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ABSTRACT 

The purpose of this article is to provide a simple proof for the 
Poisson approximation to power series distributions. As special · 
cases we obtain the well known Poisson approximations to the 
binomial and negative binomial distributions. The proof is based 
on the continuity theorem for probability generating functions 
presented in Feller ( 1968). The result illustrates one 
justification to use Poisson models as suitable descriptions of 
phenomena which are cumulative effect of a large number of 
improbable events. 
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1. INTRODUCTION 

Most introductory probability theory textbooks (see e.g. 

Hoel, Port and Stone 1971; Feller 1968) present the Poisson ap-

proximation to the binomial distribution. That is, if we perform n 

Bernoulli trials with success probability p at each trial and S 
n n 

is the number of sucesses in the n trials, then if np ~ A as n ~ oo 
n 

[
nJ k n-k k lim P(S =k) = lim k (p ) (1-p ) = exp(-A)A /k! . n ···· n n 

n-7<o n~ 

( 1. 1) 

Apart from the important theoretical consequences of this r~sult, 

it gives a justiffcation for the use of Poisson models for 

phenomena which are the cumulative effect of many improvable 

events. 

The purpose of this article is to present. a simple proof of 

the Poisson approximation to the distribution of the sum of random 

variables having power series distributions. This fact emphasizes 

the importance of using the Poisson distribution as a model for 

phenomena of the above described type. The proof of the result is 

base~ on the co~tinuity theorem for probability generating 

functions presented in Feller· (1968): "A sequence of discrete 

probability distributions converges to a limiting discrete 

distribution if and only if the corresponding probabi U ty 

generating functions converge". This theorem has had 1 imi ted 

appl~~ability, since the most interesting limiting forms of 

discrete distributions are continuous and general results of 

appr()xirilat ion type are obtained from the theory of infinite 

divisible distributions. However, it is also the purpose of this 

work to illustrate one important application of this theorem whose 
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proof can be given in a calculus based probability course (see 

Feller 1968, p. 281). In Secti.on 2 we present the inain result and 

its proof. Section 3 contains the Poisson approximation to the 

binomial and negative binomial distributions as special cases of 

the main result. In Section 4 the result is extended to the sum of 

nonidentically distributed random variables with power series 

distributions. 

2. POISSON APPROXIMATION 

A discrete probability distribution {pk}k~O' that is 

co . 

0 ~· pk ~ 1 ' \ p = 1 
k~O k 

is called a power series distribution (see Johnson and Katz 1969, 

p.33) if each pk can be written in the form 

k . 
pk = ~e lg(e) k = o, 1, ... ; e > o (2. 1) 

co k 
where ~ .::: 0 and g(S) = L ~e . The Bernoulli, binomial,· geometric, 

· k=O 

negative binomial, Poisson and logarithmic series are among the 

probability distributions belonging to this class. The probabiltty 

generating funcion ¢(t) = ktkpk of the distribution (2~ 1) is 

¢(t) = g(te)/g(e) (2.2) 

and its mean is given by 

11 = eg<u(e)/g(e) . (2.3) 

The following result is an extension of the Poisson 

approximation to the binomial distribution to the distribution 

of the sum of random variables having power series distributions. 
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Theorem 1. For each n ~ 1 let x
1

, ... ,Xn be independent nonnegative 

integer valued random variables with common power series 

distribution 

-where ~ ~ 0 

k 
pk = a 8 /g(8 ) ,n .K n n 

k·= 0, 1, ... 

k = 0,1, ... are independent of nand 

8 > 0 .. 
n 

n 

(2.4) 

(2.5) 

Let a > 0 , A > 0 be fixed and 
_0 

S =~X .. 
n i=1 1 

If n8 ~ A as n ~ oo , 
n 

then 

lim P(S =k) 
n 

where A = Aa
1
/a . 

0 . 0 

k = exp( -A )A /k! 
0 0 

k=0,1, ... (2.6) 

The proof of the above theorem is based on the following 

result which is the continuity theorem for probability generating 

functions (see Feller 1968, p. 280). 

Theorem 2. Suppose that for every fixed n ~ 1 the sequence 

{ak, n}k~O is a discrete probability distribution. In order that a 

limit 

ak = lim ak ,n 
n-7m 

(2.7) 

exists for every k = 0, 1, ... it is necessary and suffici·ent that 

the limit 

A(t) 
00 k 

= lim ~ a t 
n-7ro k=O k,n 
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exists for each t in the open interval 0 < t < 1. In this case 

automatically 
CIJ k 

A(t) = L akt . 
k=O 

It is important to point out that the ~·s may not sum to one in 

every case, so {~} may not yield a probability distribution and 

therefore A(t) may not be a probability generating function. 

Proof of -Theorem 1. 

Let ¢ (t) be the probability generating function of the 
n 

distribution (2. 4). Then using (2. 2) we have that 

¢
5 

(t) = [¢n(t)]n = [g(ten)/g(en)]n (2.9) 
n 

is the probability generating function of S . Now using the 
n 

expansion (2.5) of g(S ) we have that fort e (0, 1) 
. n 

[g(te )/g(e ) ]n = [ 1-(g(S )-g(te ) )/g(8 ) ]n 
n n n · n n 

= [1-a
1

e (1-t)/g(e )-r(e )]n 
n n n 

= U+a
1

C1-:-t)ne /(ng(e ))-r(e )]n (2.10) 
n n . n 

where r (8 ) 
n 

00 
k k k . = Ck~~(8n-t 8n))/g(8n). By assumption we have that 

as n -7 ro ne -7 i\ and 
n 

and since for k == 2 

therefore 8 -7 0. Thus 
n 

lim g(8 ) = a 
n 0 

n-?ro 

lim (ne )/g(e ) = i\/a 
n .n 

.-n-700 

l. k 0 lm ne = 
' 

then 
ll-700 

n 

lim nr(S ) = 0 
n 

0 

It is known that if a:: -7 a:: and ny -7 0 as n -7 oo then 
n n 
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n 
lim (l+x /n+y ) = exp(x) 

n n 
n-70J 

(2.14) 

Hence using this result and (2.11)-(2. 13) from (2.10) we have that 

for t E (0, 1) 

lim[g(ten)/g(e)]n = exp(Aa
1
1a

0
(t-1)) . 

n-7m 

(2. 15) 

But the right hand side of (2.15) is the probability generating 

function of a Poisson distribution with parameter A = a 1Aia . 
0 0 

Then by the uniqueness of the probability generating function (see 

Hoel, Port and Stone 1971, p.74) and Theorem 2 we obtain (2.6). 

Remark. An interpretation of Theorem 1 is the following: It 

( 1) 
follows from (2.3) that ~ 7 0 , since g(e ) 7 a and g (e ) 7 0. 

n n o n 

Then :when n is large,Sn is the sum of random variables taking the 

value zero with very high probability (p 7 a/a=i), hence the 
o, n o o 

Poisson distribution approximates the cumulative effect of a large 

number of differing improb9-ble events. 

~. EXAMPLES 

In this section we obtain the Poisson approximation to the 

binomial and .,negative binomial distributions. These results are 

obtained as easy consequences of Theorem 1. 

Theorem 3. (~inomial distribution). For ~ach n ~ 1 let X1, ... ,Xn 

be a random sample of a Bernoulli distribution with success 
n 

probability p . ·Let S = L ·x. and assume that np _, A>O as n _, oo. 
n n i=l 1 n 

Then for each k = 0,1, ... 

lim P(S =k) 
n 

n-7m 

(3. 1) 
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Proof. The Bernoulli distribution with parameter pn is a power 

series distribution with en= pn/(1-pn) and g(e ) = 1+8 . There-
n n 

fore a = a = 1 ne -7 i\ as n -7 oo 
.. o 1 ' n 

and the result follows 

applying Theorem 1. 

Theorem 4. (Negative binomial distribution). For each n ~ 1 let 

x1, ... ,Xn be a random sample of a geometric distribution with suc­
n 

cess probability pn. Let Sn = L X. and assume t":hat (1-p )n -7 i\. > 0 
i=1 l n 

as n -7 oo. Then for each k = 0,1, ... 

lim P(S =k) 
n 

k exp( -i\.)i\. /k! (3. 2) 
n-700 

Proof. The geometric distdbution with parameter p is a power 
. 11 00 

series distribution with e =1-p ·and g(e )=C1-e )-1= \ (-1)2kek. 
n n n n k~O n 

Therefore a = a = 1 and 
0 1 

follows applying Theorem 1. 

ne -7 i\. as n -7 oo. 
n 

The result 

4. EXTENSION TO VARIABLE DISTRIBUTIONS 

then 

The following result is an extensioQ of the Poisson 

approximation to the distribution of the sum of n Bernoulli trials 

with variable success probabilities. 

Theorem 5. Consider the power series 

00 k. 
g(e) = \ a e 

k~O k 
. ~ ~ o , k = o, 1, ... , e > o . ( 4. 1) 

For each n ~ 1 let .X. i = 1, ... ,n be independent random varia 
· 1, n 

bles such that X. has a power series distribution with 
1, n 
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n 
corresponding g(8. ) for e. > 0. 

1, n 1, n 
Let S = \ X and assume 

n i~l i,n 

* that 8 = 
n 

max 
i=l, ... , n 

n 

(8. ) ~ 0 and 
1, n 

r (8. )/g(e. ) ~ ~ as n ~ 00 . L
1 

1, n 1, n 
1= 

(4.2) 

for some ~ > 0. Then if ~0 = a1~, for each k = 0, 1, ... we have 

that 

lim P(S =k) 
n 

n~ 

k 
= exp( -~ )A /k! 

0 0 
(4.3) 

Proof. Let ¢. (t) , t E [0, 1] be the probability generating 
1, n 

function of X. i = 1, ... ,n, n = 1,2";·; ... Then using (2.2) we 
1, n 

have that 

¢
5 

c t ) = g c t e 
1 

). . . g ( t"e ) 1 C g c e 
1 

). . . g ( e ) ) t . e [ o , 1 J c 4. 4 ) 
, n n, n , n n, n .. n . . ... 

is the probability generating function of S. Hence fortE (0,1) . . n . 
n· 

log ¢5 (t) = L l6g(g(te. )/g(8. )). 
· n · i=1 1 ,n 1, n 

(4.5) 

* Since e ~ 0 as n ~ oo we· have .. that 
n 

g(te. )/g(8. ) = 1+(g(t8. )-g(e. )lg(e. )J --7 1 
1,n 1,n 1,n 1,n 1,n 

n~ 

(4.6) 

Then using the fact that log (1+a::) c.: a:, as a:~ 0, it follows that 

for n large 

log ¢
5 

(t) 
n 

n "" L (g(te. J---g(e. ))/g(8. ) 
i= 1 1,n 1,n 1,n 

n n 
"" (t-,1)a

1 
L e. /g(8. )+ L 1J(8. )8. /g(e. ) 

i=1 1,n .. 1,n i= 1 1,n 1,n 1,n 

where 

nL. · k-1 )k-1) 
1J(8. ) = ak(e. -(te. 

1,n k=2 1,n 1,n 

.. ~ ~ ak((8:)k-l)(l-tk) ~ o as n ~ oo. 

k=2. . 
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Then from (4.2), (4.7) and (4.8) we have that forte (0,1) 

log ¢s (t) ~ (t-1)A
0 

as n ~ oo 
n 

and therefore (4. 3) follows using Theorem 2 and identifying 

exp(i\ (t-1)) as the probability_ generating function of the Poisson 
0 

distribution. 

As an application of the above theorem, for each · n :o:: 1 

consider n independent Bernoulli trials such that the ith trial 

has success probability p. i=l, ... , n. Assume that max (p. )~ 
1,n l~i~n 1,n 

n 
and p

1 
+ ... +p ~ i\ > 0 as n ~ oo and letS =\X .. Then the 

,n n,n n i~1 1 

limit (4.3) holds. This fact follows by Theorem 5 since the 

Bernoulli distribution with parameter p is a power series 

distribution with g(8) = 1+8, 8 = p/(1-p) and therefore 

n n 
\ (e. ) I g ( 8. ) = \ p. ~ i\ as. n ~ oo • 

i~l .~.n 1,n i~l 1,n . 

This is the Poisson approximation to the distribution of the sum 

of n Bernoulli trials with unequal success probabilities (see 

Feller 1968, p. 282). 
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