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INTRODUCTION.
As is well known, both, Schwartz theory of distributions [13],
and the theory of Sobolev spaces (Adams [1], Necas [10], Sobolev

[151), are concerned with the family of differential operators

; o
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In these thecries, one of the fundamental problems is to extend such

operators in a suitable way, being them originally densely defined in
a Frechet space X, which is usually taken as Léoc(Q) or Lp(Q), 1 =pc<
w, where Q is an open subset of R". The solution to this question is

based on the equality

f gu Y dx = ~ j u &y dx, ue CO(, v e C2().
8x ., : ox . c
Q J Q J

Using this as a starting point, Schwartz introduces a topology in the

space of test functions ¥ = CS(Q) and "extends" the operators using

the idea ofyduality, that is, as continuous linear functions on V.



Following the duality approach, Gelfand and Shilov [8] have

developed the theory of generalized functions, which are defined‘

as the elements in the dual space of a countably normed space , called

the fundamental space.

Under another perspective, L. Ehrenpreis [5], payed atention to

the "structure" of the open set Q, extending Schwartz theory to
certain families of linear operators acting on functions defined on a
countable at infinity locally compact space.

In this work, we consider a Frechetf space X togéther with a non

degenerate '"compatible product", [+,-1:X 5( Y — €, and a finite
- family & = { Ll’ cees Ln } of linear operators on X, satisfying
¥ :
Lj(®) € & and LJ(Q) c v, (j=1, ..., n), (*)

whéreié € X and ¥ € Y are "test spaces”. We show then, that iﬁ is
possible to develop an abstract thepry, within which, many of the
basic problems appearing in the theory of distributions and the theor&
of Sobolev spaces can be stated and solvea.

This abstract theory of distributiong is based on a neotion of
duality defiﬁed by means of the pairing (X,Y,[-,-]),-and solves the
extension problem posed fof the family of operétors 2. Aé in Gelfand’s

/

approach, distributions are defined as eiements of the dual of the

test space ¥, which is..endowed with a lécally convex metrizable

topology. Nevertheless, in our work the test space (corrésponding té
Gelfand’s fundamental space) -it is vnqt arbitrary, buf it is
constructed by means of the faﬁily ? and the given pairing.

On the 6ther hand, within this géneralvcontext, wé,establish many

of the basic properties appearing in the theory of Sobolev spaces.

When X is a Hilbert space, we show that 1t is possible to define the




(abstract) gradient, divergence and Laplace operators. With these in
hand we can formulate and solve the Dirichlet and Neumann (abstract)
problems. As in the usual case, we do it by making use of the
(abstract) Friedrichs’ and Poincaré inequalities, respectively.

Qur exposition is divided in 8 sections, grouped in 4 chapters,
and an Appendix. In the first part of Gection 1 we give the
terminology and basic results utilized in this work. In the second
part of this section we give a detalled description of what we call
the "space induced by a family of linear operators". These spaces are
quite usual, but we were unable to find an explicit reference where
their properties were sistematically developed. In Section 2 vwe define
the concept of P-space (X,Y,[+,+]) and the concept of test space.
Given a linear operator L : D(L) € X — X, and if D(L) is a test
space, then its adjoint operator L : D(L*) €Y — Y is defined in
the usual way:

[Lx,y] = [X,L*Y], x e D(L), ye D(L*).
When D(L*) is also a test space we define L, the maximal closed
extension of L. Finally, here we give some examples of P-spaces.

Given a P-space (X,Y,[+,+]), in Chapter 1I we define the space of
distributions ¥(X;%)’ for a family of operators &£ satisfying
condition (*). For this purpose, in Section 3 we define of what we
mean by the "“weak extension" or in the “sense of distributions" of an
operator. In Section 4 we study the space of distributions @(X;f)’.

In Chapter III, in a similar vein than the previous one, we
define the Sobolev spaces wm(X;f) and wg(X;f), m=0, 1, ..., +wn. The
elementary properties of these spaces are established in Section 5. In

Section B we consider the situation in which the base space X is a



Banach space. In this case, we define the spaces w’m(x;z), which allow
us to obtain a family of spaces with continuous inclusions

Co W) s o X e e WY E) s
When X is reflexive, ® is dense in each of these spaces.

In Chapter IV, we study the Hilbert—Sbbolev,spacgs, that 1is, the
case when X is a Hilbert space. In Séction % we define the gradient,
divergence and Laplace operators, and obtain their basic properties.
In Section 8 we study the correspoﬁéing Dirichlet problem, and its

relation with Friedrichs’ inequality. The same is done, in Section 9,

- for the Neumann problem and Poincaré inequality, following some ideas

of Deny and Lions in [3].

Finally, in the Appendix, we give a detailed account of those
properties of the spaces Liac(ﬂ) utilized along our exposition, méinly
in the illustrative examples, which we believe séme‘are well known,

but we were unable to find them in the literature.
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CHAPTER I : PRELIMINARIES.

The purpose of this chapter 1is to review and study in a
systematic way, some concepts and results that serve as a basis for
the development of our theory, and have appeared dispersed in the

mathematical literature in one way or another.
1. The Space Induced by a Family of Linear Operators.

1.1 Some Basic Notation and Terminology.

Throughout this work, K will allways denote the field of real
numbers R, or the field of complex numbers C.

Our definition of locally convex topological vector space, which
we refer simply as "locally convex space", it will assume, unless it
is stated otherwise, that is Hausdorff. Given a locally convex
metrizable space X, if a sequence {Xn} in X converges to a point x in
X, we will write

X, —X in X.
A locally convex metrizable and complete space will be called a
Frechet space.

Let V and W be locally convex spaces, and T : V — W a linear
operator. If T 1is one-to-one, T(V) = I, and if T and ‘T—I are
continuous, then T is said to be a liﬁéar isomorphism.

Given a locally convex space X, its dual space will be denoted by
X', If ¢ € X', we shall often employ the notation

<x,0> = ¢(x), x € X.

The space X’ together with the corresponding strong topology, will be



called the strong dual of X, and will be denoted by X;..The strong

bidual of X is then defined as (X;)é. Every x € X determines a

- continuous linear functional x € (X;);, given by the equation

<¢, x> = <x,¢>, ¢ € X;.
The correspondence
X — (X7)7, X — X,
s’s _
is linear one-to-one and continuous, and if X is a Frechet space, then
it is a linear isomorphism onto its image X. This mapping will be
called the canonical identification of X with its strong bidual. If

X = (X;);, then we say that X is a reflexive space.

Let X be a locally convex space, and F be a subset of X’. We say

- that F is total, if x € X, and if <x,¢> = 0 for all ¢ € F, then we

must have x = 0. An immediate application of Hahn-Banach theorem gives

the following

LEMMA 1.1.1. Let X be a locally convex space. If X is reflexive and if

F € X’ is total, then F is dense in X;"

Given a linear operator T from X to Y, we dénote its domain,

range, and.nullspace, by D(T), R(T), and N(T) respectively. We write

T €8S, if S is a linear operator from X to Y which is an extension of

‘T (i.e., D(T) € D(S) and Tx = Sx for all x e D(T)).

Let X and Y be locally convex metrizable spacés. Given a linear

operator T : D £ X — Y, we say that:

a) T is closed, if for every sequence {xk} in D, x €e Xand y € Y; if

X, —> X and TXk -—_ y,'then x € Dand Tx = y.

b) T is closable, if there exists a closed linear'opérator S from X to




Y such that T € S.
As is well known, T is closable if and only if for any sequence
{xk} in D: X, — 0 and Txk —> ¥ imply ¥ = 0. In this case, it is
possible to define the minimal closed extension T:DeX —Yof T,
where D consists of those x € X such that there exists a sequence {xk}
in D with xk — x and TXk — y. If this 1is the case, we define
Tx = y. The name given to T results from the following properties:
T is a closed linear operator and T ¢ T (1.1.1)
If S: D(S) € X — Y is a closed linear
operator with T € S, then T € S (1.1.2)
let T : D(T) € X — Y be a linear operator with D dense in X.
Then, its dual operator T’ : D(T’') ¢ Y; — X; is defined by the
condition
<Tx,¢> = <x,T' ¢>, x e D(T), ¢ € I(T').
As is well known, if D(T) = X and if T is continuous, then so it
is T’ Y; — X;.
To end this section, we give a last piece of notation. lLet X and
Y be locally convex spaées. If X is a subspace of Y, and if the

inclusion from X to Y is continuous, then we will write

X —Y.

1.2 The Spaces V(X;d4).

Let X be a locally convex metrizable space, and let 4 = {4

1’ )
An} be a finite family of linear operators on X:
Aj : D(Aj) c X — X, j=1, ..., n. (1.2.1)
We define
V(X;4) = D(Al) nN...nN D(An). (1.2.2)



ES

Let ? = {pe} be an increasing family of seminorms generating the
topology of X. In V(X;d4) let us consider the family of seminorms
Q= {pgoAj :4=1,2, ...; j=0,1, ..., n}l, (1.2.3)

where 4 X — X is the identity oberétor. Since P € Q, the family Q

0 M
is a separating family of semi-norms on V(X;#). Being Q countable, the
topology generated by Q makes V(X;4) a locally convex metrizable
space. We call V(X;4) the space induced on X by the family . The

notion of convergence in this space is characterized by the following

result

LEMMA 1.2.1. A sequence {xn} in V(X;d) convefges to a point x in
V(X;4) if and only if - “
. Xk — x in X and ijk —_— ij.ln X, j=1, .1., n.

In particular we have

V(X;d) — X, (1.2.4)

and

A; 0 V(Kd) — X is continuous, j = 1, ..., n. (1.2.5)

PROPOSITION 1.2.2. Let X be a Frechet space. If each Aj is a closed
operator, j =1, ...,n, then V(X;ﬁ) iS é Frechet space.
PROOF. Let {x,} be a Cauchy sequence in V(¥;d). From (1.2.4) and
(1.2(5) ‘we. see that each {Aij}' is a Cauchy sequence. Since XJ is
complete, there exist x € X and yj € X, such that

. xé —> x in X, Aij — yj in X, Jj=1, ...,n.
Now, each Aj is closed, so we must have x E’D(Aj) and ij = yj. Thus

x € V(X;4), and from Lemma 1.2!1 we conclude that X, — x in V(X;d4).

10




Given a set S and a positive integer n, from now on we will

employ the notation

S(n) =S x ... xS (ntimes)..

Let X be locally convex metrizable space, and consider X(n+1)

with its product topology. Then X(n+1) is a locally convex metrizable

space, and when X is a Frechet space, then so it is X(n+1). Let us
define the natural embedding
i WX d) — X(n+1),
by
i(x) = (x, AJX’ cee Anx), x e V(X;d).
In view of Lemma 1.2.1, i is a linear isomorphism onto its image R(i).
This basic fact will allow us to show how certain properties of the

space X are inherited to the space V(X;d4). We illustrate this with the

following two results.

PROPOSITION 1.2.3. If X is separable, then so it is V(X;d).
PROOF. It is enough to show that R(i) is separable. But this follows

immediately from the fact that X(n+1) is separable.

PROPOSITION 1.2.4. If X is a reflexive space, and the operators Aj,

j=1, ..., n, are closed, Then V(X;d) is a reflexive space.

PROOF. Let us note first that it is enough to show that R(i) is
. . . . cL s (n+1)

reflexive. Now, since X is reflexive, then so it is X ; and from

the fact that the Aj are closed it follows that R(i) is a closed

(n+1)

subspace of X But, as is well known, a closed subspace of a

reflexive Frechet space is reflexive. Therefore R(i) is reflexive.

11



.Let us consider next, the case of‘one ciosable linear operator
A :+ D(A) c X — X. Then 4 is a closed liﬁear operator, and we
can consider the locally -convex metrizable space V(X;z). From
?Poposition 1.2.2 we know that if X is a Frechet space, then so it is
V(X;4). Furthermore, we have the followiné facts:
D(4) is dense in V(X;4) = D(4), (1.2.8)

Ad: V(X;A) — X is qonfinuous. » (1.2.7)

REMARK 1.2.1. We want to point out that the previous construction is
still valid in the more general situation when one has a finite family
of linear operatofs 4 = {Al’ .;., An},‘such that

A, : D(A)SX—2Z, j=1, ..., n

J J , o .
where Z is another locally convex metrizable space,. with the same
properties as X. In this case, the space induced on X by the family 4

will be denoted by V(X,Z;4). This more general setting will be needed

in Section 8.4.

To end this éection, we want ‘to deséribé_the space V(X;4) in the =
case when X is'a noPmed space with norm li+ll. In this case, it is
possible to norm V(X;ﬁ) in seQeral equiValent ways. To fik ideas, in
V(X;d) we consiaér'the norm '

Hxﬂﬂ =max { lxli, WA xi, ..., HAnXH ', ~ . (1.2.8)

1
If His a spacefwhpse norm [l+ll. comes from a scalar product” («,*),
then L
(2,50 = (x,9) + (A% A9) + ... + (A x4 y), o (1.2.9)
defines a scalar product on V(H;d). Its associated norm is

2 2,1/2

Hxﬂﬂ = (Ihxll™ + ”AIXHZ +l...’+ HAnXH ) (1.2.10)

12




Let us note that the norm (1.2.10) is equivalent to the norm (1.2.8).

In this context, we see that if X is a normed space, then the natural

embedding i : V(X;d) — X(n+1), is an isometry if in the space x(arl)

we consider the norm

I(x,, x L, o x ) = max {lx 4, Nx 0, ..., Ix I},
0 n n

1’ 0 1
Furthermore, if H is an space whose norm ll:ll comes from an scalar

product (+,+), then the embedding i : V(H;4) — H(n+1)

+
operator, when we consider on H(n D the inner product

is a unitary

((xo, vy xn),(xa, e xn)) = (XO,XO) + ..+ (xn,xn).

From Proposition 1.2.2 we obtain the following

COROLLARY 1.2.5. Assume that # is a family of closed operators.
(i) If X is a Banach space, then so it is V(X;«4).

(ii) If H is a Hilbert space, then so it is V(H;4).

1.3 The spaces Vm(X;ﬂ),
Given a locally convex metrizable space X, and a family of linear
operators & as in (1.2.1), we define
Vi) = x, v = vk,
Proceeding inductively, let us assume that we have define the locally
convex spaces VZ(X;ﬁ), ey Vm(X;ﬂ), in such a way that

Vo) s vVl s L s vl s x, m

v
LY

Let
D? = {x e V™(X;d) : Ax e vx;4)y, j=1, ..., n,
and
m m
A= a0" =1, ...,n
J JI i

Next, consider the family of linear operators

13



"(ii) If X is separable, then so it is VX;4), m =0, 1,

: j=1, ..., nt.
We then define
VL) = vOrRKia) ;A (1.3.1)
. m+1 . . m . m
That is, V' "(X;#4) is the space induced on V (X;4) by the family £ .

From (1.2.4) and (1.2.5) we obtain

o) s VNG s L. X, m=0, 1, ... (1.3.2)

and

., n. (1.3.3)

i}
[y
-

A Vm+1(X;ﬂ) — V™X;4) is continuous, J

LEMMA 1.3.1. If each Aj, j=1, ..., n is a closed operator, then

i :'D? c VB(X;d) —> V(Kd),  j=1, ...,n,

J
is a closed linear operator.

PROOF. Let: {Xk} < D?, X, ¥V € Vm(X;ﬂ), such that

m o SN S
X, — % ijk ~— y, in V(X;d4).

Since Vm(X;ﬂ) —— X, and being each Aj closed, we have x € D? and

y. = A.x. Therefore A" is closed,
J J J

From propqsifions 1.2.2, 1{2f3,n1.2s4 and Lemma 1.3.1 we obtain

the following result

'COROLLARY 1.3.2. Let X be a locally convex metrizable space, and d be

a family of linear operators as in (1.2.1).
(1) If X is a Frechet space, and if the operators Aj, Jj="1, ...,n,

are closed, then Vm(X;ﬂ) is also a Frechet space, m =0, I, ...

“(iii) If X is reflexive, and if the operators Aj’ j =1, ..., n, are

‘closed, then Vm(X;ﬂ) is also reflexive, m = 0, 1,.

14
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. m,.. . .
In order to describe the spaces V (X;#4) in a concise manner, we

introduce the following notation. Let In = {1, 2, ..., n}. Taking
0 2
In( ) = {0}, for gy = (71, ey yg) € In( ), £=20,1, ..., we define:
[v] = ¢, (1.3.4)
A = A ... 4, (1.3.58)
¥ 71 78
where AO is the identity operator in X. In this context y will be

called a subindex, and [y] is its length.

The following result is obvious:

PROPOSITION 1.3.3. Under the same hypothesis as above we have:
(1) VG4 = AD(A) : [yl =m}.

(i1) x, — x in Vm(X;d) if and only if Avx —_ AWX’ for every %

k k
with [7] = m.

(1ii) If [y] = & =m, then AW : Vm(X;ﬂ) — Vm_Z(X;ﬁ), is a continuous

linear operator.

If X is a normed space, the corresponding norm on Vm(X;ﬂ) is

given by
quﬂlm = max {HA?XH : [yl =nm}. (1.3.8)
Also, when H is a inner product space, then the corresponding inner

product on VR(H; 4) is given by

(X,X’)ﬂlm = 3 (Aqx,Aqx’), (1.3.7)

and the associated norm is

2 1/2
I« = { Z A xll } . (1.3.8)
4, m (y1=m ¥

Let us note, that in this case the norm (1.3.8) is equivalent to the

15
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norm {(1.3.8). Furthermore, when m = 1, (1.3.7) and (1.3.8) coincide
with (1.2.9) and (1.2.10) respectively. -

From Corollary 1.3.2 we get immediately the following result.

COROLLARY 1.3.4. Supose that each 4, j = I, ..., n, is a closed
linear operator.
(i) If X is a Banach space, then so it is V(X:d).

(ii) If H is a Hilbert spdce, then so it is Vm(H;ﬂ).

To end this section we define the space

. +00 : ‘
VR4 = VG, - (1.3.9)
m=1 .

In order to define a topology on V+m(X;£), we consider the increasing

family of semi-norms ? = {pe} defining the topology on X. Then, -a

‘locally convex topology on V+w(X;A).is defined by the family of semi-

norms

.Q = {pgoA? =1, 2, ...; y € In(m)‘; m=0, 1, ...} (1.3.10)

In this way, V+m(X;£) results a locally convex metrizable space. The

convergence in V+m(X;A) is characterized as follows:

LEMMA 1.3.5. Let {Xk) be a sequence in V+m(X}£). Then

Xk — x in V+m(X;£)

if and only if
Ax, —> A xin X,
7k ¥

for all y e In(g), ¢=0, 1,

From the previous lemma is clear that

16




V) e VX d),  m

Il
()
—

(1.3.11)
and
A V% 4) — VT (X;4) is continuous, C(1.3.12)

for y e In(ﬁ), L =0, 1,

Also we have the analogous result to Corollary 1.3.2 for this

case.

COROLLARY 1.3.6. Let X be a locally convex metrizable space, and 4 a
be a family of operators as in (1.2.1).

(i) If X is a Frechet space, and if the operators Aj’ j=1, ..., n,
are closed, then V+m(X;ﬂ) is a Frechet space.

(i1) If X is separable, then so it is V' °(X;d).

(iii) If X is reflexive, and if the operators Aj, Jj=1, ..., n, are

closed, then V+w(X;2) is also reflexive.

Finally, we want to remark that if X is normed, then it not

necessarily follows that V+m(X;£) is normed.
2. Test Spaces, and Maximal Closed Extensions of Linear Operators.

2.1 P-spaces.
Let X and Y be vector spaces over K. Suppose that -
fe,°] : X x Y -—K,
is a sesquilineal form; that 1is, in the first variable is linear,
while in the second is conjugate linear. We say that (X,Y;[+,+]) is a

pairing, if it is also nondegenerate. That is:

17
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0 for all x € X, then y = 0.

(a) If y € Y, and if [x,7¥]

(b) If x € X, and if [x,y] O for all y € Y, then x

0.

Let @ be a vector subspace of X. We say that ® is a test sbace
for Y, if [, -] : ® x ¥ — K still is a nondegenerate sesquilinear
form, i.e., if (&,Y,[+,*]) is a pairing. We have an analogous
definition for ¥ € Y to be a test space for X.

Let (X,Y,[+,+]1) be a pairing. Consider a linear opérator L on X,
such that D(L) is a test space for Y. Then, given y € Y there - exists
at most one z € Y such that

{Lx,y] = [x,2], for all x € D(L). (2.1.1)

If such a z exists we denote it by z = L*y, and (2.1.1) takes the form
[ik,y]’= [X,L*y], | x € D(L). | (2.1.2)

Let D(L*) be the set of all y € Y for which there is a z satisfying
condition (2.1.1). It is clear that D(L") is a vector subspéce of 7Y,
and that L~ : L) €Y —s Y is a linear operator, called the adjoint
of 'L (with respect to the pairing). The foiloWing property of thé

adjoint is clear.

LEMMA 2.1.1. Let L and ¥ be linear operators on X. If D(L) is a test

. ’ X
space for Y, and if L € M, then ¥ ¢ L*.

Given the pairing (X,Y;[‘,-]),'we define = - <

¥
[y,x] =1Ix,y], yeY, xeX.

In this way we obtain a pairing (Y,X,[+,+1 ), called the adjbint
pairing. .
Let M : D(M) € Y —> Y be a linear operator Such that D(H) is a

test space for X. Tﬁéh, its adjoint operator (with respect to the

18




> X
adjoint pairing) ¥ : D(¥ ) € X — X, 1is determined by the condition

* * *
[y, ¥ x] , y € D(M), x € D(M ),

*
[My, x]

or equivalently

[x, Myl = (¥x,y], xeDH), ye D). (2.1.3)

Let us consider a pairing (X,Y,[-,+]1). For every y € Y, we denote
by Jy the linear functional on X given by

<x,Jy> = [x,y], xeXk (2.1.4)
ie., Jy=1[-,y], yeY.

We say that the pairing (X,Y;[-,+]) is a P-space, if X is a
locally convex metrizable space, and if the linear functicnal Jy is
continuous, for all y e Y, i.e., J(Y) € X',

With the purpose of working more easily, according to our
development, in the space X’ we define the multiplication by scalars
in the following way:

<x,k¢> = k<x,¢>, xe€ X, ¢ € X', k € K. (2.1.5)

Given a P-space (X,Y;[+,+]), from (2.1.4) and (2.1.5) it follows
that J : Y — X’ is a linear operator. Furthermore, it is easy to see
that J is also one-to-one. This will allow us to identify Y with the
subspace J(Y) of X’. From now on, we call the map J, the canonical
identification of Y in X’.

The following result is immediate from the definition of P-space.

LEMMA 2.1.2. Let (X,Y;[*,+]) be a P-space, and & a linear subspace of

X. If ¢ is dense in X, then @ is a test space for Y.

If the canonical identification J is onto, then making use of the

Hahn-Banach theorem, we can verify that the converse of the previous
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result also holds. That is, if ® € X is a test space for Y, then ¢ is

dense in X.

PROPOSITION 2.1.3. Let (X,Y;[+,*]) be a P-space, and L a linear

. ~H
operator on X. If D(L) is a test space for Y, then L = L*.

PROOF. Since L € f, then from Lemma 2.1.1 it follows that Z* < L*.

¢ ~ 3 .
Now, let v e D(L ), and take any x € D(L). Then, there exists a

sequence {x,} in D(L) such that x, —> x and Lx, —> Lx. Thus

k k

x

(Ix,y] = lim [Lx ,yl = lim I[x ,L*y] = [X,L*y].
k k .
k—>x k——

~ K ~ ¥ *# % ~¥
Therefore, y € D(L ) and L y = L y. This proves that L < L .

2.2 The Maximal Closed Extension of a Linear Operétor.

Let (X,Y,[+,+]) be a P-space, and suﬁpose that & and i are teéf
spaces for-Y and X respectively. We say that a linear oéerator L on X
belongs to the class €,(2,1), and we write L e €,(2,), if satisfies

& < D(L) and ¥ € D(L™). | (221

Given an operator L € €Z(@,Q); one has ’defined its - adjoint

L D(L*)>S'Y —> Y. We denote byALSJEhe restricﬁioanf L* to VU,

Next, we let L = (L;)* (cf.(2.1.3)). Thus, L : D(L) € X ——5 X, is
determined by the condition ‘}' |

| [Lx,y] = [X,L*Y],, X e'D(L); y e ¥. - (2.2.2)

We call the operator L the maximal closed extension.of L. The

reason for this terminology, is due to the following two results.

PROPOSITION 2.2.1. Let L € 6,(2,0).

(i) L is a closed linear operaﬁor.
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(ii) L is closable and L < L.

PROOF. (i) Let us consider: a sequence {Xk} in (L), xe X, y e X,

such that X, — X and ka — y in X. Since Jz € X’ for every z € ¥,

from (2.2.2) we have

* *
ly,z]l = lim [Lx, ,z] = 1lim I[x,,L z] = [x,L z].
k k
k——0 k—>0
But this together with (2.2.2) says that x € D(L) and Lx = y.

Therefore L is closed.
(ii) Taking into account that L € L, the conclusion follows

immediately from (i) and (1.1.2).

The next result explains the sense in which L is a maximal

extension of L.

PROPOSITICN 2.2.2. Let L € €1(®,W), and M a linear operator on X such
that L € . If ¥ € D(K'), then M € L.
X *
PROOF. From L € M we get ¥ <€ L . Hence, for x € D(M) we have
* *
[Mx,y]l = [x,M y]l = [x,L yl, yelV,

because ¥ <€ D(M*). The result follows from the definition of L.
From the closed graph theorem we obtain the following

COROLLARY 2.2.3. Let L € €1(®,W). If X is a Frechet space, and if

D(L) = X, then L is continuous.

REMARK 2.2.1. We want to point out, that the condition on the product
[+,+] to be conjugate linear in the second variable 1s not essential.

All the theory developed untill now is still valid when the product is
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a bilinear function. We merely ask the product to be a sesquilinear

mapping in order to immediately apply the results obtained so far, to

the case of Hilbert spaces. Furthermore, it happens that in the spaces:

X appearing in the study of partial differential equations, it is

v
¥

allways possible give a weak formulation of the problem by means of a-

sesquilinear form.

2.3 Examples of P-spaces.

We start with the simplest one.

EXAMPLE 2.3.1. Let ‘H be a Hilbert space with inner product (-,-).
Clearly (H,H,(+,+)) constitutes a P-space. By Riesz representation
theorem and from definition (2.1.8), it follows that J : H— H is a

linear isomorphism.

EXAMPLE 2;3.2. Let 2 be a ncnempty dpen bounded sﬁbset of Rn. Let us

consider X = C(Q), the space of all continuous functions u : G — cC,
together with the norm

full = max {Iu(x)l . xed .
Let us take X = Y, and define |

[u,v] ='f uv dx.
a

It 1is clear that (C(Q),c(Q),[-.+]1) is a P-space. From the
Stone-Weierstrass theorem, it follows that the space ® (=¥) consisting

of all polynomials in n variables, is a test space- for C(Q). In this

case, the canonical identification J : C(Q) — C(Q)’ is not onto.

EXAMPLE 2.3.3. Consider the Banach'space X = CO(Rn), consisting of all
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continuous functions u : R" — ¢ vanishing at infinite, together with
the norm
Ilu!lOo =gup {|u(x)] : x e R" }.
let w be a "normalized weight function", i.e., w € Ll(Rn) satisfies:
w(x) > 0 a.e. on R" and j wdx = 1.
If for u, v € CO(Rn) we define
fu, vl = j uv w dx.
[se]
Then, [-,-]00 is a sesquilinear form on X satisfying
[{u, vl | = lul_ lvi_, u, vecC. (R,
0 ® © 0
Also, an immmediate application of du Bois-Reymond lemma shows that
the sesquilinear form 1s nondegenerate. Since clearly one has
JC(R™) € ¢.(R™)’, then (C(RD),C(RM),[+,+1 ) is a P-space
0 - O 2 O 2 O ’ ’ 0 .

Also, 1if we take ® = ¥ = C_(R"), where C_(R") is the
subspace of CO(RH) consisting of all functions with compact support,
then using the well known fact that the former is dense in the later,
we see that Cc(Rn) is a test space for CO(Rn). Let us note that in
this case,the canonical identification J : CO(Rn) —_ CO(Rn)’ is not

onto.

EXAMPLE 2.3.4. With the aid of the previous example, we can define a
strucure of P-space on Ll(Rn) as folllows: As is well known, the
Fourier transform
}(6) = f e_ig'x f(x) dx,
for functions f e Ll(Rn), satisfies the following properties: fbr all
fe LZ(Rn) one has
(a)  feCyuR") Land (b) RIS NAI.

1

Taking into account (a), for f, g e LZ(Rn) we define
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(£,8], = (R3],

£, g, = J F(E)5(E) w(E) dE.

Then, from (b) we have

[L£,81,1 = I[£,g] | = Wen_ligh = ufi ugl,.
Hence [~,-]1 is a continuous sesquilinear form on LZ(Rn). Clearly, it
is not degenerate. The continuity of the canoniéal identification J,
follows immediately from "the continuity of the Fourier transform

(condition (b)). Therefore, (LZ(Rn),Ll(Rn),[-,']l) is a P—spacé;

In this case, ¢ = ¥ = CC(Rn) is a test space for LZ(Rn).

EXAMPLE 2.3.5. Let Q be an open nonempty subset of Rn. Consider the
Frechet space X = LiQC(Q), 1 =p=ow Let us take Y = LS(Q) (see the
Appendix), where 1/p + 1/p’ = 1, and define
[u,v] = f uwv dx, uelP (@, velP(.
Lac c
Q

Taking:into account what we have established in the Appendix, it is
easy to check that'(Lgac(Q),Li(Q>,[',']) is a P-space. In this case,
the canonical identification J : Li(Q)'4—+ (L?QC(Q))' is onto when

1.5'p<m.

From the du Bois-Reymond lemma, it follows that & w.=.cz(99 is

a test space for Liac(ﬂ) and LS(Q)Arespectively.

EXAMPLE 2.3.6. Let Q be a nonempty open subset of Rn. Consider the
Banach space X = ey, 1= p = w Let us take Y = LP(Q), where p’and

[+,+] are as in the previous example.‘Ffom the well known properties.

of the Lp~spaces it follows immediately that (Lp(Q),Lp(Q),[{}°]) is a
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P-space, and the canonical identification J : LpéQ) — (P s
onto if and only if 1 = p < w. Also, in this case, & = ¥ = C?(Q) is a
test space for LP(Q) and Lsz) respectively.

It is of special interest to note, that in the case p =1,
p’ = w; CZ(Q) € L®(Q) is a test space for LJ(Q) which is not dense in

L.

EXAMPLE 2.3.7. Given Q, an open nonempty subset of rR™. Consider the
P-space (szoc(n),Lg(Q),[-,-]) described in Example 2.3.5., together
with the test spaces ¢ = ¢ = c®(Q). Let o be a multi-index and

1 1

(o4
L el, () — L
c lac lac

8 (Q),
the corresponding differential operator. Since-
18%, 01 = [, (- *6%1, o, v e ),

it follows from (2.1.2) that CS(Q) c D((a“)*). Thus we see that
8% e €1(C:(Q),C:(Q)), and accordingly to what we have established in
Section 2.2., its maximal closed extension is defined, which is
preclisely the derivative 8% in the sense of distributions.

More generally, we can verify that for the differential operator

P = Z a (x)8%,
lalsm *

o . . . .
where a, € CI l(Q), le] = m, its maximal closed extension is also

defined in the sense of distributions.
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CHAPTER II : ABSTRACT SPACES OF DISTRIBUTIONS.

Given a P-space (X,Y;[+,+]), in Section 2.2 we defined the
maximal closed extension L of an operator L € €l(®,@). In generaL
according to Proposition 2.2.3, this extension is not defined in all
of X. In this chapter we will see how it is possible to extend L, in é-
weak sense, to a space that in .certain sense includes X; which °

following Scwartz [13], we have called “"space of distributions".
3. Weak extension of Operators in the Class ﬁl(é,@): The Normed Case.

3.1 The Negative Norm.

Let (X,Y;['f-]) be a P-space, where X is 2 normed space, with
norm ll-ll. Using the»canonical identification J : Y — X’, for yeY
we define |

Iyl = iJyl = sup (lxyl] @ dxl = 1 }.: . (3.1.1)

Since Jlisva one-to-one linear transfopmation,k(B.l.l) defines a
norn on Y, called the negative porm on Y induced by X. Ip this manner
J results an isomeiry, and |

[Ix, 711 = Ixll Wyl , xe X, yeY, _ (3.1.2)

i.e., [*,*] + X x Y — K is a continuous sesquilinear form.

Considering Y together with ifs negative norm H-H—, then it is |
. v IV N
immediate to check that the adjoint pairing (Y,X;[+,+] ) constitutes a

P-space, calied the adjoint P-space. Also, it 1is clear that Y is a

Banach space if and only if J(Y) is a closed subspace of X’.

For x € X, let Ix = [+,x] . That is
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<y,I1x> = Ix,v], y e Y. (3.1.3)
Since (Y,X;[-,-]*) is a P-space, then it is clear that Ix € Y’ for
every x € X. Furthermore, I : X — Y’ is a one-tc-one bounded linear
operator, called the canonical identification of X in Y'.

The following result is clear

LEMMA 3.1.1. If L : D(L) € X — X is a linear operator and D(L) is a

*
test space for Y, Then L : D(L*) €Y — Y is closed.

REMARK 3.1.1. In the general case, when X is a locally convex
metrizable space, if we equipp Y with the strong topclogy by means of
the canonical identification J : ¥ — X’, one could think of defining
the adjoint P-space (Y,X;[-,-]*). The difficulty here lies in that,
given that X is metrizable, X; will be meirizable if and oniy if X is

normable (Schafer, p. 182).
From Lemma 1.1.1 we immediately obtain the following

LEMMA 3.1.2. If X is a reflexive space and ¥ € Y is a test space for

X, then ¥ is dense in Y.

REMARK 3.1.2. Let (X,Y;[-,*]) be a P-space, where X is a Banagh space.
Let us assume that & € X is a test space for Y. In Section 6.1 we are
interested in the case when ¢ is a dense subspace of X. If this is not
the case, we can think of modifying the original P-space and consider
in its place the P-space (®,Y;[+,+]), where & is the closure of & in

X. However, this procedure can modify the corresponding negative norm
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on Y. Next we present two examples; in the first one the norm does not

change, while in the second it is altered.

EXAMPLE 3.1.1. Let Q be an open nonempty subset of R”. Let us consider
the P-space over R, X = L%Q), Y = LJ(Q) (cf. Example 2.3.6), and let
® = C:(Q) be the test space for Y. The negative norm on LI(Q) induced
by L(Q) is given by

HgH; = sup {IJ;fg dx| : HfHX =11}, g € LZ(Q). (3.1.4)
Since (L1(R))" = L(Q) , then it follows that

gy, = gl = fQ lgl dx. (3.1.5)

On the other hand, the negative norm on LZ(Q) induced by C?(Q) is
given by

ngé = sup {IJ; fg dx| : HfHX =1, fe C:(Q) }, ge€ LI(Q). (3.1.8)

Even though C:(Q) is not dense in Lm(Q), next we will see that

(3.1.5) is equal to (3.1.6).

PROPOSITION 3.1.3. If g € LJ(Q), then ugu; = HgH; .
PROOF. Let g € Ll ,g # 0. It is clear that ugu; > HgH; )

Now, let € > 0 be given. Pick an open set w such that.w is a

compact subset of f, and
j lgl dx = €. {3.1.7)
N\w .

Next, let B a measurable subset of w and C > 0, such that |g(x)| = C

on B and

j lgl dx = ¢. (3.1.8)
w\B :

Define
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1, if g(x) > 0 and x € B
alx) =< -1, if g{(x) < 0 and x € B
0, if x € Q\B .

From Luzin’s theorem, there exists a continuous function h : Q@ — R
with compact support contained in B, such that HhHLm(Q) = 1 and the set
A={xeQ: h(x) # a(x) }

has measure less than £/2C. Thus

j gl dx = f gh dx + ¢. o (3.1.9)
B B

Since h has compact support, from the Stone-Weierstrass theorem

it follows that the exists a polynomial P such that

P - h”L () = ¢g’, (3.1.10)
where g’ = s/ﬂgﬂLZ(Q). From (3.1.8) we have |
|P(x)] = €', x e'w\supp(h), ' (3.1.11)
and
”P”Lm(Q) =1+ ¢, (3.1.12)

Let us consider a functicn ¢ € C:(Q), such that 0 = ¢ =1 and
¢(x) = 1 for x e supp(h). Define ¢ = ¢P. Then Y E.C:(w), and from

(3.1.12) we have

”w“Lm(Q) =1+ ¢, | (3.1.13)
Furthermore, using (3.1.11) we get

7

MY e S e

But this implies that
f gh dx = J gy dx + &,
B W

This last inequality together with (3.1.7), (3.1.8), (3.1.9) and

(3.1.13) give

f gl dx = 4e + (1 + e')ligh .

Q

Fihally, letting £ —» 0, we obtain
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Y

hgh, = JQ gl dxc = gy,

and this completes the proof.

EXAMPLE 3.1.2. Let X be the Banach space over R consisting of all
functions f € CI(R) such that f and f’ are bounded on R, together with

the norm

N, }.

£, = max {HfHLw(R) , L®(R)

X
Taking Y = LI(R) and the product
1£,81 = [ fg ax,
it is a simple matter to verify that (X,Y;[-,+]) is a P-space.
Let us consider the points in R
ay =0, a =1+ (1/72) + ... + (1/k), and @, =, k=1,2, ...

ahd let & be the closed subspace of X consisting of all f € X such

that f(ak) =0, ke Z.

LEMMA 3.1.4. The following holds:
(i) @ is a test space for LI(R).
(ii) There is a positive constant C such that

hfen, = Clfl for all f € &,

Y X’
PROOF. (i) Let g € LZ(R) be such that [f,g]l = 0 for all f € &. Letting

I, =¢( ), then we have [¢,g] = 0 for all ¢ € C:(Ik). From du

K Cp-17 %k

Bois-Reymond lemma it follows that g = 0 a.e. on Ik' Therefore g = 0.

(ii) Take an f € &, and let x € Ik' Since f(ak) = 0, from the

mean value theorem we have

x eI

-1
[f(x)| = k "Il P

X s

and hence
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J £l dx = T j if] dx = 2 Z K 2uqu .

keZ k k=1

PROPOSITION 3.1.5. The norms u-n; and u'u; are not equivalent.

PROOF. Consider the sequence {gk} in LJ(R) defined by
gk(x) = 1, if |x| = k, gk(x) =0 if |x| > k.
From (ii) of the previous lemma, this sequence is bounded under the

norm H-H; . Nevertheless, we are going to show that it is not boﬁnded

under the norm H-H; .
Fix an‘¢ € C:(R) such that, 0 = ¢ = 1 and ¢ = I on [-1,11. Let

¢j(x) = ¢(x/j), j =1, 2. ...; and observe that
H¢ H H¢HX, j=1,.2,
If {gk} were bounded under the norm I+ H ; then from the previous

inequality it would follow that the set

{.nf ¢ & dxl . 7, kéw}

is bounded. Bﬁt, fhis is not the case, since.

J :
f ¢ .8, dx = f é. dx = 2].
-j J

3.2 Weak Extension of Operators in the Class €1(¢,W): The Normed Case.

Let (X,Y;[+,+]) be a P-space, Qheré X is a normed space with norm

i*ll. In Y we consider the negative norm H-H—'induced by X. Let L e -

ﬁl(Q,W), where @ € X and ¥ <€ Y are ,tést spaces for Y and X

respectively. Then we have.

(Lo, y] = [6,L70], ¢eo el | (3.2.1)

Using the definition of I : X —> Y’, we can rewrite identity

(3.2.1) as
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<, ILg> = <Ly, I¢>, ¢ e d, ¢ e U
Taking into account the identification I : X — Y', we write the
previous equality simply as
W, Lp> = <Ly, ¢>, ¢ed el (3.2.2)
Formula (3.2.2) provides us with a way of "extending" L to the whole
dual Y. Given y’ € Y’, we define the linear functional
Lwy’ ¥ — K
by
WL y'> = <Ly, y'>,  yevw (3.2.3)
From (3.2.3) it follows that
<, L y'>| = I Thy N, yew, yoe Y. (3.2.4)
Hence, if we denote by L; the restiction of L* to ¥, and if we take
into account that L; : V(Y;L;) —> Y is a continuous linear operator
(e.g.(1.2.5)), from (3.2.3) and (3.2.4) we have
Lwy’ = (L;)’y’, y' e Y.
Therefore, the linear operator
L= (L)' : Y — [V(Y;L)]" (3.2.5)

is also continuous. The operétor Lw is called the weak extension of L.

To see that indeed LW is an extension of L via the identification
X —> Ix, we must check that the following holds:
Lwa = IlLx, x € D(L).

More generally, we have the following result.

LEMMA 3.2.1. Lwa = JLx, for all x € D(L).

PROOF. Let x € D(L). From (2.2.2), (3.1.3) and (3.2.3) we obtain

W, L 1> = <Ly, I = [x,L7y] = (Lo @) = <y, ILx>, ¥ e U
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=,

PROPOSITICN 3.2.2. Given f € [V(Y;L;)]’, there exists y’ € Y’ such
that |
: Lwy’ = £,
if and only if there is a positive constant C such fhat
i T = cl<y, £ for all y e . (3.2.8)
PMDRIﬁty’eY’besmmimm:%J’=f.TMn
| <¢,Lwy'> = <L*¢,y’> = <Y, >, W e Y,
and so
l<y, £>1 = 1Ly, g e .
Let us assume now that there exists a positive constaﬁt C such
that (3.2.8) holds. Define the linear functional
v RL) €Y —K
as
<L*y,y'> = <y, >, Ye b | (3.2.7)
From (3,2,6) it follows that y’ is well defined, and it is continuos

on R(L;). By Hahn-Banach theorem, we can extend'y' to all of Y in a

Continuos_way, and from (3.2.7) it is clear that Ly =f.

In order to keep the notation as simple as possible, from now on’
we will use the same symbol L to denote the operator and its weak
extension Lw as well.b‘It will be  élear in the context .to which
operator we are reffering to. |

Using the fact that the weak extenéion Lw of L,Tis the dual of L;
(cf. (3.2.5)), it is interesting to nqte'that several properties of L
(i.e., one-to-one, onto, closed range,‘etc.) can bg formulated in

terms of.zg'(cf. Dieudonné and Schwartz, pp. 80-33).
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REMARK 3.2.1. Let b € X. Using Proposition 3.2.2, we see that if there
exists € > 0 such that HL*wﬂ— z Ci{b,yl|, for all ¥ € ¥, then the
equation Lx = b has a weak solution in Y’. This fact suggests the
convenience of considering in the test space ¥ “very strong" norms,
and also how suitable is toc have "very small” test spaces. In sections
4.2 and 4.3 we will see that, under certain conditions, it is

possible to equip the test space ¥ with an increasing family of norms.

4. Spaces of Distributions Associated to

Operators in the Class ?2(®,@).

In the previous section, we defined the weak extension LW for a
linear operator L € €1(®,@). A characteristic feature of this
situation is that, in general, Lw cannot be iterated. To have the
advantage that LW and all of its iterates be defined in certain space,
which we want to 1include X, we must impose certain additional
properties on the operator L. This 1is the object of study in the

remaining sections of this chapter.

4.1 The Dual of a Locally Convex Metrizable Space.

Consider a locally convex metrizable space X. Let ? = {pz} be an
increasing family of semi-norms generating the topology of X. Denote
by Xﬁ

necessarily Hausdorff) topology generated by the semi-norm pe . The

= (X,pEL the space X together with the locally convex (not

next result follows immediately from the definitions.
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LEMMA 4.1.1. Under the situation described above, we have
X =Ux.
2 4
Proceeding as in the case of normed spaces, it results that
llqbllz= sup {|<x,¢> : pe(x) =1}, ¢eX,
defines a norm on Xé. Also, under this norm, X% is a Banach space, and

|<x,¢>] = p(x) g, , xeX ¢eX, (4.1.1)

LEMMA 4.1.2. We have the following continuous inclusions

Xi ... C——>X’e

PROOF. From condition Py = Py it follows that XE_I_JL—% X@ , and

‘. C C ’
%X“l XS.

hence X/ <“—— X21+1' Now we fix £, and we are going to show that

2
XIE s X; Let {qbk} be a sequence in XE such that
qbk%O in X@' (4.1.2)

‘Let B be a bounded subset of X. Then, from (4.1.1) and .(4.1.2) we have

¢>k. = 0 uniformly on B. This shows that ¢k —> 0 in X;.

EXAMPLE 4.1.1. Consider the P-space given in Example 2.3.5 with

1 =p< o Let {Kﬂ} be a sequence of compact sets such that

K, € int K, , and Q - léJ K, . (4.1.3)
For u e L?OC(Q) consider the semi-norms '
: o 1/p .
pg(u) ={J‘ [u]? dx} , . (4.1.4)
X . . L

2
and let Xﬂ = (X,pe), L=1, 2,
Let
Y, = {v e tPeo) : supp (v) € K, }.

Then, YE is a Banach space. Given v '€ YIZ" it is clear that Jv € Xé.
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Using the usual identification between Lp(Ke) and Lp(KZ), one verifies
that J : YZ — Xé is an isometric isomorphism (see the Appendix).
4.2 Spaces of Distributions for Operators in the Class ﬁz(Q,W).

Let (X,Y;[+,*]) be a P-space, and let P = {pg} be an increasing

sequence of seminorms generating the topology of X. Let XE = (X,pg),

and YZ = J_I(Xz), where J : ¥ — X’ is the canonical identification
of Y in X’. We equip the space Yé with the negative norm

Hy”e = HJyll£ =sup {|[x,y]l| : pe(x) =1}, y e_?é.

Then J, = JIYh : Y, — X’ is an isometry, and

L 2
[{x,y]] = pe(x)uyﬂe, xe X, ye Ye. (4.2.1)

1

Furthermore, when J(Y) = X', }2 together with the norm ll-ll2 results a

Banach space.

We say that a linear operator L on X belongs to the class
ﬁz(é,w), and we write L € @2(®,W), if L € EI(Q,W), and also satisfies
*
L(®) €&, L (¥ n Yk) cUvn Yi, E=1,2, ... . (4.2.2)

REMARK 4.2.1. Given a family of linear operators £ = {L ...,Ln} on X,

11
there is a natural way of looking for spaces ® and ¥ satisfying

condition (4.2.2). For example, we can take

®=pn DL ).
p s

It is clear that & in an £-invariant subspace of X. If & is a test

space for Y, then

b3
¥ =nDL),
5 7

*
is an £ -invariant subspace of Y.
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1 n _ o, _n
EQC((R ), Y = Lc(iR )

EXAMPLE 4.2.1. Let us consider the P-space X = L
(cf.Example 2.3.5), and let & = ¥ = C:(Rn). Then, it is a simple
matter to verify that the linear operators. of the form L = a(x)a“,

where a € Cm(Rn),‘belong to @2(®,@).

Returning to our original discussion, let £ = {Ll’ e, Ln} be a

family in the class @2(¢,@). For ¢ fixed, let us denote by 2: the

family of operators

X
Lj:@nygng-,')Yg' j=1, 2, ..., n.
Consider the family of spaces

+m ¥* .
14 (YZ;-‘(ez): 8—1, 2,_ o0 35

and let
E% =.@ n YE
In @2 we -consider the topology induced by the locally convex

metrizable space V+m(Yz;$z)L--

From lLemma 4.1.2. we have ¥, 5 U and from (1.3.11) it

I +17
follows that
¥, —Y, =12, e (4.2.4)
Also, from Lemma 4.1.1 we have ‘
v=Uyg, .
2 L

Let us consider in ¥ the inductive limit topology defined by the
iﬁcerasing sequence of iocally conyex Héﬁsdorff spaces WE — @I+T
The next result will show that this topology turns ¥ into a locally
convex Haﬁsdorff_space, whieh is simply referred as the test épace,
This test space will be denoted by W(X;ﬁ)v‘or, when-fhe context -is

clear, simply by V.
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LEMMA 4.2.1. Let £ be a finite family of operators in the class
@2(@,W). Then

(i) The canonical identification J : ¥W(X;%) — X; is continuous.

(ii) ¥(X;?) is a Hausdorff space.

PROOF. (i) From the properties of the inductive 1limit, it is
sufficient to show that J : I%.——e X; is continuous for every . For
this, let us note that J can be expressed as the composition

Ty
@2 —s YE - Xe

and Lemma 4.1.2, it follows that

— X .

s
From (4.2.4), the definition of ".”F
the composition is continuous.

(ii) It is immediate from the fact that J is one-to-one , and X;

is Hausdorff'.

REMARK 4.2.2. We want to point out that condition (4.2.2) depends on
the family of seminorms defining the locally convex topology of X.
Indeed, it is enough to recall that X2 = (X,pe), and that Y} =
J—Z(XE). Nevertheless, if another family of seminorms generate the
same locally convex topology on X, under which also £ < @2(®,@), then
it is not difficult to check that the corresponding test spaces

coincide.

PROPOSITION 4.2.2. If J(Y) = X', and ¥ = n? D(L;), then each @2 is a
Frechet space.
PROCF. Let {wk} be a Cauchy sequence in Wz. Then {ngk} is a Cauchy

sequence in 1}, for each subindex 7. Since J(Y) = X’, each Yé is

38



theory of inductive limits, we can see that several properties of the

complete, and hence, there exist y € Yg , y? € Yi, such that
*#
X c X Ed
Being each Lj : D(Lj) < Yk — Yﬁ closed, we have y € D(LW) and
> * Ed *
L = , for each ¥. Thus, e n D(L = ¥, and L —> L y.
7 . ch 7 us, y £ 7) ?wk o7

Therefore, y € @k and'wk —> y in @E

Later, we are going to give examples which show that the test

 space ¥(X;£) does not necessarily has to be complete. Applying the

spaces We are inherited to the test space‘@(X;f). In particular, since

each QE is a locally convex metrizable space, we have the foilowing

PROPOSITION 4.2.3. The test space ¥(X;?) is bornological.

Given a nonnegative integer m and y = (31, ey wm) € Ié(m), as
. | N v
in Section 1.3 , we will use the notation L. =L ... L
. N § 'l 1 v
. m
PROPOSITION 4.2.4. For each poéitive integep m and ¥ € Iﬁ(m), the

linear operator
L: LUK E) — WK )
is continuou;i o
PROOF. Froﬁ the propefties of the indﬁciivé limit, it suffiées to show
that each L: : @2‘——9 U(X;2) is coﬂtihuousg Since We C— ¥(X;2), from

conditionb(4.2.2), it suffices to proVe the continuity " 6f  each

L; :'\I/2 — @i' Buﬁ'this is immediate from the definition of E% and
(1.3.12).
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The dual of the test space ¥(X;%), is called the space of

distributions corresponding to the family £ and the space X.

PROPOSITION 4.2.5. The space of distributions ¥(X;£)’ is complete.
PROOF. It is immediate from Proposition 4.2.3, and the fact that the
strong dual of a bornological space is always complete (Bourbaki,p.

12).

PROPOSITION 4.2.6. et u : ¥ — K be a linear functional. Then, u is
a distribution if and only if for every £ = 1, 2, ..., there exist Gh
and me e N, such that

[<y,u>| = C, max {nL;wu“ Dyl smy), yey,. (4.2.5)

L
PROCF. From the properties of the inductive 1limit, u is continuous if
and only if each restriction u : @% — K is continuous. Since E% is a
locally convex metrizable space, whose topology 1is generated by the
increasing sequence of norms
X -
kux*’m = max { HLywH : [yl =m},

the continuity of u : E% — K is equivalent to the condition (4.2.5).

Let us recall that in Section 3.1 we defined for each x € X, the
linear functional Ix : Y — K by

<y, Ix> = [x,y], y €Y.

PROPOSITION 4.2.7. The following holds:
(1) Ix € ¥(X;%)’, for each x € X.
(ii1) I : X — W(X;f); is continuous.

PROOF. (i) This 1is an immediate consequence of (4.2.1), and the
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previcus proposition.

(ii) Let {Xk} be a sequence such that X, — 0 in X. We must show
that ka —> 0 in @(X;f);. From the definition of strong topology,
this is equivalent to show that ka — 0 uniformly on each bounded
subset of ¥(X;£). Let then B be a bounded subset of ¥(X;£). From Lemma
4.2.1, J(B) is a bounded subset of X;. Let us pick a sequence {rk} of
.positive numbers satisfying r — +w and rX, — 0 in X. Then, by
definition of the strong topology in X;, there is a € > 0 such that

C= I, | = rllgll = rlu x>l (k=12 ...,
for all ¢ € B. This implies that ka — 0 uniformly on B.

Since ¥ is a test space fof X, the correspondence I : X — Y’ is

one-to-one. This will allow us to identify X ﬁith I(X) € ¥(X;&)", Aé

in the classic case, the distributions of the form Ix where x e X,

will be called regular distributions.

The next result shows that in most cases of interest, there

allways are distributicns which ahé non regular.

PROPOSITION 4.2.8. Let (X,Y;[+,+]1) be a P-space, where X is a Frechet
space, and ¢ = {Ll’ e, Ln} is a family of operators in €2(®,W). If
the didentification I : X — ¥(X;%)’ is onto, then each of the linear

operators Ll’ cees Ln is continuous.

PROOF. Let x € X. From propositions 4.2.4 and 4.2.7 it follows that

the linear functional u : ¥(X;¥) — K, given by
W u> = <ij,Ix>, v oe v,

"is continuous. By our hypothesis, there exists a z € X such that.
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<ij,Ix> <, Iz>, Ye,
or equivalently,

[x,L;w] = [z,y], Y e .
This last fact, together with (2.2.2) show that x e D(Lj) and ij = Z.

Thus D(Lj) = X, and applying Proposition 2.2.3 we obtain the result.

From conditions (4.2.2), it is easy to check that for £ = {Ll,

; — (m)
.., Ln} in €2(@,Q) and y = (31, e, 7m) € In we have

Ed
(L x,y] = [x,L_ yl, xed yeV, (4.2.8)

¥ ¥

op
where

%P: (?/m, 71) (4.2.7)

If v e ¥, we define the linear functional
Lu: V¥ —K,
¥
in the weak sense (or in the sense of distributions), as

w,Luw =< yu, yel (4.2.8)
¥ ¥
op
Proposition 4.2.4 implies that Lyu € W(X;%).

If x € X, then from Proposition 4.2.7 we know that Ix € ¥(X;%)’.
In this case we write L?x instead of Lle, and we interpret Lyx in the

weak sense. Thus we have:

WL x> =I(x,L yl, ¢eod (4.2.9)
¥ Tap

The next result is clear.

PROPOSITION 4.2.9. The following holds:
(i} The weak extension LV : WX, 2) — ¥(X;%)’ is the dual operator

of LT i W(X;8) —> WX;E).
Yop
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(ii) If x € D(L?), then LWIX = ILyx, where LT is the maximal closed
extension of Lg. ‘
(m)

, then L =L ...L in the weak
7 v

(iii) If ¢y = (31, e zm) evIn v,

sense.

Let u e ¥(X;%) and ¥ € In(m). We say that Lvu belongs to X, and
ve write Lyu € X, if there exists a z € X such that qu = Iz. This is

equivalent to the condition

* . - .» _’
<L7 p,u> = [z,y], Y € V¥, - (4.2.10)
op ,
If this is the case, we write Lyu = z.

LEMMA 4.2.10. If x € X and LjX'E X, where Lj is the weak extension, -

then x € D(L,)) and L x = L x.
‘ J J J

PROOF. From (4.2.8) we have ij € X if and.only-if there is a z € X

suqh that”
[x,L;w]'= (z,0], -y e @

From (2.2.2) we obtain the desired result.

PROPQSITION 4.2.11. If ﬁhe“tést space ¥(X;%) is reflexive, then & is

dense in the space of distributions ¥(X;£)!.
'PROOF. According to Lemma 1.1.1, it is enough to note that ¢ is total

T in WX 9.
S

Usiﬁgupthe same argument as in7 the proéf._of the preVious ,

proposition, we see that & is allways weak*—dense in W(X;ﬂ); .
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EXAMPLE 4.2.2. Let Q be an open nonempty subset of Rn. According with

Example 2.3.5, let us consider the P-space X = LEQC(Q), Y = L:(Q).

I

Using the same notation as in Example 4.1.1 with p = I, p' = o, we
assume that X is equipped with the family of semi-norms {pﬂ} given by

(4.1.4).

Then, we know that J : Y2 —_ X% is an isometric isomorphism,

where

Y, = J_I(Xé) ={velL% : supp(v) ¢ K, }.

Thus, for & = ¥ = C?(Q), we have
[se)
@2 ={ ¢y e CC(Q) : supp(y) € KZ}'

From this it follows immediately that the family of operators

[ 8
a_{'a—"x; "':5'}—{ },
1 n

belongs to the class €2(C:(Q),CS(Q)).

Also, ¥, —> ¥ in ¥, is equivalent to a“wk — 8% uwniformly on

the compact set KE’ for every multi-index «. Therefore
1

2

the space of test functions on Q with the Schwartz topology; and

WL, (Q);8) = D(Q),
Qc

1 P ’
Q(LB (Q);8)" = DQ’,

the space of distributions on Q.

REMARK 4.2.3. The previous result, naturally leads us to ask the
R . R 1 p

question that if changing the space LEQC(Q) by LEac(Q)’ 1 < p = o

this will yileld another space of distributions. Surprisingly, it

happens that

1
L
Indeed, from P () s Ll (Q) it follows that
Loc Lac
1 . p .
ZOC(Q),B) O @(LEOC(Q),B).

’ = p . =< =< o
W(L, (Q);8) =L, (Q;8), 1sps=oa

W(L
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Now, being \I/(LIZQC(Q);B) the inductive limit of the spaces \I»'e, ‘in
order to obtain the other continuous inclusion it is enough to show
that \Ifg f—).\I/(LéOC(Q);a). According with Example 4.1.1, we know that
l,l]k — Y in \I/e is equivalent to 6awk —_ aal,b in the Lp(Kg)—norm'f‘or

every multi-index o«. But the well known Sobolev’s immersion theorem

(Adams [1], p. 97) says that v PRD) s Bo(R") if mp > n; where

| BC(RH) is the space of bounded continuous functions on R”. From this

it follows that l,llk — Y uniformly on KJZ'

Going back to our initial context, let £ = {Ll’ ey Ln } be a

family of operators in the class 1?2(@,‘11). Let us consider a linear

opefator L: DL) X — X, D(L) = D(Ll) N ... N D(Ln), of the form

L= Y al_ , (4.2.11)
lyTem 77 o o

vhere aw € K. Then L € ‘62(@,\11), and its maximal closed extension is .

defined in the obvious way.

PROPOSITION 4.2.12. Let L be an operator as in._(4.'2. 11). Then:

(1) WX;8) —— WX L),

(ii) \I/(X;L)"g — \I/(X;.,‘E);.
PROOF. (i) Since ¥(X;¥) is the inductive limit of the increasing
sequence.of" spaces {\I/B(X;.,‘E)}, it is er;ough to ShO.VIJVth'at each inclusion
\I/Z(AX;Q) —» ¥(X;L) is continuous. But since we have- the . continuous
inclusions \IIE(X;L) —— ¥(X;L),. then it is sﬁff‘icient'.:;ﬁ'o’ establish
the continuity for each one of the inclvusi‘ovri"s \IIZ(X;.‘E) — \I/'B(X;'L); /

' So let {yk} bela sequence such tha.ic.,yk. — 0 in _\IlZ(X;.‘B). Then

* : . .
Lg'yk — 0 in \I/E(X;EB), for every subindex y. (4.2_. 12)




Ed
Taking into account that (L )m, m=20, 1, ..., is a linear combination
>
of operators of the form LBr , from (4.2.12) it follows that
¥.m .
(L. ) Y, — 0 in QE(X;L), m=20, 1, ... ;
and hence that v, — 0 in WE(X;L).

{(ii) It is immediate from (i).

4.3 Spaces of Distributions for Operators in the Class €2(®,W): The
Normed Case.
In this section we want to discuss some questions related to the
space of distributions U(X;£2)’, when X is a normed space.
let (X,Y,[*,*]) be a P-space, where X is a normed space with norm
lell. In Y we consider the negative norm li*I given by (3.1.1). Let @&
and ¥ be test spaces for Y and X respectively, and let £ = {LZ’ eee,
Ln} be a family of operators in the class @2(©,@). In this context,
condition (4.2.2) assumes the simpler form
L (o) <0, L;(\I/) cw, j=1,..., n (4.3.1)
Let us denote by 2* the family of closed operators (cf. Lemma
3.1.1)
X

*
L,: DL, Y —Y, j=1, ..., n
J J

Next we form the family of spaces

~

m * .
vr(y;2), m=0,1, ..., +a.
According to (1.3.6) the norm on Vm(Y;f*), m < +w, is given by
. '
x = . <
HyH£ m max {nLyyH : [y] =m}.
Then
m+1 *
”ynf*,m = Hynf*’m+1 , yelV (Y;¢£).

From condition (4.3.1) we have

m b3
v SV(Y;¥ ), m=20, 1, ..., +ow;
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so we can define for m= 20, 1, ..., +o,
V?(Y;f*) = closure of ¥ in Vm(Y;E*).
ES
In this case, the test space ¥ < V+m(Y;$ ) is metrizable, and its
topology is generated by the increasing sequence of norms
» X . =
{I Ilg m m=0, 1, ... }.

*
Since ¥ is dense in V+m(Y;$ ), fron Hahn-Banach theorem it follows

that

WK ) = Vv . (4.3.2)

REMARK. 4.3.1. If the locally convex- metrizable space V;m(Y;f*) is
separable (from .Corollary 1.3.6 (ii), this will happen. if Y is
separable), then

" WXL = VL),

(Grofhendieck, p.62, Corollary 4).

REMARK 4.3.2. Let us sﬁppose tﬁat Y, under the negative norm, is a
Banach spaéé; Considerlthe increasing;fémily of norms ”'"2*,m , me N,
on the space Vg(Y;Q*). Since each of the spaces Vm(Y;Q*) is complete,
and Vm(Y;Q*) — Y,.iﬁ is a simple matter to check that Vg(Y;Z%) is a
“countably normed" spaqevin the'sense of Gelfand—Shilov ([sel, p.1é).

- Therefore, ¥W(X;%)’ = Vg(Y;f*)’ is also abspace'of distributions in the

sense of these authors ([6], p.82).

We define
- * *
VY ) = IVp(YE)), m=0,1, ... ;  (4.3.3)
and denote the norm on this Banach space by H-Hf* n

From (1.3.2) and the definition of tﬁg topolbgy on ¥(X;£) we have
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WX ) s . C—%V[g-”('f;ff*) SO ST T L—s,vg(y,-sz*), (4.3.4)

each inclusion being dense (cf.(4.3.2)). When ¥ is dense in Y, we have

Vg(Y;fx) =Y. From (4.3.4) it follows that

-0 * ~-m * —m-1 *
V (Y; 2 )—... =V (Y;¥ )—Dl (Y; ¥ )C—~»...C——%W(X;f);,(4.3.5)

PROPOSITION 4.3.1. Under the above hypothesis we have

0]
wx;e) = U vy ).
m=0

PROOF. Let ¥ = (¥, 1l
m £

- »
Vg(Y;f*), we have @& =T m(Y;f J, and the conclusion follows from

% m), m =0, 1, ... . Since ¥ is dense in
Lemma 4.1.1.

Proceeding as in the proof of Proposition 3.2.2 and using the

previous result we obtain the following

PROPOSITION 4.3.2. lLet L be a linear operator on X of the form
(4.2.11). Given b € X, the equation Lu = b has a solution in the sense
of distributions u € ¥(X;£)’ if and only if there exists a nonnegative
integer m and a positive constant C, such that
*
¥ o=
HL yll, nZ clib,yll, ¢ e V.

In this case we have u € V—m(Y;ZX).

-— * -— -
PROPOSITION 4.3.3. If ueV m(Y;.i‘,’ ) and [y] = k, then Lyu ev ™ k(Y;Z*).

PROOF. Since for every Y € U we have <y, L u> = <L y,u>, then
¥ Yop
3
> = =
|<w,L7u | = IIL7 wnf*lmuuuf - = uwnz*’m+knuu£x,_m ,
ap :
for all Yy € ¥. The result follows from the fact that ¥ is dense in
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v key ey,

EXAMPLE 4.3.1. Let Q be a nonempty open subset of R”, and consider the-
P-space described in Example 2.3.6. Then, it is clear that the family
3 = {a/axl, v, a/axn} belongs lo the class ﬁz(é,W).

If Q has finite measure, then the same argument given at Remark

4.2.3, shows that

wiPe;a) = wilc;e), 1=p

1A
8

) (4.3.8)
algebraically and topologically. |
Ir Q-= Rn, then (4.3.8) is pot valid, 1.e., the corresponding
topologieé do.not coincide. To see this, fix a ¥ € C:(Rn), Y # 0, and
consider the sequence
by (%) =K W(x/I).
Then, {wk} converges to 0 in W(Ll(Rn);a), but does not convergés to 0

in WL°(R™);08).

Next we are going to see that every distribution in W(LP(R™),8)’,

1 =p=w is a tempered distribution.

PROPOSITION 4.3.4. Let ¢ = $(R") be the Schwartz space of rapidly
decreasing functions on Rn, and V;w(Lp(Rn);a), l=ps=ow 1/p+ti/p’' =1,
be the closure of ¥ = Co(R™) in V'™(LP(R");8). Then:

) +ow, plon . .. . . :
(i) ¢ VO (LF(R7);8), and the inclusion is dense.

(11) wW(IP(R™);8)7 < ¢-.
PROOF. (i) Let ¢ € ¥. Then, there exsits a sequence {wk} in CZ(RH),
such that wk —> Y. in ¥. Since ¥ “—— Lp(Rn)'and 8% ¥ — ¢ is

continuous, we have
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8awk — a“w in LP(R™), for every multi-index .
This shows that y « Vg(Lp(Rn);a). Analogously, one shows that the
inclusion is continuous, which also is clearly dense.

(i1} It is an immediate consequence of (i) and (4.3.2).

EXAMPLE 4.3.2. Consider the P-space described in Example 2.3.8, with

Q= Rn, p =1 and p’ = ». Then, the family of operators
_ 3 a
2_{8—}{;---: a_X; X]i o0y Xn};
1 n

where xj represents the multiplication by the monomial Xj’ belongs to

the class 6,(2,9), where ¢ = ¥ = c°c°(rR“).
Within the context of the previous example, we have the following

PROPOSITION 4.3.5. The topology of the test space W(LZ(RH);f)
coincides with the topoclogy of ¥ = C:(Rn) as a subspace of the
Schwartz space P(R™).

PROOF. Let us denote by ¥, , the space ¥ together with the topology

induced as a subspace of the Schwartz space 2(R). Then, the topology

of ¥

) is generated by the family of seminorms

”wua,B = sup { lxaaﬁw(x)l . x e R%},

where « and f are arbitrary multi-indices. On the other hand, the

topology of ¥ = W(LI(RH);Q) is generated by the family of norms

X
Iyl = max { HLywﬂLm(Rn) : [yl =m},

where
* a a
2_{_5;: ‘_—a_X JXJI 'Xn}
1 n
It is clear now that ¥ —— Wy . The other continuous inclusion
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wy —— V¥, is established just by observing that for any sub-index 7,

L;w can be expressed a a sum of terms of the form x“aﬁw.

COROLLARY 4.3.8. Under the same hypothesis as above we have:
(1) wr(R);2)* is the space of tempered distributions $(RY)’ .
(11) WL (R7); )7 = 2™
PROOF. (i) Immediate from Hahn-Banach theorem, since C?(Rn) is dense
in $(R").
(ii)ASince #(R?) has the Heine—Boreivproperty, it is separablg

‘(Gelfand—Shilov, p. 581. The result follows from Remark 4.3.1.
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CHAPTER III: ABSTRACT SOBOLEV SPACES.

In this chapter we .are going to discuss with detail the spaces of

X >
the type Vm(Y;$ ) and V?(Y;f ), which appeared during the construction
of the space of distributicns corresponding to a family £ of operators

in the class 62(®,@).
5. The Sobolev Spaces Wm(X;E) and W?(X;ﬂ).

5.1 Definitions and Basic Properties.

Let (X,Y,[+,+]) be a P-space, where X is a Frechet space. Suppose
that & and ¥ are test spaces for Y and X respectively, and let £ =
{L., ..., Ln} be a finite family of operators in the class ﬁz(é,@).

1
Then, the following holds:

*
v C D(Lj), ¥ < D(Lj), Jj =1, ..., n, (5.1.1)
and
L(2) < @ L;(m) c ¥, j=1, ..., n (5.1.2)
Let
4={L,, ..., L},
1 n
where Lj is the maximal closed extension of Lj’ Jj =1, ..., n.

According to our development in Sectioh 1.3, we define the Sobolev
space of order m induced by £ in X, as

VK8 = VK, m=0, 1, ..., +o. (5.1.3)

From Proposition 2.2.1 we know that each Lj’ j=1, ..., n, is a

closed linear operator. Thus, from corollaries 1.3.2 and 1.3.6 we

obtain the following
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PROPOSITION 5.1.1. Let m =0, 1, ..., +o. Then we have:
(i) W'X;%) is a Frechet space.
{(ii} If X is separable, then so it is.wm(X;Z).

(i1) If X is reflexive, then so it is wm(X;f).

PROPOSITION 5.1.2. Let us assume that 9 is dense in X. Then WZ(X;f) =
X if and only if each Lj is continuous.

PROOF. It is an immediate consequence of Proposition 2.2.3.

From (1.3.2), (1.3.11), Proposition 1.3.3, and (1.3.12) we see

that

VR s ey S W e) s s %, (5.1.4)

and

L? : wm(X;f).?—e»wm—k(X;Q) is continuous, [y] = k = m. (5.1.5)

If we interpret wa, x € X, 1n the sense of distributions (cf.
Section 4.2), we obtain the following description for the Sobolev

spaces.

"PROPOSITION 5.1.3. We have

(1) Vi ={xeX:LxeX [yl sm}, n=0, 1,

(11) WoxX:8) = { xe X : Lx <X [y] =0, 1, 2, ... }.

PROOF. (i) By induction on m. If m = I, the conclusion follows from

‘Lemma. 4.2.12. Suppose now that m = 1, and the conclusion is true for

m. Then, from definiton.(l.B.i) we see that
W lex o) = { x e WX 2) Lxe VNX:2), j=1, ..., n}.

From our induction hypothesis, this implies that
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Wm+1(X;f)

i}

€ X: L xeXand L L xc¢elX, =
{ x 5 Y (¥] =m}

1

{ xe X: LWX e X, [¥] = mr1 }.
(ii) It follows immediately from (i) and the definition of

WK ).

LEMMA 5.1.4. Let x € wm(X;f), and y = (71, e, ye) be a subindex with
[¥y] = m. Then x € D(Ly) and

Lx=L o ... oL x,
7 3‘1 32

where Lar is the maximal closed extension of Lg’

PROOF. Let us note first that, due to conditions (5.1.1) and (5.1.2),
we have L7 € ?1(©,@), an hence its maximal closed extension Ly is
defined. Since L;(W) S Vv c D(Lj), we have for Y e ¥

(L o ..., oL x¢l =0z, L o ... oL yl =IxL yl.
¥ (¥ % 77 Yop

This gives the desired result.

From conditions (5.1.2) we see that
&< WNX:%), m=0,1, ..., +o

Thus, we can define

i)

Wm(X;Q) = closure of & in Wm(X;Q), m

0 o, 1, ..., +c«,

The following properties of the spaces wg(X;f) are clear.

PROPOSITION 5.1.5. The following holds:

(1) wg(x;z) is a Frechet space, m=0, 1, ..., +w.
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(ii) If X is reflexive, then so it is wg(x;f).
(11i) Let x € WNX;%), m =0, 1, ..., +=. Then, x € wg(x;z) if and
only if there exists a sequence {¢k} in @, such that

L7¢k — Lyx in X, [y] = m

If in the previous result we let m = 1, then we see that
wé(x;f) < D(Zj), j=1, ..., n; (5.1.86)

where Zj is the minimal closed extension of Lj'

From (5.1.2) and (5.1.4), we obtain:
WA (X 8) o (K 8) TR ) s (K0, (5.1.7)
each inclusion being dense. When & is dense in X, then Wg(X;f) = X,

Conditions (5.1.2) and (5.1.5) imply that

0

L7 : W?(X;f) — Wm_k(X;f) is continuous, [¥] = k = m. (5.1.8).

Furthermore, making use of Proposition 4.2.7 and (5.1.7), we see that

WK E) s WHE), L, m=0, 1, ..., te. (5.1.9)

PROPOSITICN 5.1.8. If the inclusion i :Wé(X;E) — X is compact, then
each of the inclusions

i wg+1(x;2) —_— Wg(X;é), m= O, 1, ;.. ,
is éompact. |
PROOF.;Let'{Xk} be a bounded sequence in.wg+1(X}£). From (5.1.8), it
follows that {L?Xk} is a bounded .Sequence. in wé(x;f), fdf 'éach
subindex % with [y] -= m. From our hypothesis, we caﬁ find a

subsequence {Xk } suqh that {quk

} converges in X for every subindex
12 : o ’

¢
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[¥] = m. Therefore, {Xk} converges in Wg(X;Z).
L

PROPOSITION 5.1.7. Suppose that the inclusion i : Wé(X;f) — X is
compact. Then:

(1) ng(X;f) has the Heine-Borel property, i.e., every closed bounded
subset of W;m(X;f) is compact.

(1) W) 7(X:£) is reflexive.

PROCF. (i) Since w;“(x;ﬁ) is a Frechet space, it is enough to show’
that every bounded sequence in ng(X;f) has a convergent subsequence.

So let {x,} be a bounded sequence. According to the previous

k
(m)

proposition, we can find a family of subsequences {Xk

} of {Xk} such

that: {X;m+1)} is a subsequence of {X;m)}, and {xim)} converges in
+co . . . (m)
WO (X;%). Now, it is clear that the diagonal sequence u = X

converges in Wgw(X;f).
(ii) Immediate from the fact that every Frechet space with the

Heine-Borel property is reflexive (Dieudonné-Schwartz, p.79).

5.2 The Commutative Case.

Now we are interested in the case when £ is a commutative family
of linear operators on ®, in the class @2(©,W) ,i.e., here we assume
that

LiLj¢ = LjLi¢ , ¢e€@, i, j=1, ..., n

LEMMA 5.2.1. If £ is a commutative family, then

* *

*® *
LL,=L.L,onVv, i, j=1, ..., n.
i7j Jji

PROOF. lLet ¢ € ¥. From (5.1.1) and (5.1.2) we get
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) X ¥ K
[LiLj¢’w] = [Lj¢,Liw] = [¢,LjLiw], ¢ e .
Interchéngihg the roles of I and j, from the previous we obtain
[¢,L L7 - Lyl = 0
¢l i J‘l’ J l¢, - ’ ¢ ‘E ®'

Since & is a test space for Y, the result follows.

Given a commutative family of operators ¢ = {LZ, .{., Ln}, it is

convenient to employ the multi-index notation as follows: Letting

L =¢(L, ..., L), if a = (o, ..., o ) is a multi-index, then we
1 n ‘ 1 n
define -
« oc1 an
L = Ll oo Ln , ‘ (5.2.1)

whenever the composition is defined. If « is a multi-index, then as is

usual, |« =>a1 et will denote its height.
Returning to our original problem, let L = (Ll’ e, Ln). Then,
from (5.1.1) and (5.1.2) we have _
& € D(L%) and ¥ € D((L5)%).
From the previous lemma we see that
% = (5%, yey | ©(5.2.2)

where L' = (L, ..., L ). From this it follows that L% e §,(2,%), and

hence that its maximal closed extension Lq*is defined.

LEMMA 5.2.2. Let x € D(LP) € X. Then, x « D(L“LB) if and only if x e
D(La+B), and in this case LaLBX = La+32.— 4
PROOF. According to (5.2.2).and the previdus_lemma, Qé observe first
that o v

LB = (9 = (B = (1B on v

Suppose now that x € D(LaLB). Then, for Y e ¥ we have
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[x, (LF)" 1 = 1, (%L1 = (LB (1)1 = 1%y, .
Thus, x e DCL¥P) and L%Fx = L% Bx.

If x e D(La+B), then for ¥ € ¥ we have

[Py, (2%%01 = 12, (B L1 = 1x, (L¥B)*y1 = (L%Bx, y1.
Therefore x € D(LaLB) and LaLBx = La+BX.
Letting lal = |B]l = 1 in the previous lemma, we find:
LiLjX = LjLiX, X € D(LiLj) N D(LjLi). (5.2.3)

Making use of (5.1.3), Lemma 5.2.2, and (5.2.3) we obtain the
following characterization of 'the Sobolev spaces when £ is a

commutative family {(compare with Proposition 1.3.3 {(i)).

PROPOSITICN 5.2.3. If £ is a commutative family, then:
(1) WAx;2) =q{ DL : jal =m}, m=0, 1,

(11) W28 = n DY) : |«

1}
(=)
-
~
“
~

Utilizing the.notation of Section 1.3, we have
WX ) = V(X d ), - (5.2.4)
where
el =m}, m=0, 1,
Finally, from Lemma 5.2.2 we see that
at+f

%Py = 198y x <« VXX ), (5.2.5)

where |oa+B| = m.

EXAMPLE 5.2.1. Consider the P-space described in Example 2.3.5. Then
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, 8/8x_} is a commutative family in the class €2(®,®).

3 = {6/6}(1,
easy to see that

it is
e P . - /&P
! (LEQC(Q)’B) = leaC(Q).

Also,

6. The Banach-Sobolev Spaces.

In this section we continue the study of the abstract Sobolev
spaces, under the aditional hypothesis that the underlying space X is

Banach. Such spaces will be called Banach-Sobolev spaces.

6.1 The Spaces W N(X;%).
Let X be a Banach space with norm fi+ll, and let (X,Y,[+,+]) be a

P-space. Suppose that ¢ € X and ¥ £ Y are test spaces for Y and X
{Ll’ , Ln} be a family of operators in

respectively, and let £

~the class.ﬁz(é,W).A
Since X is a Banach space, from (1.3.8) we see that the norm on

the Banach space W'(X;%) is given by .
 m=0, 1, ... . (6.1.1)

= max { ”L?X” [¥] =m?},

? uxnf,m
According with (5.2.4), when £ is a commutative family, the norm

=0, 1, ..., (6.1.2)

@
“an,m = max { IL xl ] 5_?’}' m

is equivalent to the norm (6.1.1).:

EXAMPLE_S.l.l. Consider the P-space described in‘EXample 2.3.6. -~ Then
, 8/6xn } 'is a family §f_operators in the class

a = { 8/8x

€2(®,®), where & = ¥ = C:(Q). It is easy'to check that
Wi(LP(;8) = W™ Peq),

."According to

where W™ Pro) is the usual Sobolev space of order m
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Proposition 5.1.1, W™ P(Q) is a Banach space. Also, from Corollary
1.3.2 (iii), W™P(Q) is reflexive when 1 < p < w.

In this case we have 8 = { - 8/8%,, ..., - 8/6x_}. Thus, it is

clear that

VP 0%) = ™ Pay.

For m = 0, 1, ... , we define W "(X;£) as the dual space of
wg(x;z). That is,
WK ) = V(X 8)!,
together with the norm
— . - _m .
2, -m = sup { I<x,u>]| : ”Xuf,m =117, uelW (X;2). (6.1.3)

It will be convenient to consider also the space

lull
WX 8) = (w;‘”(x,-se))'. (6.1.4)
v Y

If we identify Y with J(Y) ¢ W_O(X:E) (= Wg(X;f)’), from (3.1.2),

and (5.1.7), we obtain the following result.

PROPOSITION 6.1.1. For m = 0, 1, ..., we have

Y s .. e W) s Wl s L. e WK 2).

Now, consider the closed linear operators (cf. Lemma 3.1.1 )

* *
IR Ln }.

L; : D(L;) CY—5Y j=1,...,n andlet £ ={1L

Then, the family of operators 2* belongs to the class ﬁz(w,é), with
respect to the adjoint P-space (Y,X,[-,-]*). If Y together with its
negative norm ll-ll were a Banach space (this will be the case if J(Y)
is a closed subspace of X’), then we have defined the Sobolev spaces

Wm(Y;E*) and Wg(Y;f*). So, throughout the rest of this section we
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shall assume that J(Y) is a closed subspace of X’.
From (1.3.2), (1.3.11) and (3.1.2) we obtain the following:

PROPOSITION 8.1.2. If J(Y) is a closed subspace of X', then we have

X e s Wy ) e v ™ vl L q/(x,-f*);.

From (5.1.7) and the previous proposition, we see that we have
constructed a family of Banach spaces with continuous inclusions

SN n/g”(x,-fe) s WI(K8) s ... s X
' (6.1.5)

~-m * ~m~1 *
X — ... S WVW(Y;¢) VWV (Y;2) —s ..,
If X is a reflexive space, then from Lemma 1.1.1 it follows that & is

dense in each of the spaces appearing in (6.1.5).

Let us consider a linear operator on X of the form

L= Y al , a_ ek, Iy] =m - (6.1.8)
[y 1=m Ty ¥

An advantage of having at one's dispossal a family’of spaces given by
(S.l.SJ, is that this will allow us to interpret L in different ways,

as the following result shows.
PROPOSITION 6.1.3." Suppose that J(Y) is a closed subspace of X’. If L
is as in (6.1.6), and p € {0, 1, ..., m}, m=0, 1, ... , then
L W) — ™y "),
is a continuous linear operatof“

PROOF. Let ¢ € ®. Then, for every ¥ € ¥, we have in the sense of

B1




distributions

<Y, Lé> = [Lo,y)l = [} a?fLa,qb,wJ-
Using the adjoint, we can "move to the right" some of the operators Lj
appearing in the compositions defining L?’ obtaining a expression of
the form

x
YalL o,L_ yl,
s 3’1 '3’2
where [71] = @t and [ygl = m-p. Thus we have
I<y,L¢>| = NCH¢H$’“H¢H2*'m_“ , (6.1.7)
where C = max { Iayl : [¥] = m} and N is the number of subindices %
such that [y] = m. The density of ¥ in Wj H(Y;£"), together with
— >
(6.1.7) show that we can extend L¢ to all of wg Hey;¢°) in 2 unique
way. Furthermore, we have
WLl g% o, = ONIGH, (6.1.8)
We obtain in this way, a continuous linear transformation i
L: o — W ™Hey,d).
Finally, the density of & in WZ(X;f) allow us to extend L in a unique

and continuos fashion to all of Wg(X;f).

For an operator of the form (6.1.7), the last result makes
evident the importance of the sesquilinear form associated to L:
(¢,9) — [Lo,yl.
When dealing with differential operators, this is called the Dirichlet
form. The point here, is to study this form and to find conditions
which allow us to make statements about the operators described in the

previous proposition. The next result is a simple example.

PROPOSITION 6.1.4. Let m =z 0, and u € {0, 1, ..., m}. Suppose that
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there is a constant C > 0, such that for every ¢ e 9, ¢ # 0, there
exists Y € ¥, Y = 0, with
> *
I [Lp, ¥l CH¢H$,m uwnz ey (6.1.9)
Then, the operator
) - X
L Wh(x2) —s W T Hey ")
is a linear isomorphism onto its image.
PROOF. From (6.1.3) and inequality (6.1.9) we obtain
Ll —— o ¢ € 5.
Since L 1is continuous, the depsity of ¢ in jWS(X;f) and the "last

inequality imply that L—Z is continuous.

B.2 A Characterizafion‘of W—m(X;E).

Let X be a Banach-spéce, and (X,Y,[+,+]1) be a P—spaée. Throughout
this section we shall assume that J(Y) = X’. This, in particﬁlar,
implies that Y together with its negative norm I+l is a Banach épaée,
cand that the negative norm on X induced by Y with respect to the
, édjoint (Y,X,[-,-]*) pairing, coincides with thé'originai norm I+l on

X. Thus, if the family £ = { L ., Ln } belongs™ to %é(@,@), then

1’
the topology of the test space &(Y;£ ) is simply the topology induced

as a subspace of w;m(x;z)“

Given m € N, we define the subspace Wrm(X;Z) of the .space of
* - - ’
distributions &= &(Y; ¥ )’ as_follows:‘W‘m(X;f) consists of all v € &/

that can be written in the form

X ' .‘
vi= Y Lz, =z €Y, (6.2.1)
[¥]=m 7T b .
where L*z is defined in the sense of distributions (cf. (4.2.8)). In

W (X; %) we consider
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vl -m = inf ¥} szn , (6.2.2)
l7]l=m

where the infimum is taken over all collections {ZW} satisfying

(6.2.1).

Clearly, H-HW—m is a seminorm on Wrm(X;f). For v € W_m(X;E), we

have
<pv>=<¢, ¥ Lz>= Y L ¢,z1, ¢ecd
[yl=m 7Y [71=m ap L4
Thus,
<, v>| = ligl Yooz,
£ [yl=sm 7

and hence

|<p,v>| = H¢H$’mnvuw—m, $ € &.
This inequality implies that H-Hw-m is a norm on W NX;2). Also, from
this it follows we can extend v in a unique way to a continuous linear
functional on WZ(X;Q), which we denote by ;. Furthermore, it is clear

that

Hvﬂf’_m = Hvﬂw—m. (6.2.3)

Now, let v e W_m(X;f), and let v denote its restriction to . Let
N be the number of subindices y with [y¥] = m, and consider the natural

embedding

i wg(x;x) —s XV

given by i(x) = (Lyx; [¥1=m). Since the linear functional v’ defined

(N) by

on i(Wg(X;f)) < X
<w,v’'> = <i_1w,v>,
is continuous, from Hahn-Banach theorem, we can extend v’ to all of
(N) . . . (N) .
X in a continuous way. Now, being the dual of X “a direct sum of
the duals of X, it follows that for every subindex ¥ with [y] = m,

there is a zy € Y such that



<p,v> = ¥ [qub,z?f], ¢ € @, (6.2.4)

[yl=m

and
v, = % iz .  (8.2.5)
Lo T ¥ |
From (6.2.4) we have
> .
v= Y L z_, (6.2.86)
[¥1=m ar0;1 (4

and from (6.2.5)

vl =m = v, . : (6.2.7)

In this way, from (6.2.3) and (6.2.7), we obtain the following

PROPOSITION 6.2.1. If J(Y) = X', then>H-HW—m is a norm on W—m(X;Q),
and under this norm, the linear correspondence
WK ) 5 v e Ve WX 8,

is an isometric isomorphism.

B.3 The Reflexive Case.

In this section we are going to study some questions related to

- the Banach-Sobolev spaces wg(X;$),4when the base space X is reflexive.

PROPOSITION 6.3.1. W "(X;£) can be identified with the completion of ¥

with respect to the (negative) norm

Wy o= sup {IIxyll s xly, =1}, m=0,1, ... . (63.1)

PROOF. Given y € ¥, we define J U : wg(x;f) —> K by
< = .
e | x,J ¥> = [x,y] oo
If we take into account that Jm(w) < [fm%X;ﬁ) is total, and that
Wp(X;£) reflexive, then from Lemma 1.1.1 it follows that J (¥) is

dense in W "(X;£). Finally, from (6.1.3) and (6.3.1) it is clear that
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Jm : U — Jm(Q) < w’m(x;x), is a linear isometry.

PROPOSITION 6.3.2. Suppose that J(Y) = X’. Let L a linear operator as
in (6.1.6) amd p e { 0, I, ..., m }. Assume that there are positive

constants 01 and 02, such that

For every ¢ € &, ¢ # 0, there exists ¢y € ¥, ¢y = 0, with

[[Lg,yll = 01u¢u$’#nwn$%,m_“. (6.3.2)

For every ¢ € ¥, ¢y # 0, there exists ¢ € ¢, ¢ # 0, with

Lo, yl] = 02u¢u£luuwu$*,m_“. (6.3.3)

Then,

L: %k&f)—elfmﬂ

(v;¢°)

is a linear isomorphism.

PROOF. In view of Proposition 6.1.4, it is enough to show that L is
onto. Now, applying (6.3.3) and Proposition 6.1.3 to the operator

L* : Wg_“(Y;E*) — W_“(X;f),

we obtain

* *
1L w”f,—u”¢”2,u z [[o,L yl]| = CZ”¢”$,u”w”$*,m—u'

Thus

>
gy = Colgllg® o W e T

. — *
Since ¥ is dense in wg “(Y;f ), from Proposition 6.1.3, we obtain

iy = C_liyl y e i ey, (6.3.4)

£, -n 2 £*,m-u’
Being X a reflexive space, we can identify the operator
LW g —s oG e,
with the dual operator of
L:wbexe) —s R

Thus, from (8.3.4) the dual of L has a continuous inverse. Therefore,

L is onto (Rudin p.87).
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COROLLARY B6.3.3. Under the same hypothesis as above we have:
(i) For every'b € X, there exists a unique x € WS(X;E) such that
Lx = b. |
(ii) L_Z : X — WS(X;E) ié a continuous linear operator.
PROOF._(i) From Proposition 6.1.2, we have X —— w_m+“(Y;$¥),_and the
result follows from the previous propos{tion.

(ii) Since X and WS(X;Z) are Banach‘épaces, it is sufficient to
prove ﬁhat L_l is closed. So let {Xk} be a sequence in X, and x, u in

X such that

x, —> x and L—lx — u. (6.3.8)

k k

From the definition of LW we have

1 1

x> = [L

* .
X XL wl, ¢ e V¥

[Xk’w] = <y, LL
Letting k —> o, from (3.2.4) and (B6.3.5) we obtain
X
fx,¢] = .[u, L yl, Y e U,

From this it follows .that x = Lu, that is, L 'x = u.
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CHAPTER IV: THE HILBERT-SOBOLEY SPACES.

In this chapter we are interested in the study of the Sobolev
spaces W"(H;£) and wg(H;f), in the very important case, when the
P-space is given by a Hilbert space H (e.g., Example 2.3.1). Here, we
assume that & = ¥, where & and ¥ are the test spaces related with the
family of linear operators £. Under these circumstances, the spaces

Wo(H;£) and Wg(H;f) will be called Hilbert-Sobolev spaces.

7. The Gradient, Divergence, and Laplace QOperators.

7.1 qnadz, dbgz, and AE .

We start this section, by pointing out the form some of the
previous results take in the present context.

Let H be a Hilbert space with inner product (-+,+) and associated
norm #«fl. If A € H, we denote the orthogonal complement of A in H by
H e A

According with Example 2.3.1, from now on we treat the Hilbert
space H as a P-space. From the properties of the inner product, it is
clear that the P-space H coincides with its adjoint P-space. Also, in
this case, the canonical identification of H in H’ is given by Riesz
canonical identification I : H — H’ ,i.e.,

<x,1y> = (x,y), X, v € H.
Since I is an isometric isomophism, the negative norm on H coincides

with the original norm.
Given n € N, the inner product on
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H =Hx ... x H {n times),

and its corresponding norm, will also be denoted by (+,+) and -l

respectively. If % = (XZ, e xn), ; = (yl, vy yn) € H(n), then we
have
> z ' :
(x,y) = Y (x.,y.), (7.1.1)
SRR
Jj= .
and
. - n 5172 :
nxn = { Y olx i } . (7.1.2)
=1 7

Let ® be a dense subspace of H, and consider a family of linear

operators £ = { L vy Ln } on H, such that

1’
o ] =
Lj € %é(@,-), Jj i, ..., n. (7.1.3)
Then, we have defined the Hilbert-Sobolev spaces
Wo(H;¢) and wg(ﬂ;f), m=0, 1, ... . (7.1.4)
From.(1.3.7), (1.3.8) and Corollary 1.3.4, wm(H;f) and bg(H;£) are

Hilbert spaces under the inner product

(U’V)f,m = ¥ (L u,Lyv), - (7.1.5)
[yl=m :

and corresponding norm

T ' 2 1/2 ‘
HuH$ o { Y, IL_ul } . (7.1.8)
’ [7]=m
Finally, let us recall that ”.“2 _p denotes the norm on
WE ) = Wp(B2), m=1, 2, ... . (7.1.7)

Observe that condition (7.1.3) implies that

* . B . V .
Lj € EZ(Q,@), Jj=1, ..., n | (?.1.8)
Thus, all the previous concepts are also defined for the family of
' S x * * . ‘ :
operators £ = { LZ’ e, Ln }.
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PROOF. Let us start by noting that according with (4.2.9), we have
*
<¢,ij> = (Lj¢,x), ¢ € &, x e H. (7.1.15)

Es
Since ij is continuous on & with respect to the norm M-} and

Z,1

since ® is dense in Wé(H;Q), then there is a wunique continuous

*
extension of LjX to the whole of Wé(H;f). Such an extension will be

identified with L x.

(n)

[

(i) For ¥eH and u € Wé(H;f), we have from (7.1.18)

n
<u, dis, > = (grad u,¥) = Y (Lux.)
2 4 =1 J o J
n n
= Y <u,L%x.> = <y, ¥ Lx >.
j=1 J J j=1 J J

(ii) It is an immediate consequence of (i) and the definition of

e

7.2 Strong Divergence and Laplacian.

let 7 e B ™. We will write dwﬁ € H, if there exists w € H such
that
> ., 1
(gnadgu,v) = <u,dow2v> = (u,w), u e WO(H;Z). (7.2.1)

Since Wé(H;f) is dense in H, such a w is unique. Thus, to express that

condition (7.2.1) holds, we write dLu£3 = w, and we say that dbgg is

strong on 3. Next, we define

g={%en®, dLu£3 € H}. V (7.2.2)
Then, & is a vector subspace of H(n)‘. We consider on & the inner
product
(Q,%), = (8,%) + (din,g, din,P), (7.2.3)
& ¥ ¥
and its associated norm
nZng = (1dn? + ||¢Lw£3|12)1/2. (7.2.4)
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PROPOSITICON 7.2.1. & is a Hilbert space.

PROOF. First, let us note that & = ver'

on H(n) by the linear operator dbgf : & ¢ }[n) —> H (cf. Remark

1.2.1). Since H and H(n) are complete, from Proposition 1.2.2 and

,H;dbgf) is the space induced

Remark 1.2.1, we see that only rests to show that dbgf is closed. So,

let us consider a sequence {3k} in &, such that
3 3. (n)
v, =V in H

Let u.e Wé(H;f). From (7.2.1) we have

and dbgf?k — w in H. (7.2.58)
>, LD
(gmadgu,vk) = (qu+”$Vk)'
If we let k — «, and take into account (7.2.5) we obtain
(qnadguyg) = (u,w).

Therefore, 3 € & and dbg23 =W

LEMMA 7.2.2. We have

DLY) x ... x D(LY) < &,
1 ) n
oD %* ¥
Also, if v=«(v, ..., v.) e D(L,) x ... x D(L ), then
1 n 1 n
din v = L* + + L* (
oV = e ... Vo 7.2.6)
o S * *# '
PROCF. Let ¢ € @. If v = (VZ’ ey Vn) € D(Ll) X «.. X D(Ln), then

n
<¢,dLm£3> = (gnad2¢,?) = .21 (Lp,v,)
J'_"

n N : n -
= yLowv,) = (g, L.wv,).
jgl (¢ JVJ) (¢ J§1 JVJ)

Since @ is'densé in'Wé(H;f) and Wé(H;f) > H, we‘qbﬁain the desired

result.

COROLLARY 7.2.3. We have

(n) c

twlcn; 2 8.
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Let 80 be the closure of ©(n) in €. Then, it is clear that 80 is

also a Hilbert space.

PROPOSITION 7.2.4. We have
(n) c

vl € g

[ O H[ 0‘

Also, if ¥ = (V) ey V) € [wé(ﬁ,-z*)](“), then
S *
dbwzv = lel + ..., + ann.

PROOF. The second assertion follows from Lemma 7.2.2 and Corollary

7.2.3.

Now, let V = (v, ..., vn) € [Wé(H;f*)](n)[ Then, there is a

1
(n)

sequence {zk} in @ , 8k = (¢k1’ cee, ¢kn)’ such that

3 7 and L (¢, ) Livy); 4, t=1 (7
x > Voan j ¢k8 —_— J vei J, =1, ..., n .2.7)

as k — o. From Lemma 7.2.2, and (7.2.7) we see that $k — ¥ in g.

Just as div, 1s orginally defined in a weakly manner, then so it

2

is the operator A, Let v € WI(H;ﬁ). We will write A,v € H, if there

& £

exists w € H, such that

A v> = (ww), ue Wé(H;E). (7.2.8)

Zz

From (7.1.14), this is equivalent to the condition
(gnadfu,gnadfv) = (u,w), ue Wé(H;f). (7.2.9)

Thus, to express that condition (7.2.8) holds, we write sz = w, and

we say that A2 is strong on v.
Next, we give conditions under which the laplacian A$ assumes the

X ¥
strong form L1L1 + ... F LnLn' For this, we impose a new condition on

the family £ = {L L}.

70 n
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We say that the operator L; is Lj—bounded, if
* 1 4
L,: &< W (HL,) —H, 7.2.10
; ey ( )

is continuous.

LEMMA 7.2.5. If Lj is L ~bounded, j =1, ..., n, then
1 1 *
WO(H,Z) QQWO(H'B ).
PROOF. Let u e Wé(H;Z). Then, there is a sequence {¢,} € @, such that
¢k ~—> u and Lj¢k —> Lju, J =.1, c.., N
* . * ’
Since Lj is Lj~bounded, {Lj¢k} is a Cauchy sequence in H. Thus, there
is a Wj such that
* ]
Lj¢k —_— wj in H, k — o.

- * * :
Being each L, : D(Lj) € H —> H a closed linear operator, from all the

. *
previous we conclude that u € Wé(H;ﬁ ) and Lju =,

PROPOSITION 7.2.8. If Lj is Lj—bounded, j =1, ..., n, then, in the
strong sense we have
Ag = LoLu + + 7L VA £)
gu =1L, Zu .o o nu,» $u € 0 H;2),
. o A ‘ : 1, ,..(n)
PROCF. Let u e [O(Hﬁf). Then, gnadgu € [WO(H;E)] , and the result

follows_from the previous lemma and Proposition 7.2.4,
8. The Dirichlet Problem.

Let H be a Hilbert space, & a dense subspace of H, and % a family
of n linear opérators on H in the class @2(®,¢). By the "Dirichlet
problem", we understand to find a solution in Wé(H;Q) of an eqﬁation

of the form Lu = b, where L is a linear operator on H and b € H,

75




8.1 The Dirichlet Problem for A, - A, A < 0.

2
PROPOSITION 8.1.1. Let A < 0. Then, given b € WZ(H;f), there is a
unique u € wZ(H;f) such that

(Af ~-Au=0and u-b e Wé(H;f). (8.1.1)
PROCF. On WJ(H;Z), let us consider the inner product

(U’V)A = (gnadfu)gnadfv) - Alu,v). (8.1.2)
Then, its corresponding norm is equivalent to the norm H-Hf I Hence,

WZ(H;ﬁ) together with the inner product (-,*) is a Hilbert space.

A’
For u € wZ(H;E) and v € Wé(H;f) we have

<v,(A£ - Au> = (U'V)A . (8.1.3)

According with definition (8.1.2), from (7.1.14) we see that condition

(8.1.1) is equivalent to find u e b + Wé(H;Z), orthogonal to Wé(H;Z)

with respect to the inner product (.’.)A' Thus, if we let b = u - U5

where u is orthogonal (with respect to the inner product ("')A) to

Wé(H;f) and u, € Wé(H;f), we obtain the desired result.
From (8.1.3) we obtain immediately the following

PROPOSITION 8.1.2. Let A < 0. Then, the Riesz canonical representation
for the dual of Wé(H;f) with respect to the inner product (8.1.2) is
given by

By = A : Wé(H;.YB) v ke,
In particular, for every b € W_Z(H;f) there is a unique u € Wé(H;f)

such that (A£ -.AJ)u = b.
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8.2 Adjoints of gnadg, duqf and Af .

PROPOSITION 8.2.1. The adjoint of gnadf : Wé(H;f) — H(n) is given by

gnad,” = (1 + Az)—ldwﬁg . (8.2.1)

PROOF. Let % ¢ B ™ and u e I«/é(H,-f). Since dw_i} e WiH:2), from

Proposition 8.1.2, we see that there is a unique w € Wé(H;f) such that

LS
dbmfx = (1 + Af)w. Thus,

>, .Sl _
(gnadfu,x)-— <u,d@m$x> =<y, (1 + Af)w> = (U’W)$,1 .

Since w = (1 + Af)—zdiggz,‘we obtain the desired result.

PROPOSITION 8.2.2. The adjoint of dbwz : H(n) — W—J(H}f)'is given by -
N -1 '
dogg = gmadx(l + Ag) .

PROOF. From (8.2.1), and the fact that 1 + A£ is a unitary operator

(8.2.2)

(Proposition 8.1.2), we obtain

. % -1,
gud, = grad, = [(1 + Az) dis,
1

M "

= diw, [(1 + -1
= Y [( A£)

. * ' . * - — ) . *
= doqz [(1 + Ag) 1 = dx,./m2 (1 + Ai)'

PROPOSITION 8.2.3. The adjoint of A£ : Wé(H;ﬁ) - W—Z(H;f) is given

by

¥ -1 -1 :
Ag = (1 f_Az) Ag(z + Ag) . (8.2.3)

PROOF. Since A, = dimfognadx, from (8.2.1). and (8.2.2) we get

2
) x * e
g = (dwyegrad,) = grad, odin, .

-1 . - -1 -1, -1
(1 + Af) odbggognad£°(¥ + AZ) = (1 + Af) Az(l + Az) .

S
1

8.3 The Dirichlet Problem for Af, and Friedrichs’ Inequality.
Given b€ H, we are interested in the problem of finding a

solution v Wé(H;f) of the equation Afv = b. That is, we are looking
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for a v e Wé(H;f) satisfying

(gnadfu,gmadzv) = (u,b), for all u e Wé(H;E). (8.3.1)
For this, let us define
- 1 .
(u,v)E = (gnadfu,qnadfv), u, v e WO(H,Z). (8.3.2)
Then, (',')E satisfies all the conditons for an inner product, except

that is not positive definite, but only positive semidefinite.
Civen b € H, consider the linear functional Ib : Wé(H;E) —s K,
given by
< Ib> = (w,b), u e W (H:2). (8.3.3)
From Schwarz inequality we have
HIbuf’_l =< libll. (8.3.4)
Note that we can solve equation (8.3.1}, if we can represent the
linear functional Ib by means the "inner product" (8.3.2). Now, since
Ib € W_Z(H;f), this will be possible if the norms associated with the

inner products (',')E and (',°)£ ; are equivalent on Mé(H;f). This

naturally lead us to the following concept.

We say that the family £ satisfies Friedrichs’ inequality, if
there is a positive constant C such that

(,0) = Cz(gaad2¢,qmd£¢), 6 < o (8.3.5)

Using the fact that & is dense in hé(H;f), we see that (8.3.5)

holds for all u e Wé(H;f). Thus, (+,+)_. is an inner product on Wé(H;f)

E

whose norm ll«ll . is equivalent to the norm -l From this we obtain

E 2,1

the following
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PROPOSITION 8.3.1. If £ satisfies Friedrichs’ inequality, then

A, : wé(H;z) — w"l(H;x),

£

"is a linear isomorphism.

COROLLARY 8.3.2. Under the same hypothesis as in the previous
proposition we have:

2V = b.

(i) Given b € H, there is a unique v € Wé(H;ﬁ) such that Af

(ii) Af_l-: H— Wé(H;I) is continuous.
PROOF. (i) Civen b e H, obser&e that the equality Afv = b is in the
strong sense; Since Ib € W—Z(H;Z), the result follows from the
previous proposition.

(i1) From (8.3.4) we see that I D H— W_Z(H;f) is continuous.

Hence,

-1 1
Af ol : H — Wb(H,f),

is also continuous, where Ag is the weak laplacian (7.1.13).

PROPdSITION 8.3.3. Sﬁppose that 2 satisfies Friedrichs’' inequality,
and let b é H. Then, the solution of the équation A£V = b, 1is given
by the point u € Wé(H;E) where the reéi‘functional |

AW = (guadyy,guady) - (v,B) - (b)) v e WL ),
‘ attains its minimum value. ' ' ' ‘

PROOF. Let u e Wé(H;Z)‘be a solution of A

2
E

It is clear that A attains its minimum value précisely at u. Now, from

gu.= b._Def1ne

Av) = llv-ull
(8.3.1) and (8.3.8) Qe obtain
Alv) = (gdadfv;gnadgv)‘4-(v,b) -'(b,v) +(uu)p .

From this the conclusioh_is clear.
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Let D(AQ) be the subspace of Wé(H;E), which consists of all u
such that Agu € H. If the hypothesis in Proposition 7.2.8 are
satisfied, then we have

: <
Wo(H;2) € D(A,).
PROPOSITICN 8.3.4. The following properties are equivalent:
(i) & satisfies Friedrichs’ inequality.
(ii) The strong laplacian Ag : D(Af) < Wé(H;f) — H is onto.
(n)

(iii) gnadz : Wé(H;f) —> H is one-to-one, and has closed range.

PROOF. First we prove the equivalence of (i) and (ii). If ¥ satisfies
Friedrichs’ inequality, then from Corollary 8.3.2. it.follows that Ag
is onto H. To establish the converse, first we check that (-,-)E is
positive definite on wg(H;f). Suppose that v e hé(H;f) is such that
qnadzv = 0. Let b € H. Since A, is onto, there is a u e Wé(H;f) with

Auf = b. Hence

(v,b) = (V,Agu) = (gnadgv,gnadgu) = 0,
for all b € H, i.e., v = 0. Next, we will establish Friedrichs’
inequality, by showing that the inclusion i :(Wg(H;f),H-HE) — H is
continuous. For this, it 1is enough to show that such inclusion is
weakly continuous. Let b € H, and pick a v € hé(H;f) with sz = b.
Then

(u,b) = (qnadfu,qnadfv), ue Wé(H;f),
it is continuous, since gnadz : (Wé(H;f),H-HE) — H is contiﬁuous.

Now we show that (i) and (iii) are equivalent. If £ satisfies

Friedrichs’ inequality, then using the fact_that the norms ”'”£,1 and
H-HE are equivalent on Wé(H;f), we obtain (iii). If (iii) holds, then

from the open mapping theorem applied to gnadf, it follows that there
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is a positive constant C such that

1
fTuall = CHgmadqu, u e WO(H;E).

2,1

From this, we obtain (i).

LEMMA 8.3.5. If £ satisfies Friedrichs’ inequality, then

51172 . ‘
lut, = { Y IL_ull } , uel . (H:%, (8.3.7)
,m . 0
[7]=m

is a norm equivalent with H-Hf o °P Wg(H;f).
PROOF. Clearly we have Iu[£ - hull , o U4E WS(H;Q). From the density

w2

of & in W?(H;f), it is enough to show that there is a positive
constant K such that
”¢”£,m = K|¢I$,m , ¢ e .
For this, it is sufficient to prove that for every %, [¥] < m, there
is a Ky , such that
= .
HL?¢H Kyl¢|£,m
But this 1is an immediate consequence of Friedrichs’ inequality

(8.3.5).

' PROPOSITION 8.3.6. Suppose that ¢ satisfies Friedrichs’ inequality. If
.the operators in the.family Zu 2* satisfy:
| LM = ML, ¢ed; L, Netug.
‘Then -
By" s V(H;2) — W T(H2),
is a linear isomorphism. |

PROCF. From the previous lemma we see that it 1s enough to sth that -

_ .
A" (WG(H 2, 1- 1y £,m

is a linear isomorphism. For this, let us note that for ¢, ¥ € &, we

m : , )
m) — (wO(H:E),I-I ), ‘v (8.3.8)
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have

(8,",9) = T 9200 N N S TS

J{dg Jodn

=Y (L, ... L.¢,L. ... L.y
Jq Jm i Jn
0

- (¢’w)£,m ’

where
(w,v)? = Y (LuLw
& m [7]=m v

is the inner product on Wg(H;Z) defining the norm (8.3.7). From the
density of @ in (W?(H;Q),I°I£ m) we obtain

m 0
> = .
<u,A£ v (U’V)f,m s u, v € WO(H,f).
Thus, (8.3.8) is the Riesz canonical representation, and this proves

the result.

8.4 The Energy Space of AZ'

Let L € @2(®,®). Assume that L is symmetric:

(Lo, y) = (¢, Ly), ¢, Y e ®; . (8.4.1)
and positive:
(Lo, ) > 0 if ¢ € H, ¢ = 0. (8.4.2)
Then,
(¢,¢)E = (Lo, y), ¢, Y €@, (8.4.3)

is an inner product on &. We define the energy space E(L) of L, as the
completion of (@,H-HE), where
2
1ol = (Lo, )17, (8.4.4)

is the energy norm (Mikhlin, p.81).

Now, let £ = {Ll’ ey Ln} be a family of operators on H in the

% ,
class ﬁg(é,é). Since Lj(é) € o< D(Lj), it is a simple matter to check
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that the strong laplacian

=1L ¢+ + LT

A£¢ =L 1¢- ce n n¢ , ¢ € 9,
is symmetric. Furthermore, we have
(¢,¢)E = (A£¢,¢) = (gaad£¢,gnadf¢) = 0,
Assume for the moment that the strong laplacian Af is positive. Given
that
S - .
<, Ay W.o)p . ¢ Yed,

using the density of & in the energy space E(Af)’ we can interpret Af
as the Riesz canonical identification for the Hilbert space E(Af).
Thus, we conclude that -

A :‘E(Af) —_ E(AI)I’ (8.4.5)

£
is an isometric isomorphism. Hence, we can say that the study of the

Dirichlet problem for A, is reduced to find its energy space.

£
If £ satisfies Friedrichs’ inequality, then A$ ié positi?e and

the discussion previous to Proposition 8.3.1 establishes that
() = wCH ),  (8.4.8)

togetﬁer with the inner product . B | »

(u,v)E = (gna&zg,gnadfv). (8.4.7)
Nevertheless, in some cases, it can happen that £ Iinstead of
satisfying Friedrichs’ inequality, satisfieé a similar but weaker
condition.' In such a- situaﬁion, it is still poséible to giVe a
.characterigation_ of the energy spacé E(Af) in g'lsimilar way to a

Hilbert-Sobolev space. |
- An examination of Friedrichs’ inequality (8.5.5), suggeéfs fhe
convenience of replécing.there the nérm‘on H by a weaker norm. This'

B . - *
lead us, in a natural way, to consider the spaces W m(H;f J, taking

into account that we have for ¢ € &:
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”¢” > “¢||$X’_1 z ... = ”¢>“.'£*,"m = llqb”:e*,"(m‘*‘l) =

We say that the family £ satisfies Friedrichs’ 1Inequality of

order m, if there is a positive constant C such that

u¢u§* = Cg(gnadf¢,gmad$¢) , b o, (8.4.8)

In this context it will be useful to consider the spaces

X;={ue et Lpel}, j=1, ..., n

LEMMA 8.4.1. Each

L. : X, csw™me) —un j=1, ..., n,
J J
is a closed linear operator.
- *
PROQOF. Let {uk} < Xj’ uelW ™ H;& ), and v € H. Suppose that

. - *
u, —u in W m(H;.E? ) and Ljuk — v in H.

Then, for ¢ € ® we have

X *
<p,L u> = <L ¢p,u> = 1lim <L .¢p,u. >
@ J J¢ J¢ K

lim <¢,L .u,> = <¢,v>.
k—— k—— J

k

This says precisely that u € Xj and Lju v. Therefore, Lj is closed.

Let &4 = {4, ..., A}, where A, is the restriction of L, to X,
1 n J J J

and let W™ = W H;¢). From Corollary 1.2.5, Remark 1.2.1 and the
previous lemma, V(w—m,H;ﬂ), which is the space induced on W—m by the
family #, is a Hilbert space.

Since ¢ < V(W—m,H;ﬂ), we can consider the space
V(W ", H;d) = closure of ® in VP H ).
Proceeding as in the previous section, we obtain the following

results.



PROPOSITICON 8.4.2. If 2 satisfies Friedrichs’ inequality of order m,
then
-— —m .
E(Af) = VO(U ,H,ﬁ),
together with the inner product
(U,V)E = (g@adfu,gnadgv).
In particular, '

-m -m ,

is a linear isomorphism.

COROLLARY 8.4.3. Under the same hypothesis as in the previous
proposition we have:
* . ' -m
(i) Given b e,WZ(H;f ), there is a unique v € VO(W ,H;4), such that
A£V = b,
_— X _—
(i1) A2 I : Wg(H;f ) — VO(W M H:4) is continuous.

PRO?OSITION 8.4.4. Suppose that £ satisfies Friedrichs’ inequality of
order m. If b e-wg(H,ﬁ*), then the solution u € VO(W—m,H;ﬂ) of AQV'=
b, is the point where the real func££§nal ‘ |

CAv) = (gnadfv,gnadgv) - (v,b) - (b,v),

attains it minimum value.

PROPOSITICN_8.4.5. k4 sétisfies Friedrichs’ ineqUality-of.order m if
and only if, for every u € wg(H;f*); the linear funptibnal
p—> (pw), peo,
is_coﬁtinuous in @E ='(®,H-HE). ‘
PROOF.  Suppose that £ satisfies Friedrichs’ inequality of order m. Let

u e wg(H;f*), u # 0. Then, from (8.4.8) and the definition of the norm
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”.“2*,—m’ we have
Cﬂgnad£¢u E3 H¢H2*’_m = I(u/Hqu*,m S0, 9 € O.
Therefore, the linear functional ¢ — (¢, u) is continuous in @E .
To prove the converse, first we check that H-HE is a norm on &.
Let ¢ € &, ¢ # 0. Since @ < wg(H;f*), the linear functional
g —> (Y, ¢), ¥ e
is continuous in @E. Hence, ll¢ll > 0 implies that H¢HE > 0.

Next, let us consider the sesquilinear form

B : WZ(H;z*) X & —> K,

E
given by B(u,¢) = (u,¢). Being Wg(ﬂ;f*) complete, from a well known
result by Mazur and Orlicz, to establish the continuity pf B, it is
enough to verify that B is separately continuous. The continuity of
u — (u,¢), for each ¢ € &, is an immediate consecuence of the
continuous inclusion wg(H;ﬂ*) — H. The continuity of ¢ —s (u,¢),
is part of our hypothesis. Being B continuous, there is a C > 0, such
that

Clgl gliull x = 1(u,$)1, ue wg(H;z*), $ € o.

£
This last fact, together with the definition of H¢H$* - gives the

desired result.

9. The Neumann Problem.

8.1 The Space A#.
Let H be a Hilbert space, ¢ a dense subspace of H, and £ a family
of 'n operators on H in the class €Z(®,®). Following Deny and Lions

([3], p.340), we define ¥ as the set of all v e WJ(H;Q), such that Afv

€ H and satisfy
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(u,Afv) = (gaadfu,gnadfv), u e WJ(H;Z)., (8.1.1)
Then, it is clear that ¥ is a vector space, and that & € ¥. On ¥ we
consider the inner product

(V’W)N = (v,w)

21 + (AEV,AQW). (8.1.2)

PROPOSITION g9.1.1. ¥ is 2 Hilbert space. Also we have:.
(1) ¥ s WH ).
(i1) Ag : ¥ — H, is continuous.
PROCF. Let D(Aﬁ) bg the subspace consisting of a;l u e WI(H;Q) such
that Azu € H. According with Remark 1.2.1; let X be the space induced
on WZ(H;Q) by the operator Ag : D(Az) < WZ(H;Q) ——+ H. Being WI(H;Z)
and H Hilbert spaces, from Corollary 1.2.5 and Remark 1.2.1, X will be
~a Hilbert sbace if Af is closed. '
So, let us consider {vk} < D(Af), v € WJ(H;Q), and w € H such
that |
v, — v in ' (H;£) and Ay, —> v in A, (8.1.3)
_ We have then | _
| (u,84v,) = (gradgp, gnadi,vk)vk,_ Cuevlame.
If we let k —> w, from (8.1.3) we obtain
(u,w) = (gradgu, gradyv), u e V' (H;9).
In partiCular, from (7.2.9)7we have v é'D(Af) and A$V = w. Therefore,
X is a Hilbert space. | |
Now, for every u € WZ(H;E), the linear functional
:v‘—-e (Afv,u) - (gnadfv,gﬁadfu), v e X,

is continuous. From this it follows that # is a closed subspace of X.

The other assertions are clear.
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9.2 The Neumann Problem for A, - A, A < O.

2
PROPOSITION 9.2.1. If A < 0, then:
(i) For every b € H, there is a unique v € #, such that
(Af - A)v = b. (s.2.1)

(11) (Ag - A)—l : H — ¥ is continuous.
PROOF. (i) Let b € H. 'If v € ¥ and is a solution of (9.2.1), then

(gnadgu,gnadfv) - Alu,v) = (u,b), wuce WI(H;£). (8.2.2)
Conversely, if v € WZ(H;Q) satisfies (9.2.2), then v € ¥ and satisfies
(8.2.1). Thus, it is enough to show that equation (89.2.2) has a unique
solution in WI(H;$).

On WZ(H;I) we consider the inner product
(U’V)A = (gnadgu,gnadgv) - A(u,v),

and let II-HA be the corresponding norm. Then, |l “and -l are

g, 1 A
equivalent norms. Since wJ(H;f) ¢ H, from. Riesz representation
theorem it follows that there is a unique v € WJ(H;f), such that
(wv), = (u,b), ueW (L)
Which is precisely (9.2.2).
(ii) It is clear that A£ - A : ¥ —> H is continuous and one-to-

one and, from what we have just seen, is also onto. The result follows

from the open mapping theoren.

9;3 The Neumann Problem for Ag and the Poincare’ Inequality.-

Consider the space

N(gmadf) ={v e WI(H;£) t gradyv = 0}. (9.3.1).
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LEMMA 3.3.1. We have

£

PROOF. If v € N(gnadﬁ), then AZV = 0 strongly, and clearly v € ¥. If

v = 0, then (gnadfu;gaadgv) = 0, for all u e WZ(H;f).

N(gaadf) ={vedN: A,y =0} (8.3.2)

v € ¥ and AQ

Taking u = v, we conclude that v € N(gnadf).

LEMMA S.3.2. N(gnadf) is a closed subspace of H.

PROOF. Let {Vk} < N(@uw@), v € H, and assume that v, — V in H.
Since Ljvk =0 (k=1, 2, ... ) and Lj is closed, we obtain v e D(Lj)
and Ljv = 0. Thus, Vv € WZ(H;Z) and gradg,v = 0.

Let b € H, and assune that there is a v & #, such that Av = b.
Then, for every u € N(gnadf) we have (u,b) = (gnadgu,qmadfv) = 0. This
shows that Af(ﬁ) € Ho N(gaadg). Next, we are going to introduce a

condition under which the equality AZ(N) =Hoeo N(gnadf) holds.

Since*%#(H;ﬂ) N H, from the prévious lemma it follows that

N(gaadz) is a closed subspace of WZ(H;$). Thus, "given any u € WZ(H;f),:

we can write it in the form

»ﬁ =c+v, ceNguady), ve WicH ) o N(gad,).
.iHWe will say that £ satisfies the Poincére"inequality, if there is a
positive constant C, such that |

(v,v) = Cz(gnadgu,gnadgu), u e WJ(H;f). (9.3.3)
REMARK 9.3.1. Suppose that the vector space N(g@adx) has dimension
eqﬁal to 1. Fixa c € N(gnadz), with llell = 1. If u € wl(H;$), then

u = (u,c)c + v, where (c,v) = 0,
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Hence, in this case inequality (9.3.3) reduces to

(u - (u,cl)c,u - (u,clc) = Cz(qnadfu,gnadfu), ue WI(H;Z).
From this we obtain the following important particular case of
the Poincaré inequality:

(u,u) = l(u,c)l2 + Cz(gnadgu,gnadfu), ue WZ(H;Q). (9.3.4)

As an application of (9.3.4), let © be an open, connected,
nonempty subset of Rn, with finite measure mn(Q) <o . If H= LZ(Q),
¢ = C(Q), and L,=8/0x;, j=1, ..., n. Then, as is well known, the
space N(grad) is formed by the constant functions, and has dimension

1/2

equal to 1. In this case ¢ = & mn(Q)_ , and (8.3.4) is precisely the

classical Poincaré inequality:

j lul? dx = 5‘%57 | j u dx|? + 8 f lgrad ull® dx, u e B (Q).
Q n Q Q

PROPOSITION S.3.3. AZ(N) = He N(qnadg) if and only if £ satisfies the
Poincaré inequality.
PROOF. Suppose that the family Z satisfies the Poincaré inequality.

let b € H o N(g/uzdf). To find v € WI(H;.‘f) such that A_v = b, is

4
equivalent to find v e WZ(H;I) satisfying
(gnadzu,gnadgv) = (u,b), u e WI(H;E). (9.3.5)
From Poincaré inequality it follows that
(u,v)1 = (gaadfu,gnadfv),
is an inner product on the space WZ(H;Q) ® N(gnadf), whose associated
Since WZ(H;Q) C— H, the

norm |[+], is equivalent to the norm Il

1 e, 1
linear functional u —> (u,b) is continuous on wl(H;ﬂ) e N(gnadf).
Riesz representation theorem, yields a unique v € WI(H;Q) ® N(gnadg)

such that
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(gaadxu,qaadfv) = (u,b), ue WJ(H;Q) © N(gaadf).
Since b € H e N(gnadf), from this we obtain (8.3.5).
Suppose now that Af(ﬂ) =He N(gaadg). First we are going to show

that (+,+), is an inner product on WZ(H;f) e} N(gnadg). For this, it is

1
enough to show that if x € WI(H;E) e N(g%adf), x # 0, then gnadzg = 0,
From our hypothesis, there is a v € #, such that
(gnadu, gmdgv)} (u,x), ue W (H2.
Taking u = x, we obtain . ‘
(gnudgx,gnadgvs'= (x,x) > 0.

Therefore, gnddgx # 0. »

Now, the Poingaré inequality is equivalent to the continuity of
the inclusion

i (Wi 2) e N(grad,), |+]) — H © N(grad,).

To eétablish this, it is sufficient to show that such inclusion is
weakly continuous. So, let b € ﬁ ® N(gaadg). Then, from our

hypothesis, there is a v € ¥, such that (9.3.5) holds. From this it

follows that u — (u,b) is conting@us.

COROLLARY 9.3.4. Suppose that 'thé? family ¢ satisfies the Poincaré
inequality. Then, for every b € H o N(gnadf), there exists ¥ € & such
that diw,? = b - | |

£ ) . ,
PROOF. Given b € H.o N(gnadf), from the previous proposition, there is

a w € # such that Agw = b. If we let 3 = gnadgw, we have then v e &

LD F
andldbufv = Afw b.

PROPOSITION 9.3.5. Suppose that N(gnadf) is finite dimensional, and

that . is one-to-one on WZ(H;f). If ¥ satisfies the Poincaré
¥ . o - : ' )
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inequality, then £ satisfies Friedrichs’ inequality.
PROOF. Suppose that £ satisfies the Poincaré inequality, but does not

satisfy Friedrichs’ inequality. Hence, there is a sequence {¢k} S 9,

such that
. (n) .
gaad£¢k — 0 in H , (8.3.8)
and
u¢kn = 1. (9.3.7)
We have
¢ =St Ep (9.3.8)
1
where ¢, e N(gma@z) and f, € ¥ (H;2) o N(gnadf) Then, gnadffk — 0
in H(n). From Poincaré inequality, this implies that
f, —> 0 in H. . (8.8.9)

k
This last fact, together with (9.3.7) and (9.3.8), imply that {ck} is
a bounded sequence in H. But since N(qnadf) is finite dimensional,
there is a convergent subsequence of {Ck}’ which will be denoted the
same, {ck}. Thus, there is a ¢ € N(gmadg), such that

¢, — ¢, in A (9.3.10)
From {9.3.8), (89.3.8), (9.3.9) and (9.3.10), it follows that

¢, — ¢ in Wé(H;f). (9.3.11)
Hence that

gnadfc = lim qnad2¢k =0
k—x _
From our hypothesis, we must have ¢ = 0. On the other handp (9.3.7)

and (9.3.11) imply that licll = 1. Which is a contradiction.

PROPOSITION 9.3.6. If the inclusion wZ(H;f) — H is compact, then £
satisfies the Poincaré inequality.

PROOF. If £ does not satisfy the Poincaré inequality, then there is a
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sequence {uk} < WZ(H;Q) o) N(gnadf), such that

Hgnadfukﬂ —> 0 (9.3.12)

and

'HukH = 1. | (9.3.13)
Since {uk} is a bounded sequence in WZ(H;$), there is a u € H, and a
subsequence of {uk}, which w;ll be denoted also by {uk}, such that
w, —u in H. | (9.3.14)
From (9.3.12) and (9.3.14) it follows that {uk} is a Cauchy sequence
in WI(H;f). Hence, there is a v € WZ(H;£), such that
u, v in V(D). (9.3.15)
Now, (9.3.14)'and (9.3.15) imply u = v, and hence, that u € WJ(H;XQ.
Thus, |
u, — u in WJ(H;f),
and from (8.3.12), u e N(gnadf), But from the way ﬁhe sequence {uk}
was chosen, we also have u € WJ(H;E) e N(gnadg). Therefore, u = 0,

which is in contradiction with (9.3.13) and (9.3.14).

PROPOSITION 9.3.7.‘If the inclusion WZ(H;f) — H is Compaét, theh
N(gnadf) is finite dimensional.‘ | |

PROOF. It is enough to show‘that every sequence in N(gnadg) which is
bounded in H, has a convergent subSequence,in H. From our hypothesis,
we see that this is the case, by observing thét if {uk} < N(gnadg) is

bounded in H, then also is bounaéd in WI(H;f).

'
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APPENDIX: THE SPACES L‘EQC(Q).
In this part we establish those properties of the spaces L?OC(Q),

utilized in the examples 1illustrating the theory that we have

developed.

Let Q be a open nonempty subset of Rn. To indicate that K is a
compact set contained in Q we write

K cc Q. (A.1)

let I = p = w. Then, Lp (Q) consists of all the (equivalence classes

Loc

of )} complex or real extended valued measurable functions u on £, such

that
Hqu,K < o, for every K cc §; (A.2)
where
1/p
ul ={j Iulpdx} , 15p<a (A.3)
p, K
K
and
ull K= inf { € : |u(x)| =Ca.e. on K }. (A.4)
. 3 3 p
Clearly, ”p,K is a seminorm on LEQC(Q)’ for every K cc Q.

Hence, the family consisting of all such seminorms determines a

locally convex topology on LiOC(Q).

Given a subset A of Rn, we denote its closure and boundary, by 4

" and 94 respectively.

Let { Uk : k€ N} be a family of open subsets of Q satisfying:

o0
Uk is compact, Uk c Uk+1’ and Q = kgl Uk' “{A.5B)
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'Furthermore, each U, can be chosen in such a way that

k
m (U, ) = 0, k=1, 2, ...,
n k

where m is the n-dimensional Lebesgue measure.
Then, the locally convex topology on L?OC(Q) is generated by the

family of seminorms { li-ll : ke N} In particular, > () is a
p,Uk Loc

metrizable space.

LEMMA A.1. Let © < Q, k=1, 2, ..., be given by

k
QZ = UJ, Qk = Uk \ Uk—l’ k=23 .... (A.B)
Then, '
p y ' p p
LBQC(Q’ «—— L (Ql) X .. X L (Qk) X vun,
i.e., these spaces are linearly isomorphic.
. PROOF. Since Uk < Uk+1’ then
.Qk ) Qe =g, k # L 4 (A.7)
Also, recall that we have chosen the Uk-in such a way that
| mn(aUk) =.0, k=1, 2, ... . (A.8)
From (A.8) it follows easily that
< =
U\ (Ql Veeev@l)eolu.o vl g, k=23 ..., (A9)
Also, (A.5) implies
[o0] ¢4}
QN U o < U (U N, u... u)). (A.10)
k=1 k k=1 k 1 k

Putting together (A.8), (A.89) and (A.10), we obtain

© )
m(a\ U Q)=0. , (A.11)
' k=1 :
If ue LZQC(Q)’ let<uk : ule.,From (A.5) and (A.B), u, € L (Qk).
Thus, we have the linear correspondence
p : T

LQOC(Q) 5 u — Tu = (ul, u,, ) € Kf

where ¥ = LP(QZ) Xoei X Lp(Qk) X ... . From (A:7) and (A.11) it
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follows that T is one-to-one and onto. Also, from (A.8) and (A.9) we

see that u, —> O in L?QC(Q) if and only if Tu, —> 0 in X.

k

PROPOSITION A.Z2.

i 1% i < =<
(i) LEQC(Q) is a Frechet space 1 = p =
(ii) IP (Q) is reflexive, if 1 < p < w.

Lac
(ii1) Lﬁac(n) is separable, if I = p < a.

PROCF. Let A Qk : k e N } be the family defined in Lemma A.1.
As the case may be, let us note that each of the spaces Lp(Qk) has the
corresponding property (completness, reflexivity or separability).
Hence, the product space LP(QZ) X oe. X Lp(Qk) X ... will have the
same property (Concerning the reflexivity, see e.g.,Kdthe [8]. p.304).

Applying the previous lemma we obtain the desired result.

The following properties are clear:

2] p < <
L(q) - L@ (Q), 1=p= o (A.12)
p q < < <
LZ (Q) — L2 (Q), 1 Sqg=p= o (A.13)

In particular

1

o}
szJQ) —s L2

ac(Q)' 1 =p=o, (A.14)
PROPOSITION A. 3. C:(Q) is dense in'L?ac(Q), 1=pc< o
PROQF. lLet u € L?OC(Q), 1 = p < w, Consider the family { Uk : ke N}

of open sets given in (A.5). Define

u, =uinU, and u, = 0 in Q \ Uk'

k k k
Then, u, € tPcq) and u — u in LiaC(Q). This shows that LP(Q) is
dense in LF (Q). Since LP() <« P (Q), and C(Q) is dense in
Loc Lac c

LP(Q), 1 = p < , the result follows.
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Let u € L?OC(Q), be such that u(x) = I on 4, u(x) = -1 on B,
where mn(A) > 0, mn(B) >0 and Q@ = A v B. It is not difficult to see
that u cannot be approximated by elements in C:(Q). Thus, C:(Q) is not

dense in L?QC(Q).

In order to study the dual of the space L?ac(ﬂ)’ we introduce the

following definitions.

. Let u € LéOC(Q). We say that u has compact support in Q, if there
exists K cc Q, sﬁch that u = 0 a.e. on Q& \ K. .
For 1 = qg = «, we let

LZ(Q) ={uel%Q) : uhas compact support in Q }.

Fix 1 = p = w, and let g be the conjugate exponent of p. Given
v € Lg(Q), choose K cc Q in such a way that v = 0 a.e. on Q \ K.

Next, define the linear functional Av : LiOC(Q) — K:

<u, Av> =»f uv dx = f

uv dx , ue P ().
Q X ) ac .

L

Then Av e (Li )’
Qe

PROPOSITION A.5. If I = p < w, then the linear correspondence
A Y — 1P ),
c Lac n
is one-to-one and onto.

o PROOF. Suppose that v e 17(9) and Av = 0. Then,

T o . J wv dx = 0, velLP (.
) Q i Lac

Since Co(R) ¢ L (@), from du Bois-Reymond lemma (Adams [1], p.59) it

follows that u = 0. Therefore, A is éne-to—one.v
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Now, take A € (Liac(ﬂ))’. From the characterization of the

topology in LiQC(Q) by means of the seminorms I+ (see, (A.B}), it

p. Uy

follows that there exist an open set w € § and a positive constant C,

such that w cc Q and
l<u,a>] s Clul ), ue LY (). (A.15)
Given w € Lp(w), we define its extension w € IP(Q) as w = won w and
w =0 on Q \ w. Consider the linear functional p : LP(w) —s K, given
by
<w,p> = <w,A>,  we LPew). (A.16)

From (A.15), we have u € (LPw))’. Hence, there is a v « L9w) such

that
<w, 1> = f wv dx, W e Lp(w). (A.17)
w
For u e Lp (Q), defineu =uonw, u =0 on Q\ w;, and observe
Lac w w
that u e Lﬁac(m). From (A.15), (A.16) and (A.17) we obtain
<u,A> = <u L,A> = <u ,u> = f uv dx = I uv dx , u € 2 (Q),
w w Loc

W Q

and A = AV. Therefore, A is onto.
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Banach space. In this case, we define the spaces W_m(X;f), which allow
us to obtain a family of spaces with continuous inclusions

o WK ) s L s X e s W) s
When X is reflexive, & is dense in each of these spaces.

In Chapter 1V, we study the Hilbert-Sobolev spaces, that is, the
case when X is a Hilbert space. In Section 7 we define the gradient,
divergence and Laplace operators, and obtain their basic properties.
In Section 8 we study the corresponding Dirichlet problem, and its
relation with Friedrichs’ inequality. The same is done, in Section 9,
for the Neumann problem and Poincaré inequality, following some ideas
of Deny and Lions in [3].

Finally, in the Appendix, we give a detalled account of those
properties of the spaces L?ac(ﬂ) utilized along our exposition, mainly

in the illustrative examples, which we believe some are well known,

but we were unable to find them in the literature.



(u,Afv) = (qqadfu,gaadfv), u e WJ(H;Q)., (9.1.1)
Then, it is clear that # is a vector space, and that & € ¥#. On ¥ we

consider the inner product

(V’W)N = (V’W)g,z + (Afv,Afw). o (9.1.2)

PROPOSITiON 9.1.i. X is a Hilbert space. Also we have:

(1) ¥ — WZ(H;ﬁ). |

(ii)_Ax : ¥ — H, is continuous.

PROCF. Let D(Af) be the subspace consisting of all u e WJ(H;f) such

that A,u € H. According with Remark 1.2.1, let X be the space induced

£
on WJ(H;ﬁ) by the operator A2 : D(Af) [ WZ(H;Q) — H. Being WJ(H;E)
and H Hilbert spaces, from Corollary 1.2.5 and Remark 1.2.1, X will be
a Hilbert space if‘Ag is closed.

So, let us consider {Vk} [ D(Ag), v e WJ(H;E), and w € H such
that

—— v in WZ(H;f) and A,v, —> w in H. (9.1.3)

v £’k

_k
We have then
. N : E 1,
" (u,Agvk) = (gnadgq{gnadka), u e'w.(H,E).
If we let k —> @, from (9.1.3) we obtain
(u,w) = (g@adfu,gaadfv), u € WZ(H;E).

In particular, from (7.2.9) we have v e D(Ag) and A_,v = w. Therefore,

£
X is a Hilbert space.
Now, for every u € WZ(H;E); the linear functional
v —> (Ayv,u) -‘(gaadfv,gnadgu)q v e X,

is continuous. From this it follows that # is a closed sﬁbspace of X.

The other assertions are clear.
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Let u € L?QC(Q), be such that u(x) = I on A4, u(x) = -1 on B,

where mn(A) > 0, mn(B) >0 and Q@ = A v B. It is not difficult to see
that u cannot be approximated by elements in C:(Q). Thus, C:(Q) is not

dense in L° ().
Lac

p

In order to study the dual of the space L£

(), we introduce the
ac

following definitions.

1
14

exists K cc Q, such that u =0 a.e. on O \ K.

et uel QC(Q). We say that u has compact support in Q, if there
For 1 = g = o, we let

LZ(Q) ={uel¥ : u has compact support in Q }.

Fix 1 = p = o, and let g be the conjugate exponent of p. Given
v € Lg(Q), choose K c¢cc Q in such a way that v = 0 a.e. on Q \ K.

Next, define the linear functional Av : Liac(ﬂ) — K:

<u,Av> = I uv dx = f uv dx , ue L? (Q).
Q K ac
Then Av € (Li (Q))°.
ac

PROPOSITION A.5. If 1 = p < w, then the linear correspondence
A %) — (P (),
c v Lac
is one-to-one and onto.

PROOF. Suppose that v e LZ(Q) and Av = 0. Then,

j w dx =0, velP (.
Lac

Q .

P

2

follows that u = 0. Therefore, A is one-to-one.

Since C:(Q) c L ac(Q)’ from du Bois-Reymond lemma (Adams [1], p.59) it
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