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1. Introduction.

The study of what has been called "Early Vision™ (Brown, 1984; Branju
1931; Barrow and Tanngnbaurn, 1981; Poggio, 1984) has, as one of its
qosls, the elucidation of the mechanisms by which a living being
l:.l_lll-:-.rUE-to internal representations of the physical structures of the
"outside world” - namely, the surfaces of objects and 3 picture of the
way they move. " i

A gond way of improving our under ‘tanding of the mysterious
bintogical.processes, is by studying the problem they are supposed to
salve, from-a purely mathematical (computational) viewpoint (see Marr,
1082}, From this perspective, the problem becomes one of designing a
distributed algorithm (see note [1]) for the recanstruction of a function
on the sites of a two-dimensional, finite lattice or "Retina’, given some
chzervations that constrain its value. This function can be real-valued
i.2., @ "surface” or an "intrinsic image"), as in the case of the retmxerg
of: depth from stereoscopic pairs of irmages; lightness; shape from
shading; the restoration and seamentation of ir‘r'lages and the formation of
perceptual clusters. It can alsu be vector-valued, as in the case of the
recovery of the velocity field from succesive frames of the same scens,
et . ' '

-

An important, cormmen characteristic of this class of problems, is that
the obzervations are so noisy or incomplete, that 1t iz not possible,
bazed only on them, to determing the solution in a a unique way ( 1n

- mathematical terms, we say that the problem is i11--posed {Foggio and
Torre, 1984}, or that the mapping, from the original function to the |
Eltl:;._. y.-jtlﬂln.?- ie many-to-onej. Thiz means that, in arder to find a unique




zolution, it is necessary to use, in some appropriate way, prior generic
knovweledge about the behavior of the solution {for example, we may use
the sssumption that the solution ahl:””d be smaoth, or that it should be
precewise constant, etc.h

One possible way in which thig prior knowledge can be included, is to
define a functional (3 variational principle) that expresses the desired
qlobal condition (such as smoothness), and then to define the solution as
the global maximizer of this functional, subject to the constraints
iimposed by the observations (see, for example, Horn, 1974 and 1951;
Hildreth, 1954; Blake, 1935). when these constraints are linear, Foggio
et al (1984, 19357 have shown that this functional can be constructed in
- .- -simatic way, using the so called "3tandard Fegularization” method
(Tikfionow, 1977}, They have applied this construction to the farmulation
of @ wariety of Early Yision problems, and have also propossd some
exiEnsions to cover some hon-lingar cases as well,

There is, however, another powerful mathematical tool that deals with
the use of prior knowledge for the reconstruction of unknown fuctions,
namely, statiztical - in particular, Bayesian - Estimation Theory. Ta use
it, we must fortulate the original reconstruction task as an estimation
probiam, which means that we have to propose a probabilistic model for
tha observations (that s, we must assume that they are corrupted by
noise whose statistical properties are, at least partially, known). Our
prior knowledge about the behavior of the solution must also be
expressed in probabilistic terms, i.e., we must construct a probability
distribution , on the space of all possible solutions, that reflects the
fact that some functions (for example, the smooth ones) are more 1ikely
to occur than others.

The increased effort invalved in farmulating the problem in this terms,
has & definite payoff: we can use the machinery of Estimation Theory to
construct efficient distrituted algorithms that perform reconstructions
that are optimal, with respect to very natural cost functionals (such as
the expected value of the reconstruction errorh

This approach has other advantages as well:
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Firstly, it provides a general framewark, not only for the separate
Tarnulation of & wide ""aripfg af pPrn“PpTual problems, but-also for the

incorporation of qualitatively different measurements in a single
coonerative o ?zflmailnn process; thus, 10 can be uzed to construct mmjp]
for the interaction of "perceptual modules” that so far have been trated
i an independent way (see Marroquin, 1985; Foggio, 19830,

Gecondly, the parameters that appear in the reconstruction algorithms
that are derived using this approach,-have a precise interpretation (for
enample, the relative weight of the evioence provided by each set of
r'l"frdr“mmn 15 determined by the variance of the associated noise
process), and its optimal valug can, in principle, be determined by
statistical methods.

mm&[, the plaw: 1um1u of the prior assumptions about the behaviar of

the solution, can be explicitely verified by generating sample functions
of the corresponding randorm feld, by means clf a Monte Carlo procedu "B,

7. Probhabilistic Models. o

- 2.1. General Definitions.”

'le bazic problem in which we are interested is the reconstruction of
- the values of a function on the M sites of a finite, regular lattice £. To-

-~

fof HII']JTE this problem in probabilistic terms, we need the concept of & .

andom field defined on £, that iz, @ collection & of random variables
it le ed by the sites D' £

Fe{Fy i e L]
- duppose that each one of th g3 randam variables Fi s can take values on
some et Oy L we will any possible sample realization
CFEf 1 e L) with f]- £ Q. for all i ¢ £,8 ronnqurafmn

i
of the field kﬂne zet of all valid 't:xzim'igl.n“ai‘.in:l-ns is called the "sample

)

.
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IT we assume that any valid configuration can occur with positive
provability, we can always write the probability distribution of the
ccmfmlu ations (i.e., the joint probability density of the random variables
LFy £} ) in thu "Standard Gibbs form” (see note (2]

Pe (20 =C1 /72 enp[-UCH) /T (1

whaore 2 15 a normalizing constant; U is called the "energy function®, and
T is a3 parameter.

A5 an example, consider a figld of M independent, identically distributed,
zoro mesn, Gaussian random variables, In this cage,

e 'x’ ¢ Y . - ~
z=@noy2 s w1z andT =202
el
Mote that for this simple model, it is straightforward fo generate 3

ample function: we only have to generate N independent, identically
ﬂ]blrlblltf-’lj (i.i.d.) Gaussian pseudo random numbers.

2.72. Models for the Obsarvations.

Suppose that a sample configuration / of the field is given. We will
assume that the observations g are obtained from 7 by 3 deqradmg
aperation (such as sampling or blurring), and by combining the resulting
degraded field ‘.1th a noise field formed by i.1.d. random variables. This
combining operation can fake several forms; it can be, for example,
addition or multiplication, or it can correspond to an error being
commited in the transmission of each value of # , with certain
probability. Inany case, we require that it be reversible, in the sense
that it shauld be possible to obtain the value of the noise from the
values of f and g If this 15 the caze, the conditional distribution of
& aQiven [, IT , Lan be obtained directly from the noise distribution ;

gazuming that ‘r.he latter can be written in the standard Gibbs form, we



[Zew]
(g2}
=

F'Qlf:U/ZC)E'Ap[—@:@{ g7 (2

where wis called the noise parameter, and %, the noise statistic.
Two examples will clarify this representation:
5y Suppose that the observations are obitained by adding to the value of

T 1||f> sites of @ subset 5 of £, zero mean, 1.1.d. Gaussish nofse of
varisnce o, In this case, Z. = (2ng?)! m/2 ; o= 1/(20%) , and the

noise statistic cor rw;pnnda to the squared "distance” between the ﬁelds
Soand g, taken over the sites where an obgervation is present:

'r.p(f;g‘; =Y -5 ¥ (3
h) Suppose that # is a-binary field, and that the observations are the
cutput of a Binary Symmetric Channel (B3C) with error rate p (see
Galla :1:4 1973, Uthaf

‘ ((1=p) , i1 1y = gy T
Pr(gilfﬂ:*’{ | o ,ies

Inthis case, 2. =15

'cx:m[(l-p)fp]. , o (4]

and the noise etatistic corresponds to the number uf sites where an
error has been wmrmtted, i.e., ' '

& =

[\

(1-801, -0) (5)

1£




¢ 1, if x=0
vihers 8{x) = 4 (6)
L0, atherwise

2.%3. tadels for the Solutions: Markov Random Fields.

Let us now consider the problem of constructing a probability
diziribution on the space of all possible solutions (i.e., of random figlds
defined on £ ) that correspond to a given qualitative behavior. The
sitnplest way to accomplish this, is to specify the probabilistic
conehidencies between different elements of the field. Since we want to
Lz chile to process images that consist of separate abjects (i.e., to
reconstruct surfaces that are, for example, piecewise smooth), we are
mostly interested in fields where these dependencies are local , in the
sense that the value of the field at each location depends,
probabilistically, only an @ small set of neighboring sites (the
"nzighborhood” of a given location). These fields are called Markavian,
and the probability distribution of their configurations has the property
that, when written in the standard Gibbs form (1), the energy function U
can always be written as the sum of a set of "Fotential Functions® which
sra supported on the "cliques” of the neighborhood system of the field ( 2
‘cligue” i3 either a single site, or a set of sites such that any two sites
balonging to it are neighbors of each other) :

£

U= Vel #) (7)

where ¢ ranges over the cliques of the system, and each function ¥ has

¢ as 1ts support.

It this way, the desired probability distribution can e constructed
simply by specifying the neighborhood system and the local potential
functions. As an example, the behavior of piecewise constant surfaces on
g zquare lattice can be modeled in the follawing way: the neighborhood
of 3 zite 7 of the lattice is defined as its nearest neighbors, i.e.,



HERIEN IS IR Hote that, for an interior site, the size of this
wighbarhood will be 45 if the site llie-z: at the boundary, but not at a
corper, it will be 3, and for the corners , it will be 2 (this field is
called @ "first order MRF with free hulmdarm "), For the potential
functions, we use the generalized Ising potentials (Ising, 1925; Geman
and Geman, 19540 :

-1, i1 Ji-j] = tand 1

| =1
"-z":f.:f]-,fj) = { 17 it li-1] = 1 and f fj | (5
| 0, otherwise |

\l.'-,f_i-,'g:r'r?. we assums that 1y ¢ 194y oy wens qm}_‘ for all i. The Gibbz '

| ""-:~1"'ri§m’r1|'ri'| H,, with U qinpn by (7) and (&), defines é‘dnéparameter

o fzmily of mor 'e s (fndexed by T), describing piecewise constant patterns
with verying degrees of granularity.

2,4, Generation of Stzmplo [Ismxgmg ans of MRF’s.

I this sectinn wi present some algarithins for qpneratmq cwmqur tlr.n'*
that are random, but whose values satisfy the probabilistic dependencies

of the given MRF, 1.2, , sample functions from the Gitbs distribution {1,
Coweith U g"mn by (7). To do this, we identify the value of the field at earh
~gite with the state of a g particle of @ hypothetical ¢ :gdﬁa] system
winga energy 45 given by U, 17 this system is allowed to reach thermal
equilibriurn at termperature T, its configurations will be distributed
accarding to (1) (Reif, 1965); the equilibrium behavior of - '*urh a f—*u“fpm
can be rmodeled by the steady state crf Markay chain (whose states
rnrtwpﬂrd to mw‘antanpnus n.lmlqlnatmns of the field) p'n:mujwd that

~a) The chain is t*egu]ar {(which means ’chat_'ang.t".-'-«'o a]]U":‘"(Bd.
ccontigurations are mutually accessible with positive probability).

b3 It has (1) as.its i 1“:1mm‘ nw:asz:l.n'e (Kerneny and Snell, 1960).

After the work uT Metropolis et al (1956}, several algarithms have tme

p=

-~

-~




pronesed for generating this chain {specifically, the Heat Bath algorithm
(Haziings, 1970) and the Gibhs Sampler (Geman and Geman, 1984)). The
basic idea in all of thern, i Lo wisit every site of the lattice in some
presorived (deterministic or pseudorandom) order, and, when a site is
viziled, to generate, randomly, & new value for its state, using a
trsnzition probability that depends on the current state of its neighbore,
ahd that quarantees the invariance of the distribution {1). The
Metropolis and "Heat Bath™ algorithms generate this transition
probability by selecting @ new “candidate state” at random from the set
of zllowahle states (using a uniform distribution), and then accepting or
rejecting this transition, with a probability that depends on the value of
the energy increment associated with it. The Gibbs Sampler, on the other
hand, equates the transition probability to the conditional distribution
for the state of the visited site, given the state of its neighbors (we
vwill discuss this algorithm in detail in section 4).

Tha Metropolis algarithm itself is efficient and simple to implement in a
serial computer; in a paralliel machine, howeaver, one would like to update
the stste of all the non-neighboring sites at the same time, and in this
cEse, the reqularity of the Metropolis chain is lost, o that it is no
longer possible to guarantee its convergence to the desired Gibbs
distribution (see note [3]). Therefore, if a parallel implementation is
desired, either the Heat Bath or the Gibbs Sampler schemes must be used
(a more detailed description of all these algorithms, and a discussion of
their serial and parallel complexity may be found in Marroquin, 1985).

Thase glgorithms, not only provide & practical way of checking the
appropriatness of the proposed MRF for modeling the desired qualitative
behavior of the field {and for the calibration of the parameters of the
“madel), but more importantly, they can be used for the computation of
thw optirmal solutions to the reconstruction problem, as we will explain

i the next section. Their use is illustrated in figure 1, where we show
three typical configurations of a first order MRF, cbtained after 200
iterations of the HBA, for different values of the interaction parameters.

Figure 1 around hera
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3. Dayestan Estimation.

Once we have formulated the reconstruction problem in probabilistic
terms, its solution can be found as the optimal Bayesian estimator for
thie Markovian field £, given the observations g. This estimator iz
dufined an the minimizer of the expected value {taken with rezpect fo .
the posterior distribution Py lg J of a given cost functional, The

nosterioT vistion is Tound umg Bayas rule:
Pa]1.Ft
Prlg*
_:ng _

Since for a qi ;HH et of nt’:e-uaf ions PQ ig just 3 narmalizing constant,

ahd Ff th- the form:
Fe= (17 2) exp [ - Ug/Ty ]

With Uy of the form (7), we can use (2)'to write Pl in the standard
Gitbs fortn : .

F‘Tlg x’r:(z:(Tg})usp[ g/';-rg"'_tx‘z’]‘.“;‘(‘))

This Gibbe distribution corresponds to the equilibrium behaviorof a
nhyzical systern in which the origingl field is coupled with a fixed,
-external field whose intensity is given by the observations. The
interaction term is given by &/ ,4), and the coupling strength.by o




3.1. Cost Functionals.

A cost functional C(/, ) measures how close is an estimated
configuration 7 from the true one /. The one that has been most widely
uzzd (although never in an explicit way) is one that is equal fo zers only
if fi = ﬂ- , Tor all i, and is equal fo some positive number M othervise.
Since minimizing the expected value of such cost functional, with
respect to Py l g0 is equivalent to maximizing Py IQ itself, the
carrespanding maximizer ig called the Maximum a Posteriori (or MAF)
estitmator.

This astimator works reasonably well if the signal to noise ratio is
roistively highe In the high nofse situation, howeyer, it tends to be too
conseryative (in the sense that it practically disregarus e
nbservations, and relies almost exclusively on the prior generic
krnowledge), since from its viewpoint it is equally costly to make one, or
one thousand mistakes.

& better approach is fo define, for each particular problem, a cost
functional that is in closer agreement with one’s intuitive assessment of
the performance of the estimator. As an example, we will now propose
cost functionals (and derive the vonesponding estimators) for two
particular problems: image segmentation and surface reconstruction.

Consider a field # with M elements, each of which can belong to one of a
finite set @y of clagzes. Let f; denote the class to which the ith olement

belongs. The segmentation problem is to estimate # from a set of A
cbservations {gy,..., gp}. Note that f; does not necessarily corvespond to
‘the image intensity. It may represent, for example, the texture class for
a region in an image (as in ENliot et. al., 1983}, etc.

A reasanable criterion for the performance of an estimate /s the

3
number of elements that are not classified correctly. Therefore, we can
define the segmentation error as:
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where § (7 was defined by (6)

In the case nf the reconstruction problam, an ec‘umafp ¢/ should be

- considered “good” i it is close to 7 m_.he ordinary sinse, that thrJ

tofal squared error:

-

|

N

—

=1

a reasonable measure for its performance.

{0

To derive the optimal estimators withrespect to the criteria stated
ahove, we Tirst present the general result (which can be found, for
examnle, in Abend, 1988) which states that if the posterior rmarging
distributions for every-element of the field are known,-the optimal .
Eayesian estimator with respect Lo any additive, positive definite r:uﬁ’r
functional C rmay be found by minimizing independently the margina
grpected cost Tor each element,

In mare pr"'se terms, we consider cast functionals of the form: -

W 1 t h
| (=0, ifa=t
Cifa,b) |
 le0, dfa=b, foralli

vie will assume the value of each element f; of the field is constrained
to belong to some finite set (; (the genaralization to the case of

compact sets 1s st mthmrward The optimal Bage:si:an estimator /*




with respect to the cost functional C, and given some otn“er'zaﬂun’-' 7,15
defined as the global minimizer of the expected value of C over all
possible 7 oand &, One can prove that this estimate can D found by
minimizing independently the marginal expected cost for each glement,

i.a.,

’f"] =q zr ¢ Qi E (r, Q) F" {r) < zr ¢ Qi C] (r,S) F'] {r)
for all szg and all 1 e L

where Py (r) is the marginal posterior distribution of the element i

Pit=2  Prglrig) (14)
F fi-'-l' .

The optimal estimators for the error criteria defined above, can be
easily derived fram this result {see Marroquin, 1985):

It the case of the segmentation pmb]em,i we get thats

f*] :qEO] H P] (q)‘*P-I (r) (]5)
forallrzq

v will call thiz estimate the "Marimizer of the Posterior Marginals”

).

( £ ppoay
th‘

For the reconstruction problem, the optimal estimator is:

f*i=qEQ;:':T—1‘Q)2<(ﬁ‘S)2 (16)
for all s 2 g

Wea will call this estimate the "Thresholded Posterior Mean” f,rmﬁ,

To ilustrate the difference between the MAP and these estimataors, let
iz consider the following sifnple example:

1

g YWE nave

i
=i
c
T3
a

a one-dimensional, binary field / with Ising potentials



fare aqug’firm fo’n arp 3 tohtiee ot has only two sites | so that the set

of #11 possible configurations of the field is & = {00,10,01,11} ), and
- suppose that the observations g are the output of a BAC with a given

error rate. Using equations (23, (4), (5) and (6], we can compute the
posterior distribution:

Pflg (f,'g) = (1/Zp) e}ip[ ‘(If/Tn) l"/c "f-flifl’) - ® @‘( f-,hi.;r} ]

SUppose, i ﬁarticmzﬁr; that gy = 1 and g, = 0. If the SHR 1 i ralati vely
o fenacifically, if o < 2/Tp ), we will have that:

Pflg_(”:’zpfigioo)}fitl (10} = P‘i]g“

g *

an that the MAP estimator in this case is not unigue, and is.either 11 or

oo,
on the other hand, the posterior marginals are: |

P} = By g (1) + Prj (10) 5
F'.1f[:]) = Flflq {01) + Ptl {00\' 7
Fa{-”)"Pf!q r’ﬁU‘|+Pflq{10}

C le T, Py (1) > P (U} and. F' 2{0) > Pol1) , 0 that the MPM estimator is
10, ' ‘

'. For larger lattices, the situation iz similar, and the differences in
performance, mare dramatic (particularly for low SHR). This is
iNustrated in the example portrayed in figure 2.: panel (&) represents a-

typical realization of a 64 by 64 Ising net with free boundaries, usinga =

value of Ty = 1.74 5 panel (b), the output of a BSC with error rate equal
to 0.4 5 panel (2}, the MAP estimate, and panel (d), an approximation to -
the MPM estimate, Whin::h is clearly better than the MAP from almost any
yigwpaint, |




Figure 2 areund here

5.2. General Monte Carls Algorithms.

A11 the estimators that are optimal with respect to cost functionals of
thz form (13) are easy to cormpute, once the marginal posterior
probzbilities are known., These marginal distributions, in turn, are
enzemble averages (with raspect to Fy g ) of & functions {see equation
(@)

Fl‘i (r):z‘f & (f.l - 1) Pflg(f;:’t?) ‘

{in some particular cases, such as the TPM estimator, it may not be
hecessary to compute the marginals, since the estimator is easily
computed directly from the ensemble average of /). In any case, the
camputation of optimal estimators can be reduced to the approximation
of ensemble averages, with respect fo Py IQ , 0f specific functions. To

perfarm this approxirmation, we recall that, using the Heat Bath or Gibbs
Sampler algorithms, it is possible to generate a regular Markov chain
that has Py IQ as its equilibrium distribution. The law of large numbers
for regular chaing (see, far example, Kemeny and Snell, 1960)
extsblishes that the fraction of time that the chain spends on a given
state £, will tend to Py lg (7 ;) as the number of time steps gets
large, independently of the initial state (i.e., we can approximate
ensemble averages by time averages), so that the posteriar marginals
fnay be approXimated by:



and the posterior mean DU

n
2 (1) S 1 | (18)
t=k
Whore t) ig the configuration generated by the Monte C m a]qwrﬁhm
i tmn:. t_. nd k iz the time required for the system to reach equilibriurm.

imilar Monte Carlo procedure can be used to approximate the MAP
catimator (Geman and Geman, 19830 In this case, the associated cost
fznu,L nal is not of the form .,'J)_, and thus, .r;,.%p cannol be abtained
girec lu m terms of ensemble averages. It is possible, however, to .
71mrndl Ice a new “temperature” paramwtpr and form a family of
istributions:

Pr= ii,fzp)lexp'{ -{1/T3 ':‘Uo-f'T}iJ ted)]

(note that PT coine 1r_!ee with Py l then T = 1), It can be chown the
global maximizer of Py lg will correspond to the equilibrium
CDI;T]QUI’.@UDI’] of a chain that has Py as its invariant distribution, as T~0.

The rethod for finding this equilibrium configuration (the “ground state”
of the system) is callzd "Simulated Annealing” (Kirkpatrick at. al.,

1923}, and it consists in slowly decreasi'ng the"'fempgratl.lre" paramefer
T while the system (the Heat Bath or Gibbs Sampler chain) is mantained
in equitibrium. It shouwld be noted that this process will ba, in general,
cornputationally more expensive than the approximation of the ensemble
'“'J'mririf' 3 funr‘tinn at a fized temperature T = 1.0. Besides, since in
tae latter case we are using a Monte Carlo proedure for appraxirmating
the value of some integrals, we should expect a nice convergence
behavior, in the sense that coarse approxkimations Lan be cormputed very
fzzt, and then refined to an arbitrary precision (in fact, it can be proved
(see Feller, 1950) that the expected value of the squared errar of the

-~
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eotirmates (17) and (18) is inversely proportional to n-k).

Finally, we point out that, since maximizing Py IQ is equivalent to the

tinimization of the posterior energy:
Up = UpfTotwd

the MaP estimator can be considered a generalization of the
regularization method far solving this class of problems (see Poggio et.
al., 1934}, & represents the constraints generated by the observations,
anid Uy, the smoothness assuraption. If these terms are quadratic (which
corvezponds to a Gaussian assumption, both for the noiee and for the
ficld), the MAP estimate coincides with the "Standard Reqularization”
solution, and its value can be found by efficient, deterministic methods
{z2z Terzopoulos, 1985).

4. Deterministic Cooperative Networks.

Ve will now discuss & general procedure for constructing deterministic
cooperative networks that can be used for obtaining good approximations
to the optimal estimators for Markovian fields with finite state space
{i.e., when the random variables of the field take values only on a finite
et W= {Q1,..., qﬂ} }.

As we mentioned above, the optimal estimators far these fields can be
easily abtained once the marginal probabilities Py (q) are known; these

marginals correspond, in the Monte Carlo scheme, to the fraction of time
guring which the variable associated with each site i takes a particular
vilue qeQ, as the Markov chain generated by the algorithm evolves, e
will now use a “mean field" approkimation to construct a deterministic
network that simulates the evalution of these marginal frequencies.

To understand how this is done, let us consider the Gibbs Sampler
slgorithrn in detail: it can be represented by an M-layer binary stochastic
netwark F; with each lager corresponding to an allowable value for the

-~
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random variables of the field # (thus, if fs (t) =, we have Fy {U =1,

and F (t) = 0, for r & q ). Each site of the Tattice (each column of F) is

yisito ;j in turn, When the 1”‘ site is visited (say, at time tJ, the
condditional probabilities "ri(t) are computed using the expression:

B [-'-*1“) {q) ]

‘ . \'h'{iitzll'r'q) = Pr l'{'fi(t) =q l fj(t:| " j# i) = v
@ N . . o DreQ BRP [-uim (r) ]

whers m(q; iz the local energy or 1tatm received by thP (i,q)
cell of the network F at time t, _Fur example, for a firet order field, we

B AT e L
inhes

5@ = Tge Ve @l ok, qeQ

cyehire M 10. the neighborhood 'of.s-ite I; ¥, are the potentials for the MRF
omedel for £, and B iz the local noise term (for example, in the case of
agditive, w mu: bau;;mn noise, if there is an observation pres&ent at site
i, wae have Huf P (q} = {q - g]ﬂ | |

Mext, @ random number n di-*fritu fad according to w]-':t) , 15 generated,

Suppose n = q . Then, we put f A1) =g (i.e, Fy q‘:“” = 1, and
Mg, torr = ). FinalTy, the estnﬂatea for the marginal

i,r
probabilities ‘are updated using the expression :

- _ = Pi':tﬂ) (r) =% Pi(t) (t") + (1 - j\_) Fi r_':t:‘ o EvQ |

where & € [0,1] is & parameter related with the size of the time window
used.for the update, | |

Inthe defermim tic sche gme, vre model the average behavior of the
stochastic netwark, so that the estimate for Py(g) is replaced by its

‘LU nditional) evpected va Tue. ThP update ex Flfeoo]nn becomes:

17




Pif_ti-i) (ry = E [Fu],(tﬂ}lp(t)] =% P]-(t:'f;r) + {(1-3)F [Fi,r lp(t) I, l"EQ‘

zince EIFyp IP“')] =E[E[F;, I.?‘fi(t}(t')] |Pm]
and El Fj,rl"f’/]‘(t)(r} =1+ W]-(t:'(r) + 0 (1-'1'"."]'(][)(!‘)) = wj(t)(r)
sothat  ELF, | PO =€ 1wy 00 | PPT = Wit

we {inally get :
P D = PO 0+ (-0 W) (19)

'T'-.fi(r} can be approzimated using a "mean field" assumption, which in this

case takes the forme

exp [T i)
;) = (20)
or [ (£
Dreq 8%p MG ]

where Il']-(t)(q) is the average excitation of cell (i,q) at time t:
B0 = € luyfe) [P = Ty req Vol PP +  24iq)

It is aleo possible to use a weaker assumption to approximate ¥,
narnely, the linear independence of non-neighboring sites of the field 7.
Using this assumption, one gets the formula:

expl-od; (73] §;(q)
wift)(q) - _ (21)
Dreq expl-ud;(n] §;r)

wlizre f)l(q‘} = ﬂjéf"ﬁ {ZSEO P](t)(S) EXP[';"-EC‘:Q,S:‘] :'

- Mote that in either case, in this deterministic scheme, the value of the

-~
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fizld iz never compufed explicitly. The algorithm corresponds to an
M-Tayer cooperative network P where the state of each cell (i,q)
corresponds to the current estimate of the marginal probability Pytg). At

the fixed points, the system will satisfy the mean field equation:

A ]

L]
2)

b

4.1. Stability.

Hedriztically, the stability of the system (19) (using either (20) ar (21)
to approximate W), follows from the regularity of the underlying Markoy
chaing This consideration is reinforced by the experimental behavior of
the :al;y:nrithrrn,_ which, in fact, is found to converge to a solution of the
form {22). More formally, one can guarantee the stability of the system
by introducing. a time-varying "temperature” parameter T in the
approximatian (20) to ?.'\7']- , ‘which now becomes: -

o ZT'({Q eAp ["L’_i':t)(r}'j T(t) ]

{23

where the function T{t} (the "amﬁe%]fng schedule”) is a non-negative,
decreasing function satisfying T(0) = 1. (we have used the schedule:

[ 1, for t<tg
Tit) = 4 o
|

exp [-(t-t)&/z2] , for t >t

with qoad experimental results. Typical values for the parameters are :
fp=0and v =29) -

In the appendix, we show that if T, = 0 , the deterministic system given

by (19) and (20), for a first m'de'r, M-ary field will always be stabile, and
converge to a (Jocal) makimum of the posterior probability Py ig‘.

-~
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e have found, experimentally, that the convergence of the system
described by (19) and (23) (with the annealing schedule given abave) is
vary fast: one can get reasonably good results in less than 10 iterations.,
The convergence of the sh:u:m given by (19) and (21) iz slightly slower:
it might take about 20 iterations instead of 10 (one cannot use
"armealing” in this case), but the final results are better than in the
1'nrrrmr case. The results of a typical experiment are illustrated in figure

s wehere we estimate a non-isotropic, ternary field corrupted by
ad ditive Gaussian noise (the values of the original gray levels are
aszuned to be known). The estimate obtained after 500 iterations of
the (zeymptatically optlmal) Maonte Carlo scheme described in section 3.2
iz alzo prezented, for comparisaon.

Figure 3 around here

4.2. analog Metworks.

Let h denote the time increment for system {19). Set % = 1 - h/v,
where v i a parameter. Taking the limit as h = 0, one can conetruct a
continuous-time systern equivalent { in the sense of having the same sat
of fixed points) to the discrete-time system (19):

d Dﬂ:ﬂ)
——=- (/) (plg) - wilgh) , Tel , geQ (24
dt

This system can be implemented using an analag network with non-linear
amp]mer* wtmce Qains are given by the function w. For example, far
binary fields, and using equation {23} to approsimate w, we get a
smgle—lager netwm K, with

it = 100+ exp (2071



and FUED RSN (25)

This t'm‘«mrt is related to the ones proposed by Hopfield (1985) (see
alen Koch et.al,, 1986) for the solution of combinatorial optimization
prefilems (see note [4] ). It is interesting to note that, although in the
zero termperature limit both tupes of netwark mH hiave fived points at
the local minima uf the posterior energy Ur » their dunamic behavior will

be very differer ﬁ, so that even for the same initial state (frjr gxample,

F’,]' = 0.5 s

YWe nave performed simulations of both systems, and have found a much
betier performance for the scheme described by (24).

It is possible to construct deterministic cooperative networks to
cornpute estimates of Markovian fields that have non-zero potentials for
cligues with mare than 2 elements, provided that the appropriate
formiae for the average excitalions are used. As an example, cansider a
binaty, second order MRF whose only non-zero potentials are given by

o

PR )T ke W

]
1
L g , otherwise

whare H3- = { |, k 2 =il = k] = s k] = A2 (see figure 4);

f: e {01}, for all i ,and P is same real-valued function.

Tor &l i), t hiey will, in general, converge to different solutions.

Figure 4 around here

I anewishes to use the approximation gi ver by Pqudﬂﬂn (23), the
AYBrane ey citations shnu d be r:mn;::u‘rmj usings
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warl) = E‘ pH‘IPJ(O‘nPk(H‘1+ PO2Y TP i]lF’ilU) +F’J(’0|P MK

+ Pi3) F‘jU)F‘k(U I+ oo @)

un) = 3 [pL0) PyL0IRL0) + U1) (RS (OIP 1) + PLIPLL0) ) +
JiK € NEi
# P2YPHIRD ]+ o 4(0)
We will present a practical application for these higher arder fields
when we discuss the reconstruction of piecewise continuous functions in
_____ an 7,

G.h. winner-Takes-AllT (WTA) Networks.

In the zero temperature 1imit, and for the particular case where X = 0,

the deterministic system defined by (19) and (23) warks, in fact, as 4
WTA netwoaork, in the sense that only the maximally stimulated elements
n zach column will have a non-zero updated value.

This scheme can be implernented in & binary network , it & "restoring”
tmechanisin.is introduced, so that the updating scheme becomes:

(1, if ;;],(t} fg) = 1/2!1 {or equivalently,
o (L4 i) g = { if a—i(q) }Ei(r) ,r=q) (26)
Lo, otherwise.

Metwaorks of this kind are very efficient in the use of memary, and can
be useful in the solution of certain classes of problems (such as the
computation of depth from stereoscopic pairs of images, a problem that
we will discuss in more detail below), where their wn“ergence to "good”
solutions can be guaranteed.

)
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5. Parameter Estimation.

The algorithms we have described give excellent results when the
parameters that characterize the system (the "figld” and "noise”
porameters) are known, In qunPr al, however, this is not THP case, and
these parameters have to be estimated directly from the (noisy) |
ohservations. This problem, whose solution remains very much open, is
not exclusive of this forrnulation. In a1l other approaches to the
rrﬂ"-'r«rlrr’r]on problem (such as the "regularization” one), there are also

e p;ramwmr' that have to be adjusted (usually, using a trial and
BTOE procedure),

Aze, Since we are using a probabilistic formulation, we can, at

ciple, define tha "best” value for these parameters in 3
precise way it is the value that maximizes the likelihood function:
b . : - 4
2 &pl-Uy (5g ]

Lig]g)=1logRig |8l =1og

2 rn epl-Uy (] 6)]

!

wehers 8 1» thp parameter ver,’rnr and Up iz the pnatérior -e;n-e'fgu.

Ilmn runjfelu, the & straordinary complexrity of this function makes its-.
direct raximization unfeasible. There are indirect methods, such as the

N EH 31q:‘ur1tt'n'r|" (Dempster et, al., 1977; see note [S]), but they are
practical o ﬂu if the number of unPnoﬂ.*m parameters is small {one or

t.ml '

wWe Have developed a different approach, which is compUtatmnEHg mare
efficient, and may,in principle, be used for mare that two unknown _
parameters. The basic idea is to uze same statistics con pu"tpd fram the
data to canstrain the space of plausible values for the estimates to a
simonth curve . Imti s waly, we can perform an exhauutwe search for the'
~global minimum of an appropriate ferit function by varying _n:jontmuuuslg
the values of the paramotpf\, so that the equilibrium of the Gibbs chain
13 tantained.

To iNustrate this ides, we consider, for example, the case of a binary

-




Izing field where the noise carruption corresponds to a BSC (the ides can
be easily extended to M-ary Ising fields and other noise models - see '
nate [&]). '

Wa define the statistic Ug as:
Ug = > Wigy , ¥
i,
whers ¥ 15 an Ising potential (see section 2). If the errar rate of the
channel is ¢, we have that

ElUg [ oTol=ELUg | &, Tgl(de? - de+ 1)
Mote that the function

E{Up | e, Tol=ElUy | Tgl=¥ (T

iz independent of the data, and thus, it can be pre-computed for any
given lattice size, using, for example, the Mante Carlo procedure of
section 3, but this time with the prior energy Uy instead of Up {in figure

5 we show this function for a 30 x 20 binary Ising lattice with free
boundaries).

Figure 3 around here

Therefore, we get:

Ellg | «Tgl=¥ (To) (42 - 4e+ 1)

If we make the assumption that
ELUg l Ty ] = Uy

Yehers T_Tg is the observed statistic (see note [?]), we can constrain the

search for the estimates o, Ty to the curve given by the equations:

b
2

. _ R I
£ = 1/3 [ 1 - C Uq"'f \IIKTU) 'L ]
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gz In [ (1 -€)E) o7

A% a merit function, we have used thé squared difference between the
conditional and unconditional expected values of the sufficient statistics
(zee notes [2] and [S]):

(FE [ e v'g.,?,c:t,'lz(, J-E [ l c:t,'fﬂ 132
S{ELUy | gy 1-EQUy | &Ty 1)

~
N
-
4
)
St
§

g
o
S

It

""n - ’74’ + '”g - \I"{Tu‘ ) | {

'-‘v'al'-"H_!.i l:Z‘Z:D = ]ﬂ [ {1 - ED:I

t“ and U,I are the conditional expected.values of the noise density and the
field potentials, respectively, and can be :rpprn,qmafmj gither as fim
averages of the corvesponding Gitbs chain (using the posterior
distribution given by equation 10), and with & and T[, as parameters), or
from the stationary (posterior) marginal probabilities, if the
oefsrrmmcm system is used (:ee_ belavy). The mphma estimate for (u
Tyl can nowe be c:tutmnﬂd a5 the global minimizer of £ over the Curve

r_rl

D

Other merit functions mag also be used (sme section 6.3) 5 this one,
however, has the advantage of having a precise interpretation: it

- corresponds to the norm of the derivative of the true likelihood function
{zee note [S]), so that it will be zero at its local raxima. This also
suggests the use of higher order cumul nts (for example, the covariance
matrix) to approximate the corres pundmg higher order derivatives, and
improve the optimization strategy, but we will not pursue this point
here. Mote that if Ty (and hence o) are varied slowly enuuqh, so that the
azsociated Gibbe chain ig mantained approximately in equilibriurn, the
computational cost of this search will tne equivalent to that of a single
'~1mf lated at nealing” experiment,

Th' = eshmahnn Jlgnmfhm JHH ''''' = us to reconstruct a p tzrn £ from the
noi sy obseryations g withaut ha'.wng to adjust any free parameters, The
onty orior a+umphnw £arrespond to the qualitative atr.uture ot the

2
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field / (first order, isotropic MRF) and to the nature of the noise
process, In practice, this means that we can apply it to restore any
piccewise uniform image with unitorm granularity, even it it has not
teen generated oy a Markoy process. We have used this algorithm to
reconstruct a variety of binary images with excellentresults. In figure 6
wi show such a restoration. The observations (b) were generated from
the synthetic image (a) with an actual error rate of 0.20 {assumed
unknownj. The optimal estimate for # (using the deterministic system
given by equations (19) and (21) ) is shown in {c). The behavior of the
function £ along the curve (27) is shown in (d). |

Figure 6 around here

It =hould be noted that all the average quantities required for this
parameter estimation procedure , can be approximated using formulae of
the form:

3 = 2geq Pi(@ 30

where 3; is the desired average; a;(q) is the value of the variable 3,
obtained azsuming that f; = g, and Py(q) is the marginal probability,

pztimated using either the Monte Carlo or the deterministic procedures
described in section 3 and 4. Thus, for example, the expected value of
the noise density over the lattice, €, can be estimated as:

& = 1M Jig Daeq P @ (1 - 8(g-g))

where N is the number of sites of the latlice L.
G. Examples.

In this section, we present some examples of the application of the
methods that we have presented, to come problems which are relevant in
carnputer vision, In particular, we will discuss: the reconstruction of
piecevise smooth surfaces from sparse obseryations; the formation of

]
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rwrreptua clusters, and the reconstruction of depth from sterecscopic
pairs of images. '

6.1. Reconstruction of Piecewise Smooth Surfacas.

In several problems relwant to computur vision - for ex tample, in the

- reconstruction of depth from stereoscopic pairs of images- one can
frequently estimate the desired property (say, depth), only at a set of
F:p'r:l‘:!? locations in the image. With these data, one then wishes 1o
reconstruct the surfaces of the corres ponding objects (which one
assumes to be piecewise srnooth), but preserving the discontinuities that
correspond to the boundaries between them, '

To apply the general recor 'utrucunn algorithms. devel rxppd above o this
prr:uh]em, the rmain issue is the representation of the concept of
"piecewize continuity” in-the form of a prmr Gmhc distribution in 3

wwamanu] Y ay.

A Tlexible construction involves the use of two coupled MRF models: ong

- ot represent the function (the surface) iteelf, and anciher to model the
curves where tha field is discontinuous.. This last field lives in a lattice,

whioge sites correspond to links between pairs of adjacent sites of the
"surface” field {a coupled model of this kind was first used by Geman
~ans Gernan (1984) in the contpxt of the restoratmn of piecewise

COns Ton‘t images) ' - :

In our case, the potentials that rrodel the coupling between the two
tields take the form:

P for il -

, Otherwise,

Whate 11

i3 equal to ong, if that line element is "on dnd equal to zero, otherwise.

-
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The shape of the lines is controlled using the value of potential
functions , that are associated with the configurations of different "line
cliques”. We have used, for example, the cliques (&) and {b) of figure 7.

Figure ¢ around here

The corresponding potentials, Vg , ¥y encourage the formation of thin

lines with smaoth curvature; their values depend anly an the number of
zctive lines in the clique, according with the table:

[N
(9
B

Fumber of active lines: 0 1

V.: 0 0.4 .25 1.2 2.0
Yo:r 0 0.0 100 - -

Assurning that the observations are corrupted by i..d. Gaussian noise, we

get the following expression for the posterior energy:

U7 ,6 5 ) = 17T 2 5 (fi-fj)zﬁ-bij) + 1/(20%) Jieq (g2 +

*2ca Val#)* 200 Vol o)

P

where § is the set of sites where an observation is present. As a
performance criterion, we use a mixed cost functional of the form:

cir, s, ;‘“} 5 )= Zi (fi--f“i)2 + ZU {1-5([3]-]--5”)) A

where the sums range over the sites of the "surface” and "line” lattices,
respectively, and §(+) is defined in (&), This error criterion means that
the reconstructed surface should be as close as possible to the true
{unknown) surface, and that we should commit as few errors as possible
in the assertions about the presence and absence of discontinuities.
Applying the results of section 3, we find that the optimal estimators
will be: the posterior mean for /, and the maximizer of the posterior
matrginals for 2. -

[
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The computation of these estimates poses some special per gms, dug to
the fact that the variables of the £ field are wnhnwu -valued for can
take 3 large number of discrete values), The details of the algorithms
used to approximate them are given in (Marroquin et.al., 1986 ,'!'t re, we
anly precenf in hgur& 8, an illustration of their pmmm nce

Figure B around here

6.2. Reconstruction of Depth from Siereoscopic Pairs.

Tha reconstruction of depth fram qtereLxswpm pairs of images of natural
scenes is g difficult problem, whose solution {i.e., the construction of an
algorithm whose performace matches that of human beings) is still open.
(ne of 1ts main parts (although nat the only one) is the problem of
nutc.hmg ‘tokens” that occur in both images alang epipolar lines (see for
example, Pogqgio, 1984; Marr and Poggio, 1976). To illustrate the
potential usefulness of the techniques that we have presented here for
the solution Df this problem, we congider now a simple version of 1t thp
atching of ndum Dat ufereoqramb (Ju lesz, 1960).

fay )

we will consider binary images, and assume that each row of the right
image i¢ obtained as a sample function of a Bernoulli process of density
p. The left image is Tormed Trar the right one by shitting it along the x
mretﬁ'on by a variable amount given bl by the disparity function & ,

except at some points, where an error is commited with probabil 1tg €.
Hate that some regions that appear in the right image will be occluded in
the left ane, The “occlusion indicator”, Pd , can be: computed

e .E tn mstluaﬂu from J it the foll uwmg Wals

, Ce it di, = d k, for some integer k ¢ (0,m]
f -k 7 M _ s ‘

lpd(ﬂ_: ,{ - o B - e (20)
Lo, otherwise

The occluded areas are assumed to be "filled in” bg an independent

.’)g




Bernoulli process B. The final model 1s them

¢ Gplitdy) , with prob. 1-¢, 17 94) = 0
g (i) =1 1 - gglivd;), with prob. ¢, if P4i) = © (30)
L B(i) , with prab. 1, if 9400 = 1.

HMote that in the two-dimensional case, the index i denotes a site of the
lattice, and therefore, it can be represented as a two-vector (iy,i,)
whose components denote the column and row of the site, respectively.
To =implify the notation, we will adopt the following convention
throughout this section: when a scalar is added to this vector index (as
in q;g;,-_,r;i+xj1) and di-&-“{)i it will be implicitly assumed that it is multiplied
oy ihe wector (1,0) (30 that the above expressions should be understood
g5 opti+(d;, 000 and di+{k,0} , respectivelyl. Using this convention, the

ohservation model of equation (30) can be applied either to the one or to
the two-dimensional cases.

Matice that even if the observations are noise-Tree (¢=0), the solution of
the problem remains ambiguous, and it cannot te uniquely determined,
unless some prior knowledge about & (for example, in the form of a MRF
model) is introduced. The use of a MRF model in this case, corresponds to
a quantification of the assumption of the existence of "dense solutions”
(ihig term was introduced by Julesz (1960), and essentially carresponds
to the assumption that the disparity varies smoothly in maost parts of
the image; see also Harr and Poggio (1976)). The use of the occlusion
indicator, corresponds to the "ordering constraint” (i.e., the requirement
that, if 1 > j, then, 1 + dy >  + dy ; see Baker (1981). We put P4(i} = 1

whenever this constraint is violated),

To formulate the estimation problem, yre consider the sequence g, as
“ohservations’, while dr will play the role of a set of parameters. Thus,

from (30), we have (assuming for simplicity that p = 0.5}



1= i1 P4ii)=0 and gpli+d;) = k,

F'f’gLr’ﬂ =k | Z, gH) = F‘g l gtk { ¢, if '}Jd{i):o anid gR(i+d]~) =k
‘ LaE i Pyliisd
g prior rmodel for the dis Jily tu field, we may use & first order MRF

f | generalized Ising potenualu, such as the one presented in section 2
Other models may alse be uzed, including the coupled depth and ling -
fields that we discussed in the previous section. For the present, let us
asewne that the simple Ising model is adequate. Hote that even when the
matching problem is one- dnnermmm], {we are assuming that there is no
vertical disparity between the images, so that the matching can be donp
on @ rave-by-row basis), the two-dimensional nature of the prior MRF™
model for the disparity introduces a coupling between matches at
sdjacent rows. The posterior energy is: |

Ul g} = (o, ’T[ﬁ‘i]j Vidpdg) + g0y Pglidin2 e
+ {0/ 2)5 (1-94(10(8(g, (1)-ggli+d) |

where o = In | .(‘1-&')1" e L.

It is pmﬂh to apply thp general Monte !: rlo or deterministic ,
algorithms presented above to approximate the nptmm 1 estimatar far &,
with respect to a given performance measure (such as the mean squared
error). Their use in this case, however, is complicated by the B
introduction of the occlusion function ¥ in the posterior energy: the size
of the support for this function equals the total number of allowed
Covalues for the ljlupdf"lfg (see equation 27). If this number is large, the
computation of the increment in energy, or of the expected value of the
conditionsl distributions (n the deterministic schame is ugsed) may be:
- quite expensive. In many cases, however, the size of -the regions of
Cconstant disparity is re Mtw»ﬂu large compared with the size of the
- OCC hnjed areas. In these cases, one can approximate the |'|r1 sterior energy-
by

N}H i wfn} = (1/T )/] ] Yid. d] {oef ) 2] Ufl}jd{]}“""‘qL{] +Lj ‘1) ("])
and increase °1qnmn ant: 1._4 tF r:Umpl.lt'ati'énal gfficiency.

—
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The form of this expression (in particular, the non-monotonicity of the
nojee statistic) causes the solution to this problem to remain ambiguous,
eyen if the signal to noise ratio is arbifrarily high. In this case,
however, it 15 possible to use the efficient deterministic scheme
dizcussed in section 4.4 - namely, a WT & network. Moreover, for perfect
ahservations (Zero noise), it is possible to guarantes the convergence of
this scheme to the correct solution in a small number of iterations. The
informal argument 1s a5 1ollaws {the technical details may be found in
Marrogquin, 1985):

Given, as initial state of the network P, F']-(Oj(q) = 0, for &ll 1 and q, at
the Tirst iteration of the algorithm {26), the network will turn "on" the
cells (1,0} for which 8(g (1)-gg(i+dy)) = O, that is, a1l the cells in the
correct places (since there is no noise), and some cells in the wrong
lalzr o7 well, dug to accidental correlations in the texture of bath
images,

After the first iteration, the cells that are "on” in the correct places,
will have at Teast as many neighbors that are "an” as the corresponding
cells in the wrong lagers, so that the algorithm will only turn “off” some
of the latter. This will cause the cells that lie at the boundaries of
clusters in the wrong layers to lase, in the subsequent iterations,
against the corresponding strangly stimulated cells that lie in the
interior of the "correct” regions. This will result in a progressive
shrinking of the wrang clusters, and will end up with their
dissapearance.

The only situation in which this behavior will not take place, is when
there is a significant overlap between wrong clusters and the boundaries
of correct regions. In this case, the algorithm will not be able to solve
correctly this ambiguity based only on emoothness considerations (i.e.,
oh the prior MRF model), and it will locate the boundary at a position,

v ithin the regioh of overlap, which will depend on the detailed shape of
thig region. Algo, thz solution may not be so clean in this case; a few
cells, corresponding to different disparities at the same spatial location,
may be left "on” in the final state (imit cycles involving some of these
few cells are also possible). It should be noted that the human visual
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sustern may exhibit a similar behavior in these cases.

Thiz type of ambiguity {accidental overlap) 1s relatively Trequent in

sparee slereograms. However, the regions of overlap are tupically "blank”

rwum (i.e., without tokens), and the algorithrm will give the correct
dizparity at all token locations.

Figure 9 illustrates the performance of algorithm (26) with sparse and
gunse random dot stereograms portraying a "wedding cake”. As predicted
by-the theory, the convergence fo the correct solution is fast (less than
four iterations) in both cases. In the case of the sparse stereogram, the
boundaries are slightly misplaced, but, as can be verified by direct
inzpection, all the dots are correctly located.

Figure O amund hare

To '«pplu thiz &l anlthm to the processing of real images, there are some
modifications and extensions That should be made, They fall in two
categories: ‘

‘eighborhood size: It is pusa le to increase the robustness of the
slgorithm, with respect to the presence of noise in the images, by
increasing the size of the excitatory neighborhood {i.e., by postulating a
rore glabal MRF prior model) and decreasing the value of the parameter
. This increased robustness is traded off by a decrease inresolution:
-cmaﬂ correct regions may be treated as "noise”, and therefore drappear
rorn the solution. Also, the shape of the piecewise constant regions fmay
DE altered (corners may e rounded off, and small concavities "filled in").
Token Selection: In the case of continuous-toned images of natural
objects, the distribution of the reflected light:ray vary as the viewpaint
ig changed uparth wlarly the °pecular componpnt), alsa, the two retinasg .
(cameras) may have different point spread functions, and be affected by .
independent gources of noise. This means that the simple model for the
ubservation process given above should be replaced by another that
eflects the formation of natural images in a more realistic wad. The
;e of a better modal will © cause the term ukq‘_(ﬂ qud 1 in equaﬁun :

(Z1) to be replaced by & d}ffrJrPnt compatm ility measure ’r[] o which




rnay be obteined by first preprocessing the right and left images with an
operator T whose ogutput should be, ideally, invariant under the changes
in wigwpoint, optics, etc., and then computing & suitably defined distance

SounTrraen the Dwo Tmages:
The WTA algorithm (26) can still be used, if we now compute U;(d) using:
i) = ey ¢ 1-100 Pylat) + oy g

where Wi is the extended neighbarhood of i, and c{-) denates a set of
prrameters that depend only on the distance |i-i] .

e himve parformed some experiments using this kind of mechanism, and
the preliminary results are encouraging. Other researchers (Prazdny,
1985; Pollard et. al., 1985; Drumheller and Paggio, 1986) have also
reported good results with algorithms of a similar form (although not
dzrived from probabilistic considerations).

6.3. Formation of Perceptual Clusters.

4t the heart of a general purpose perceptual system, one must have a
rachanism for deciding which parts of an image should be considered to
"belong” together. A simple instance of this problem is the grouping of
dots in an image into perceptual clusters. Same heuristic schemes have
been proposed to model this phenomenan (see, for example, 0’Callahan,
1974). We will now show how this problem can be formulated in an
elegant way, that is also biologically motivated, as a particular case of
the reconstruction of binary patterns from noisy observations.

The conceptual model is as follows:

let us consider the dots that form the original pattern as patches
belonging to some abjects of uniform color that are partially hidden, say,
by some foliage. In this way, the formation of clustersg is equivalent to

-
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he problem of reconstructing these abjects (whase cohesive nature is
maceled by a first arder MRF with Ising potentials) from observations
that are Tormed according with thP 0 umng model:

Suppose that £y = 1 anly if the imags of an r.nbjer:t averlaps the ith gite

of the lattice. We assume that the “faliage” will hide this point (i.e.,

~tnake §; = 0) with probability ¢, and that spurious valugs of g; = 1 can

appear insites where 7y = 0 with 2 Qer_g srmall probability ps

il
—

| 1 W-ﬁ.h prab. (1-¢}, if f;

i1
—

| 0, with prob. €, if 1
9 = 1

| 0, with prob. (1-p), if f; = 0

Ly, with prob. po 07 65

4]
o~
-

]
L]

with p<<1, The posterior energy is:
Lap{.r;y;;)" { an)Z i Yellpfy)* p«-zi..eg":;i;;.at T-gy) + _mz]-t_,ﬁ (1-a(g;))

where: ¥ ig given by equation (8); w = Inl (1-€)/¢ 1  is the set of
sites | where Ty = 1; 6() is defined in (6), and M = In[ (1-p)/p | is a very
large number,

The clugtering task iS‘vﬂD':r"r’ equivalent to the problem of estimatihg s
and the parameters o and T from the noisy observations g. To,
accamplish this, we minimize, over the appropriate region of the
pararneter space, @ merit-function, which is related to the degree af

uniformity in the spatial d1strlbutmn of the corresponding residuals. we
- have defined, for example, & 1ikelihood function L, by covering the lattice

with a set of m non-overlapping squares (say, & plxwl:_mdp) camputing
the relative variance of the noise parameter, estimated over each square,
and adding all these terms tquﬂwr

(o3
al




[{‘rlef‘w?
-2 | —
L

j=1 €

S'\,
—{,

vhire gy and -] are the {conditional) ea:prdcted values of the noise density
aver the intersection of the set A = {i ¢+ f; = 1 }, with the whole lattice,

and with the ] th square, respectively (thus, for example,
e = (/1A Zm’.x 8(gy} , where | 4| is the size of set 4, for & particular

value of « and To). The perfarmance of this procedure is illustrated in
figure 10, where we show: the original dot pattern {upper 1eft) and the
reconstructed objects for decreasing values of §=«Ty {we have found
that for this task, a fast, deterministic approximation to the optimal
estimator, which depends on the parameters « and Tq only through thair
product, gives good enough results; the technical details may be found in
Marroquin, 1985). The maxrimizer of the likelihood L is marked with an
arraw. We belefve that these prefiminary results are encouraging,
although, clearly, more numerical and psychophysical experiments are
neaded to assess the plausibility of this scheme to model human
perceptual processes.

Figure 10 around here

¢. Discussion.

In this chapter we have presented a probabilistic approach to the
solution of perceptual problems. We showed that a large class of these
profitems can be reduced to the reconstruction of a function on the sites
of 3 finite lattice, from a set of degraded observations; we pointed out
that, in order to solve ther, one has to include prior, generic knowledge
about the behavior of the desired solution; then, we presented a general
class of probabilistic models that permit the inclusion of this
knowledge, and derived the Bayesian estimators that provide an optimal
solution. The distributed (deterministic and stochastic) algorithms that
v2 have presented for approximating these estimators, can be efficiently
impl»:ernented, gither in @ general purpose serial computer, or in special
hardweare: analog and hybrid computers, and massively-parallel machines

-



zee Marroguin et. al,,
1?3?5* The use of the

19
rse special purpose architectures will make these
algorithrms practical, ey

f6; Kaoch et.al., 1986; Drumheller and Pagoin,
en for real-time appht:atmn:z:.

we illustrated the practical value of this approach with several
exarnples: the reconstruction of piecewise smoath surfaces from sparce

data; the reconstruction of depth from 91urer3pr1c measurerments, and
the formatii ||f perceptual r]u:.fprc

‘Thare are a number of perceptual problems which are related in such a
vy, that the solutions that can be obtained, should improve if the
utual constraints between them were taken into account. Thus, the
presence of & tmqt trness edge should increase the likelihood of & depth
erlge, and viceversa; the depth estimated from steren should be
compatifile with the shape derived fram shading, etc. We beleive that the
prrn’Lumh't\r dpproﬁm that we have presented here, can provide a |
framework for the integration of the solutions to these problems {via .
the use of coupled pofential functions for the correspanding MRF madels)
into g unified EUG[:IF'Y'@U'."E process with Enhdnced permrmance

Fpm’emn. ésgmpmtic Cenwergenta of the Determmstic
‘Annealing” Scheme for M-ary Ising Fields.

In this appendix, we analyze thp convergence of the detprmxmcfl ¢ system
Cgefined by equations {19) and (22), 17 the limit when the "ahnealing
ternperature” T - 0, for the particular case when the field # is an
M-ary field with generalized Ising potentials, and the noise is
“cantinuous-valued. The posterior energy-is given by: |

Uy = 2i ¢ B2 jetin(i) YT+ ag eny(iy VM) oyl (A1)

where ¥ is a generalized Isihg putenﬁal, defined by equatidn (8); a, and -
3, are the inte,rai:tiun strengths, and l\l.s.f.l'i‘l"-rﬂlg(\"! are the set of nearest
neighbaors tu i in the ¥ and y direction, re: prct PM The Tunctions -],
and the par ameter o depend on the noize distribution.




wy will be approximated by equation (22), with the average local
encitations given bys
——l[ 'F_]' = A3, H”N%(” (1-2F']-'=t"(q)) + auzjémgﬁ) (1-2Pj(t*'(q)} + E'J:'i’]'(q:’ =
PR (t
"23u2 jelxi) T ) - Qageﬁ]f-NJfﬂ SROE ;@)

veith m;(q) = a, | Nei) | + aglwgml + ocdi () (A

PO
—

At T=0, we will have that

i T < T, torr e g

l,
'J]ft}(q)l = { (A3
L o ﬂfhpf‘n" 15|

(Fote that for continuous-valued noise, such as in the i.i.d. Gaussian
. { —
cagse, we 0o not have to consider the case u, '-t)(q) z ui'*t}(r) ,farg=r,

since it will occur only with probability 0).

We will consider an asynchronous version of the algorithm, so that only
une site {one column of the P network) is updated at a time. Suppoge
that we update site 1 at time t, and Tet m be such that u; (t"fm) U nt (g,

for all gzm. Then, at T=0 we will have, using (19):

F‘ri(t”}(m) = A Pi(t)(r11} + {1-X)
F‘i(t”}(q) = A Pi(t}(q} , for g = m.

Let  L{t) = Zq S'] ieMw(i) F; (t )(q} P (t) Aq) -

[ ’

= 3,2 ety Pi g Wiy “’iq\ + 33 PiHe) my@))

vehich 15 bounded, since P‘(t)(q) ¢ [0, 1] for all 1,0, We will naw show

that L decreases at every iteration of the CuCTem at T=0, e*«:ept at a
fixed point:

LN |
o1



P 'rt+ﬁ(0‘| P qun ) 1l (t (q‘l

~q
but Eq P]-.(t”)(q} U]-{'U{q} = m(m*' L tmy + (1-0) u]'r (m) +

bl

; £) By =
" Zgzm Pi( i) Ui( (q) =

= (1-0) 5Py + 5 3, P 5 g

with squatity only it P D) = BUq) | for a1l g, which implies that
P, (i) = 1, and Piqt)(qﬁ =0, forg=m

It is not difficult tosee that if LOEAH) = L(E) = L*, where M is the numbf—r
of gzunchronous iterations needed to update all the sites of the lattice,
the system will be at a stable fixed point P, If we now make f;% =m,

if P] k= 1, for all i, we will have that L* = L (f ¥y 50 that, atT = 0,
the de et rrninigtic fu?fem will alweys converge to a fized pmnf, .rhlrh
Wm r gspond to a local minimum of the posterior energy, ’

o~y
Clh
e}
i
]
(X1

[1] The requirement that the algorithris that perfortn the rewngtrumur.
should be distributed, ile., 1rr|plpmentdb1p in some kmd of "eooperafive
network’; 15 justified, huth from & theoretical 19»»pumt (s0 that it
reprvwnfs a plausible biological mpthamcm, according with our current
krowledge of neurophyziology and psychophysics), arid form a practical
ene: 1 beleive that artificial systems with real-time perceptual abilities
will anly be possible. with the use of algorithms that are 1mplenented in
fine grain, d1 trH:iutpd il t]prr essir g ar“mfex_ture—

(2] In many practical caces, the Standard Gibbs form belongs to & more
qeneral class of distributions, which.is called the ‘Regular Expanential

1
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- Family”, whose form is:
P(x) = (0(x}/a(p)) exp [ -tT9 ]

whore t1g the vector of gufficient etatisfics ; T denotes transpose, and
Wi the parameter vector (in equation (10}, for example, t = (UQ,BT , and
P o= (lf'Tg,r.a:)T . This definition will be important when we talk about
parameter estimation,

[Z]1 A= a simple example for which the regularity of the Metropolis
chiain s destroyed, consider a 3x3 binary Ising lattice with pericdic
boundary conditions. It is easy to see that for the inftizl etate:

1

[

g
1

<

1
0
1

[ ey

the Mefropolis algorithm, either with lexicographic updating order, or
with simultangous updating of all non-neighboring sites, will produce,
deterministically, the sequence:

fTot -~ 010 101
010 =» 101 » 010 =
[ 010 101

for any finite temperature,

[4] The "Hopfield network” in this case would be described by:

dzi
——=-Au-z /T soopp= /0 s esp [-2,/TD
gt :



151 Although 1t is computationally unfeasible to perform the

mazimization of the likelihood function L directly, due to the
satranrdinary complaxity of

r: q | &7, the form of the "complete data” distribution 1, q | 8 (the

zo called "regular exponential family form” ; see note [2]) is such that

the darivatives of the likelihood function Lwill be given by

) = ElUg |, 81-ElUg| 8]
3! }511 )
gl
ez E[& | g, 8] -ElE | 8]
d
where g the noise statistic (ses equation (2)); Uy is the prior enef‘QQ
{equation (72); 8 iz the field parametar fl /Tg), and 8, is the noise
pararmeter (x) (see Dwmp’fer et.al., 1976}, This means Ttaf a* a 1ncal
rogeirnurn of L owe will have that
E[Un | 0,91 SElUy |8l
e | a,8=€l¢ | o]
| I‘m‘e» hat txcn‘h the left and the right hand sides of the above equations
can be gpprodimated using the Monte Carl o procedurs described in section.
4 {uging the posterior and prior erargy, respectivelyl, and that the right
hand =ide iz independent of the obzervations.
- These relations form the basis of the EM algorithm: for example, for a
noize model that o :'n:lrrEC'pc:rnj" to @ BSC with error rate e, the EM
. ~ algorithm takes the follow ving form:

we start with some es tlmuteg oy (03 T, ‘U] fur the para metera The pth
itzration (for p 1, 2, ...} consists of 2 atep« ‘

Expoctation (E-step)s Find the 'nnmt]rmdl estimates for Uy and &




U P :E[Uolg,cr:p ;T ]

_{pJ (py _ (pl

=E['E_lg,cr. s T ]

Thase estimates are ensemble averages ta Pen with respect to the
posterior distribution Pflg .

tzsimization (M-step): Find T,P* 1, P 1) sueh that:

Elug | P D, 1y 2 gl
(7] Pl 1) 2 i)
Mote that, since the left hand side of the above expressions is

. independent of the data, it can be precomputed, so that this step may be
implemented using & table lookup procedure.

{61 Consider an M-ary field f with Ising potentials, corrupted with
O-rnean, additive white Gaussian noise with variance o2 < o2

“may
auppose that
fieQ={q: g=gg+2k&§ , k=1,2,.., MM} foralli.

Wwe define the statistic W, as:

g
] .

‘wg:— Z‘mg],g]),
NC ’J

where g 15 the abservation process; Np is the number of nearest-neighbor
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pairs in the lattice;
! .
| -1.ifdi=gy and | 1-7]=1
5 . - J i A. = A. = i - 3 -
".-.”( gi » gJ.) = 9 1,0 g =g and l 1 ]l =
| o, i -y
L )
and ﬂ] =y + 2n§, with n an integer such that
g + (2n - 1)6 < q+(4n+ s
(note that it is possible that g; 2 Q) .
Lafine
' . 1 | (oo
P {r, @) = ———— | eup [ - 82/20% | dx
Jime Jro - :
It is not difficult to see that
ElwWy [ 0, Tol=1-(ABI+ELUy | Tg ] (4-B)

where Uy = Ug / Ne ;

Pr'(w(g],g,)- -1 fis T2 =10
Pr( Wig;, g5 = -1 | Vify, 1= 1)

T
1]

~(note thaf E [Ug ] Tol = ¥(Ty) is data mdeppndent and therefore, it can
be c nmputpd nff- ]me) ~

Azsuming that

' Pr(_lf‘i-fjl =q l fi;;fj)' : fUY' q=1, 2, ...V,H"1




v Can approximate A and B bys

Alo) = 6a2 + 4b% - 4ab - 43 + |

1
Blg) = —— (- 332 - 3b% + 2abh + 23 )
M-

whare a = Y(&,0) and b = P(38,0) . (The above approximation has been
computed assuming that PI5&,0,,,.0 = 0. If this is not true, more
teris can be easily included).

Azsuming, as befare, that

E 1 g | @, Tyl =Yﬁ?g (computed from the data),
vie can find the optimal estimate for (G,T) as the global maximizer of
the merit function (28) along the curve:

+AC) + BOY - 1 4

|

alo) - BlG) J

g

(W
To=¥71|
L

Using a "composite annealing” strategu.

[7] Since both the random field # and the noise process are stationary,
ve have that o

EL(Ug-ElUg | s T 1221~ _
i # of cliques of the lattice

so that this assumption becomes asymptotically correct for large

lattices.
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Figura Capiians-

Fig 1= Thres typical rc:rmaurahrm: af a Tirst order, ternary MRF with
Izing patentialz. The interaction strengths in the ¥ and i directions (8.,

.1

2

ay) are: (3) 3, = 1.0, 3 = .2 (b} a, =2, = 0.5 (c) a = ay = 0.4,

Fig 2: f{a) Sample function of a first arder, binary MRF with Ising
potentials, (b} The previous patfern sent through a binary symmetric
channel (error rate: 0.4). (o) MAP estimator. (d) Monte Carle -
aporoximation to the MPM estimate.

ig s ,(,'a. ample configuraton of a fprnjru {with values 1, 2, or 3],
irst order IRF with Ising potentials, (b) Pattern (a) corrupted with
ré.j‘itia,a,a, Mm‘w Gaussian noise {only the integer part of the result is
zpresented), {o) Approximation to-the TPM estimate obtained after 20
iterstions of the deterministic system given by equations (197 and (21)
{0} Approwimation to the TRM estimate obtained after 5 iterations of the
detarministic system given by equations (197 and (20) (g) Approximation
to the optimat TPI"I estimatur, obtained dftur uOU Iter'atlunu of the Monte

C ;nlu mpfrnpn algorithm.

Fig 4: The m:ﬂ;t borhood M3 j of site i is formed by the pairs: (1,24, 12,3},

Fig 9= Average valug of U versus interaction stres mth fo g 30 » "iﬁ
binary Ising field with free boundaries. Solid line: Monte Cario
appm;ﬂmation; dashed' line: determimstw sgstem (193/(21).
Fig 6= (a) Qriginal Dmaru image. (b} € ufput nf a EL.F with error rate 0.3
{assumed unknawn). (c) Maximum hk lhood estimator {(deterministic
:-nprn,,nmhun; () Ephavwr of the likelihood funetian (28) along the
e (27) (the rainirum corresponds to the t?urrert s ’rmath far tm‘rh
tt g error rate and the interac tum strengthi.

Fig 7= Cligues for the line field {a cross denotes a line slement, and a
circle, a "surface” site). - o




i ©: Cbservations of three rectangles at heights 2.0, 3.0 and 2.0, over
a background at height 1.0 ¢height coded by gray level; a white pixel
means the observation is absent at that point). (b} "Membrane”
interpolation obtained with all lines turned "off". {c) Optimal estimate.

Fig 9: (a) Dense sterecgram {density: 0.4) portraying a pyramid. {b)
Fized point for algorithm (26) (each panel represents the final state of &
dizparity layer, with a black pizel representing an "on” cell: from left to
right, the disparity is: -3, -2, -1, 0, 1, 2 and 3}. (c) Sparse stereogram
fdensity: 0.1) portraying the same pyramid. (d) Fixed point for algorithm

T
Lzt

Fig 10: Farmation of perceptual clusters. We show: the original dot
patter {upper 1eft) and the reconstructed objects for decreasing values
of ¥ = & Ty The maximum likelihood estimate (i.e., the optimal
clusteringd 15 marked with an arrow,

50
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