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INTRODUCTION

In recent years there has been interest in the study of fluctuation limits of
infinite particle systems of independent Brownian motions and different types of
interacting diffusion systems. Such problems have been studied, among others, by
Hitsuda and Mitoma [2], Itd [3], Tanaka and Hitsuda [8] and Mitoma [11]. In all
cases the limit process is given by a generalized Langevin equation or a stochastic
evolution equation driven by a Gaussian martingale on a nuclear space of
gistributions @' which is the dual of a countably Hilbertian nuclear space &.
Solutions of ®'-valued stochastic evolution equations have been investigated by
Dawson and Gorostiza [12], Bojdecki and Gorostiza [1], Kallianpur and Perez-Abreu
[s] and Mitoma [7,11). In the present work we study the weak convergence of
solutions of stochastic evolution equations driven by @’-valued martingales M" =
(Mg)t > 0 as n goes to infinity. It is worth noting that in this work it is not assumed
that all the martingales M" live in one of the Hilbert or Bzanach spaces whose norms
define the topology of ®.

In a later publication, we hope to apply Theorem 1.2 of this paper to investi-
gate the fluctuation limit of "weakly” interacting systems.

In all this work the techniques and results from (Co,l) reversed evolution
systems on & developed in [S] play an important role.

1. NOTATION AND MAIN RESULT

Let @ be a counta'bly Hilbertian nuclear space whose topology T is defined by
an increasing sequence of Hilbertian norms [-]; < |-]; < ... < |'lq-.- . Let Dq be the
completlon of @ by [-lq. <I>q the topological dual of @4, l |-q the dual norm of <I>’
and @ the strong topologlcal dual of ®. Denote by 2(®,3) (respectively L(d’ &’ ))
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the space of continuous linear operators from ® to @ (resp. @ to &y, Let {-lq:
q>0} be any sequence of increasing norms-on @ also defining the T-topology of ®.
Such a sequence of norms will henceforth be called T-compatible and we will denote

by q’lql the ||-]lq-completion of &.

A Cg-semigroup {S(s): s>0} on P is said to be a (Go,l)'-sem/'group if for each q>0
there exist numbers Mq, 0q and p>q such that

[S(s)dlq < qudqslélp for-all g€ P, s>0. - _ (1)

A family {A(t)[t>o of infinitesimal generators of (Cg,1)-semigroups {s¢(s): 5>°}t>o

on ® is called stable if there exists a sequence of T-compatible norms IRIES q>0}
on @ such that for each T > O there exists q52>0 and for g9>dg there are constants
Mq= Mq(T) and oq = dq(T) satisfying the following condition:

u'mr' *

K ’ U'q S
”.Hlstj(s.j)é”q < Mge ° ”¢”q forall 6€9,5;20 - (1.2)
j= o ‘

wh(enever 0<t <to<.. <tk<T k>0. Here and in the sequel the.time ordered product
HJ__ St (s )¢ is Sy (51)5t2(52) Stk(sk)é
A two parameter family of operators {T(s,t): 0<s<t<oo} in L(9, @) is sald to

- be 'é reversed evo/ut:on system on @ if the foHowmg two conditions are satisfied:

T(s t)gé T(s r)T(r t)qé for all ¢ € &, ogs<r<t, T(t t) o (1.3)

for each ¢E(I> the map (s; t) — T(s, t)qS is @ continuous. | (1.4)

" The following result has been proved in [5]. It gives sufficient conditions for

'the existence of a reversed evolution system on & generated by a family of operators

{A(t)}'po in £(¢,9).

Theorem'l._1‘: Let {A()};5g be a family of continuous linear'operators on & such
that for each t>0 A(t) is the infinitesimal generator of a (Cy,1)-semigroup on @. Let
{ll-llq: 920} be a sequence. of. ‘r-compatnble norms on P such that the following two

condmons hold: :
a) {A(t)}bo is a stable famlly on @ with respect to {||- ”q q>0}

b) - For each qzo there exnsts pzq such that for t>0 A(t) has~ a continuous.
linear extension from q’lpl to @lql (also denoted by A(t)) and t — A(t) is
L(@lpl (I)Iql) -continudus. ‘ - ,

Then there exists ‘a unique reversed evolution system {T(s, t) 0<s<t<0n.} on <I> such )




that for each T>0 the following two conditions are satisfied:

(1) For some qu>0 and all q2qg
- (t-
ITt08llq < Mae" 9 ligq for all $€8, ogsctsT @5

where Mq = Mq(T) and 0q = Uq(T) are the stability constants.

(2) The forward and backward equations hold, i.e.
AT (s,)¢ = T(s,DAt)$ for all €, Ogsst<T, (1.6)
C%T(s,t)é = -‘A(s)T(s,t)¢ for all $€P, 0<s<t<T. (1.7)

A reversed evolution system satisfying (1.5) is called a (C,,1)-reversed evolution
system.

Let (€2, °.'FP) be a complete probability space with a nc:ht continuous filtration
(‘.'Ft)bo, o containing all the P-null sets of F. A ®'-valued stochastic process
M = (Mt)t>0 is said to be a ®'-valued martingale if for each Ped (Mt[é])t>o is a
real valued martingale. In this work we further assume M € C([O cc); ‘P) where
C([O,oo);@’) is the space of all continuous mappings of [0 o) to & with the strong
topology and that M IS an L2-martingale, i.e., EMt[é] < oo for all ¢€D. The
topology of C([0,o0); <I>) is described in R.2.1 of Mitoma [6], who shows that
C([O,co),@’) is a completely regular topological space whose compact sets are all
metrizable.

Let {A(t)}t>o be a family in £($,®) and A’(t) denote the adjoint of A(t). A
&’.valued stochastic process £ = (Et)t>0 is said to be a solution of the stochastlc
evolution equation

dy = A (t)ftdt + dM; t>0, €y = 7 (1.8)
if for each ¢€<I>
t
&[] = §old] +f Es[A(s)glds + M{[J] t>0 aus. - 1.9)
It has- been shown in [5] that if {A(t)}t>0 satisfies the assumptions of

Theorem 1.1 and if E[‘y[_r < oo for some r>0, then the unique solution of (1.8) is
given by the evolution solution

t
sl !
& = T(t,0)y + _[OT (t.s)dMs 7 (1.10)
where for each s < t the operator T’(t,s): &' — @' is defined by the relation

(T (t,)¥)[¢] = B[T(s,t)d] for all €D, Yed’ (1.11)



and {T(s,t): 0<s<t<oo} is the (Cg,1)-reversed evolution system on @ generated by
the family {A()}¢sq- The stochastic integral in (1.10) has the following property

teg to I,
[ Tltts)ams = My + jOT (t,s)A'(s)Msds  for all t20 a.s., (1.12)
0 ;

i.e.,

t S | | |
(] T'es)dms)l6] = Mi[é] + [ Ms[AG) T elds (1.13)
for all €@, t>0 a.s. '

The main result of this paper is the following theorem. We denote by "="
weak convergence of measures on the indicated spaces. '

Theorem 1.2: Assume the foHowmg five condrtlons

(1) {An(t)}t>0 n>1is a sequence of families. of contmuous linear operators on @
such that for each n21 {An(t)}iso satisfies the_assumptxons of Theorem 1.1,
the indices appearing in the latter, the sequence of 7-compatible norms {|[-lq:
q>0} and the stability constants Mg, 0q being the same for all n.

'(2) The corresponding evolution systems {Tn(s,t): 0<s<t<oo} generated by
{An(t)}t>0 n>1 satisfy the condition: For each T>0 and q>0 there exist Mq
~and oq such that for 0<s<t<T

q(t 5)

‘HTn(s,t)gé” ”d)”q for all ¢E@ and n>1. ., )

('3) {A(t)}t>o is ‘@ family of contmuous linear operators on @ satisfying the .
assumptions of Theorem 1.1 ‘and such that for each T>0 and g>0 there exxsts .

p>q satisfying
sup [|An()-A(t) ... — 0 asn-—»co. (1.15)
OstsT” BECLIIC IS 00 ER
(4) = (Mt)t>0' n>0 and M = (Mt)t>0 are &' -valued L2-martmgales vamsh- )
ing at the origin and such that MN ="M in c(]o, oo) CP ). ’

(5) .'7n' n>1 and 7 are @ -va{ued random variables such that v = 7 on @' and
for each n>1 7 and M" are mdependent '

~For each n>1 suppose that the stochastlc evo!utron equation

dny = Ap(D)7edt + a7 >0, ng=9" 16
.»ﬁes the unique solution f (ét) and that. : U
- dp = Al + dMy t>0.:770-‘)’~ T T @an

.‘has' the unique selutiqh. 6 = ({;). Then fn = £ in C([O,oo);@_’). 4




The proof of this theorem is given in the next section.

2. PROOF OF THE MAIN THEOREM

In order to prove Theorem 1.2 we need the following lemmas. We will denote
the space C([O,oo);CI)l) by C<I>"

Lemmsa 2.1: For n2>1 let G: C_,—C _, and G: C(I),—»\C ¢ be such that Gp(x)—
G(x) as n— o0 uniformly over compact'sets of C_, " Let Py n>1 and P be probabil-
.ity measures on C_,, and Qp = EnG;,l n>1 and Q = PG L. If Pa=>P in C<I>’ and
G is continuous then Qpn=>Q in C‘D" .

Proof: Let C = C([0,00);R) be the space of continuous function of [0,c0) to R with
‘the topology given in Whitt [13]. For d€® denote by H¢ the mapping of C<I>’ to C
defined by

(H¢x); = x.[¢]. (2.1)

Since Py =P in C_; then PalI. = PII'} in C for all $EO and therefore

{PnH'l}n>1 is tight In C since C is a Polish space. Then by (R.2.1) and Theorem

3.1 of Mitoma [6] {Pn},>1 is itself tight in C_,. The remainder of the proof goes

as in the case of complet_e separable metric spaces as we now shqw: Let & be a

bounded real valued continuous function on C_, and let €>0. Then there exists a
- L]

compact set A'in Cq), such that

If ,c @(Gn(@))dPn(a) — jAc @(G(a))dPp(a)] (2.2)

< 2llelloo(Pr(A®) < ellalloo for each n31

where ||a]leco = sup [a(x)].
XECQI

Next, by assumption, on the compact set A, Gp(a) — G(a) uniformly, i.e., for
each €>0 there exist N¢>0 and a neighborhood V¢ of zero in C<I>' such that

Gp(a) — G(a) € V¢ for all n3N¢, agA.
Therefore since ¢ is a bounded continuous function on C@, to R

sup |a(Gr(a))-a(G(a))l < €/2 for all n>Ne. (2.3)
acA

Then for n>2Ng¢
[ ac(Gn(a))dPp(a) — [pa(G(a))dPp(a)] < €/2,
so that from (2.2), g

[[a(Gn(2))dPp(a) — [a(G(a))dPq(a)| < € for n>Ng. (2.4)



'deﬁne

Since Pp = P, we have.
Ja(c(a))dPnpla) — [a(G(a))dP(a) , (2.5)

since G is continuous. The assertion of the lemma follows from (2.4) and (2.5)
which together imply

Jat)dQn(x) — [e(x)dQe0). 0

. The proof of the above result holds without change if, in its statement, C p is

" replaced by C“r = C([o,T7]; CD ) where T<co. We will need to use the lemma only in

this form.

4 Ln'nma-2 2.2: Let {An(t)}t>o n>1 and {A(t)}t>o be continuous linear operators in <I’

as in (1) and (3) of Theorem 1.2 and let {T(s,t): 0<s<t<eo} n>1 and {T(s,t):
O<s<t<eo} be the corresponding (Co,l) -reversed evolution systems generated by
them such that T'n(s,t) satisfy (2) in Theorem 1.2. Restrict XEC‘I” to. CcI>" and

(Gp(x))t[ﬁﬁ] = Xglél + foxs[An(S)Tn(S,t)éldS: PEP, 0<t<T, n>1. ., - (2.6)

(GXe[4] = xo[¢J+I Xs[A<s>T(s t)¢]ds, ¢€<I> 0<t<T @D

. Then Gn(x) — G(X) as n—co unn"ormly on compact sets of Cg, and G is a contin-

uous map of C to C -
o T Tl

Proof: We first show tha;_ if X € Cg,‘the map, for ¢E€P,
¢ — J‘ Xs[AE)T(s.)Plds o . o o (2 8)

defines -an e!ement in CT, Since X € CT, . X sends the compact set [0 T] into a
compact set of ®'. Thus {Xs 0<s<T} is 3 compact set in & and therefore bounded
in .the strong topology of @ e., for any €>0 and any boundéd set B in & there
exists N>O such that , '

{X'S: osng} c N{F € &' sup |F18]l < e}.
' - .. ¢€B
Takmg €=1and B= {¢} ¢ in (I> we have that for each ¢ in & there exxsts NqS

such that

;sup Meldll € <o - @9

¢

Define )




V() = OzgngXs[éll- (2.10)

From a Baire category argument (see Lemma 1.2.3 in [10] or Lemma 2.2 in [4]) it
follows that V(@) is a continuous function in @ and hence there exist f+>0 and
q1>0 such that

Vo ($) < O7lidllq  forall ¢ in @. | (2.11)

Hence from (2.10) and (2.11) we have that Xg € @'QT, 0<s<T and

C—+ = sup [[Xs]]- < Co. 2.12
T = gup sllar (2.12)

Next if a family of linear operators {A(t)};5o on @ satisfies the conditions of
Theorem 1.1, there exists rr>ar such that -

1AG) T(s,)8llq< ”A(s)”L(‘I’lrﬂ'@qu—l)”T(S't)é”rT (2.13)

To;
< KpMpe T [Bllr for all ¢ in &, 0<s<t<T,

where M'T and Or are stability constants and

K = sup 1AMl p g (2.14)

<
e BlaP

Then using (2.12) and (2.13) we have that for 0<t<T

t
Y61 [ JSAETE D

defines a continuous linear map on &, i.e., Yy € &' for an t>0. Also, if 0<t<T,

Tor . :
IYe[éll < TCrKyMpe T 18llr for all & in &. (2.15)

It has been shown in Step 2 of Theorem 2.1 in [5] that there exists p>r4 such that
vI o= vy 0<EST)EC([0,T1:®p-). Then YT €C([0,T;@") for all T>0. Hence the

T . T
map (2.8) sends C _, into C_,.
¢! o’
lLet K be a compact set in CT,. By R.2.1 and Proposition 2.1 of Mitoma [6],
there exists qT>0 such that K is compact in C([O,T];<I><'JT). Then if X € B,

D (X) := sup [[Xsl]- < 0
T = <o 1Xsll-qr

and



o obtain

~ t . . N
[(Ga(X) =G [ell < follxsll-qT 1An(s) Tn(s, )¢ — A T(s.1)8l1q-ds (2.16)
t
< D) [ 1An) Tats,)—AE T, )8llq 1 ds.
Writing ‘ ‘
An()Tn(s,t)—A(s)T(s,1) P
= Ap(sX(Th(s.t)d— T(s t)0)+ (Ap(s) — A(s))T(s t)d
for all § in ® and O<s<t<T we have '
An(s) Ta(s.)8— A T(. )¢l o 217)
<HARE( T =T(s,)gllar + 1A —AGH T, 8llg
Now by (3) in Theorem 1.2 there"eiists PT>AT such that
140 (s)(Tn(s.)6~T.08llqr < ETlITn$—T(8lp (2.18) -
where using (1.15), for n2ng, some ng>0 ‘. |

B = sup A6l (2.19)

v < oo
) IDT['@[qu)

Next since Ap(s) and A(s) generate the (Cg.1)-reversed evolution systems Tp(s,t)
and T(s,t) respectlvely, using the correspondlng forward and backward equations we

Ta(s06 = TG4 = I TaG0(An()—ANTCOSd (2.20)
‘ and therefore for each m>0 .
WTals 06 —Ts, t)énm < f ITacs, rxAnm AT, t)éumdr  (2.21)

Next, using the equi=(Cg,1)-evolution property (1.14) we obtain that for each m>0 .

””‘("s)uAno)—A(r))T(rt>¢nmdr (2.22)

. . t

”Tn(s.t)é'—T(s.t).é”m' <Mn e
- where Mm and O'm are stablhty constants Takmg m= q—r and using again (3) in
_ Theorem 1. 2 there exists p—r>qT such that :
”(An(r)—A(r))T(r,t)¢]qu < ”An(r)—A(f)HL((I,I " I)llr(r,t)éllp_r. |
Using the (Cg, 1) evolution property of T(r t) we obtain from (1 5) of Theorem 1
(takmg p large enough) ;




ll(An(r)fA(t))T(r.t)élqu (2.23)
< MpTeUpT(t—r)l1¢innAn(r)—A(r)ui(q) 5 3
o1 Cla P
Thus by (2.23) and (2.22) we have that if O'_max(a'qT,JpT) and M=
max(MqT MpT) by (1.15)

ITa(s 06— T(0llqr - (2.24)

o(t-s)

< TM? An(r) —
> Hé”p-,—e osgligt” n(r) A(r)”'ﬁ(@ip-rl'@lq—rl)

— 0 asn—oo for all ¢ in &, 0<s<t<T.
Also using (1.15) from (2.23) we have that

tp I](An(r)—A(r))T(r,t)qﬁHqT —+ 0 asn—oo forall gin ® (2.25)

su
0<re
and using (2.24) and (2.19) in (2.18) we obtain

sup I]An(s)(Tn(s,t)g’S—'-T(s,t))gﬂlq_r — 0 asn—o0 forall ¢ in &. (2.26)
s<t<T

Then applying (2.25) and (2.26) in (2.17), from (2.16) it follows that if X € B,

(Gn(x)—G(X))t[é] — 0 as n—oo for all ¢ in @, (o<t<T). (2.27)
Moreover,
F i= (TErM2%e% T +Mpe”P 1) sup_lIAn)—AQ)I (2.28)
T T PT® ogreT " o1 @)
— 0 asn—o00. v
Thus there exist Pr>a—r and Ff'r such that for any X € B and 0<t<T
[(Ga () =GNl < D OFHIGlIp for all é in B, (229

Moreover since B is a compact set in C([O,ﬂ;@é_r) and the fatter is a metric space
with norm sup {{X;ll-q—.
: o<t<T b 4T

sup  sup_{[Xll-q- =: H < o0,
X€EB 0<t<T o AT

[(Ga(X)—G(X)) [¢l < HF'-’rngsin for all ¢ in & and X in B. (2.20)



Finally let V be the collection of neighborhoods of zero defining the topology of &',
e,ifveEV -

vi=-v(e¥) := {F € <i>’: sup [F[d]<e}
- PEV

where V is a bounded set in ® and €>0. Let

= X ,bl in V.
HlXUlv .oéng gtépvl t[€]l, vin

From Mitoma [6], we have that C([O,T];<I>’) has the projective limit topology of
{IlIXljly: vEV}. Thenifv € Vand X € B

NGa(X)=G()lly = sup_ sup [(Gn(X)—G(X); (4]l
~0<t<T dev :
and by (2.30)
n- I —— —
11Ga(X) = G(X)Illv s‘HFTgtépv I8llpy — 0 as n—co.

Hence Gn(X) converges to G(X) umformly over compact sets of Cg,

_ The fact that G(X) is a contmuous map from Cg, to itself is easily shown.
The proof of the lemma is complete O . ,

From the proof of the above lemma (see 2. 24)) we obtam the follcwmg
corollary. ’ i : :

Corollary 2.1: Let {Ap(t)}iso. {Tn(s,fj: 0<s<t<cox} n>1 and {A(t): t}_'(')},“{T(s,t):
0<s<t<T} be as in Lemma 2.2. Then for each ¢ in @ :

Trist)p — T(s,t)¢ asn—co
uniformly in 0<s<t<T for each T>O0. '

Proof of Theorem 1.2: '

-Let Py, n>1, and P be the probability measures on C({0, oo) CP) mduced by
Mo n>1 and. M respectlvely By assumption Py = P in C([O 00); <I> )

From (1.10) and_ (1. 12) we have: that for each n>1 the solutlon E = (ft) of
(1. 16) can be written as :

& = That.oy" + jng(t,s)AA(s>M2d,s ., (2.31)

and _using (2.6) v B
z;‘t = T/, 5)7 + Gp(M" o - ' ST _ (2.32)




Similarly,
£ = T/(ts)y + G(M),. _ (2.33)

We will first prove that E?'T=> ET in C;’ for each T>0. Here f?'T(fT) is
the restriction of {':'(f_) to [0,T].
T

Define fn(X): €y — cg, byv
(X)) [9] = XolTa(0,1)4], (0<t<T). (2.34)

Then for X € Cg, using Corollary 2.1 we have

(FaOO[B] | oo (fX))y 1= X[T(0,1)$] for each ¢ in &.

Let B C CT, be a compact set. Then using the notation of the proof of Lemma 2.2
forvin V,

G100l = sup. sup o [Tr(o.016=TC0.04] (2.35)

<H oun, SLépv [Tnc0.¢—T(O.0]lq

— 0 asn—oo for all X in B.
. T
Finally, for X € C@, define
ha(X) = fr(X) + Gn(X)‘ and h(X) = (X)) + G(X).

Then hp(X) — h(X) uniformly over the compacts of Cg,. The assumption Pq = P
implies P;,r = pT

by Mn'T and MT respectively where M?'T= M? (0<t<T) (similarly, M;r= Mg,

where PT and P.r are the probability measures induced on Cg,
0<t<T). Since 7n=>7 and 7” and M" are independent, it follows from (2.31),
(2.32) and Lemmas 2.1 and 2.2 that Qn'T=> QT in Cg,. For each ¢€® let H¢
be the mapping introduced in Lemma 2.1, suitably modified. Then the relation Q"n=>
Q V] implies that #¢J=>#¢J where pg'j (and similarly pé ) is defined by p¢‘]

QnH¢ . Thus, for each j, {QJ;,H;;} is tight for every ¢ €. Now, from the fact that
C has the projective limit topology.of {Cj}->1 it can be shown that the sequence of

measures ,ug)—- QnH;é is tight for each ¢€P. By Theorem 3.1 of Mitoma [6] it
follows that {Qp} is tight. On the other hand, the weak convergence of an to Q"



~

for every j clearly lmphes finite dimensional convergence under Qp of (Xt [éll'""
Xt [Qk]) to its law under Q. Proposition 5.1 of [6] then implies Qn=Q. 1 0

Femark: For (1.16) and (1.17) to have umque solutions, it is suﬁ‘cxent according to

.Theorem 2.1 of [5] that for some r5>0, r>0 we have

E[“/nl?{n < oo and E]'fl?} < co.

With this assumption and the other conditions of Theorem 1.2 in force we have the
following result as an immediate corollary.

Corollary to Theorem 1.2: Let fn and E be respéétively the unique solutions of the

equations

dn; = Al@Wndt + dMP, 9 = 4",

any = Alnat + dmy, 5y = v

where {A(t)}45q satisfies the conditions of Theorem 1.1. Then fn = €.
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