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1. Introduction. 

: ,; 

As is well known, the theory of orthogonal polynomials was developed 

mainly for constructing solutions of differential equations. Another 

aspect in which this theory plays an important role is in 

approximation theory, e.g. the role played by the Tchebycheff 

polynomials. The purpose of this note is to show how the theory_of 

orthogonal polynomials can also be applied to the problem of extending 

a function f of class ~over a finite interval, say [0 1 a], a> 0, to 

a function f defined on a larger interval;. say [-[3,a], {3 > 0, and 

preserving the degree of smoothness. 

Of course, this problem is not new, and has been studied in a 

more general setting for domains in euclidean n-space, among others 

by, Babic [ 1], Calderon [2], Nikolsky [4], and Stein [6] .. Compared 

with their methods and scopes, _.our approach can be considered as 

elementary. As a matter of fact, here, except for a more precise 

estimation of the bound for the norm of the extension operator, we do 

not prove anything new, we only give new proofs of old results using 

the techniques of orthogonal pol'ynomials. 
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Our starting point is the following result due essentially to 

Babic. 

THEOREM. (extension by cfD reflection). Let o: and {3 be real numbers 

with 0 < 

where 

0: !!: {3. Given f E cflu o, an, m = 0,1,2, 

E f(x) 
m 

{ f(x), 
= 

g(x), 

m 
g(x) = E 

j=O 

0 !!: x ::s; a 

-{3 !!: X!!: 0, 

c .f( -"A .x), 
J J 

( j = 0, 1 , ... , m), 

define 

• • • I c ) is the unique solution of the system 
m 

m k 
E c ."A • = 

j=O J J 
( k = 0, 1 , . . . , m) . 

Then, E f E cfl([-[3,o:]), and for 1 !!: p < oo, 
m 

( 1. 1) 

( 1. 2) 

( 1. 3) 

( 1. 4) 

( 1. 5) 

k = 0, 1, ... , m, where K is a constant depending only on m and p. m,p 

As Fraenkel [3] has pointed out, in (1.5) the dependence on o:/{3, 

although easily calculated, is usually not stated. 

From (1.5) it follows immediately that 

( 1. 6) 

k = 0, 1, ... , m. 

What we are going to show next, is that the method of extension 

by ~ reflection is essentially a discretized version of an extension 

method involving orthogonal polynomials. 
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2. An integral operator suggested by em reflection. 

We start by noting that (1.2) can be written in the form 

m+1 
g(x) = J c(t)f(-A(t)x) dt, 

0 

subject to (e.g. (1.4)) 

m+1 J
0 

c(t)Ak(t) dt = (-1)k 

-{3 ~ X ~ 0, 

( k = 0, 1; ..• , m) , 

where c(t) and A(t) are the step functions given by 

c(t) =c. and A(t) =A., if t e [j,j+1] (j = 0, 1, .. ,m). 
J J 

---~~~--··-

( 2 1) . 

(2.2) 

In (2. 1) and (2. 2) let us take A in place of t as integration 

variable, replacing A(t) by a strictly increasing functfon of t, which 

we denote the same A = A(t), and such that 

1 a 
A(O) = -. -

m+l [3 ' 
a 

A(m+l) = 
13

. 

If we let H(A) = c(t(A)) and w(A) = dt/dA_, where t = t(A) is the 

inverse function of A= A(t), then from (2.1) we obtain 

g(x) 
'0 - J H(A)f( -Ax)1v(A) dA, 

- 'Om 
-{3 ~ X ~ 0, (2.3) 

where 

a 
0 = {3 J 

0 - 0 
m m+1· 

(2.4) 

Also, from (2._2) we see that for the continuity of the Q.erivatives up 

to the order m at x = 0 of the extension E f given by ( 1. 1), where g 
m 

is now defined by (2.3), H(A) must satisfy 

0 

J . H(A)AkW(A) dA = (-l)k 
om 

( k = 0, 1 , . . . , m) . (2.5) 

We see then, that the problem we are now facing is the following: 

For a given weight w, find a function H sat-isfying condition (2.5); so 

that, iff e cflluo,a]) and if E f is as in (1.1) where g is given by m 

·· (2.3), then E f e cfll([-[3,a]). 
m 
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In the following section we will show that given any weight w , 

such an H can be found, and it is a polynomial of degree m which can 

be expressed as a sum of orthogonal polynomials with respect to the 

weight function w. 

~- A polynomial kernel H(A). 

From now on we shall assume that w(A) is a weight over ]0m, 0[, i.e., 

w(A) is a measurable function such that w(A) > 0 a.e. on ]0m, 0[ and 

1 
we L Uo ,on. m 

We transform the interval [0 , 0 ] into the interval [-1,1] by 
m 

means of 

- o-om m 
A = a + [3s, 

o+om _ 2+m 
a = -2--- - 2(m+1) 0' [3 = -2--- = 2(m+l) 0 ' 

Then, (2.3) is now written as 

1 
g(x) = I H(s)f(-(~+~s)x)w(s) ds, 

-1 

where 

Also, (2.5) become~ 

I 1 H(s)(a+~s)kw(s) ds = (-1)k 
-1 

( k = 0, 1 , ... , m) . 

LEMMA. Condition (3.4) is equivalent to the condition 

1 - k I H(s)skw(s) ds = (-1)k[1 ~aJ 
-1 [3 

( k = 0, 1 , . . . , m) • 

PROOF. Suppose that condition (3.4) holds. Then 

( 3. 1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

I 1 - . - k- I 1 - - { k [k] - - k-j - j } H(s)([3s) w(s) ds = H(s)w(s) .E . (a+[3s) (-a) ds 
-1 -1 J=O J 

= ~ [~J(-1)k-j(-1)jaj = (-1)k(1+a)k. 
j=O J 

Suppose now that condition (3.5) holds. Then 
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r_; iii s)l~+~~lWI s) ds ~ ( iii sJWI s){ Jo [~}xk-j l~s)j } ds 

= ~ [~]ak-j(-1)j(1+a)j = ca-1-a)k 
j=O J 

k 
= (-1) . 

If we let 

l+cx 
0' =--

{3 

2( m+ 1 )+( m+2 )o 

TirO' 

then condition (3. 5) is now written as 

1 ·J · H(s)sk~(s) ds = (-cr)k 
-1 

( k = 0, 1 , . . . , m) . 

(3.6) 

(3. 5') 

Let (¢nJ ·be a complete orthonormal sequence of polynomials with 

respect to. the weight function ~ over the interval [ -1, 1], where the 

-degree of¢ equals n for n = 0,1,2,; .. . 
n 

We define 

m 
H(sJ = E ck¢kcsJ, · 

k=O . 
-1:Ss:S1, - (3. 7) 

where the constants c
0

, c
1

, ••• , em are going to be determined in such 

a way that condition (3.5') holds. We have 

(3.8) 

where Ak,,k :;e 0 (k = 0, 1, • ' ' I 
m). So, for (3.5') to hold we must have 

=A C + ... + Ak,kCk . k, 0 0 
( k = 0 J 1 J • • • J z_n) • (.3.9) 

Since Ak,k :;e 0 (k = O,l, ... ,m), we can solve successively (3.9)-for 

the· Ck (k_= 0, 1, ... ,m), and from (3.6) we obtainthe following growth 

estimate 

I'C I :S K 0 -k 
k 

( k · = 0, 1 , . . . , m) , (3.10) 

where K is a constant depending on the coefficients Ak, t and of m 

~- . .. ; : 



(Recall that we are assuming that a and ~ satisfy 0 < a ~ ~. and hence 

that 0 < o ~ 1) . 

Now, we reverse the transformation (3. 1) 

i\.-a 
s = -, 

Then 

H(i\.) = (3.11) 

where 

¢n(i\.) = ¢n[i\.~a] (n = 0,1, ... ), ( 3. 12) 

and {¢ } is a complete orthonormal sequence of polynomials with 
n 

respect to the weight function w over the interval [0 , 0 ], and the 
m 

degree of¢ equals n for n = 0,1, ... . n 

We have shown that if w e L
1
(] 0 , 0 [) is any weight, then there 

m 

exists a polynomial kernel H(i\.) of degree m, which can be expressed as 

a sum of orthogonal polynomials with respect to the weight w, such 

that H(i\.) satifies condition (2.5). Hence, if f e ~([O,a]) and if we 

define E f by (1.1) where g is given by (2.3), then E f e ~([-~,a]). 
m m 

In the following section we are going to show that for our 

extension operator E , formula (1.5) holds. 
m 

4. Bounding the derivatives in LP, 1 ~ p < oo. 

Since our extension procedure works well as long we are dealing with 

orthogonal polynomials with respect to an arbitrary weight function w 

over ]-1, 1[, we choose here the simplest one, namely, the weight 

function ~(s) - 1 on [-1,1]. Obtaining in this particular case the 

orthonormal polynomials 
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(n=0,1, ... ), 

where Pn(s) is the Legendre polynomial of degree n over [-1,1]. As is 

well known, [5;p.181], the following estimate holds: 

IP (s)l ::S 1, 
n 

-1. ::S s ::S 1, (n = 0,1, ... ). 

Hence, the orthonormal polynomials {¢n} on lom'ol given by (3.12) 

satisfy 

0 :S i\ :S 0', 
m 

( 4. 1) 

Also, in this case, the coefficients Ak,e appearing in (3. 8) satisfy 

the relations [5~p.193] 

Ak,t = 0, when k- e is odd or negative 

(2t+1)2e((k+t)/2)! 
Ak,l = ((k-l)/2 )!(k+l+l)! , when k- e is even and positive. 

From this last fact and (3.1), (3.10) , (3.11) , (4.1) we obtain 

IH(i\)1 :S K ;-m-1, 
m 

where K is a constant depending on m. 
m 

Now, since w(i\) = 1 on [ 0 , 0 ], from (2.3) we see that 
m 

g(k)(x) = Jo H(i\)f(k)(-i\x)(-i\)k di\ 
. om 

(4.2) 

(4.3) 

for_ k = 0, 1, ._ ..• , m. Let 1 :S p < ro. Applying Minkowsky inequality for · 

integrals to (4.3) we get 
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o { A~ }1/p = J IH(A)IAk J
0 

lf(kJ(t)IP ~t dA 

om 

=== { Jo IH(A)IAk-1/p dA} u/k)ll . 
om LP([O,a]) 

Also, from (4.2) we have 

Km o-m-1 Jo Ak-1/p dA, 

om 

(4.4) 

(4.5) 

and if we analyze separately the cases p > 1 and p = 1, from (4.4) and 

(4.5) we easily obtain (1.5). 

5. Final remarks. 

Stein, in [6], has constructed a remarkable extension operator E, 

which extends to IRn functions defined on a domain D in IRn with a 

"minimally smooth boundary". This extension operator E is universal, 

in the sense that simultaneously extends all orders of 

differentiablity, and is such that E 

bounded linear operator form= 0,1, ... , 1 =:: p < oo, where ~,p(D) is 

the usual Sobolev space. This is to be contrasted, for example, with 

the hierarchy of extension operators E of the Babic type. m 

Here, in our more modest setting we ask ourselves the following 

question: Does there exists a kernel H(A) that serves for all 

extension operators E as defined above ? . The answer is no, as one 
m 

should expect. More precisely we have the following 

PROPOSITION. Let 0 =:: t 0 < t
1 

< oo, and let w be a weight function over 

1 Jt
0
,t

1
[. Then, there exists no function ¢ e L (Jt

0
,t1[,wdt) 

such that 

t J 1 ¢(t)tmw(t) dt = (-1)m, 
to 

(m = 0, 1, ... ). ( 5. 1) 
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PROOF. The function ¢ corresponds to the function H in (2.5). We 

transform the integral in (5.1) to an integral over the interval 

[-1,1], by means of the change of variable 

t = a+bs, 

Then (5.1) becomes 

1 I ~(s)(a+bs)mv(s) ds ·= (-1)m 
-1 . 

(m=0,1, ... ), ( 5 .. 2) 

where ~(s) = b¢(a+bs), and v(s) = w(a+bs), or equivalently (see the 

proof of the Lemma in Section 3), 

m m 1+a 1 [ Jm I_
1 
~(s)s v(s) ds = (-1) ~·. 

Now, 

l+a 
~ = 

and if (5.3) holds 

i.e. 

! 1+8)m ~ e;•r ~ f_: I¢! s) I v( s) ds 

1 I l~(s)iv(s) ds = oo, 
-1 

in contradiction with our hypothesis. 
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