On a structural scheme of physical theories proposed by E. Tonti

Emesto h. Lacomba
Fausto Dingay
E
1987

COMUNICACIONES DEL CIMAT

CERTRO DE
 INVESTIGACION EN
 MATEMATICAS

Apartado Postal 402
Guanajuato, Grto.
México
Tels. (473) 2-25-50
ON A STRUCTURAL SCHEME OF PHYSICAL THEORIES PROPOSED BY E.
TONTI. ${ }^{a>}$
Ernesta A. Larombeb
Depertamente de metematiges briversided AbtomomeMetropelitere- Izterelefe, ugedu mexice Gity, Mexisc.
Faumte onvey
Guenejueto, GuEnejuEto, Mexico.
A Etructurel Echeme git physigal therias propased by E.Tonti is analyabd, using madern methemeticel concepts butEvoiting extreme generality or umanesary ebetratime. Themerit of this Etheme is thet it emfhesizes a syetemeticproperties and enwetane of a giver theory ere eswive readoft: A feu besio Examples are studied, meinlyelectromegretism Erod the linestred Einetein Equetion, andthen the soheme $i=$ used to geim some insight into thestrurure of these theories.
 ceg-bateg.

[^0]
I．TNTEUDMGTMM．

 Gr EMuEtione of phyEicE：thet he tries to reduce follouing三EvErEl besis Fetterne in the form of Eommitetive diegrems． Thembrit Gf hi三 viempaint lies meirly iry the fegt thet it

 irn＝ettigri III。

Gonsequenues of the methous．In the lest Eertion we give 三 aritione of the stheme．

Geverel other works releted to this sott of idess， althoug with different vieupantes asm be foum in the 1itereture（［6］，［7］，［E］）．

II．DESGRTFTION DF THE ECHEME．

The Eterting fuint of thiz stheme $i=$ the following Eemingly triviel obemration，which in fact has very deef impligetions：
＂Every measurement at a physiral quentity is releted to Eome region of epecetime：

If we assume thet we are dealing with a differentiable theory，that $i=$ if we Eesume that eperetime is a Gifferenti三ble（o＊merifold，then the above remark Eaye thet the physigel quantities ere differentiable furntione defined on sumanifolds faseibly with buthery，of this menifold．

A forther assumptiont whigh is implicit ir Tonti＇s works is the Euferposition frimafle．Using the lengusge af differential geametry，these hyputheses mey be expressed as a methemetinally frecise axion as follows：

Fhysicel quentities are sections of a vector burnle over 三 Eutmenifald fossitly with toundary of the space－ time menifold．

Leter or we mill EtEte tha postuletes for the etructure Eheme but for the time behre we acopt the atuve remerk as the mathemstisel desuriftion of physical quatities．Feaders

 retrer diffシrert reture:

i) E FOESEESE e differertigl oferetror tret is ar

 trivi三l vertar burule whoser

 tiation i三 GoveriErt derivetior mith respert to thi
 sormept．However we shell mot metre use af this rotion ir the
 deserited irit：

Thus these topulgei＝el Equetigrs ere if fert．

 difurertiztion frowese，tut the term Eseme ireppropiete，

 metremeticel Etruaturereguired far equatioretyFetus herue

 determirned from ExFErimert．Erut moregyer，tras agratitutive
 troclowitel Equstigre．

We eisaremert thet if the merifold fosees a metria Eのth differantietion frouszess are releter，sirme the
 ＝ートにme：

These tworgetuletes Ere more Gr lese ExFlicit irn

 irorforete the gereral agverierue priraiples de will
 Feper =

 From thereletior $d^{2}=0 \quad$ Eetisfied by the Exterior

 heye a direat fhysigel irterfretatior! ir a giveritremry the

 Equatior whari

III．EAEII：EAMFLES。

 FGrESFiEl』。

In this Examplethe EquEtion to deduce i三 NEturns

三metria ent ariorientetigry．

The Gorstitutive Equetiras are the ore relatirg

$$
\begin{equation*}
\Delta E^{2}=\Delta t^{2}-\Delta x^{2}+\Delta y^{2}+\Delta y^{2} \tag{1}
\end{equation*}
$$

 Guartitige ョre tetal differertiel forme ヨruif $x: m \longrightarrow \mathbb{R}$
 $x \quad i=$

$$
\begin{equation*}
\Delta x=\partial_{t} x \Delta t+\partial_{x} \chi \Delta x+\partial_{y} x \Delta y+\partial_{z} x d z \tag{2}
\end{equation*}
$$

Where $\partial_{t}=\partial / \partial t: E t=$
The hoder＊pretetri is hot the seme as in the

 dimersioned MExwE11－－Torm

$$
\begin{equation*}
F=E \wedge \Delta t+E \tag{4}
\end{equation*}
$$

 カ月も Exterigr differgntigl we get

$$
\begin{equation*}
G=\operatorname{rgt} E) \wedge \Delta t+\operatorname{div}(E) \wedge \Delta x \wedge \Delta x \wedge \Delta z+\partial_{t} E \wedge d t \tag{5}
\end{equation*}
$$

Wトになと

$$
\div\left(\partial_{y} E_{3}-\partial E_{2}\right) \quad d y \wedge \pm=
$$

シャッは
■IV（E）$=\partial_{x} E_{1}+\partial_{y} E_{2}+\partial_{z} E_{a}$

 which meきrs thet it mey me＝moutfly deformed irta a Foirto

三semming themedium to be isotrofic．truese fielde ere 三imply

 Furnatigre of the medibma

 defirned by

$$
\Delta \Sigma^{2}=a^{2} \Delta t^{2}-\left(\Delta x^{2}+\Delta y^{2}+\Delta \Sigma^{2}\right)
$$

$$
\begin{equation*}
G=D-H \wedge \Delta t \tag{3}
\end{equation*}
$$

 ロッローロ゙に
$G=(\omega / \mu)^{2 / 2} * F \quad$,

 From the FiEla Equetigre we will briefly dizobse bulaui

$$
I=-\rho d t+j_{1} \boxminus<+j_{2} d y+j_{3} d z
$$

Inthis Gese the greretor \triangle EFFidedto furatione iE

$$
\begin{equation*}
\Delta \psi=\frac{1 \partial^{2} \psi}{-\partial t^{2}}-\frac{\partial^{2} \psi}{\partial y^{2}}-\frac{\partial^{2} \psi}{\partial y^{2}}-\frac{\partial^{2} \psi}{\partial Z^{2}} \tag{12}
\end{equation*}
$$

The inhomogererus mexwelll equation ロery be rewrittern es $\delta F=(\mu / \varepsilon)^{1 / 2} 4 \pi J$, Eru herabe
$\Delta F=\left(\Delta \delta+\delta d F=d \delta F=(\mu / \varepsilon)^{1 / 2} 4 \pi d T\right.$
Eu thet the Elwatrmernetic Fizle setisfies a Foisert

 thi i= Eutivalert to a wave Equatior far Eawh aomporart.

 4-Futertiel alea 三atistige the weve Equation, with the =ame

$\frac{\partial \rho}{\partial t}+\nabla \cdot j=\square$

 relytiorshaf $d^{2}=0$.
 Fidtre 3
 FHyEicel interfrietstiorm
（－）LinEErixEd EinEtein Equation，
马uita 三imilertas Elthough 三omewhet mote rampliasted then，

 metris g af irnas z．referred ta as a Lorertaz metria，

TErate ty gab the amporerte of the metria termer．

Eru EEEume they have the form

$$
\begin{equation*}
\exists_{a b}=H_{a b}+\gamma_{a b} \tag{15}
\end{equation*}
$$

 i＝＝mell Feturbetiorn we bill diEGuse the meerimg of

 tシャ゙ロッ

$$
\phi_{a b}=\gamma_{a b}-1 / \frac{1}{2} a b^{\gamma}
$$

 ローロロのにな

$$
\begin{equation*}
\sigma_{a b}=-1 \gamma_{2} \partial^{c} \partial_{c} \phi_{a b}+\partial^{c} \partial_{i b} \phi_{a r e}-\operatorname{F}_{a b} \partial^{c} \partial^{d} \dot{\phi}_{c d}=E \pi T_{a b} \tag{48}
\end{equation*}
$$

where $T_{a b}$ dernotes the Energy－momentumi tersor＊


``` ナソFE
\[
\begin{equation*}
\phi_{a b} \longrightarrow \phi_{a b}+\partial_{\langle a} \xi_{b\rangle} \tag{19}
\end{equation*}
\]








```

$$
\begin{equation*}
\partial^{\circ} \partial_{d} \phi_{a b}=-1 E \pi T_{a b} \tag{20}
\end{equation*}
$$


```
WE EEn rutu Eesily deEnrite this Equation by a Torti
```



``` burnde iz triviel: thiE allowe us to boreider tareare as
```


$\Delta \Phi=-1 E \pi T$ ．

 जみutaor（

IV ESTENETON AND FEDMUTON DF THEDRIEG：

 reletione githe tharry This formel fremewort will EG bect inthis sertion to stum fout＂formal merifuletione＂git

 Fhysicel thenties．

TV．1．Fedurtints af a FHysiael Thagry．
 theory as a 口ombinetion af some Gf the follouira Etersu
i）Chaige af a Eutmerifuld ar a quotiert merifola af十he

 marifold is \mathbb{R}^{4} arat Ey identifirg the time ariz ta Faimte

 absrtities af therestriにted theory。

 withtre Lorerta metria θ_{c} arm the butrule $E=A(m)$ a M

 By t mey bie idertifiEd with \mathbb{R}^{3} forri三hed mith the

 a leaf GF trefoliztior for gud Formen iregell thet both

 the time derivatives of their GQeffiaierte verisha Thert the

 Writtert E 。

 Everege of the forme, whiah mey be writteri Eymbulaclly es

$$
\begin{equation*}
\phi=\int A_{i}\left[\int \Delta t\right]^{-1} \tag{2}
\end{equation*}
$$

 Ergumghtmey te appliEn to quasi-statia forme thet is forms Hitr rugligible time derivatives.

The ロravious remerts are summerized iry diEgram s．

A＝imiler treetmert bill yiela the diEgrem Gf meghetostetiにs．This therry $i=$ Embrum busl tothe frevigus

 formsa melfirg aFFraximetions akir to trose af the

In ヒロth these Exemples therestriotion of the theory i＝

 form

$$
\begin{equation*}
900 \mathrm{Ht}^{2}+\sum_{i, j=1}^{3} \exists_{i j} d x^{i}-y^{j} \tag{24}
\end{equation*}
$$

 $E=$

$$
\begin{equation*}
\left.\Delta^{2}+\phi_{00}\right) \Delta \sum_{i, j=1}^{3}\left(S_{i j}+\phi_{i j}\right) \Delta v^{i}+\varphi^{j} \tag{20}
\end{equation*}
$$

 ョmeller ther thoEe af the Flet metric ge, Theri Eireteir's Ertitiof re日ures to a Fertial differertial Equatiort
 Gf the FErturbetiorn

 Ir゙ this dizgram themidale ablumberefresert the restriated

$$
\nabla^{2} \phi_{00}=1 \Leftrightarrow \pi T_{00}
$$

where ∇^{2} gerotes the hEuEl lefleriEn in \mathbb{R}^{3} a Thi Eqution Gobruides with the metel field Equation Gf rewtorian gravitatior

$$
\begin{equation*}
\nabla^{2} \varphi=4 \pi \rho \tag{27}
\end{equation*}
$$

 the rievtorizin mese dersity Frgyided we melse the inertifigetiore

$$
\begin{equation*}
\rho=\frac{\alpha}{4} \phi_{00} \quad ; \quad p=\frac{1}{\alpha} T_{00} \tag{20}
\end{equation*}
$$

This ElEG justifies absteriori Gur Eoratrutior af

 $i \equiv$

$$
\begin{equation*}
\frac{1}{2} \partial^{i} \phi_{00}=-\Gamma_{00}^{i} \tag{49}
\end{equation*}
$$

 the duel heture ot elertrostetias aru megretostetis三 the

 Fromes to the time everege use日 to fese to the quotient.

Abstract

 tG the addatigral Fert of the Exterigr differertiel Edied Gumisu iry Fhysigel wey mith the Frevious fiendea

U G GNELUSIUNE．

AE mertioned the \＆Ey idee Gf Tortis method i三 to

 －

 Fhysiに＝玉ロme well－トrown teartigues of these methemetiにel

 i三 the fact thet they Fuint tomerde a EyEtemetic aspect af

 giver, uEirg the LEvi-Eivite Gorrnatigri.


``` if me tefe into account the Eymmetry frimeifles af modurn
```



``` geuge theoties, the formal gtruthite of the full theory mf
```


[1] E. TGritis (1) ThE ElGEGraig topGig口igel Etriuture gf Fhy三imel themise fim symmetry similerity ent groum

 the Formed Etrmature af Fhysiagl thearies duaderra dei

 Fresen $N: \quad Y=1 G E=$
[3] E. Sutrit. Geomernicat metrods of matrematicar frysico (Gembitage Mniv, Freze, 1gen).
[4] Li vori bestermalz: difenenting fonms in madremadicar

［Gi Fo W．WEld，छRerai Reiativity Univ．Gf Ghicage Fress． には上Ega，1984．
 （155\％）．
［7］．］．M．EburiEu， \mathscr{L}_{a} structure des systemes dynamiques （buncul．Fariz．1970）．．

［5］Gi de Fhem，Garietes differviasles Hermenn，Feriz， 1555 ，17－27．
［10］T．Frankel，Gravitational curvature id，H ．Freemenh， $19799-115$
［11］N．SGhleifer：Am，I．FhyE．E1，1199（1990．
［1z］H．Fl三mierE：Differentiai forms with aprications to the proystar sciences（Absdemir Fress．1963）．44－4E．
［1G］F．A．M．Dirat．Gererai Jheory of Kefaivity（wiley， 1975．
［14］A．Estut，Feportemeth．Fhys．11． 415 （1977）．

Fig. 1 : Standard diagram in 3 dimensionE.

$$
\begin{aligned}
& \square \xrightarrow{f=f(r)} \square \\
& \left.\frac{d}{d t} \int\left[f=\frac{d}{d t}\left(\frac{m d r}{d t}\right)^{t}\right] \right\rvert\, \frac{d}{d^{t} t} \\
& \square \xrightarrow[p=m v]{p}
\end{aligned}
$$

Fig. 2 . Tonti's diagram for Newtan's second law.

Fig. 3 , Torti'

Fig. 4 . Tonti's diagram for the linearized Einstein

Fig. 5 . Fieduction of Electroetatios.

Fig. E. FiEductiori Gf Megratostetits.

Fig. 7. Newtonian Gravitation as a reduction of Einstein!s........ Equation.

Fig. 6 . Couplifu of Electrostatics and Magnetastatige.

[^0]: smember Gf GIFHA MExigo.

