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Abstract We present the construction of a vector-valued 
Markovian Random field on a finite lattice, whose equilibrium 
configurations consist of piecewise straight lines of arbitrary 
orientations, that uses only nearest neighbor interactions. For 
certain parameter values, this field presents a form of self 
organization, in which the lattice is partitioned into regions 
where particular line directions dominate. We also develop a 
stochastic cellular automaton (based on the Gibbs Sampler 
algorithm) that simulates this field. To illustrate the usefulness 
of this construct ion for the sol uti on of computational VlSlon 
problems, we present a simple application: the restoration of 
images that consist on incomplete contours. 



0. Introduction. 

A very useful framework for the formulation and solution of 

inverse (ill-posed) problems in computational vision is Bayesian 

Estimation theory (Marroquin et. al., 1987). Its use rests on the 

premise that, in order to solve any such problem (e. g., image 

restoration and segmentation; surface reconstruction, etc.), one 

must use prior knowledge about the nature of the solution, and 

that this knowledge may be expressed in the form of a probability 

distribution. If this· is the case, one may. then represent the 

solution as the minimizer of the expected value (with respect to 

the posterior measure) of an appropriate error criterion. 

A class of probabilistic models that are very convenient for the 

construct ion of prior probability distributions, is the class of 

Markovian random fields (MRF's) on finite lattices (see Geman and 

Geman, 1984). These models are nice for several reasons: 

(i) The global probability distribution on the set of all possible 

solutions f , may be specified simply by the local interactions 

(potential functions) between small sets (cliques) of neighbouring 

elements: the global measure is a Gibbs distribution: 

P ( f ) = ( liZ ) e xp [ - U ( f ) ] ( 1 ) 

where the "energy" term U(f) is computed as the sum, over all 

cqques, of the corresponding potential functions (Z is just a 

normalizing constant). The fact that one has an explicit 

representation for this global distribution, greatly facilitates 

the theoretical characterization· of the solutions found by this 

me-thod. 
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( i i) The behavior of a MRF may be simulated by a regular Markov 

chain, whose states correspond to global configurations of the 

field, and whose invariant measure is the corresponding Gibbs 

distribution. The Markov chain associated with the posterior 

distribution (which is also Gibbsian) may be implemented by a 

distributed algorithm (e.g., the Metropolis or Gibbs Sampler 

algorithms). This algorithm specifies a stochastic cellular 

automaton from whose evolution one may obtain the optimal 

solution (see Marroquin, 1985). 

In this paper, we describe the construction of a MRF on a square 

lattice, whose equilibrium configurations correspond to images 

with long, piecewise straight lines of arbitrary orientations. 

This field may be used for several purposes; the main application 

that we have in mind, is to model the properties of the 

projections of the boundaries of objects, and therefore, to use it 

as an important component of a system that aims at the integration 

of several, qualitatively different processes (that analize, for 

example, intensity edges, stereo, motion, color and texture 

information) for the purpose of reconstructing such boundaries 

(see Poggio and Gamble, 1987). In this paper, however, we will 

only present, for illustrative purposes, a very simple 

application: the restoration of images that consist of incomplete 

contours. 

The use of MRF's for the explicit modelling of the behavior of 

contours in an image, was first introduced by Geman and Geman 

(1984). They used a "line field" (defined on a lattice dual to the 
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one of the "intensity" field) formed by line segrr.ents of four 

possible orientations (i.e., a 5-state field), and whose function 

was to decouple adjacent intensity sites in an image restoration 

task. With small variations, a similar technique has been used by 

several researchers for other tasks, such· as: surface 

reconstruction from sparse data (Marroquin et. al., 1987 ); 

segmentation of textured images (Geman et. al., 1988), etc. 

This approach, however, has a serious limitation: if the ·contour 

informat-ion (or equivalently, the intensity data) is sparse, this 

line field will not fill large gaps in the contours in an 

appropriate way, regardless of the value of the parameters. This 

fact is also reflected in the nature of the sample configurati.ons 

produced by the "free" line field (i.e., without the coupled 

intensity data); no matter which parameter values are selected,· it 

is not possible to produce a field of long, straight lines of 

arbit:tary orientations. The reason for this. failure is that the 

only true straight lines that exist in a square lattice are those 

0 0 
.at 0 , 90 and lines in any other d_irect ion are really 

piecewise hor-izontal, vertical or diagonal (see fig. 1), and the 

difference between two such orientations cannot be captured by the 

local nature of the potentials associated with .Geman' s line field. 

Figure 1. A straight· line with slope = 1/3 at a microscopic 

level, this line segment is either horizontal or diagonal. 
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To get the desired behavior, it is necessary to include, in the 

state of each 1 ine element, information about the macroscopic 

direction in which the straight line is supposed to go. This idea 

may be implemented by a vector valued MRF (or equivalently, by two 

coupled, scalar valued fields); the first component (which we will 

call the "Connection" or "C" field) describes the local 

connectivity of the line elements, while the second one (the 

"D" field), specifies the macroscopic direction of the line 

segment. The values of both components enter into the computation 

of the potential functions: the macroscopic direction information 

affects the conditional probabilities associated with the 

different configurations of the C field. 

The Markov chain that simulates the behavior of the field may be 

constructed in several ways: the best known is probably the 

Metropolis algorithm (Metropolis et. al., 1953); here, we will use 

the Gibbs Sampler (Geman and Geman, 1984) that consists in 

updating the value of one site of the field at a time (although 

non-neighboring sites may be updated in parallel), using, to 

select the new value, the conditional probability distribution, 

given the values of the field at neighboring sites (this 

distribution may be readily obtained from the global Gibbs measure 

of equation 1). A detailed description of the algorithm is given 

in the appendix. As we mentioned above, from the evolution of the 

stochastic cellular automaton defined by this algorithm, one may 

obtain sample configurations of the field, and, by appropriately 

coupling the observations, if they are present, perform the 

desired reconstructions. We will noH describe the construction of 

this complex field in detail. 

5 



1. The Connection Field. 

This is a discrete valued field on a square lattice. The state of 

each element of the field may take values on a set Q of 21 

elements, which describes the permissible connections between 

neighbors. This set is represented in figure 2. 

Figure 2. The set Q of states for the connection field. 

The neighborhood of each element consists on its 8 nearest 

neighbors, and the only cliques with non-zero potentials are those 

of size 1 and 2 (see fig1:1re 3). 

Figure 3. (a) The neighborhood of element i. (b) - (f) Cliques 

with non-zero potentials for the connection field. 

1.1. Labeling of Neighbor Interactions. 

We consider the following types of neighbor interaction: 

i) Indiference (' o' ) It has associated a potential value of 

. zero. 

i i) Termination ( 'e·') : If. represents the interacion of a state 

connected with state 0. 

· iii) T junct-ion. 

iv) Sharp turn. 
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v) Straight continuation ('a'). 

vi) Right turn ('b', 'j', 'r' and 'f' ). 

vii) Left turn ('d', 'k', '1' and 'g') .: Different letters denote 

different types of turn (see figure 4). 

viii) Complete a turn ('c' ). 

ix) Forbidden connection ('-' ). 

Examples for each type of interaction appear in figure 4. 

Figure 4. Examples of each type of neighbor interacion for the 

connection field. 

The complete set of labels for all possible neighbor interactions 

is specified in four 21 X 21 matrices (one for each clique type). 

The matrices for clique types (b) and (d) are shown in figure 5. 

Figure 5. Interaction matrices for clique types (b) (top) and (d) 

(bottom). The matrices for types (c) and (e) are obtained from 

symmetry considerations. 

These interacion types are used to define the potential functions 

for the field, by associating a real number with each type, 
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and with each pair of values of the D component. Before defining 

these functions, we need to describe the structure of the D field 

in some detai 1. 

2. M2.croscopic Direction Component. 

Conceptually, this is a real valued field, whose elements take 

values in the set 'D ::::: [ 0, rr) u { -1} . The state of a D element 

(say, D.) corresponds to the macroscopic direction of a line (if 
1 

D 2:: 0}, or to an undefined direction Cif D :::::- 1). 
i 

Note that, neither every state of the C field ( "C state", for 

short), nor every interaction type for neigh~oring C states ( "C 

interaction type") are compatible with a given value of the 

macroscopic direction. In fact; it is possible to divide the 

interval [0, rr) into subintervals that are homogeneous, in the 

sen~e that there is a unique set of C states and of C interaction 

types that are compatible with every direction in the subinterval. 

Once a subinterval is selected, a particular direct ion may be 

specified by the relative probability of selecting a straight 

continuation (C states in [1,4]) versus a right (or left) turn (C 

states in [ 5, 12] ) . In table 1 we show the homogeneous 

subintervals, and the compatible C states and interaction types. 

Also in this table, we indicate .. the formula that relates the 

ratio: 

a ::::: Prob. of selecting a turn I Prob. of straight continuation 

to the slope m of the macroscopic line. 
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Table 1 . Homogeneous Subintervals for the Macroscopic Direction. 

The columns s t c refer to: 
"complete a turn" types 

"straight continuation'', "turn" and 
of C interaction, respectively 

:j:j: Subinterval (in Compatible Compatible a 
terms of slopes) C states int. types 

s t c 
- -- -- -
0 0 2 a 0 
1 (0,1/2] 2,10,11 a d, l c m / (1-2m) 
2 ( 1/2' 1) 3,10,11 a j,c 1 (m-1) / (1-2m) 
3 1 3 a 0 
4 ( 1' 2] 3,5,8 a k,c f (m-1) / (2-m) 
5 (2,oo) 1,5,8 a b,f c 1 I (m-2) 
6 00 1 a 0 
7 (-oo,-2) 1,6,7 a d,g c -1 / (m+2) 
8 (-2,-1) 4,6,7 a j,c g -(i:l+1) / (m+2) 
9 -1 4 a 0 
10 (-1,-1/2) 4,9, 12 a k,c r -(m+1) / (2m+1) 
11 (-1/2,0) 2, 9,12 a b,r c -m / ( 2m+l) 

3. Potential Functions. 

We will now define the potential functions V and V associated 
1 2 

with the (vector valued) states of a single site and a pair of 

neighboring sites i,j, respectively. 

First, we need some notation: Since the C states take values 

in Q (figure 2), and the D states in V, we have that V maps Q XV 
2 

X Q X V into the reals. Let (qi,di) and (qj,dj) be the states of 

the neighboring sites i' j. j Let I = I(q,,q_) be the c 
i J 1 J 

interact ion type corresponding to (qi,qj) A gi ve:1 direction d 
l 

wi 11 fall in a unique homogeneous subinterval; one can see from 

table 1, that for every such subinterval, there is either a single. 

compatible C interaction type (namely, 'a'), or fotc such types: 
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one that ccrrespond~'to a straight continuation choice, which we 

call SC = SC (d ) ; a set of two that correspond to a "turning" 
i 

choice,. which we call 'J = 'J ( d ) , and one that cor:'esponds to 
i 

completing a turn, which we call CT = CT (d). Tje set of C 
i 

states compatible with direction d. (also from table 1) is denoted 
I 

by~- = ~ ( d). Finally, ~ =~(d) denotes the ~atio: 
I i i i 

~ = Pr ( selecting q E 'J.) I Pr (selecting q = SC.) 
I I 

which is computed using the appropriate formula from the la~t 

column of table 1. 

For some constants: v 
c 

v we may now define the 
e 

single site potential f~~ction V as : 
1 

v (q ,d) = OJ 
' 

if d 2:: 0, and q_ ~ ~(d. ) 
1 i i i I 1 

ln [ 1 + ~.]' if d 2:: 0 and q, 
1 1 

ln [ ( 1 + ~ ) I ~.]' if d 2:: 0 
I 

0, ot~erwise. 

E [ 1' 4] (\~(d.) 
1 

and qi E [ 5' 12] (\ ~(d ) 

This definition of V serves two purposes: first, it enforces the 
1 

compatibility between the C and D states of a site (making V = OJ 
1 

if they are incompatible; note that the C states in [1, 12] ate.the 

only ones that may have associated_ a definite direction). Besides, 

it enforces the growth of a line along a given macroscopic 

direct ion, by controlling the relative probability of selecting a 

straight continuation (i.e., q E [1,4]) versus a "turning" C state 

(q E [5,12]). 

The potential V , for cliques of s1ze 2 is detined as: 
. 2 
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v (q ,d ,q ,d ) = 0, if I = 'a' ; 
2 1 i J J i j 

v if I = 'e' 
e ! j 

v if d = d and 
c i J 

q
1
. , qJ E 'G' and I E { SC } u 'J · 

i !j i !' 

v - ln [ ( 1 + a ) I a l , 
c ! 

if d = d and q
1

, q. E 'G'. and I = CT 
j J l i j 

v if I ~ { ' o ' ' e ' ' - ' } and 
t ' i j ' ' 

d < 0 and q > 0 , for some k E {i,j} 
k k 

ro , otherwise. 

This definition of V
2 

serves the following purposes: 

i) It assigns the values of v and 0, 
e 

respectively, to 

terminations and "indiferent" C interacions (note that in this 

cases the potential value is independent of the D component). 

i i) If the C interact ion corresponds to the cant inuat ion of a 

macroscopic line, it forces the D component to propagate along it, 

and assigns a value of v to V 
c 2 

If the C interaction corresponds 

to the completion of a turn (i.e., if I = CT ), it ensures that 
i j 1 

v + v = v 
1 2 c 

iii) It assigns a value of v to C interacions that correspond to 
t 

sharp turns or "T" junctions. It also forces, in these cases, the 

D state of the connecting element to - 1. 

iv) It assigns an infinite potential to forbidden interacions 

(I = '-'). 
i j 
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,, 

The quantity exp [ - v] represents the conditional probability 
c 

of growth 6f a macroscopic line, given the states of its neighbors 

(remember that in the Gibbs sampler algorithm, the probability of 

accepting a state is proportional to the product of the 

exponentials of the values of the potentials, for all the cliques 

to which the element belongs). The quantities: 

exp [ ln [ a. I (1 +a)] - v] and 
1 i . c 

exp [ ln [ 1 I ( 1 + a ) ] - v ] 
i c 

represent the conditional probabilities of turning and ~traight 

continuation, respectively. Note that their sum is exp [ - v ] , 
c 

and their quotient is a , as it should. 

The constants and v are free parameters that control the 
c 

behavior of the system. As we have inent ioned, v · controls the 
c 

probability of growth of the lines, so that smaller values of v 
c 

wi 11 produce configurations with longer 1 ines; v controls both 
e 

·the stabi 1 i ty of open contours and the, probability that new lines 

are born, and v controls the probability of sharp turns and "T" 
t 

junctions. These parameters, not only control the dynamic 

(transient) behavior of the system, but also, since the evolution 

of the Gibbs sampler automaton is ergodic, they determine the 

properties of the equi 1 ibri urn configurations: the relative 

probability of finding a configuration (C,D) in equilibrium 

conditions, will be proportional to: 

exp [ -1 I T L . 
i ' J 

II i - j II < 2 v 2 ( c i ' D i ' c j ' D j ) + Li v 1 ( c i ' D i ) ] 

Here T (the "temperature") is an additional parameter that is 

usually introduced to control the overall activity of the system 

12 
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(note that T affects the relative magnitude of the effective 

potential values: at low temperatures, the relative differences 

between these values are exaggerated, while at high values of T, 

they tend to become uniform). 

4. A Practical Implementation. 

The continuous valued nature of the D component of the field 

prevents a direct implementation of the Gibbs sampler algorithm 

for the generation of sample configurations (and makes the 

convergence of, say, Metropolis algorithm extemely slow). 

It is necessary, therefore, to sample the interval [O,n), and use 

a discrete set :D' of allowable directions. This discretization 

makes sense, since in a finite lattice, one has a finite 

repertoire of straight 1 ines, anyway. Even with this 

discretization, a direct implementation of the Gibbs sampler would 

still be very inefficient. A closer look at the properties of the 

potential functions, however, indicates that the only pairs (q, d) 

E Q X :D' that have to be considered when updating, say, site i 

(i.e., the pairs that have associated a finite potential) are the 

following: 

i) Pairs of the form (q,-1), when q = 0, q > 12, or when q is the 

connecting element between lines of different orientations. 

ii) Pairs of the form (q,d ), with q E ~(d), which occur when q 
0 0 

corresponds to the continuation of a unique macroscopic line of 

direction d which is already active in the neighborhood of i. 
0 
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iii) Pairs (q,d), where d is sclect&d at random from the set ~(q) 

= { d: q E ~(d) } U {-1}. 

In this last case, which occurs when I ( q, f ) e {' o' , 'e'} for all j 
. j 

in the neighborhood of i, we note that the value of V is 
2 

independent of the choice of d; the ccnditional probability p(q) 

for the selection of a given C state q in the Gibbs sampler update 

is in this case : 

p(q) = ( 1/Z) Ld 
E 

~(ct) exp [-I. ·eN· V
2

(q,CJ_)] ·exp [-V
1
(q,d)] 

q ~ J 1 

where Ni is the neighborhood of site i; Z is a normalizing constant, 

and the weights 

W(q) = L ~c) exp [-V (q,d)] 
d qE~d. 1 

depend only on q, and.hence, they may be precomputed (in table 2 

we show W(q) for a direction sampling density of 1 sample every 3 

degrees; note that for q = 0 or q > 12, W(q) = 1, since the only 

compatible direction is - 1, and V (q,-1) = 0). 
1 

This means that it is possible to select q independently of d, 

using a weighted Gibbs sampler. After, say, q = r is selected, if 

r = 0, or r > 12, d is set to - 1; otherwise, d · is picked at 

random from the set R(r) with distribution 

P(d) = exp [- V
1
(r,d)] I L:d' E R(r) exp [- V

1
(r,d' )] 
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Table 2. Weights W(q) for- a direction sampling density of 1/3 

samples/degree. 

q W(q) 

0 1.0 
1 5.8 
2 5.8 
3 5.9 
4 5.9 
5 9. 14 
6 8. 14 
7 8. 14 
8 9. 14 
9 9. 14 
10 8. 14 
11 8. 14 
12 9. 14 
13 1.0 
14 1.0 
15 1.0 
16 1.0 
17 1.0 
18 1.0 
19 1.0 
20 1.0 

The above remarks mean that it is possible to simulate the 

beta vi or of the complete Gibbs sampler algorithm using a cellular 

automaton that updates its state using a stochastic rule that 

depends on the total number of occurances of each type of 

interaction ('t', 'e', 'c', etc.) in the neighborhood of site i, 

for each q E Q (the automaton is essentially equivalent to a 

weighted Gibbs sampler for the appropriate (q,d) pairs, followed, 

if necessary, by a second Gibbs sampler that uses P(d) for the 

selection of d; the construction is straight forward, and we 

omit the details here). With this algorithm it is possible to 

obtain sample configurations of the field in an efficient way. Its 
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worst case .:omplexi ty depends on the size of the set Q plus the 

maximum size of the set :R(q), which is approximately 0. 25 times 

the cardinality of the set ~·. 

The efficier.cy of this implementation may be· increased if the 

quantities : exp [-v ] , exp [-v 1 and exp [-v 1· are precomputed, 
e c t 

and if the D component is replaced by a vector formed by the 

subinterval number and the probability of turning (i.e., instead 

of D., one stores the number N of the subinterval to which D 
1 

belongs, and the number P = (~(D ) I (l + ~(D )) exp [-v ]), for 
i 1 1 c 

each site i. If this is done, the functions v and v· reduce to 
1 2 

simple table lookup procedures. 

5. Macroscopic Order. 

The field that we have described .has an interesting property : 

when one generates sample equilibrium configurations of the free 

field, one observes that; for certain parameter values, the 

lattice is partitioned into domains, where one particular 

macroscopic direction dominates all the others (s~e figure 6; a 

toroidal lattice was used- for this experiment, to avoid the edge 

effects). 

Figure 6. Sample equilibrium configuration of the Ccomponent of 

the field on a toroidal lattice (a bi~ck pixel at slte i indicates 

that C > .. 0). 

Parameter values v = - D. 5 v = ·4 . v = 5 . 
c . e t 
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Heuristically, one can explain the formation of these patterns as 

a consequence of the fundamental property of macroscopic systems 

in thermal equilibrium (Reif, 1965) the global equilibrium 

states (C,D) will be such that the Gibbs free energy F is 

minimized. At temperature T, F is given by: 

F(C,D) = U(C,D) - T ln Q (U(C,D)) 

where the energy U is: 

U(C, D) = " 
L..i , j II II 

v ( c , D , c , D ) + L v ( c , D ) 
i-j <2 2 i i j j I 1 i I 

and the "degeneracy" Q(U) is the total number of possible 

configurations with energy equal to U (the quantity ln f.!(U) is 

called the "entropy"). If the parameters are selected in such a 

way, that the formation of macroscopic lines lowers the energy (in 

particular, if v < 0), the system i.n equi l i bri urn will adopt a 
c 

global configuration that permits the packing of a large number of 

lines (i.e., patterns with blocks of nearly parallel lines), while 

retaining a relatively high degeneracy (obtained by shifting these 

blocks.around). A precise explanation is not trivial, and we will 

not attempt it here; the point that we wish to make is that a line 

in this field can induce its direction to neighboring lines by a 

mechanisr:: that cannot be predicted by direct extrapolation from 

the local interact ions, but rather, that emerges as a global 

property of the whole system. We believe that, apart from the 

practical a;plications of this property, the detailed study of 

this phenomenon may have some implications for physics and 

biology. 
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The subtlety of the mechanism that produces regions of uniform 

direction, r::a:-ces this field very sensitive to cues tl.at indicate 

preference for a given orientation. This prefered orientation may 

be induced in the field, for example, by a "flow pattern" (Glass 

and Perez, 1971), or by the boundaries of regions of elongated 

shape (see figures. 7 and 8), which suggests the important role 

that this kind of fields may play in the construction of models 

for the perception of texture, and of oriented patterns. 

Figure 7. (a) Elongated region. (b) Equilibrium configuration of 

the fre.e C field when the growth of 1 ines is restricted to the 

interior of the shaded region in (a). Parameter values: v = 
c 

-0.5; v = 4; v = 5. (c) Histogram of the values of the D field 
- t e 

during 3000 iterations. (d) direction corresponding to the largest 

peak of the histogram,· 

Figure a-. ·(a) "Flow pattern" obtained by superposition of two 

shifted versions of a set of random dots. (b) Equilibrium 

configuration of the C field when the observations (a) are coupled 

to the field using the scheme described in section 6; parameter 

values v = -0.5 
c 

. v 
' t 

=4;v =5. 
e 

Other parameter values produce patterns with different properties. 
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In figure 9 we show· a couple of them. The parameter values that 

should be selected will depend, of course, on the particular 

application. 

Figure 9. Sru~ple configurations of the C field. Parameter values 

(a) v = 0. 1 ; v = 6 · v = 3 · (b) 
c e ' t ' 

v = .1 ; v = 5 ; v = 2. 
·e t c 

6. An Application. 

As we mentioned in the introduction, the complex field that we 

have described may be used for a variety of purposes. In this 

section we present, as an illustration, a simple application: the 

restoration of an image that consists of incomplete, piecewise 

straight, closed contours (or equivalently, a model for the 

formation of the subjective contours that appear when one looks at 

such an image; see figure 10). 

Figure 10. Two images consisting on incomplete contours. 

6.1. Coupling the Observations to the (C,D) Field. 

The model for the observation process g, is based on the 

assumption that the observations ~epresent incomplete contours, 

which means that, although some existing pieces may be missing 

(which happens with a certain probability), there are no spurious 

contours present (i.e., the probability that an observation g_ > 
1 

0, given that C. = 0 is zero). This type of model generates a 
1 

strong coupling term in the posterior distribution (see Marroquin, 
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1985, pp 90- 92), that will force the C field to take a non-zero 

value (and the D component a compatible value), in all sites where 

an observed contour is present, in any sample configuration of the 

field generated by the posterior distribution. Note, h01.,rever, that 

since the only thing that we are observing directly is the fact 

that a contour piece is present or abscent in a given site (i.e., 

g is a binary field), the compatible (C,D) values must be computed 

from the observations before the Gibbs sampler automaton is 

initialized (we will call these computed compatible values 

(C',D'), the "pseudo-observations"). 

6.2. Computation of the Pseudo-observations. 

The C' component may be obtained directly from g by a non-linear, 

shift invariant filtering operation: this filter simply looks at 

configurations of the g field through a moving 3 X 3 window, and 

looks up the corresponding value for C' in a table. If we number 

the pixels of a 3 X 3 window.l.n the form shown in figure 11-a, any 

·configuration of the g field within the window may be expressed as 

a sequence of (at most 8) digits, that indicate the places where 

g_ = 1 (for example, the configuration (6,8,1) is shown in figure 
.1 

11-b). 

Ffgure 11. (a) Numbering system for the pixels of a 3 X 3 Hindow. 

("b) Configuration (6,8, 1). 

Table 3 shows the configurations that correspond to non-zero C' 

states. Note that only those configurations that might correspond 
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to macroscopic 1 ines are assigned a C' state; "connecting" 

configurations (i.e., those that would correspond to values of C' 

> 12) are assigned a C' value of 0. 

Table 3. Configurations of 3 X 3 windows of the g field that 

correspond to non-zero C' states. 

C' state Configurations 

1 (2,6) (2,8,6) (1,2,6) (7,2,6) 
2 . (0, 4) (8,0,4) (5,0,4) (3,0,4) 
3 ( 1 '5) (8,1,5) (0, 1,5) (6,1,5) 
4 (3,7) (8,3,7) (0,3,7) (2,3,7) 
5 ( 1' 6) (8,1,6) (0, 1,6) (8,0, 1,6) 
6 (3,6) (8,3,6) (2,3,6) (8,2,3,6) 
7 (2,7) (8,2,7) (0,2,7) (8,0,2,7) 
8 (2,5) (8,2,5) (6,2,5) (8,6,2,5) 
9 (4,7) (8,4,7) (0,4,7) (8,0,4,7) 
10 ( 1' 4) (8,1,4) (0, 1,4) (8,0,1,4) 
11 (0,5) (8,0,5) ·; (6,0,5) (8,6,0,5) 
12 (0,3) (8,0,3) (2,0,3) (8,2,0,3) 
0 all others. 

The computation of D' is complicated by the fact that we pointed 

out in the introduction, namely, that the macroscopic direction 

of a line in a square lattice is not a local property. This means 

that if this computation is ·to be realized with operators of local 

support (which is desirable, both for theoretical and practical 

reasons), some iterative propagation must take place. We will now 

present a scheme that uses a combination of non-linear filters and 

. deterministic cellular automata. 

We said in sect ion 4, that the efficiency of the modified Gibbs 

sampler automaton is increased if the D component is represented 

as a vector (N, P), formed by the subinterval number in which D 

falls, and by the conditional probability of selecting a turning 
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configuration. This representation is also more convenient for the 

computation of D' (which becomes (N' ,P' ), as we now show. 

The idea is to use a three stage process: 

1: Initialize the N' field This step is implemented with a 

non-linear filter similar to the one used to obtain C', that acts 

on C' itself: by examining C' configurations on 3 X 3 windows, one 

can assign, either a definitive value, if a configuration that 

corresponds to a unique N' is found ( such as the one of figure 

12-a) or a tentative orre; ·if the configuration is compatible with 

more than one value of N' (as in the case of figure 12-b 

tentativeness is signaled by a flag). 

Figure 12. The non-linear filter assigns a definitive value N' = 5 

to the conf1guration (a) of C', and a tentative value N' = 0 to 

(b) (see text). 

The table lookup procedure is more complicated than .before, 

because the C' field is not binary. The construction, however is 

straight forward, and we will not go into the details here. 

2: Propagate the N' field : The field obtained in step 1, is used 

to initialize a deterministic cellular automaton (on an 

8-connected lattice) I that propagates the definitive values to 

neighbors that have compatible, tentative states (note that this 

automaton always converges in a small number of iterations). Upon 

convergence 1 the states that remain tentafi ve are made definitive. 
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3: Initialize and propagate the P' field : The P' field is 

computed from the fixed state of a deterministic cellular automaton 

S on an 8-connected lattice. This automaton has access to the 

final state of the N' field. It is initialized using the rule: 

S co> = 0. 5 , if N' is a "turning" state (i.e., if N' > 4) 

0 , otherwise. 

(note that the state of S is continuous valued). The automaton 

evolves by averaging the value of the state of each site, with 

that of neighbors that have the same value of N'. This means that 

the state is propagated along macroscopic 1 ine segments, 

distributing the total "amount of turn" among the elements that 

form the segment. It is not difficult to see that this automaton 

* will always converge to a unique fixed point S (in practice, 

convergence is signaled when 

e being a given tolerance). The conditional probability of a turn 

• is related to S by the formula: 

* * (Pr. Turn) = exp [ - v ] S I (1 - S ) 
i c i 

To summarize the pseudo-observations (N' ,P') may be computed 

from the observations g using a multistage process that involves 

two non-linear filtering steps, and the convergence of two 

deterministic cellular automata. It should be noted that the whole 
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process is quite fast, even on a serial machine (both cellular 

automata usually converge in less than 15 iterations), and that 

the .. e3.lgorithms are fully distrib~ted, so that parallel 

implementations are direct. 

6.3. Selection of the Parameter Values. 

Before discussing how .. to select these values, a word of caution is 

in order: our approach is Bayesian in spirit (in the sense that 

one expresses prior knowledge in the form of a probability 

measure), and we believe the a rigorous probabi listie framework, 

like the. one we are using, is useful, because it leads to the 

design of engines whose behavi.or (and hence, the results they 

produce) can be theoretically characterized. We think, however, 

that on.e should not ·go too far in the intent of preserving a 

rigorous statistical interpretation .. In particular, . we think that, 

unless one is in a situation where precise and realistic 

probabilistic models are available, it makes more sense to adjust 

the parameters of the system, so that it behaves in a desired way, 

rather than trying to estimate them in a strict statistical sense. 

In this particular case, we have three free parameters : ·v, v 
e t 

and v . As we mentioned in section 3, v controls both the 
c e 

stability of open contours, and the probability of new lines being 

born. Since in the present case we are assuming a priori: first, 

that the contours should be closed, and second, that the only 

contours present are ·those of which the observations are 

fragments, v should be given a very high value, 
e 
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equilibrium, the only contours that survive are those that 

complete the observed fragments (we are using v = 20) . 
e 

v 
t 

controls the probability of occurance of sharp turns or "T" 

junctions between lines. The value of v should also be high, 
t 

unless one is interested in generating lines that ramificate and 

change abruptly their directions, which is not the present case 

(we are using v = 7) (we have found, in fact, that for the 
t 

present app!ication, the system is relatively insensitive to 

variations in the precise values of v and v , as long as v << 
t e c 

v « v ). 
t e 

The selection of a value for v, which controls the probability of 
c 

growth of line segments, is more delicate: if v is too small, the 
c 

lines will grow too fast, and the appropriate connections may not 

be established; if it is too large, the convergence to equilibrium 

will be too slow. A value of v = 0.2 has worked very well for the 
c 

experiments we have performed, but the optimal value may be 

different for other images. 

Note that the same scheme that we have presented may be used to 

solve other related problems, with a different choice of parameter 

values; thus, for example, to obtain a field of lines that is 

organized by a "flow pattern" (as in figure 8), a good choice is: 

v = - 0. 5 ; v = 4 ; v = 5. 
c t e 

6.4. Experimental Behavior. 

In figure 13 we show the result of applying the complete procedure 

to the incomplete contours of figure 10: first, the 
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pseudo-observations were computed as described, and then, the 

modified Gibbs sampler. automaton for the coupled system was 

allowed to reach a stable· equilibrium configuration at a fixed 

temperature T = 1. The values for the parameters were: v = 20 ; 
e 

v = 4 and v = 0.2 in both cases. 
t c 

Figure 13. Results of the application of the complete 

reconstruction algorithm to the incomplete ·contours of figure 8. 

Grey pixels correspond to the observed fragments, and black pixels 

to the reconstructed parts. 

Notice that the selection of a high value for v causes the 
-e 

equilibrium behavior of the Gibbs automaton to consist, with very 

high probability, on a constant configuration, formed by closed 

contours. Since the system is evolving at a fixed temperature, 

this stable configuration may be interpreted as the t1PM (maximizer 

of the posterior marginals) estimator of the field. This estimator 

minimizes the expected value (with respect to the posterior 

_ distributfdh) of the total number of errors commited in labeling 

each pixel as belonging (or not) to a closed contour (see· 

Marroquin et. al., 1987). 

The fact that-the Gibbs chain converges, with high probability, to 

a stable _state, increases the efficiency of the estimation 

process, since there is no need for the collection of 

statistics over a large number of iterations: once the system 

reaches its .stable equilibrium state, this may be interpreted 

directly as the MPM estimator. The precise form of this stable 

configuration, however, may depend on the particular (stochastic) 
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transient J:ath followed by the automaton. The robustness of the 

estimator rr.ay, therefore, be improved by collecting "ensemble" 

statistics of the configurations obtained with several such paths 

(note that this may be done in parallel, by simultaneously running 

an ensemble of similar automata; it may also be possible to 

introduce a dynamical coupling between these networks, in order to 

accelerate the overall rate of convergence: the fact that a given 

element is in a certain state in one of them, should increase the 

likelihood for the selectic~ of this state in the whole ensemble. 

We are currently exploring these possibilities). 

6.5. Time Varying Parameters. 

The considerations of section 6.3 suggest a strategy in which v 
c 

is varied dinamically as the system evolves, so that one gets a 

more robust behavior, and a faster convergence rate. There are 

several possible 

iteration r.umber) 

"annealing schedules" v (t) (t denotes the 
c 

it is possible, for example, to design 

cyclical scr.edules that start and finish at a high value, and 

reach a small value at intermediate times. Another possibility, 

with which we have obtained very good results, alternates between 

constant low and high values, in cycles of increasing length (see 

figure 14) 

Figure 14. "Annealing schedule" for parameter v (see text). 
c 

Each cycle consists thus in a "growing phase" (low v ), where open 
c 

lines grow, followed by a "pruning phase" (high v ), in which all 
c 

27 



!1• 

" 

the 1 ines that remain open, disappear. One starts with' short 

cycles,. so that the finer connections between lines are properly 

established, and then increase the cycle .length, so that _longer 

gaps are filled in a reasonable time. Using this strategy, we have 

obtained results that are indistinguishable from the constant v 
c 

case, in the order of 60 iterations. 

7; Discussion. 

Let us summarize the main results that .we have obtained: 

i) We have constructed a vector valued MRF whose equilibrium 

configurations consist on piecewise straight 1 ines of arbitrary 

orientations. For certain parameter· values, this field presents a 

form of self organization, in which the lattice is partitioned 

into regions where particular line directions dominate. This form 

of organization is very sensitiv~. fo . (and may be induced ·by) 

pattern~. t~at display some preferred orientation,- such as "flow 

patterns" or boundaries of elongated regions. 

ii) We have designed a "stochastic cellular automaton (a modi.fied 

Gibbs sampler) that efficiently simulates this field. 

iii) We. have illustrated the use of this engine with a simple 

application: the rec6hstruction of incomplete, piecewise straight 

contours. 

All the algorithms that we have presented are fully distri but'ed, 
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which m~~es attractive their implementation in fine-grained 

parallel rr.achines (such as the "Connection Machine", Hillis, 

1985). Such implementations should greatly increase their 

computatior.al efficiency and their practical value. 

There are some straight forward extensions that may be done to 

increase tJ-.e applicability of this construct ion: one may, with 

some minor modifications, define the (C, D) (or equivalently, the 

(C, N, P)) field on a lattice dual to the one where an associated 

"intensity field" is defined (see Geman and Geman, 1984), and use 

it for image restoration and segmentation (Geman et. al., 1988), 

as well as for surface reconstruction (Marroquin et. al., 1987) ; 

it is also possible to define more complex coupling schemes that 

involve several, qualitatively different types of observations, an 

application that is of particular interest to us. An interesting 

possibility is the construction of MRF's whose equilibrium 

configurations are piecewise smooth contours. We believe that this 

may be achieved with a scheme similar to the one presented here, 

with a more complex updating mechanism for the D component. This, 

however, remains very much an open problem. 
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Appendix. The Gibbs Sampler Algorithm. 

Consider the vector valued MRF f, defined on a lattice L. Suppose 

that the state of each element f takes values on a finite set Q = 
i 

{q
1

, , qN} . Suppose also, to simplify the notation, that the 

only cliques with non-zero potentials are of size one and two, and 

let V ( ·) and V ( ·, ·) denote the potential function associated 
1 2 

with each clique configuration.· If there are observations present 

(:i.e.·, if we are using the posterior distribution to simulate the 

field), there will be, in the energy function, a coupling term 

<i> (f) for each .site i (the form of these coupling functions will 
i i . 

depend on the probabilistic model for the observations). The 

posterior distributiorr is: 

p (f g) = + (1/2) exp -.Li LjENi v (f ,f) - \'i 
2 i j L, 

( <i> ( f J 
i i 

+ v (f ) ) J 
1 i 

where Nt is the neighborhood of site i (in our case, 

Nt = {j : lli-jll < 2} ). 

The Gibbs sampler' algorithm (Geman and Geman, 1984), consists in 

updating the state of the sites of L, one at a time (although 

non-neighboring sites may be updated in parallel), using the 

condi tiona! probabi 1 i ty distribution for the states, given the 

states of its neighbors, for the selection of the updated value. 

Suppose that the state of site i is being updated. The conditional 

probability distribution w(q) is 
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The updating algorithm is as follows: 

1: put a = 0 
0 

2: for k = 1 to N, compute : 

ak = ak-1 + v; (qk){p'i(qk)• njENi v; (qk,fj) 

where V' (q,r) = exp [-V (q,r)] ; V' (q) = exp [-V (q)] and <P' (q) = 
2 2 1 1 l 

exp [ <P ( q. ) ] . 
l 

3: compute a pseudo-random number r with uniform distribution in 

the interval [a , a ] . 
0 N 

4: find k such that r e (a ,a ] , and put the new value of 
k-1 k 

f 
i 

Note that the finite size of Q implies that the functions V' and 
1 

V' can always be implemented as table lookup procedures. The 
2 

interaction function <P' , also takes, for the strong interaction 

that we are considering in section 6, a simple form : 

ell' . ( q) 0, if there is a pseudo-observation in site i, and q is 
1 

incompatible with it. 

1, otherwise. 
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