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Abstract : We present the construction of a vector-valued
Markovian Random field on a finite lattice, whose equilibrium
configurations consist of pilecewise straight lines of arbitrary
orientations, that uses only nearest neighbor interactions. For
certain parameter values, this field presents a form of self
organization, in which the lattice 1s partitioned into regions
where particular line directions dominate. We also develop a
stochastic cellular automaton (based on the Gibbs Sampler
algorithm) that simulates this field. To illustrate the usefulness
of this construction for the solution of computational vision
problems, we present a simple- application: the restoration of
images that consist on incomplete contours.



0. Introduction.

A very useful framework forv the formulaﬁion and solution of
inverse (ill-posed) problems in cémputational vision ié Bayesian
Estimation theory (Marroquin et. al., 1987). Its use rests bﬁ fhe
premise that, in order to solve any such problem (e.g.,. imége
restoration and segmentation; subface reconstruction, etc.), one
must use prior knowledge about'the(nature of the solutiog, and
that this knowledge may be exprééééd in the'fqrm of a probability
distribution. If this'is thé case, one may_thgn representlfhe
solﬁtion as the minimizer of the expected value (with respect to

the posterior measure) of an appropriate error criterion.

A class of probabilistic models that are very convenient fér the
éonstruction of prior probability.distributions, is the CléSs'of'
Markovian random fields (MRF’s) on finite lattices (see Geman and

Geman, 1984). These models are nice for several reasons:

(i) The global probability distribution on the set of all possible
solutions_ £, may,be specified simply by the local interacticns
(potential functions) between small sets (cliques) of neighbouring

elements:. the global measure is a Gibbs distribution:

P(F) = (1/2) exp [ - U(E) 1 (1)
where the_“energy" term  U(f) i; chputed as the sum, over all
cliques, of the cofrespondiqg pdtential functions (z is jus£>a
nérmalizing constant). The fact that one has an explicit
representation féh this global distribution, greatly facilitates

the theoretical characterization- of the solutions found by this

method.




(i1} The behavior of a MRF may be simulated by a regular Markov
chain, whose states correspond to global configuraticns of the
field, and whose invariant measure is the corresponding Gibbs
distribution. The Markov chain associated with the posterior
distribution (which is also Gibbsian) may be implemented by a
distributed algorithm (e.g., the Metropolis or Gibbs Sampler
algorithms). This algorithm specifies a stochastic cellular
automaton from whose evolution one may obtain the optimal

solution (see Marroquin, 1985).

In this paper, we describe the construction of a MRF on a square
lattice, whose equilibrium configurations correspond tp images
with long, piecewise straight lines of arbitrary orientations.
This field may be used for several purposes; the main application
that we have 1in mind, 1is to model the properties of the
projections of the boundaries of objects, and therefore, to use it
as an important component of a system that aims at the integration
of several, qualitatively different processes (that analize, for
example, 1intensity edges, stereo, motion, color and texture
information) _for the purpose of reconstructing such boundaries
(see Poggio and Gamble, 1987). In this paper, however, we will
only present,‘ for 1illustrative purposes, a very simple
application: the restoration of images that consist of incomplete

contours.

The use of MRF’s for the explicit modelling of the behavior of
contours in an image, was first introduced by Geman and Geman
(1984). They used a "line field" (defined on a lattice dual to the
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one of the "intensity" field) formed by line segments of four -
possible orientations (i.e., a 5-state field), and whose function
was to decouple adjacent intensity sites in an image restoration
task. With small variations, a similar technique has been used by
several réseahchers for other tasks,’ sﬁbh- as: surface
reconstruction from sparse data (Marfoquin 'éﬁ. al., 1987);

segmentation of textured images (Geman et. al., 1988), etc.

This approach, however, has a serious limitation: if the contour
informat-ion (or equivalenfly, the intensity data) is sparse, this
line field will nof fill large. gaps ih“”the contours in an
appropriate way, regardless of the véiue of the parameters. This
fact is also Pefleéted in the nature of the sample configurations
produqed by the "“free" line field (i.e., without the coupled"
intensity data); no matter which parameter values are selected, it
is not possible to produce a field of long, straight linés of
arbitrary ofientatiqﬁs._The reasoﬁ-f;r this:failure is that the
only true straight linés that exist in a square lattice are those
at OO, 80° and fésé.; lines in any other dﬁréction are really
piecewisekhofizontal, vertical or diagonal (see fig. 1), and the
difference between two such orientgtioné cannot be captured by the

local nature of the potentials associated with Geman’s line field.

Figure 1. A Straight'lihe with SlOpe‘= 1/3 : at a microscopic

level, this line segment is either horizontal or diagonal.
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To get the desired behavior, it is necessary to include, in the
state of each line element, information about the macroscopic
direction in which the straight line is supposed to go. This idea
may be implemented by a vector valued MRF (or equivalently, by two
coupled, scalar valued fields); the first component (which we will
call the “Connection" or "C" field) describes the local
connectivity of the line elements, while the second one (the
“D" field), specifies the macroscopic direction of the line
segment. The values of both components enter into the computation
of the potential functions: the macroscopic direction information
~affects the conditional probabilities associated with the

different configurations of the C field.

The Markov chain that simulates the behavior of the field may be
constructed 1in several ways: the best known is probably the
Metropolis algorithm (Metropolis et. al., 1953); here, we will use
the Gibbs Sampler (Geman and Geman, 1984) , that consisfs in
updating the value of one site of the field at a time (although
non-neighboring sites may be updated in parallel), using, to
select the new value, the conditional probability distribution,
given the values of the ~field at neighboring sites (this
distribution may be readily obtained from the global Gibbs measure
of equation 1). A detailed description of the algorithm is given
in the appendix. As we mentioned above, from the evolution of the
stochastic cellular automaton defined by this algorithm, one may
obtain sample configurations of the field, and, by appropriately
coupling the observations, if they are present, perform the
desired reconstructions. We will now describe the construction of

this complex field in detall.



1. The Connection Field.

This 1s a discrete valued field on a square lattice. The state of
each element of the field may take values on a set Q of 21
elements, which describes the permissible connections between

neighbors. This set is represented in figure 2.

.Figure 2. The set Q of states for the connection field.

The neighborhood of eééh element consists on its 8 nearest
neighbors, and the only cliques with non-zero potentials are'thosé.

of size 1 and 2 (see figure 3).

Figure 3. (2) The neighborhood of element i. (b) - (f) Cliques

- with non-zero potentials for the connection field.

- 1.1. Labeling of Neighbor Interactions.

We consider the following types of neighbor interaction:

i) Indiference (’'o’) : It has associated a potential value of
. Zero.
ii) Termination ('e’) : If represents the interacion of a state

connected with state 0.
~iii) T junctioh.

iv) Sharp turn.
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v) Straight continuation ('a’).
vi) Right turn ('b’, ’J’, 'r’ and '£’).

vii) Left turn (°d’, 'k’, 1’ and ’g’) : Different letters denote

different types of turn (see figure 4).
viii) Complete a turn ('c’).

ix) Forbidden connection ('-').

Examples for each type of interaction appear in figure 4.

Figure 4. Exémples of each type of neighbor interacion for the

connection field.

The complete set of labels for all possible neighbor interactions
is specified in four 21 X 21 matrices (one for each clique type).

The matrices for clique types (b) and (d) are shown in figure 5.

Figure 5. Interaction matrices for clique types (b) (top) and (d)
(bottom). The matrices for types (c) and (e) are obtained from

symmetry considerations.

These interacion types are used to define the potential functions

for the field, by associating a real number with each type,
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and with each pair of values of the D component. Before defining
these functions, we ne=d to describe the sfructure of the D field

in some detail.
2. Macroscopic Direction Component.

Conceptually, this is a real valued field, whose elements take
values in the set ﬂ.f [0,m) v {;1} . Thé state éf a D eleﬁgnt
(say,'Di) correépénds té the macroécépic direction of a line (if
D, = d}; or to an undefined direction- (if D, = —‘1).
Note that, neither every state of the C field ('C state", fof
short?), nor every inferaction type forAneighﬁoring C states . ("C
interaction type") are compatible Qith a givéﬁ' value of the
macroscopic direction. In fact, it is poésible to divide the
interval [O,n)v into subintervals that are homogeneous, in fhei
sense that there is a uﬁique set of C states and of C interaction
types that are compa&ible with every'directioﬁ in tﬁe subinterval.
Once. a subinterval is sélected, a particular direction may be
specifiéd by the relative probability of selecting a straight
continuation (C states in [1,4]) versus a right (QP 1ef£j turn (C
states in [5,12]). In table 1 we show,Athe homdgenéoué
subintervals, and»the”compatible C”étates and interaétion tybes.
Also in this table, we indicate ,the formula ,£ﬁat‘ relétes the
ratio:

a = Prob, of selecting a turn / Prob. of straight conﬁinuatién‘

to the slope m of the macroscopic lineﬂy




Table 1 . Homogeneous Subintervals for the Macroscopic Direction.

The columns s t ¢ refer to: "straight continuation”, "turn" and
"complete a turn" types of C interaction, respectively
# |Subinterval (in Compatible Compatible a

terms of slopes) C states int. types

s| t jc

0 0 2 a 0
1 (0,1/2] 2,10,11 ald,1 m/ (1-2m)
2 (1/2,1) 3,10,11 alj,cll (m-1) / (1-2m)
3 1 3 a C
4 | (1,2] 3,5,8 alk,c|f (m-1) 7/ (2-m)
5 (2, 0) 1,5,8 alb,f|c 1/ (m-2)
S 0 1 a 0
7 | (~«,-2] 1,6,7 ald, glc -1/ (m+2)
8 | (-2,-1) 4,8,7 alj,clg -(a+l) / (m+2)
g -1 4 a 0
10| (-1,-1/2] 4,9,12 alk,clr -{n+1) 7/ {(2m+1)
11y (-1/2,0) 2,9,12 alb,r|c -m / (2m+1)

3. Potential Functions.

We will now define the potential functions V1 and'V2 associated
with the (vector valued) states of a single site and a pair of

neighboring sites i,J, respectively.

First, we need some no£ation: Since the C states take values

in @ (figure 2), and the D states in D, we have that V2 maps Q X D
X Q@ X D into the reals. Let.(qi,di) and (qj,dj) be the states of
the neighboring sites 1,j.; Let Iij = I(qi,qj) be the C
interaction type corresponding to (qi;qj).ﬁ A giveﬁ directionvd1
will fall in a unique homogeneous subinterval; one can see from
table 1, that for every such subinterval, there is either a single.

’

compatible C interaction type (namely, 'a’), or fow such types:
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one that ccrresbonds‘to a stfaight continuation choice, which we
call SCi = SC (di) ; a set of two that correspond to a "turning"
choiceh which we call 71 =9 (di), and one that corresponds to
"completing a turn, which we call CTi = CT (di). The set‘of C
states compztible with direction di (also from table 1) is deroted
by €i =6 (d). Finally, o« = (di) denotes the ratio:

1

« = Pr ( selecting q € ﬁi) / Pr ( Selecting q = SC)
1
which is computed using the appropriate féfmhla.‘from the last

column of table 1.

For some constants: Voo VsV we may now define the
c e

single site potential function V1 as :

V(g,d) = w, ifd =0, and q ¢ 8(d ) ;
1 i i i i i ) -
In [1 + ai], if di = 0 and q, € [1,4]1 n ﬁ(di);
In [(1 + ai) / oci],.if‘,di = 0 and q, € [5,12] n f(di) ;

0, otherwise."

This definition of V1 serves two purposes: first, it enforées the
compatibility between the C.ahd D states of a site (making V1 =
if they are incompatible; note that ﬁhé C states in [1,12] ére_the
only oneé that may have associated a definite direction). Beéides,
it enforces the growth of a 1line along a given macroscopic
direction, by controlling the relative probability of selecting a
straight continuation (i.e., g€ [1;4]) versus a "turning" C state

(q € [5,12]).
The potential V2, for cliques of size 2 1is defined as:
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v , if d =d and
i J
9 9 € ?1 and Iij € {SCi} v 7ﬁ
v = 1n [(1 +a) / ail,
1
ifd =d andg, g €% and I =CT ;
i j i j 1 ij
v o, if I1j ¢ {'0’,’e’,’-"} and
dk < 0 and q >0, for some k € {i, j}

H
o , otherwise.

This definition of V2 serves the following purposes:

i} It weassigns the values of v and 0, vrespectively, to
e

terminations and "indiferent" C interacions (note that in this

.cases the potential value is independent of the D component).

ii) If the C interaction correéponds to the continuation of a
macroscopic line, it forces the D component to propagate along it,
and assigns a value of v, to V2 . If.the C interaction corresponds
to the completion of a turn (i.e., if I = CTi), it ensures that

ij
V + V. =v

1 2 c
1ii) It assigns a value of v, to C interacions that correspond to
sharp ‘turns or "T" Jjunctions. It also forces; in these cases, the

D state of the conneéting element to - 1.

iv) It assigns an infinite potential to forbidden interacions
(I ="'-").

11



The quantity exp [ - vc] represents therconditional probability
of growth of a macroscopic line, given the states of its neighbors
(remember thét in the Gibbs sampler algorithm, fhe probability of
accepting a state 1is praportional lfd the product of the
exponentials of the values of the poteﬁtials, for,all.the cliques
to which the element belongs). The quantities:

exp [ In [ ai_/ (1 + ai)] - Vc] and exp [ In[ 1/ (1 ; ai)] - VC]
represent the conditional probabilities of turning and straight,-
gpntinuation, fespectively. Note that‘their sum is exp [ - vc],

and their quotient is ai', as it should.

The constants v , v£ and v are free-parameters that control the
e C )

behavior of the system. fAs we have mentioned, v controls thé

probability of growfh of the lines, so that smaller values of \A

will produce configurations with longer lines; v controls both
. e .

“the stability of open contours and théjprobability'that new lines

are born, and Vt controls-the probability of sharp ﬁurns aﬁd T
junctions. These parameters, not'vdnly control the dynamic o
{transient) behavior of the.syétem,_but aléo, since the evolution
of the Gigbs sampler automaton is érgédic, they determine the
properties of the equilibrium::Cénfigurations: ‘the ‘relative -
probability of finding a configﬁratﬁpn (C,D) in equilibrium :
conditions, will be proportional to:“ |
exp [ -1 /T Ly -l <a 'VZ(C,»‘Di’CJ’DJ) + L v (c,p) ]

Here T (the "temperature") is an addiéional parametér that is
dsually'introduced to control the oVerélliéctivityjéf the system

12




{note that T affecté the relative magnitude of the effective
potential values: at low temperatures, the relative differences
between these values are exaggerated, while at high values of T,

they tend to become uniform).
4. A Practical Implementation.

The continuous valued nature of the D component of the field
prevents a direct implementation of the Gibbs sampler algorithm
for the generation of sample configurations ({(and makes the
convergence of, say, Metropolis algorithm extemely. slow).
It is necessary, therefore, to sample the interval [0,m), and use
a discrete set D’ of allowable directions. This discretization
makes sense, since in a finite lattice, one has a finite
repertoire of straight lines, anyway. Even with this
discretization, a direct implementation of the Gibbs sampler would
still be very inefficient. A closer look at the properties of the
potential functions, however, indicates that the only pairs (q,d)
€ @ X D’ that have to be considered when updating, say, site i
(i.e., the pairs that have associated a finite potential) are the

following:

i) Pairs of the form (g,-1), when g = 0, g > 12, or when q is the

connecting element between lines of different orientations.
ii) Pairs of the form (q,do), with q e @(do), which occur when ¢
corresponds to the continuation of a unique macroscopic line of

direction do which is already active in the neighborhood of 1i.
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iii) Pairs (gq,d), where d is selected at random from the set R(q)

={d: qse ?(d) You {-1}.

In this last case, which occurs when I(q;fj) e {"0’,’e’} for all j
'in the neighborhood of i{ we note that the value of V2 is
independent of the choice of d; the_écnditionai probability p(qj
for the selection of,a'given C state q in the Gibbs'sampler update

is in this case :
pla) = (1/2) T @ < Bla) exp [-Zj N vz(q,Cj)] exp [—Vl(q,é)]

= (1/2) Wlq) exp [-L, _

Vz(q,Cj)]
where Ni is the neighborhood of site i; Z is a.nofmalizing constant,
and the weights

Wig) = Z% Cqe g(d}'exp [fVl(q,d)l
depend only on q, and,hénce, they may be precomputed (in table 2
-we show W(q) for a direction sampling density of 1 sample every 3
degreeé; note that for q = 0 or q > 12, W(g) = 1, since the only

compatible direction is - 1, and Yl(q,—l) = 0).

This means that it is possible to select q‘independently df d,
using a weighted Gibbs sampler. After, say, g = r is selected% if
r =0, or r > 12, d is set to - 1; otherwise, d is picked at
random from the set R(r) with distribution

exp [- Vl(rjd’)]

P(d) = exp F— Vl(r,d)] /Y e R(r)

14




Table 2. Weights W(q) for a direction sampling density of 1/3

samples/degree.

q W(q)
0 1.0
1 5.8
2 5.8
3 5.8
4 5.8
5 9.14
5) 8.14
7 8.14
8 9.14
g S.14
10 8.14
11 8.14
12 9.14
13 1.0
14 1.0
15 1.0
18 1.0
17 1.0
18 1.0
19 1.0
20 1.0

The above remarks mean that it is possible to simulate the
behavior of the complete Gibbs sampler algorithm using a cellular
automaton that updates its state using a stochastic rule that
depends on the total number of occurances of each type of

» ’ ’ ’

interaction ('t’, 'e’, ’'c¢’, etc.) in the neighborhood of éite i,
for each q € Q (the automaton is essentially equivalent to a
weighted Gibbs sampler for the appropriate (q;d) pairs, followed,
if necessary, by a second Gibbs sampler that uses P(d) for the
selection of d; the construction is straight forward, and we

omit the details here). With this algorithm it is possible to

obtain sample configurations of the field in an efficient way. Its
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worst case complexity depends on the size of the set Q plus the
maximum size of the set R(g), which is approximately 0.25 times

the cardinality of the set D'.

The efficiency of this implementation may be: increased if the
quantities : exp [—ve] , éxp [—vél and exp_[—vt]'are precomputed,
and if the D component 1is replaced by a vector formed by ﬁhe
subintervai number and the probability(of turning (i.e., instead
of Di, one stores the number N.1 Qf the subinterval to which D;
beléngs, and the number P; = (a(DI) / (1 + a(Di)) exé‘[—vc]), for
each site i. If this is done, the functions V1 aﬂd Vé reduce to

simple table lookup procedures.
5. Macroscopic Order.

The field thnat we'have described has an Iinteresting prqperty
‘when one generatés sa@ple equiligrium,cpnfiguratioﬁs of the free

field, one observes. that; for .certain barémeter values, the
lattice is' partitioned into ‘dﬁmainé;- where one particular
imacroscopic‘direction dominates a11 thé others (sée'figure B8; a
toroidal lattice was used for this experiment, to avoid the edge

effects).

Figure B. Sample equilibrium configuratibn of the C-component of
the field on a toroidal lattice (a black pixel ét site 1 indicates
that C >  0).

Parameter values : Vo= - 0.5 ; v =4 ;:vt‘= 5 .
: ) Ve :
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Heuristically, one can explain the formation of these patterns as
a consequence of the fundamental property of macroscopic systems
in thermal equilibrium (Reif, 1965) ; the global equilibrium
states (C,D) will be such that the Gibbs free energy F is

minimized. At temperature T, F is given by:
F(C,D) = U(C,D) - T 1In Q (U(C,D))
where the energy U is:

uc,n) = X Vz(ci’Di’CJ’DJ) ¥ Zl V1(C3’D1)

i, ¢+ i - il < 2
and the ‘'degeneracy" Q(U) 1is the total number of possible

configurations with energy equal to U (the quantify In Q(U) is

called the "entropy"). If the parameters are selected in such a

way, that the formation of macroscopic lines lowers the energy (in
particular, if v, < 0), the system in equilibrium will adopt =

global configuration that permits the packing of a large number of

lines (i.e., patterns with blocks of nearly parallel lines), while

retaining a relatively high degeneracy (obtained by shifting these

blocks around). A precise explanation is not trivial, and we will

not attempt it here; the point that.we wish to make is that a line

in this field can induce its direction to neighboring lines by a

mechanisr that cannot be predicted by direct extrapolation from

the local interactions, but rather, that emerges as a global

property of the whole system. We believe that, apart from the

practical arplications of this property, the detailed study of

this pnhenomenon may have some implications for physics and

biclogy.



The subtlefy of the mechanism that produces regions of uniform
direction, nakes this field very sensitive to cues tlat indicate

preference.fot a given orientation. This prefered orientation may
be induced ir the field, for example, by a "flow pattern" (Glass
and Perez,'1971),'or by the boundaries of PegioﬁS»of elongated
shape (see figures 7‘and 8), which suggeéﬂs the important role
that this kind of fields may play in the construction of models

for the perception of texture, and of oriented patterhs.

Figure 7. (a) Elongatéd region. (b) Equilibrium configurétion of
the free C field when the growth of lines is reéfricted to the
inferior of the shéded region . in (a). Paraﬁetéb values: v, =
-0.5; v, =4 ; v_=5. (c) Histogram of the values of the D field
during 3000 iterations. (d) direction corrésponding to the largest

peak of the histogram.

Figure 8. (a) "Flow pattern" ébtained by superposition of two
shiffed_'Versions of“ a set of random dots. (b) Equilibrium
configuréfion of the C field when the observations (a) are coupled
to the field using the scheme desbribed in section B; parameter

values : v = -0.5 ; v =4 ;v =5,
c et e

Other parameter values produce patterns with different préperties.

18




-

In figure 8 we show'a couple of them. The parameter values that
should be selected will depend, of course, on the particular

application.

Figure 9. Sample configurations of the C field. Parameter values :

(a) v =0.1; v=6B;v =3; (b)) v =.1; v =5,; v =2.
C

e t c e t

6. An Application.

As we mentioned in the introduction, the-complex field that we
have described may be used for a variety of purposes. In this
section we present, as an illustration, a simple application: the
restoration of an image that consists of incomplete, piecewise
straight, closed contours (or equivalently, a model for the
formation of the subjective contours that appear when one looks at

such an images; see figure 10).

Figure 10. Two images consisting on incomplete contours.

6.1. Coupling the Observations to the (C,D) Field.

The model for the observation process g,- is based ‘on the
assumption that the observations 3epresent incomplete contéurs,
which means that, although some existing pieces may be missing
(which happens with a certain probability), there are no spurious
contours present (i.e., the probability that én observation g, >
0, given that Ci = 0 is zero). This type of model generates a

strong coupling term in the posterior distribution (see Marroquin,
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1985,.pp 80 - 92), tgat will force the C field to tazke a non-zero
value (and the D component a compatible value), in all sites where
an observed contour is present, in any sample configuration of the
field generated by the posterior distribution. Note, however, that
since the only thing that we are'observing directly is the fact
tha£ a contour pilece is present or absceﬁf in a given site (i.e.,
g is a binary field), the compatible (C,D) values must be computed
from the observations before the Gibbs sampler automaton is
initialized (we_ will call these éomputed compatiﬁle values

(C’,D’), the "pseudo-cbservations").
8.2. Computation of the Pseudo-observations.

The C”cbmponent may be obtained direcﬁlyvaOm g'by a néﬁ—linéér;
shift invariant filtering opefation; this filter simply,iooks at
.- configurations of the g field through a moQing 3-X3 windéw, and
Aloka up the corresponding value forbc’ in a table. If -we number
the pixels of a 3 X 3 window in the férm shown in figure il—a, any
'éonfiguration of the g field within‘fhe Window may be expresséd as
a sequence of_(af mbstv8) digits,ﬁthét indicate the places where
g = 1 (for example, the configurationi(éqs,l)'is shown in figure

11—b).

Figure 11. (a) Numbering syétem for the pixels of a 3 X 3 window.

(b) Configuration (6,8,1).

Table 3 shows the configurations that correspond to non-zero C’

states. Note that only those configurations that might cofrespond
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to macrcscopic linés are assigned a (' state; ‘'"connecting"
configurations (i.e., those that would correspond to values of C’

> 12) are assigned a C’ value of 0.

Table 3. Configurations of 3 X 3 windows of the g field that

correspond to non-zero C’ states.

C' state Configurations

1 (2,8) ; (2,8,8) ; (1,2,8) ; (7,2,8)

2 -(0,4) ; (8,0,4) ; (5,0,4) ; (3,0,4)

3 (1,8) ; (8,1,58) ; (0,1,5) ; (8,1,5)
4 (3,7} ; (8,3,7) ; (0,3,7) ; (2,3,7)

5 (1,8) ; (8,1,8) ; (0,1,8) ; (8,0,1,8)
8 (3,8) ; (8,3,8) ; (2,3,8) ; (8,2,3,8)
7 (2,7) ;, (8,2,7) ; (0,2,7) ; (8,0,2,7)
8 (2,8) ; (8,2,5) ; (8,2,5} ; (8,53,2,5)
g (4,7) ; (8,4,7) ; (0,4,7) ; (8,0,4,7)
10 (1,4) ; (8,1,4) ; (0,1,4) ; (8,0,1,4)
11 (0,5) ; (8,0,5); (8,0,5) ; (8,86,0,5)
12 (0,3) ; (8,0,3) ; (2,0,3) ; (8,2,0,3)
0 all others.

The compugation of D’ is complicated by the fact that we pointed
out in the introductiocn, namely, that. the macroscopié direction
of a line in a square lattice is not a local property. This means
that if this computation is to be realized with operators of local
support (which is desirable, both for theoretical and practical
reasons), some iterative propagation must take place. We will now
present a scheme that uses a combination of non-linear filters and

.deterministic cellular automata.

We said in section 4, that the efficlency of the modified Gibbs
sampler automaton is increased if the D component is represented
as a vector (N,P), formed by the subinterval number in which D

falls, and by the conditional probability of selecting a turning
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configuration. This representation is also more convenient for the

computation of D’ (which becomes (N',P’), as we now show.
The idea is to use a three stage process:

1. 1Initialize the N’ field : This step is implemented with a
non-linear filter similar to the dne used to obtailn C’f that.acts
on C’ itseif: by examining C’ configuf;tions on 3 X 3»w1ndows, one
can assignf‘either' a definitive»value, if a confiéUration that
. corresponds to a unique N’ is found ( 'such as the one of figure
12-a) or a £entative éne;'if the configuration is compatible with
more than one value of N’ (as in thé ;ase of fﬁgure 12-b 3

”i‘tentativeness is signaled by a flag).

Figuré 12. The non-linear filter assigns a definitive value N’ =
to the configuration (a) of C’, and a tentative value N’ = 0 to

(b) (see texﬁ).

The table lookup procedure is: more _cdmplicated than before,
“because the C' field is not binary. The construction, however Iis

straignt forward, and we will not go into the details here.

2;_Propagate the N’ field : The field.dbtained in stép 1, is used

tov initialize a deterministic cellular autOméton (on an i
8-connected lattiée), that ‘propagates the- definiti&e values to
neighbors that have compatible, tentative étates (néte ﬁhat this
automaton always converges in a small number of iteraﬁions). Upon

convergence, the states that remain tentative are made definitive.
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3: Initialize and propagate the P’ field : The P’ field is
computed from the fixed state of a deterministic cellular automaton
S on an 8-connected lattice. This automaton has access to the
final state of the N’ field. It is initialized using the rule:

s - 0.5, if N’ is a "turning" state (i.e., if N’ > 4) ;

i

0 , otherwise.

{(note that the state of S is continuocus valued). The automaton
evolves by averaging the value of the state of each site, with
that of neighbors that have the same value of N'. This means that
the state 1is propagated along macroscopic’ line segments,
distributing the total "amount of turn" among the elements that
form the segment. It is not difficult to see that this automaton
will always converge to a unique fixed point S* {(in practice,
convergence is signaled when .
(t+1)  L(t)

<
sup, ]SI 5, 8

@ being a given tolerance). The conditional probability of a turn

is related to S* by the formula:
* *
(Pr. Turn)i =exp [ - v ] Si /(1 ~ Si)
[of

To summarize : the pseudo-observations (N’',P’) may be computed
from the bbservations g using a multistage process that involves
two non-linear filtering steps, and the convergence of two
deterministic cellular automata. It should be noted that the whole
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process is quite fast, even on a serial machine (both cellular
automata usually converge 1in less than 15 iterations), and that
the  algorithms are fully distributed, so that parallel

implementations are direct.

6.3. Selection of the ParameterAValues.

Before discussing how.to select these values, a word of caution is
in order: our approach is Bayesian in spirit (in the sense that
one expresses prior knbwledge in' thek form of a probhability
measure), .and we believe the a rigorous probabilistic framework,
like th§~one we are using, 1s useful, because it leads to‘the_
desigﬁ of engines whoss behavior’fénd'hence;‘thé results-théy
produce) can be theoretically charécterized. We think, howevér,
that one should not go too fér in’the intept of preserving a
. rigorous statistical interpretation. In partiéular,,we think that,‘
‘unless one is in a situation‘ﬁﬁheré” precise  and realistic
probabiiistic models are available, it makes more sense to adjust
tﬁé-paraméters of the system, so that it behaves in a desired way,

ratherﬂﬁhan trying to estimate them in a strict sfatistical éense.

In thié particular case, we have three free parametérs :'ve,vt
and v As we mentioned in section 3, v_ controls both fhe
stability of open contours, and the brﬁbability of new lineS_being
born. Since in the present caée we are assuming avpriori{ first,
that the qontours éhéuld be closed, and secéﬁa, that the only

contours present are ‘those of which the observations are

frégments,‘ v should be given av véry high vaiue, so that in
e .

- . 21




-

equilibrium, the only contours that survive are those that
complete the observed fragments (we are using ve = 20). vt
controls the probability of occurance of sharp turns or "T"
Junctions btetween lines. The value of A should also be high,
unless one is interested in generating lines that ramificate and
change abruptly their directions, which is not the present case
(we are using v, = 7) (we have found, in fact, that for the
present application, the system 1s relatively insensitive to
variations in the precise values of vt and ve , as long as v <<

c

v << v ).
t e

The selection of a value for vc, which controls the probability of
growth of line segments, is more delicate: if v, is too small, the
lines will grow too fast, and the appropriate connections may not
be established; if it is too large, the convergence to equilibrium
will be too slow. A value of vc = 0.2 has.worked very well for the
experiments we have performed, but the optimal value may be

different for other images.

Note that the same scheme that we have presented may be used to
solve other related problems, with a different choice of parameter
values; thus, for example, to obtain a field of lines that is

organized by a "flow pattern" (as in figure 8), a good choice is:

6.4. Experimental Behavior.

In figure 13 we show the result of applying the complete procedure

to the incomplete contours of figure 10: first, the
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pseudo-observations were computed as described, and then, the
modified Gibbs sampler. automaton for the coupled system was
allowed to reach a stable-equilibrium configuration at a fixed
temperature T = 1. The values for the parameters were: v, = 20 ;

v, = 4 and v, = 0.2 in both cases.

Figure 13. Results of the application of the complete
reconstruction algorithm to the incomplete -contours of figure 8.
Grey pixels_correspond to the observed fragmehts, and black pixels

to the reconstructed parts.

Notice that Athe selecfion of a high value for v, causes the
equilibrium behavior of the Gibbs autematon'te consist, with very
high probability, on a eonetant configuration, formee by closed
contoqrs. Since the system 1is evolving at a fixed temperature,
this stable eeefiguration‘may be interpreted as the MPM (maximizer
of the poeterior marginals) estimator of the fleld. Thie estimator

minimizes the expected value (with respect, to the posterior -

© _distribution) of the total number of errors commited in labeling

each pixel as belonging (or not) to a closed contour (see

Marroquin et. al., 1887). .

The"fact that the Gibbs chain converges, With high.prebebility, to
a stable lstate, increases the efficiency of the estimation
preeess, since there is no need .for (the collecﬁien of

statistics overv a lahge' Qumber of iterations: once"fhe system
reaches 1its ,steble equilibrium state, this may be interpreﬁed
difectly as the MPM_estimator. The precise form of this stable
configuration, however, mey'depend on the particular (stochastic)
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transient rzath followed by the automaton. The robustness of the
estimator ray, therefore, be improved by collecting "ensemble"
statistics of the configurations obtained with several such paths
(note that this may be done in parallel, by simultaneously running
an ensemble of similar automata; it may also be possible to
introduce a dynamical coupling between these networks, in order to
accelerate the overall rate of convergence: the fact that a given
element is in a certain state in one of them, should increase the
likelihood for ths selecticn of tﬂis state in the whole ensemble.

We are currently exploring these possibilities).
6.5. Time Varying Parameters.

The considerations of section B.3 suggest a strategy in which_vc
is varied dinamically as the system evolves, so that one gets a
more robust behavior, and a faster convergence rate. There are
several possiblé "annealing schedules" vc(t) (t denotes the

iteration number) : it is possible, for example, toc design

cyclical schedules that start and finish at a high value, and
reach a small value at intermediate times. Another possibility,
with which we have obtalned very good results, alternates between
constant low and high vglues, in cycles of increasing length (see

figure 14)

Figure 14. 'Annealing schedule" for parameter v (see text).
c

Each cycle consists thus in a “growing phase" (low vc), where open

lines grow, followed by a "pruning phase" (high vc), in which all
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the limes that remain open, disappear. One stérts with” short
cycles, so that the finer connections between lines are prdpefly
established, and then increase the-cycle length, so that longer
gaps are filled in a reasonable time. Using this strategy, we have
obtained results that are indistinguishable fréﬁ the constant v,

cése, in the order of B0 iterations.

7. Discussion.

Le£ Qs summarize the main results tha£.wé have obtainéd:

i} We have constructed a vector'°Va1ﬁed MRF whose equilibriqm
configurations consist on piecewiseistraight linss of arbitrary

orientations. For certain parameter values, this field presents a

form of self organization, in which the’latticé is partitioned

into regions where particular line directions dominate. This form

of organization is very sensitive to (and may be induced by)
patterns that display some preferredkofientation,quch as ﬁflow

patterns” or boundaries of élongated fégions.

11) We_have designed a stochastic cellular automaton (a modified

Gibbs sampler) that efficiently simulates this field.

ii1) We have illustrated the use of this engine with a simple
applicatioh: the reconstruction of incompleté, plecewlse straight

contours.

All the algorithms that we have presented are fully distribuﬁéd,,A
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which makes attractive their implementation in {fine-grained
parallel mzchines (such as the "Connection Machine", Hillis,
1985). Such implementations should greatly increase their

computational efficiency and their practical value.

There are some straight forward extensions that may be done to
increase the applicability of this construction: one may, with
some minor modifications, define the (C,D) (or equivalently, the
(C,N,P)) field on a lattice dual to the one where an associated
"intensity field" is defined (see Geman and Geman, 1984), and use
it for imags restoration and segmentation (Geman et. al., 1988),
as well as for surface reconstruction (Marroquin et. al., 1987) ;
it is also possible to define more complex coupling schemes that
involve several, qualitatively different types of observations, an
application that is of particular interest to us. An interesting
possibility 1is the construction of MRF’s whose equilibrium
configurations are plecewise smooth contours. We believe that this
may be achieved with a scheme similar to the one presented here,
with a more complex updating mechanism for the D component. This,

however, remazins very much an open problem.



Appendix. The Gibbs Sampler Algorithm.

Consider the vector valued MRF f, defined on a lattice L. Suppose
that the state of each element f‘1 takes values on é finite set Q =
{ql, e, qu} . Supﬁose also, té simplify'the notation;'that the
only-cliques with non-zero potentials are of size dne and two, and
let Vl(-) and VZ(',~) denote the pdtential function associated
witﬂ eéch clique configqratidn.vlf there are observations present
(i.e., if we are using the posterior distribution.fo simulate the
field), there will be, in the energy function, é coupling term
@i(fi)‘for each site 1 (the férm Qf these coupliqg functions will
depend on. the probabilistic modei' fof the 6béervations). The
posferior distribution is: |

P (f ;'g) = (l/Z) exp | -Zizjem Vz(fi,fj)”-— Zi (®i.(fi) +

+ Vl(fi))]

where Ni is the”neighborhood of site 1 (in our case,

Ni o= {J : li-jl <2} ).

The Gibbs sampler algorithm (Geman and'Geman[f1984); consists in
updatipg.the state of the sites of L, one ét a time (although
non-neiéhboring sites may be updated in parallel), using the
conditional probability distribution vfér the _States,. given the
states of its neighbors,'fqr_thg_seleéfion of tﬁe'updated value.

Suppose that the sﬁéﬁé of sité fbis being updated. The conditionai

probability distribution w(q) is :




w(q) =¥exp [—ui(q)] / Zr e oSXP [—ui(r)]
whare ui(qJ = Zj c Nivz(q,fj) + @i(q) + Vl(q) » 9€Q

The updating algorithm is as follows:

2: for k = 1 to N, compute :

= ’ &’ .
a a _, *t Vv, (qk)- i(qk)

k k-1 vz (qk’fj)

Miem
where V;(q,r) = exp [-Vz(q,r)] ; V; (q) = exp [-Vl(q)] and @’(qg =

exp [& (qi)L

3: compute a pseudo-random number r with uniform distribution in

the interval [a_,a ].
0’ "N

4: find k such that r € (akd,ak] , and put the new value of

fi =q, .
Note that the finite size of Q implies that the functions V; and
V; can always be implemented as table lookup procedures. The
interaction function & , also takes, for the strong interaction

that we are considering in section B, a simple form :

® (q) = 0, if there is a pseudo-observation in site i, and q is
1
incompatible with it.

1, otherwise.
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