ABSTRACT
The purpose of this article is to provide a simple proof for the
Poisson approximation to power .series distributions. As special’
cases we obtain the well known Polsson approximations to the
bincmial and negative binomial distributions. The proof is based
on the continuity theorem for probability generating functions
presented in Feller . (1968). The result 1illustrates one
Justification to use Poisson models as suitable descriptions of
phenomena which are cumulative effect of a large number of
improbable events. ’
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1.  INTRODUCTION
Most introductory probability theory textbooks (see e.g.
Hoel,'Port ana Stone 1971; Feller 1968) present the Poisson 'ap—
proximation to the oinomial distribution. Thét'is, if we perform n
Bérnouiii trials with success probability pn at each trial and Sn
is the number of sucesses in the n trials, then if npn >Aas n > o

. ISR £ ] k., nk _ A2 K
lim P(Sn—ki_— lim[ ](pn)’(l pn) = exp(-A)A7/k! . (1.1)

-0 N0 k
Apart from the important theoretical consequences of this result,
it gives a justification for the use of'hPoisson models for
phenomsna which -aéé the cumulative effect of ‘many improvable
events. |
The purpose of this article is to pressnt.a simple proof of .
the Poisson approximation to the distribution of the sum of random
variables having power series distributions. This fact emphasizes
the importance.of using the Poisson distribution as a model for
phenomena of ths above described type. The proof of the result is
based on the continuity theorem for probability generating
functiOns presented .in Feller (1968): "A sequence of _discrete
prbbébility distributions converges to a limiting discrete
distribution if 'and only 1if Athe corresponding. probnbiljty

generating functions converge”. This theorem has had limited

_applioability, since the most ‘interesting limiting forms of

discrete distributions are continuous and general results of
approximation type are obtained from the theory of infinite
divisible distributions. However, it is also the purpose'ofithis

work to illustrate one important application of this theorem whose




proof can be given in a calculus based probability course (see
Feller 1968, p. 281). In Section 2 we present the main result and
its proof. Section 3 contains the Poisson approximatioﬁ to the
binomial .and negative binomial distributions as special cases of
the main result. In Section 4 the resulf is extended to the sum of
nonidentically distributed random »variablés with power series

distributions.

2. POISSON APPROXIMATION
A diéérete probability distr&bution {pk}kzO’ that is
‘ _ @
0=p =1, kzgpk =1
is called a powef‘series distribution (see Johnson and Kotz 1969,

p.33) if each‘pk can be written in the form

P, = akek/g(e) k=0,1,...; 8§ >0 C(2.1)

. m "
where a, = 0 and g(8) = Z akek. The Bernoulli, binomial, geometric, .
o k=0 -

negative binomial, Poisson and logarithmic series. are among the

probability distributions belonging to this class. The’probability‘a

generating funcion ¢(t) = gtkpk of the distribution (2:1) is

p(t) = g(te)r/gle) 0=t =1 (2.2)
" .and its mean is given by

‘ (1) O o Cy
p=e6g ‘(8lrg(e) . - (2.3)

The following result 1s an extension of the Poisson

approximation to the binomial distribution to the distribution

of the sum of random variables having power series distributions.




Theorem 1. For each n =z 1 let X ..,Xn be independent nonnegative

17

integer valued random variables with common power series

distribution

'Y _
pk,n = aken/g(en) k-=0,1,... (2.4)
-where ay =0 k=0,1,... are ihdependent of n and
. [e0]
g(en)'"kzgaken 6 >0 . (2.5)

i~

leta >0, A >0 be fixed and S = X.. Ifnd >Aasn->ow,
. 0 n i n i

i=1

then

lin P(S_=k) = exp(~Ao)A§/k! k=0,1,... (2.6)

where A Aa, /a .
0 1o
The proof of the above theorem is based on the following'
result which is the continuity theorem for probability generating .

functions (see Feller 1968, p. 280).

' Theorem 2. Suppose that -for every fixed n =z 1 the sequence

{ak n}k>O is a discrete probability distribution. In order that a

limit
a, = lim 2 (2.7)

n-w
exists for every k = 0,1,... 1t 1s necessary and sufficient that
~ the limit
Alt) = lim Y a t (2.8)
N k,n
- s k=0




exists for each t in the open interval 0 < t < 1. In this case

automatically .
[2¢]

NOES) aktk.
k=0

It isvimportant to point out that the ak’s may not sum to one in

every case, soO {ak} may not yield a probability distribution and

therefore A(t) may not be a probability genefating function.

. Proof of Theorém 1.
Let ¢n(t) be the probability generating fﬁnction of the

distribution (2.4). Then using (2.2) we have that

o NS ..n
¢Sn§t) = [g,(1)]" = [glte /gle )1 (2.9)

is the probability .generating function of .Sn. Now using the.

expansion (2.5) of gteﬁ) we have that for t e (0,1)

. ) y 1D n
[g(te )/gle )17 = [1-(g(e )-g(to ))/gle )1

- n
[1—a16n(1~t)/g(6n)-r(9n)]

it

L1+a1(17t)nen/(ng(en))-rgen)1n - (2.10)
where r(6_) = ( ¥ "(Bk—tkek))/ (8 j ABy assumption we ha?evthat
n kzzgk n =~ °n’’78%n P .

as n-»>ow nen - A and therefore Bn > 0. Thus

lim g(en)'= a (2.11)
. n-0 ' » .
lim (nen)/g(Qn) = A/a0 (2.12)
. D= o _
and since for k = 2 1im nei = 0, then
lim nr(en) =0 . ' (2.13)

N0

It is known that if € s and nyﬁ‘é 0 as n > o then

1=




‘Theorem 3. (Binomial distribution)., For each n = 1 let XiooooX

lim (1+a:n/n+yn) = exp(x) (2.14)
>0 N .

Hence using this result and (2.11)—(2.13) from (2.10) we have that

for t € (0,1)

lim[g(ten)/g(e)]n = exp(ha /2 (t-1)) . (2.18)
-0 .

But the right hand side of (2.15) is the probability generating

function of a Poisson distribution with parameter AO = alh/ao.
Then by the uniqueness of thé probability generating function (see

Hoel, Port and Stone 1971, p.74) and Theorem 2 we obtain (2.8).

Remark.  An ‘interpretation of Theorem 1 is the following: It

follows from (2.3) that u_ 0 , since g(6 ) > a and g™(8 ) » ©.

Then when n is lar'ge:Sn is the sum of random variables taking the

_value zero with very high probability (pO n > ao/a0=ff; hence the

Poisson distribution approkimates the cumulative effect 6f a large

number of differing improbable events.

3. EXAMPLES

In fhis section we obtain the Poisson approximat;on to the’

binomial and 'negative binomial distributions. These results are

-obtained'as easy consequenées of Theorem 1.

- n

be a random sample of a Bernoulli distribution with success
n - '

- probability p . Let S = Z”Xi and assume that np, »A>0 as n > =

i=1

Then for each k = 0,1,.

k

lin P(S_=k) = lin [“]pnk(l—pn)n"k = exp(-0A5k1 (3.1)
n-xo n-w -




Proof. The Bernoulli distribution with parameter P, is a power

Ya i i i it (5] = - = —_
series distribution with n pn/(l pn) and g(en) 1+8n. There

fore a =a, = 1, n8 >4 as no and the result follows

‘applying Theorem 1.

Theorem 4. (Negative binomial distribution). For each n = 1 let

Xl,..'.,Xn be a random sample of a geometric distribution with suc-

cess probability Py Let Sn = Xi and assume that (1—pn)n >A >0
: i= : . )

~13

as n > m.‘Then for each k = 0,1,.. ...

lim P(S =k) = lim p2[~§](-1)k(1-pn)n—k = exp(—A)Ak/k! (3.2)
alred] N>

Proof; The geometric dlstrlbutlon w1th parameter p is a power

series dlstrlbutlon with 8 —1-p ‘and g(e )=(1- -0 ) z (- l)Zk ﬁ

Therefore ao = a1 = 1 and nen -+ A as n - . The result then

follows applying Theorem 1.

4. EXTENSION TO VARIABLE DISTRIBUTIONS

The following‘ result ié an extension "of the Poisson

approximation to the distribution of the sum of n Bernoulli trials

with variable success probabilities.

Theorem 5. Consider the power series

ogle) = z 2, 20, k=01,...,8>0. (4.1)

For eachnz1 1let X,  i=1,...,n be independent random varia

b

bles such ‘that Xi nh has a power series distribution with

)




@

- log ¢S (t) =
: n

cerresponding g(ei,n) for ei,n > 0. Let Sn =121Xi’n and assume
N )
that 8 = max (8., ) -0 and
n . i,n
i=1,...,n
n v .
.Z (ei,n)/g(ei,n) 3A as n-ow (4.2)
i=1 .
for some .. A > 0. Then if .AO = alk , for each k =0,1,... we have
that S
. o _ k ' .
lim P(Sn—k) = exp( AO)AO/k! (4.3)
n-w

Proof. Let ¢i n(t) , t € [0,1] be the probability generating

function of Xi n i=1,...,n, n= 1,27 .. . Then using (2.2) we

have that -

P (t) = g(tel,n)‘....g(t‘a,n,n)/_(g(a1 )...gle ))“ t e [0,1] (4.4)

n 0 n,n

is the probability generating_function of Sn' Hence for t € (0,1)
N .
log ¢Sn(t). = izllogcg(tei,_n)/g(ei,n)). . (4.5)

*
Since en 5> 0 as n > o we-have. that

| g(tei,n)/g(ei,n) = 1+(g(tei,n)—g(ei,n)/g(ei,n)) — 1 (4.8)

N
Then using the fact that log (1+«) = &, as @ » 0, it follows that

for n large

(g(tei,n}j—g(ei’n))/g(ei n)

H~1-2

)

i=1

n n :
~ (t—-.l)a1 Z ei n/%(ei,n)+izln(ei’n)9

i=t b o
whére

.o o

R k-1 k-1

n(ei,n) - z ak(ei,n (tei,n) )
k=2 ‘

- P T ‘ ’
o= Z a ((e6 )k 1)(1—tk) >0asn->ow. (4.8)
N B

n/g(ei,n) (4.7)




Then from (4.2), (4.7) and (4.8) we have that for t € (0,1)
log ¢S (t) » (t—l)ho as n > w
n

and therefore (4.3) follows using Theorem 2 and identifying
exp(AO(t—l)) aéﬁthe probability generating function of the Poisson

distribution.

As an application of the above theorem, for each n = 1

_ consider n independent Bernoulli trials such that the ith trial

has success probability P; o i=1,...,n. Assume that max (p.l n)aO
» ’ - l1=i=n 7’

. >0 ¢ 'S =
and p; +...+p | 9 A >0 asn e and let'S izlxi. Then the

limit (4.3) hoids. This fact follows by Theorem 5 since the
‘Bernoulli distribution with parameter p 1is a power séries:

distribution with g(6) = 1+8, @ = p/(1-p) and therefore

n .
1(?.i‘,n)/g(ei’n) =izlpi’n > A' as n - o .

e~1s

i
This 1s the Poisson &pproximation to the distribution of the sum

of n Bernoulll trials with unequal success probabilities (see

' Feller 1968, p. 282).
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