 1J. o ( q 1 X q 2 ) X 8p o q 2 ) = 

= \jf o ( 1J. o ( T 1 X T 2 ) X 'T 3 ) o ( ( q 1 X q 
2

) X 8p o q 2 ) = 

= \jf o ( 'T 1 X \jf o ( T 2 X T :) ) o ( (q 1 X q 
2

) X Bp o q 2 ) = 

=1ft o (q 1 X 1ft o (q2 X Gpo q2 )) =1ft o ( q1 X$ o ( id X Gp) o q2 ) = 

=1ft o (q1 X'ftpoq2 ) 

Finally, (iii) is proved similarly; one only has to note that ep o a= 8P D 

We shall now conclude the proof of 4.6 with a result of Leltes Ccf., [3]) that shows that 

a coordinate neighborhood of the Identity can be found In (G, A6 ), say (U, {zi; ll~} ), for 

which (G_p nu J A 6P I Gp nu) exhibits the subsupermanifold property. Note that just as 

In the smooth theory} It Is enough to restrict ourselves to such a neighborhood, since we 

can propagate this local supermanifold structure to the entire embedded subgroup Gp via 

left translations. The result that we invoke is the following: 
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4.8 Le m rna (Leites): Let U CG be some open coordinate neighborhood of e EM and let -

I P lu be the restriction to U of the sheaf of ideals lPp *Im (l¥p •- ep •) in A6 . Let 

For each g E H P, there is an open neighborhood V (U :J V:;::, g) and there are homogeneous 

sections (f1 1 •• • , fk; 1") 1
1 ... 1 1")1 }} 0 E 0p(V)) 0and l)v E(lp(V))1' that generateip(V). 

Furthermore, { (df1 )8} •• • , (dfk)g; (di)1 )g, ... ,(di)l )g} Is a linearly Independent set and 

therefore, {f11 ••• ,fk;l)1, ••• ,i)l} may be extended to a coordinate _system 

(f1
1 

••• ,fk,fk+1
1 

••• ,fm;l)1
1 
.:., 11t,i)l+1, ... 

1
l)n}onV. 

Proof: (Cf., [3)) 0 

Note that because of 4.5}. H P above Is precisely Gp nu. Therefore} noting that the 

assertion regarding the untversal character of (G p, A6P) Is automatic by the very, 

. deflnltlonof A 6P Ccf., 4.3 and 4.4), 4.6 follows- o 

4.9 Observation: Let us briefly discuss how the orbits of an action \jJ are to be 

understood. Following [2], the Idea ts to show that a natural supermanlfold sheaf can be 

defined on the space of cos·ets G /Gp and then, carry lh1s stru~ture over the orbtt 

Op = *p(G) CM, via *P' so as to have (G I..Gp, Ae/Gp) ~ (Op} Aop ). 

In this way, it suffices to show that for "any supergroup (G I Ae) and a given embedding 

of supergroups i: (H,AH) -1- (G,A 6 ) (cf., 1.11), there is a natural way of defining a 

supermanifo ld sheaf over the coset space G /H, say A 61 H, and a sheaf monomorphism 

q#: A61 H -1- q*A6 , where, q :G ~G/H, is the canonical projection. 
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This is obtained as follows (compare with (2]): For any open subset U CG /H, the 

assignment 

{f')A\ 
\L'-1} 

defines a sheaf of superalgebras over G /H. It is, in fact, a sub sheaf of q *A 6 . This is 

precis.e_ly the sheaf A 61 H and q# is simply the natural inclusion into q * A6 . Note, for 

example, that if i: (H, AH) ~ (G, A6 ) is the embedding of the isotropy subsupergroup of 

a transitive action l.jJ as in (1) (cf., 4.2), then, the sheaf defined in (24) is isomorphic to 

I m l.j!P#' in view of the third relation in (6). 
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·s. Examples 

5.1 Ex ample: GL 5( 111) act1ngonthe superman1fold R2 12 = (R 2 , R2 12 ), (cf., [7]). 

Let 

(1) 

be the action in 3.2. Let {A b J, rr fb J, rr eBJ, oBJ J and {rrA b J, fbJ, eBJ, rroBJ} be the even 

and odd linear coordinates introduced in 1.4 .. 1n this example the indices can be omitted 

altogether. To simplify the writing even further~ we shallredefine the coordinates as 

A.= a rrr = b · rrA=a. r=~ (2) 

rre =·c D = d 6 = y TID= 8 

Now} let {x, rr~}and {rrx, ~}respectively be the even.and odd (linear) coordinates fn V5 

in R 2 12 as introduced in 3.2. This time we redefine TI ~and 1T x as 

1T~ = y 

Therefore~ the act1onmorph1sm of 3.2 becomes, . · 

.;'.~ ·:. 

'lf• X = ax-~~+ a.'+ by 

w·y =-y,+dy+cx+6~ 

$•' = a' + ~ y + ax~ b ~ 

w·~= yx+d~-c,+6y 

- .. 

(3) 

;(4) 

where we h2ve further omitted the explicit reference to the proj~ct1on morphlsms of . 
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the product supermanlfold GL 5( 111) xR 2 12. We know that these equatlons can be 

written. In matrix form as (cf., (9], [7]), 

( x+C) (a+a. *# = 
\ y+~ c+y 

If we now flx some peR 2 and consider 

we find that 

\jfp# X = ax(p) + by(p) 

\jfp"Y = cx(p) + dy(p) 

b+~)(r+~1 
d+8 y+r; 1 

wp* c = a.x(p) + ~y(p) 

\lfp"~ = yi<pJ + sy(p) 

In partlcular, let us note that the map Wp: GL (4) ---1- R2 1s given by, 

b ) ( ~(p) l 
d. y(p) 

(5) 

(6) 

(7) 

Observe that, since the coordina1e expressions for $ P * x and $ P # y o~ly involve coo 
functions, we have~ 

Thls ls to be contrasted with the eHect of*# on cco(R 2 ): there, we have the underlying 

continuous map lfr :GL (2) x R2 --1-R 2 given by) 
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and for any f ECco(R 2 ), we have, 

\fl~f =f o\f;+ (aC-~~)fzo\fr + (8~-yC)fyo\fr + 

+ (1 /2) { (a'-~~ )2 r XX 0 * + 2 (a'-~~)( 6 ~- y ')f xy 0 * + ( 6 e- y ')2 r yy 0 * } 
wr1ere, f x stands for the part1a1 derivative of f with respect to x, etc. 

Let us now consider the morphism ep: GL 5 ( 111) ~ R2 ' 2 . According to 4.1, its effect 

on the coordinate functions is this: 

ep~ X= X(p)1GL(214) 

8p it Y = y(p) lGL( 214) 

(8) 

The·refore, the cond1t1on lm (\jfp~) = lm (8p.,) imposes the following relations among 

the coordinates of GL s ( 11 1): · 

Wp# X = ax(p) + by(p) = x(p) 1GL(214) =·ep~ X 

*p# y = cx(p) + dy(p) = Y(P;) 1GL(214) ~ ep· y 

\jfp ~ c = ax( p) + ~ y ( p) - o = e P ~ c 
. *P. e = yx(p) + sy(p) = o = eP· e · 

(9) 

For example, under the asswmption that x(p) = 1 and -y(p) = 0 (choice of p), these 
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equations imply that 

a= iGL(lli) , c = o , a = 0 , y = o (10) 

Note that these conditions define Indeed an embedded subsupergroup of GLs ( 111 ), for 

the set of all matrices of the form 

b + ~ ) 

d+8 
( 11) 

Is closed under the composition morphism ~defined In 1.4. Note that the underly1ng L!e 

group of such subsupergroup ls the semidirect product of the multiplicative group of the 

nonzero real numbers < d being a local coordinate) with the additive group of the reals 
~ • .. 0 

( b belng the corresponding coordinate). Also note that It has odd dimension equal to 2. 

It is worth mentioning that the calculations in this example are only slightly simpler 

from those required In the more general case of the Lie supergroup GL 5 (ml n) acting on 

the supermanlfoldlflcatlon Vs of the (m}n)-dlmensional supervector space V =V0 EB V1. 

Indeed, one only has to interprete the definitions in (2) and (3) as equations between 

matrices of the appropriate sizes and proceed accordingly. For example, the r~lations 

(9) look exactly the same in the general case, where x(p) and y(p) represent the 

column vectors with the coordinates in V0 and V1 of the point p. The relations that 

define the isotropy subsupergroup, and hence, isotropy subsupergroups themselves, vary 

depending on the chosen point, as expected. 
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5.2Example: GL(212)=GL(V0 IV 1 )act1ng onG 111 {V 2 12 ); V =V0 EeV 1 =vmln being 

a ( 2, 2)-dimensional supervector space. 

Let {A bJ, nBJ} and ( fb J, e 8J } respectively be the even and odd coordinates 1n GL ( 212) 

as in 1.5 above. To avoid writing so many fndices we shall relabel these coordinates as 

follows: 

A 11 =a ··. At2 = b f11 =a f12 = ~ 
A,21 = c A22 =d f21 = y f22 = 6 (.12) 

0 11 _:. TI €)12 = p nu = p Dt2 = r 
821 =a 022 = T 021 =.s D22 = t 

Let {x,y} and{~,(} respectively be the even and. odd local coordinates on G111 (V
2 12 ) 

defined on the open neighborhood, {x#:O}n{yi:O}. According to 3.3 (and omiting the

project1on morphisms of the product) we have,. 

( 
ax+ b- a.~ ay +~+a~ .·) (. ex+ d- y~ yy + 6 +c~ )-

1 
· 

- · · ·. TI X + p + p C . py + r - TI ~ a X + T + S ( . S y + t - <J ~ . 

= .( a
11

r.r.++ bp-'-+ ap~ ·. ay +~+a~) ( Jt,-• (1 + B n-• CA-t )-• .·· -A-t B·D-•(1 + C A "'B D~• f'' 
~, py + r- TT ~ \-p-1 C A -1 ( (+ B n-1 C A-1)-1 0-1 ( 1 + C A-1 B D:-1)-1 

where, 
. ~ . 

A=cx+d-~y, 

- C=O'X+T+S~ 

·B = yy+ 6 +C~ 

D=sy+t-a~ 

(13) 

---------~-- ----- --
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and the assumption to be made ln maklng sense of these calculations 1s that we do not 

leave the same coordinate patch after the transformation. That ls, we are assuming that 

the coordinates are constrained Jn such a way that, 

A= ex+ d- y' and D = sy + t- a~ are both invertible. (14) 

In particular, ex + d and sy + t are both Invertible, and, 

A-1 =(ex+ d)-1 { 1 +(ex+ d)-1 y'} 

and 

n-i = (sy + t)-i { 1 + (sy + t)-1 (J~}. 

\lf'~ y = ( (py + r-n~)(sy+ t -a~)- 1 + (nx+ p + pO A -1 B D-1 }( 1 + C A-1 B D..:. 1 )-1 

( 15) 

Since we are interested in comparing the image of \lfp" with that of ep *, we apply the 

morphism (id x ep r' to both sides of each of these equations. After a little 

simplification, we find that, 
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~ p"' x = ( (a~ ( p) + b) + (a~ ( p) + T) (a~ ( p) + ~ ) )( 1 _ (a~ ( p) + T) (y jl ( p) + 6) ) 

( c.x(p) +d) (cx(p) + d)(sy(p) + t) (cx(p) + d)(sy(p) + t) 

~ P"' y = ( ( p 'J, ( p) + r) + ( 1T ~ ( p) + p )( y }' ( p) + 6) )( 1 _ (a~ ( p) + T )( y jl ( p) + 6) ) 

(sy(p)+t) (cx(p)+d)(sy(p)+ t) (cx(p)+d)(sy(p)+ t) 
(16 

1J!p" ~ = ( (a:J(p) + ~) - (a~(p)+ b)(yy(p)+6) )( 1 - (a~(p)+-r)(y,}'(p)+6)) 
(sy(p) + t) (cx(p) + d)(sy(p) + t) (cx(p) + d)(sy(p) + t) 

1]1p"' = (-(TI~(p)+p)- (a~(p)+rr)(pE(p)-+ r) )( 1 _ (a~(p)+rr)(y}i<p)+6)) 
(cx(p)+d) (cx(p)+d)(sy(p) + t) (cx.(p)+d)(sy(p) + t) 

· _:,.. . Let us now choose the point pas that whose coordinates are 

x(p) = o and y(p) = 0 ( 17). 

so that 

e # x = x(p) = o p Bp # y = y ( p) = 0 (18) 

8 # ~ = 0 p . Bp"' C = 0 

It is then easy to verlfy that the condition lm ( \ffp"') = lm ( Bp"') yields the coordinate 

relat1ons, 

A12 =b=O 

012 = p = 0 
-. 

D12 =r=O 
·:.: .. · 

(18) 

·sut, these conditions define an embedded (6, 6)-dimensional subsupergroup of the 

(8, 8)-dimenslonal supergroup GL ( 212 ). 

We remark again that most of the computations above remain valid Cand the final results 

take exactly the same form) for the more general case or the supergroup GL (mIn) 
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acting on the supergrassmannlan Gk lh (V mIn). All that Is required Is to 1nterprete A 11, 

A 12, ... , D21, 022 ln ( 12) above as block matrices of the appropriate sizes. What comes 

out of the same analysis is that for the point p whose coordinates are given by (17) 

(understood as equations between matrices), the condition lm (Wp~) = lm (8p *)yields 

the same coordinate relations (19), to be Interpreted as conditions on the corresponding 

blocks of coordinates 1n the supergroup. The only expressions that look different In the 

general case are those In ( 16), where we have used quotients and have permuted some of 

tr,e factors, but the· reader will have no trouble in finding what the general expressions 

should be. In fact, he/she wlll note that the common factor on the right of (16) ls 

invertible. Taking this into account, It is not difficult to see then that (18) define an 

embedded subsupergroup of GL (mIn) of dimension 

( m 2 + n 2 - k (m - k ) - h (n - h ) , 2m n - h (m - k ) - k (n - h ) ). 
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Appendix 

definitions and notation 

A.1 Various definitions of" supermanifolds can be found in the literature and not all of 

them are equivalent (cf., [5] and references therein). The approach we have adopted 1n 

previous works ([6], [7], and [8]), and th~ one followed here, Is that of Leltes and Mantn 

(cf., [3], [ 4]). Thus, a reaL smooth supermant.foLd Is a ringed space (M, AM); M being a 

smooth m-dimensional manifold, and AM a sheaf of supercommutative R-superalgebras 

over M. The conditions Imposed on AM (cf., A.3 below) require some pre11m1nar1es. 

A.2 Let JM = ((AM\) be the sheaf of Ideals over M generated by the odd subshea.f 

(AM\. Consider the JM-adic filtration of AM, 

and form the corresponding shear of graded algebras associated with It: 

(i) 

Then, Gr 0 AM =AM /JM Is a sheaf of commutative algebras -over M and there Is a sheaf 

epimorphism 
i 

. (2) . 

naturally defined. Also, each G r k AM 1s a sheaf of G r 0 AM-modules and, when v1ewed as 
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a sheaf of Gr 0AM-algebras, GrAM is generated by Gr 1AM. In fact, GrAM has the 

structure of a sheaf of augmented Gr 0AM-algebras over M, with augmentation given by 

the projection onto the dlrect summand Gr 0AM; i.e., 

(3) 

Since AM Is supercommutatlve, GrAM ls a homomorphic Image of the sheaf· 

/\GroA Gr 1AM. If there is some k, such that JMk =0, then GrAM is actually Isomorphic 

to the latter. 

A .3 (M, AM) is a real (m,n)-dlmensional smooth superman! fold, H: 

( t) For each x EM, the stalk AM, .r 1s a local super-ring. 

(it) The sheaf Gr 0 AM is isomorphic to the sheaf cooM of real smooth 

functions over M. 

(ttt) Gr 1 AM 1s a locally free sheaf of Gr 0 AM-modules of finite rank, n, overM. 

<The rank ls called the odt:1 dimension of the supermanlfold; lt Is the 

largest integer, such that, JM n :/= 0). 

(iv) For each point x EM, there Is an open neighborhood U of x, and an 

Isomorphism of sheaves of supercommutatlve superalgebras over U, 

such that, 8 o <Pu = 8. 
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·· A .4 Observation: For the sake of comparison, we Include here the def1n1tlon of a 

supermanlfold as originally given by Kostant In [2]: an (m,n)"""dlmenslonal superman1fo1d 

Is a pair (M, AM) consisting of an ordinary m-dlmenslonal coo manifold M, and a sheaf 

AM of supercommutat1ve superalgebras, such that, 

( i) for each non-empty open subset U CM, there Is defined a supera_Jgebra 

homomorphism A.M (U) 3 f H f E C00M(U) that commutes With restrictions, 

and, 

(it) each open ·subset U of M can be covered by open neighborhoods u 1 ( 1 E I ), such that, 

(ii.1) 3 a subalgebra C(Ui) C (AM (Ui ))0 (called a junction factor of AM (U 1) ), 

such that the mapC(Ui)3f ~ f EC00M (Ui), 1s an isomorphism, 

and, 

(it.2) 3 odd elements s1 <O, s/i), ... , sn (i) E (AM (U 1) )1 , such that, 

· S (I) s( I) • • • S (I) ;f 0 
· 1 2 n ' 

and if D ( U 1 ) denotes the subsupera 1 gebra of AM ( U 1 ) genera ted by them ( ca 11 ed 

an extertorjactorof AM (U 1) ), the map C(U 1) ®D (U 1) 3 f ®w H f wE AM (U 1 ), 

Is an 1somorpl)lsm of superalgebras. 

The U1 ,s are called AM-spLttttn.g neighborhoods of odd dimension n; and C(U 1) and 

D(U 1) are said to be a· pair of spLitting factors for AM over U1• 

Now, Kostant asserts In h1s proposition 2.4.2 [2] that 1f u 1s an AM-splltflng 

neighborhood with (C(U),D(U)) a given pair of splitting factors, and If V Is an op'en 
• 
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subset contained in U) there exists a unique function factor C(V) of AM (V )) such that 

pUv(C(U))CC(V); furthermore) after settlng D(V)=pUv(D(U)) a commutative 

dlagram of superalgebra morphfsms Is obtained; namely, 

C(U)®D(U) _ __,..AM (U) 

pU V ® pU V 1- l pUy 

C(V)®D(V) _ _,.AM (V} 

However, it does not follow from Kostant's definitions alone that this commutative 

diagram }actors so as to yield a commutative diagram Of the form 

C(U)®D(U) AM (U) 

1 ""'ceo (U) ® 1\[n] / l 
C(V)®D(V) , AM(V) 

""C 00 (V) ~ 1\[n] / 

where the vertical dotted arrow is the restriction map of the sheaf ceo® /\[nl Note 

that if it does, Kostant's definition is the same as the one above. As far as we know, 

ho'Never, no examples have been given yet of superman1folds in this sense which are not 

supermanifolds in the sense of [3] and [41 

A.51f (M, AM) is an (m,n)-dimensional supermanifold and if U CM is any open subset of 

the underlying manifold M, then (U, AM I u) is an (m,n )-dimensional supermanifold. It is 

called an open subsupermanijoi.JJ. of (M, AM). 



'\ 

54 

A.6 A superman1fold morpl?.tsm. from (f:1,AM) 1nto (N,AN), 1s a palr q>=(cp, q>•) 

consisting of a continuous map 

and a sheaf homomorphism over N, 

which is local on each stalk Ccf., [11]). 

It 1s a well known ract <c.r., [2], and [3]) that a supermanlrold morpnlsm 1s completely 

. determined by the supera1gebra morphism oh global sections that the sheaf 

homomorphism gives rise to; that is, by 

In particular) every supermanlfold comes equipped with the supermanifold morphism 

determined by the canonical projection 

AM.(M) ----+ (AM /JM')(M) ~·coo~ (M) 

r ~ o{f)= 1 

Moreover, each point p EM, defines a morphfsm 

(4) 

(5) 

(6) 

. - I 

--I 

I 
I 
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by letting 

(7) 

and each superalgebra morphism AM (M) ~R Is of this form. The object ( {*}JR) fs the 

supermanlfold consisting of a single point and the constant sheaf R, the reals, over ft. It 

Is a terminal object, for there Is only one constant morphism 

(8) 

from any supermanlfold into it; namely, the one determined by the only R-superalgebra 

map R ---1- AM (tvl ): 

(V/\ER) (9) 

A. 7 A supercoordinate system in (N, AN) consists of an open neighborhood, U CN, 

together with a collection of homogeneou~ sections Cr1, •• • ,xm; ( 1, ... , (n}, with 

x1 e (AN(U))0 and(~ e (AN(U))1, such that, 

( i) the set of coo functions, (x 1, ••• , zm }, forms a coordinate system (In the usual 

sense) over the open set U CN, and, 

(it) the collection {(1, ( 2, ... , ( 0 } is maximal among all col Jectlons of odd sections 

on Uwlth the property that ( 1 (2 • • • 'n f=. 0. 

It is clear from the definitions that supercoordlnate neighborhoods always exist 
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A. 8 Let ( (p, cp#) be a morphism from (M, AM) Into (N, AN). Let U CN be a coordinate 

neigr1borhood wfth supercoordinates {x1, •• • ,xm; (1, ••• ,en}. It is a result of Leftes [3] 

that the restriction of cp to (~-1 (U), AM 1~-1(~)) Is untquely determined by the sections 

cp# x1 and cp# ell. In fact, given m even sections, y1 EAM ((p-1 (U))0 , and n odd sections, 

~ll EAM (;p-1 (U))1 , there 1s a unique morphism ( -;p-t (U), AM ~~-i(U)) ~ (U, AN lu ), such 

that, 

and 

... A.9 Let (N,AN) be an (m,n)-dfmensional supermanffold. A supermanlfold (M,AM) fs 

tmmersab.Le Into (N, AN) lf there fs a morphism (p: (M, AM) ---4 (N, AN) such- that, for 

each point pEM, there e01sts an open neighborhood V 3 p, such that ~(V) has the 

subsupermardj'oLd property; that Is, ff. there exist local coordinates, 

. {y1, .. . , yP; ~1 , ••• , ~Q} In v and (x1, ••• , xm; e1, ••• , em} 1n some open neighborhood 

U =:) ~(V), such that, - ·· 

p~-i(U)vcp-xJ = yl .. Jf 1 ~j ~p p~~r(u)v cp- xJ = 0 if p+i~j~m 

p~-1(U)v cp* ev = ~v ff i~v~q p~-!(U)v cp* ev = q ff Q+i ~v~n. 

. The supermanlfold (M, AM) Is regularLy· tmmersabLe Into (N, AN) 1f lt ls lmmersable 

and ~ ls a homeomorphism onto its Image. Also, (M, AM) Is embeddabLe Into (N, A H) If · 

1t Is regularly lmmersable and (p(M) CN ls a closed subset. We sha11 say, by abuse of 

language) that (M, AM) Is an immersed Cresp., reguLar; embedded) subsupermanffo ld of 

( N I AN) whenever 1 t f s immersabLe <resp. 1 regularLy immersabLe; embeddabLe). 

---·------·--·- -----------'-------------------------· 
- -~-~- ------ -
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