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A structural scheme of theories proposed by ,
c.. 

Tonti is analyzed, using modern mathematical concepts but 

avoiding extreme generality or unnecessary abstractions. The 

merit of this scheme 1s that it emphasizes a systematic 

aspect of methodology in physics; this way some essential 

properti~s and equations of a given theory are 
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electromagnetism and the linearized Einstein equat1on, and 

then the scheme is used to gain some insight into the 

structure of these theories. 
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I. II)TF:O[:.UCT I0!'1. 

In a series of papers published around 1975 

Tonti developed a structural scheme trying to formalize the 

analogies among diverse phys1cal theor1es, us1ng some 

algebra1c topology and differential The::.·~ 

articles were preceded by that of Branin ([2J), published in 

1966 and motivated by general ideas on electrical networks. 

Tonti's work is essentially a wide recollect1on of laws 

or equations of physics, that he tries to 

several basic patterns in the form of commutative diagrams. 

The mer1t of his viewpoint lies mainly in the fact that it 

emphasizes a systematic aspect of methodolgy in phys1cs. 

The purpose of this work is to discuss this scheme in a 

not so wide context, but with a more modern mathematical 

presentat1on, hence throughout this work we use the language 

of modern differential ( m<:tn i fa 1 d·::::., 

forms and f1ber bundles). These notions are now an important 

tool in theoretical physics, e. g. 1n gauge theories, and 

there are several good accounts on them written 

ph·y'·s. i c i ·::::.t.·:::. ( [ :3 J , [ 4 J , [ 5 J ) • Th i-::; c'.nc.. L, .. ···s i ·::::. i ·:::. cc..r-r- i ed ·x~t in 

section II, and then some examples are carefully discussed 

in s.ect. i. .:·r·; I I I . 

contr· i but. ion 1s o~r discus:::ion of 

re~uctions and extensions of theories in section IV, in the 

electromagnet1sm and the l1near approximation to Einste1n's 
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consequences of the method. In the last section we give a 

critique of the scheme. 

Several other works related to this sort of ideas, 

although with different viewpoints, can be found in the 

1 it·~ r- <=•. t.u r- e ( [ 6] , [ -.,, l J !'I [ :::] ) Q 

II. DESCRIPTION OF THE SCHEME. 

The starting point of this scheme 1s the following 

seemingly trivial observation, which in fact has very deep 

If we assume that we are dealing with a differentiable 

i -:::.' if we assume that space-time is 2. 

differentiable (C~ manifold, then the above remark 

that the physical quantities are differentiable functions 

defined on submanifolds, possibly with boundary, of t.h i ·:::. 

A further assumpt1on, l-'Jhich is implicit in Tonti's 

works, is the superposition principle. Using the language of 

different1al geom~try? these hypotheses may be expressed as 

a mathematically precise axiom as follows: 

Physical quantities are sections of a ·vector bundle 

Later on we will state two postulates for the structure 

~cheme, but for the time be1ng we accept the above remark as 

the mathematical description of physical quantities. Readers 

. ::=: ··------ ---------···-·- --. 



not familiar with the theory of vector bundles may think of 

According to Tonti and following his terminology. the 

equations of physics may be classified in three basic 

aJ Topological equat1ons. 

b) Const1tut1ve or phenomenological equations . 

. ~·· ·~ ·-- .' 

For reasons described below. types b) and cJ 

called metric equations. In this work however we shall 

t.o .::tnd con·=:.t. i t.ut. i v~~ 

equations, because the equations of interaction are of a 

rather different nature. 

To describe equations of class a) within the framework 

described above we must add a new hypothesis. Indeed. 

equations are systematically obtained by a process of 

differentiation, which may be described as follows: 

the physical quantities; then this different1at1on 1s of one 

of the following two types: 

il B posseses a differential operator; th.::..t. is. .::<.n 

operator d , acting on the sections of H , and such that 

d2 = 0 . In general one has to deal with \!ect.or· -va.l ued 

d1fferent1al forms or even vector-bundle-valued formsand d 

to simplify the 

discussion we shall assume only vector valued forms, that is 

forms whose coefficients are vectors rather than scalars. 

familiar with _the theory ot vector bundles. 

Formally th1s means that 1s of the form B = A(Ml 0 V 



denotes the exterior bundle of T~ \/ is 

trivial vector bundle whose rank (i. e. its fiber dimension) 

is not necessarily finite 

U> B has an affine connection .=:tnd 

t1at1on is covariant derivation with respect to t.h i :::. 

connection. One may see [3] or [51 for a discussion of this 

concept. However we shall not make use of this notion in the. 

description of the scheme. restricting ourselves to the case 

these topological in 

It. is 

also pertinent to point out that Tonti calls coboundary this 

differentiation process. but the term seems inappropiate, 

coboundary process. Since differentiation i ·:=. .:t 

these equations are always linear 

observable, that 1s, the section of the bundle. 

di ff.:~t-ent.i::•.t•:::d (although in some cases rn.:?-. ~/ be 

equivalent to nonlinear equations in other variables>. 

Furthermore, the manifolds appe~ring in physics posses 

pseudo-riemannian metrics; this metric is the additional 

mathematical structure required for equations type b>. hence 

-
the name metric equations. As a rule this metric is 1 inked 

to the physical.properties of the· media. so that it must be 

determinad from experiment and moreover. the constitutive 

- 'I--d . .L ".=.1_1 non l i ne.:;..r- in cont.r-:;;.st. t.he · 

topological equations. 

W~ ~~~o remark that if the manifold posses a metric 

both differentiation processes are related, 



extarior differential may be computed using the standard 

Lev1-Civita connection [ 5 J , 2.PPEnd i. :::: B) • This 

mathematical fact should also have phys1cal implications. 

Finally all the manifolds are assumed orientable, which 

me2ns that the manifold admits a global volume form, but, as 

Tonti points out. one must not impose an a priori 

orientation in M . Thus we are led to distinguish between 

~hat de Pham ([9}) called odd forms, which change sign under 

an orientation reversing change of coordinates, and even 

forms which do not change sign; the quantities related to 

even forms are called configuration variables and those 

related to odd forms are called source variables. 

however that in an oriented manifold, that 1s, 2. m.anifold 

with a fixed orientation both types of forms may be 

1dentified. We shall return to this point later on. 

Now in any orientable n-dimensional manifold endowed 

with a pseudo-riemannian metric there exists an operator * , 

[ 1 0 J 

[111), giving a duality between even p-forms and odd 

(n-p)-forms; this operator plays a crucial 

construction of constitutive equations. 

·:::.cheme: 

·;:::.t .. at.e ..1_ 1- -
t_.f If::! basic postulates 

possibly with boundary and endowed 

of 

pseudo-riemannlan metrics, of the space-t1me manifold. 

P2: The physical quantities are vector-valued, possibly 

differential forms and the d1fferent1at1on '.-.L. .:.::,. 

different1al on tn1s forms. 



These two postulates are more or less explicit in 

,-~ •• ···1 .. 

r..::.! • 

However, although Pl appears as a natural hypothesis, i ·;,;:.. 

a subtler requirement. This is more so when we want to 

incorporate the general covariance principle. 

discuss this with more detail in the last section of this 

With the above conventions, the structure scheme can be 

summarized in the form of commutative diagrams 

described in fig. < 
.L • Tc• fi::-:: ideas and s1mplify 

-.i.:: 
1_1 ! 

.i.. l- -
1 ... r P::! 

t.he 

we w1ll assume that M is an orientable 3 dimensional 

man1fold endowed with a riemannian metric g ; thus the * 

oPerator relates even p-forms and odd (3-p)-forms. 

It should be emphasized that once the above postulates 

the form of the diagrams i·:::: .a 

consequence of them, and this has already some consequences: 

From the relation satisfied by the 

appear1ng in Tonti's diagrams are either triv1al or do not 

have a direct physical interp~etation in a given theory; the 

importance of this observation will become evident when 

discussing concrete examples. 

A key role in the field equations of a given theory is 

played by the Laplace-Beltraml operator, which generalizes 

the laplacian and which is defined as follows: 

the adJoint c5 of d is the operator defined on p-forms as 

c5 = ( -1) p<n-p>*d* then the Laplace-Beltrami is 

+ cS --' lJ • * 
the Laplace-Beltrami operator depends on the metric of the 



manifold. WE also remark that linear constitut1ve equat1ons 

(or their linear approximations) automatically yield a field 

equation wh1ch is a Poisson equation. 

III. BASIC EXAMPLES. 

In this section w~ discuss the application of the 

.method to some representat1ve examples. The notat1on for the 

a) Dynamics of a classical particle in a conservative 

In this example the equation to deduce is Newton's 

second law f = ma The base manifold here is the time 

axis, so that the the diagram is in d i men·,=:. ion 1' 

associated to position, velocity, linear momentum and force 

we have vector valued differential forms of rank 3 The 

exterior differential is then identified with the usual 

der1vative of curves in ~3 by the cho1ce of ·~. 

the t1me axis (which in this case is equivalent to choosing 

a metric and an orientation). 

The constitutive equations are the one ~-·==lat. in·:~ 

momentum with velocity plus the force law; 

is precisely Newton's 

diagram related with this equation 1s that·of fig. 2 

b) Classical electromagnetism. 

Tonti's method IS perhaps best shown in this case =o, 

[ 111 ) ' g1ve a Father comPlete 



The manifold in question here is M = ~4 

l'~l i nkoh'Sk i met.r· i c 

..J __ 2 -
'-1·:~· -

q 
-:i 

2 
+ d"y' 

in 

Tha vector bundle is just B = ACM> so that physical 

d:t = a x dt. + a x d>=: + a x cl"::l + a x dz 
t X y Z 

a 
t 

a 
/ :-'o.l. 

(JIM, 

- .!--1:! r_.I_. 

The Hodge * operator 

euclidean case since 

1s not the same as 

metric. For our purposes it is enough to recall thE>. t t:h i ·::. 

oPerator, associated to the metric ot· i ent .. :..t. ion 

•::;1 i ven by cit. 1\ d::-:: A dy· /\ dz takes on 2-forms the following 

•<dx A dy) = - dz A dt * ( d::-:: l\ dt.) = d·:/ 1\ dz 

•(dx 1\ dzl - dy A dt e<.nd 2 . j .!.. . * = - 1, en '·· 1 t:y· 

The electric field is a (even) 1-form E = E;:ix + 

f: ch:/\:i:=< + B ci::-::1\:iy • This allows us to define the 
2 3 

dimensional Maxwell 2-form 

( :3) 

E dv 2 -

F = E A dt + 8 (4) 

representing the classical electromagnetic field. 

the exterior differential we get 

A dt + divCB> A dx 1\ dx 1\ dz + a o A dt t l..' 

~- ot. (E) d::-::1\jy + (al:::-at::) 
X 3 Z i 

ct-::/\jz + 



.::..nd 

=aE: +aB +aB~ ( 7) 
x:i y2 zs 

Hence, F2raday's law together with the absence - .c 
t_i 1 

monopoles are equivalent to dF = 0 which is known as 

homogeneous Maxwell equation. S1nce is contractible. 

which means that it may be smoothly deformed into a point, 

kno~n as the Maxwell 4-potential. 

The electric displacement D and the magnetic field 

H .:o.t-e i dent. if i ed 2- c..nd 1- fc,r-rri-=· 

respectively. If we denote by * the Hodge star operator 

associated to the euclidean metric in d i rnen·::. ion .-. 
. _i =' c..nd 

assuming the medium to be isotropic, these fields are simply 

D = £ * E c..nd 
-:1 

H == J.J =I= B , where the -=:.c.alc..t-s. 

d1electric permitivity s and magnetic permeability J..l are 

functions of the medium. 

These const1tutive equatlons rnay be summarized 1 n c.. 

single dimension 4 equation, by a slight change of the 

metric on M with the correspond1ng change in the operator 

* . This can be described as follows: Let us write 

(eJ.J)-
1

/
2 and modify the metric g

1 
by taking instead 

( ,j· .. ·2 + 
\ .··. 

. 2 
O::J'~! j 

2. + I Z ) 

c = 
g 

c 

We now define the Maxwell dual field I~ an odd 2-fot-m 

which in coordinates collects together D. and H as 

G ::: D - H A dt 

1 n 



_ . . . i/2* F 
1_-:j = {<::; ! 1-l ) ( 1 0) 

The above defined function c of the medium has units of 

• .1.. 

1 '·· i ·:; just 

electroma~netic signals in the medium. This can be concluded 

from the field equations we will briefly discuss below. 

The charge density p and the current density j are 

put together in the 1-form J , which we call 4-current: 

.] = - p d 1:. + J. .-! • .. • .J.. J. ,-l-. .. :1 - .. ·., ' 2 ~ f + j
9 

dz 

AmP~re's and Gauss' laws can be written as dG = 4rr•J • This 

1s the so-called inhomogeneous Maxwell equation. 

In this case the operator A applied to functions 1s 

modulo constants equivalent ~o the D'Alembert operator, 

denoted by o • and given in coordinates by 

Olfl = ( 12) 

The inhomogeneous Maxwell! equation can be rewritten as 

oF = ! ... '. :1/2 ... -•, 1-J.r s .1 ·-~rr ~~ 2-.nd hence 

A F = (do + odlF = do F = C!-Jis>i/2 4rr dJ 

so that the electromagnetic field sati5fies a Poisson 

equation. If charges and currents are absent (or· mot·e 

the Laplace equation associated to Ifcis.a. 

this is equivalent to a wave equation for •:::<~ch compon•:::nt. 

of F • with propagation speed equal to It 

interesting to remark that if A is chosen so that 6A = 0 

(riull divergerice or Lorentz gauge condition>. 

4-potential also satisfi~s the wave equation, with the same 

propagation speed c 'provided that J = 0 . 

W8 have seen that F is a closed Hhile 

. . . 1/2 r
.l&/-1-J) * r is not; however. the equation d 2 G - 0 

__________ .. __________ Ll _____________ ------------------·---- -------------



1mportant in physics: 1ndeed, i ·::;. e·:;u 1 \i':i.l ent 

wh1ch in coordina~es becomes 

j = 0 (14) 

i·:=:. t.he ·:so--cc.•.lled cont.inult:y· e·::p_E•.i:.ion, 

charge conservation. continuity equation the 

la.HS the 

relationshlP d
2 = 0 

Tonti's diagram for class1cal electromagnetism is as 1n 

Recall that not all the indicated magnitudes have 

phys1cal lnterpretat.ion. 

c) Linearized Einstein equation. 

approximation to Einstein's equation 

quite similar to, although somewhat more complicated the.n, 

classical electromagnetism. 

Once again the base manifold is M = ~4 with a pseudo-

metric g of index 3, referred to as a Lorentz metric, 

whe~e th~ 1ndex of the m~tric may te defined as the 

of minuses appearing in the coordinte expression of the 

metric when it is written in diagonal form; for 1nstance the 

euclidean metric has index 0 while the metrics h.::o.ve 

ind~x 3 .The expl1cit express1on of the metric 

unknown since it is determined through Einstein's equation. 

F't a.nd F··-:· ..:.. 

satisfied, let us recall Einstein's linearized equation in 

f:=o.mili.:=ox 

0enote b/ gab the components of the metric 

1 ··~~ 



and assume they have the form 

<;ia.b = h a.b + y a.b ( 15) 

h are the components of the metric g <=•.nd 
a.b c 

1s a small peturbation. We will discuss the meaning of 

smallness in this context in somewhat greater length in the 

next section, where more explicit calculat1ons are done, but 

a more complete account of this point may be found in [ "'" 1 ._1 J ll 

Einstein's equation can then be obtained directly in tenn·::::. 

of the perturbation: indeed computing the 

symbols and Ri~~i tensor to f1rst order, we get as Einstein 

hacy 
ca. 

:i ~ ~ :i , . "'c ~d _ _.,.c"' . 
/ u u y - / n .; u u y v u yj 

2 a. b 2 ab eel c 

Parentheses enclosing some 

1ndicate a symmetrical sum with respect to those 

indice·s 

ind ice·:= .. 

Notice also that in the computations the flat metric tensor 

h is used to raise and lower indices. 
ab 

The above expression·can be simplified bv a judicio~s 

choice of the perturbation: first of all we can rewrite the 

Einstein tensor in terms of a new tensor defined by 

¢ = r -
a.b a.b 

:i . / ,.-1 y 
2 a.b 

can be recovered from 

(recall that th1s tensor is defined by the 

(; 
a.b 

1 = - / 
2 

¢ = Then E i n·:=.te in'·:=. 

T 
ab 

denotes the energy-momentum tensor. 

c6ndit.ion 

( 1:::) 

On the oth~r hand, we can make a gauge transformat1on 

corresponding to the tact tha~ - i~ has no 



n.:..tut-.:<.1 coot·dinc..t .• ~ s.yst.ern;. itJhich i:::. indeed the m.:..thern<:•.tic.:• . .L 

Ein·:::t.ein' ·;; p1·inciple. 

,+. ~.+. +(}!:'" 
Y o.b 'f' ab <a.<, b> 

( 19) 

w1thout changing Einstein's equat1ons: here j u·::.t 

vector field on M and we must svmmetr1ze to preserve the 

~v~rn~tr1c nature of the metr1c. We can then choose 2 ten:::or 

Previously described Lorentz gauge condition of t.he 

electromagnetism. With these choices a 

computation shows that only one term of the the Einstein 

tensor remains, so that Einstein's equat1on simply becomes 

= -16rr T 
a.b 

(20) 

which is a Poisson equation. 

We can now easily describe this equation by a Tonti 

diagram as follows: 

S1nce the base manifold is contractible any fiber 

bundle is trivial; this allows us to consider tensors as 

tensor-valued differential fonn·:::. by raising one of the 

indices with the metric tensor In po;;.t· t. i cu l.::..t-

¢ 21.nd 
ab T a.b axe ident.i fied ~·Ji th 

1-forms denoted by ~ and T respectively. 

Moreover, associated to the metric 

defined exterior d1fferential and a Hodge • operator as 

::::;;.ti·:::fie·::: 

in the previous example. 

J..-
1_ •• _1 

a 

In this terms the 

in 1ntr·1n·:::.ic 

for· iTI 

6~ = 0 Einstein's equatio~ then becoMes 

1 .j. 



od 91 = -16rr T (21) 

(22) 

Taking into account all of the above, Tonti's diagram 

for this case is depicted in fig. 4 

Once again, not all the quantities have a natural 

1nterpretation. We also remark that th1s analysis of the 

linear case does not apply directly to the general E i n·:=.t..~ in 

equat1on tsee [4]). 

!V. EXTENSION AND REDUCTION OF THEORIES. 

We may summar1ze the discussion of section II, by 

saying that a physical theory is determined by a base 

relations of the theory. This formal framework will be used 

Tonti's diagrams, suggested by usual techniques of algebraic 

topology and differential geometry, furnish a more or 

shall discuss two processes, which in some sense are dual to 

each cither, which will be called reduction and coupling of 

physical theories. 

IV.l. Reductions of a Physical Theory. 

We may heuristically define a reducticin of a physical 

theory ~s a co~bination of some of the following steps: 

the base manifold. Recall that a quotient manifold i ·::. 8. 

manifold obtained by identifying some parts of the original 

--- ·-- ----·-·----- ------
-f = J .. _1 --····--·--··-----·-.. ··--·--· --~-------------- ----

·-------------------~--------· 



In the cases we shall consider the 

we get a manifold which .1..
i_.\_! This 

man1fold will be the base manifold of the restricted theory. 

L0 Determination of a subbundle or a quotient bundle 

of the bundle B Th i ::::. ~~Ji l l determ1ne the phys1cal 

quantities of the restricted theory. 

"t.hr;:: 

geometry of the manifolds or on the constitutive equations. 

these choices are dictated by physical 

Perhaps· the best example of this process is the passage 

from electromagnetic theory to electro::tatics. 

mentioned, in this example the base man1fold is ttl = 

with the Lorentz metric and t.he bund 1 e B = 

has a natural global system of coordinates ( t . ;:.:: • ":/ z) 

where the metr1c lS diagonal, and a natural 

is. a partition of the manifold into di::joint but 1somorphic 

submanifolds, called the leaves of the foliation, o;:~iven by 

t= constant . As pointed above, it is easy to see that both, 

the leaves of the foliation and the quotient manifold of M 

by t may be identified with 
.. • .. 

euclidean metric; we shall denote these manifolds by M . 

·~. 

electromagnetism to M for even forms 2nd a restriction to 

a leaf of the foliat1on for odd forms. th::..t both 

manifolds may be ident1fied). The electric differential 

E , D p and ¢ • described bef~re will then becom8 

identified_with diffe~ential forms on ~ 



That we·must combine a projection and a restriction to 

recover electrostatics can be seen directly from the 

expressions of the electrostatic fields: however, we can get 

an idea as to why this is so if we consider the definitions 

in terms of line and surface integrals 

respectively: physically a line integral is associated to a 

displacement (i. e. motion along a trajectory) but. t.he 

process is quite different for computing a surface integral . 
.. • .. 

Also, in order to project the forms to ~~J,;::.; rn IJ -=:. t. 

assume that the elect~ic forms are static, t h.:<. t i ·:::: .• t.h.:..t 

the time derivatives of their coefficients vanish. Then the 

magnetic fields and, by choosing an appropiate gauge, the 

magnetic potential may be taken as 0 In this gauge the 

4-potential reduces to A = ¢ dt 

A 

identified with the three dimen~ional 0- for-m 

electrostatic potential. A similar reason1ng applied to the 

electr1c field E yields the electrostatic field form, also 

It is interesting to remark that this projection to a 

quotient manifold may be interpreted as taking a time 

average of the forms, which may_be written symbolically as 

¢ - I ,., -· t-1 ( 2:3) 

This average process describes a physical way to relate both 

potentials but also shows that a similar approximation 

argument may be appli~d ~o qu~s1-static torms, that is forms 

with negligible time derivatives. 

-1 ~.., 

~-- -~-~-- ---------~----1~'-----~-- -



Fo~ odd fo~ms the s1tuation is s1mpler: 

not involve dt is automatically identified with a fo~m 1n 

•···. 
three d1mensional space M . Also remark that there is no 

.. · .. 
inconsistency with the interp~etation or M as a quotient 

manifold, because all the coeficients are assumed to be time 

The pr~v1ous remarks are in c _, 

where A denotes the approximations performed and * 

The middle column·::. 

are precisely those of Tonti's diagram of electrostatics. 

A similar treatment will the d i -~-9 ~-am 

magnetostatics. This theory is somehow dual to the previous 

one because we must now perform a projection down to a 

quot1ent for even forms and a restriction to a leaf for odd 

Making approximations akin J..
'~·'-' tho·se of t.he 

electrostatic case we get diagram 6, where the middle 

columns are those of magnetostatics. 

We recall that not all the forms in these diagrams are 

phys1cally meaningful, but also obviously some of the 

-~.pp ~- o::< i rn-~. t. ion·:-;::. in t.he have no· 

i nt.er.:· r· eta. t. ion. 

In both these examples the restriction of the theory is 

obtained by combining a restriction to a s~bmanifold and a 

projection down to a quot-ient mo:,_nl fold, but othet· 

possibilities appear in pract1ce; Tor 1nstance, 

the di.::,.·::;wo:,.m of 1 ine.~.t- eJ.ectT ic ccnduct.ion ( [ 1, <2) j, p, 160 ·~ 

one must perform projections in both even and odd for~s~ We 

will not go into details of this case her8, but 

1.::· ,_, 



---------

exploit the analogy between electromagnetism and 

linear gravitation to show how the use of Tonti's diagrams 

allows us to easily recover newtonian gravitation from 

Einstein's theory (see [131, p. 26-29, also [51 or [10Jj. 

Let us consider the diagram of l1near gravitation and 

maKe the newtonian approximations, namely a static un1verse, 

weak gravitational fields and c>>1 These hypotheses 

imPlY ([5J) that the metric tensor g may be written in the 

for~ rn 

·:t 
00 

3 

I 
i ' j =i 

I...J..J •• ...'·,:f·.) 
•''• •''• 

where the metric coefficients are independent of t and !·;~. 0 l 
l.J 

are of the order of 1 for- i, j = 

According to the discussion of the previous section we 

can assume the metric tensor to first order can be written 

3 

( 6 
i.j 

+ ¢ .. ) 
\.J 

-'· _i._,, j 
l_J,:·:. 1_!.:·:. 

where the components of *he perturbation 

smaller t~an those of the flat m~tric g 
c 

Then 

equation ~educes to a di ff'er-ent. i .a 1 

of the perturbation. 

(25) 

rnuch 

E i n·::::.te in'·=:. 

•:2qua '1:. ion 

Since we already know that Newton's law of gravitation 

1s similar in structure to Coulomb's law of electrostatics, 

we propose for the reduction a diagram similar to that of 

the reduction from electromagnetism to- electrostatics 

·-we must point out that other possibilities do exist). 

-----------

1 ·~:;r- ... - ·---- ----------------
"-------- - -··--·---·--·---~--------~------ ~--~- --



t~ls in mind and using the same conventions as before, the 

diagram for the reduction 1s as 1n figure 7 . 

In this diagram the middle columns represent the restricted 

theory where the base manifold is equ1pped with a 

metric that is approximately the euclidean one. In this way 

this restr1cted theory 

9
2 

¢ = 16rr T 
00 00 

where \lz denotes the usual l::<.P l::<.c 12-.n in Thi:= 

equation coincides with the usual field of 

newtonian gravitation 

V" tp = 4rr p (27) 

where p is the newtonian gravitational potential B.nd p 

the newtonian mass F·t·ovid•:2d 

Ol ' 
'P = 4 q:;oo P = l T 

Ol 00 

and the usual choice for 1. ·:::.· 
2 c ([1,(2)], p. 177) 

This also justifies a poster1ori our construction of 

the diagram of the reduction, s1nce we actually know that 

configuration variables are measured in practice by taking 

time averages (for instance dropping a stone to measure the 

strength of gravity). However it would be interesting to 

analyze other reductions of Einstein's equation, as was done 

for electromagnetic theory. 

as the equation of gravitat1onal acceleration, 

denotes the usual Revers1ng the approximation 

20 



1 . 
81.¢ = -

2 00 

f'i. 
00 

where r~ denotes the Christoffel symbols of the metric g 

and in this way one easily recovers the well known fact that 

gravitational acceleration is due to the fact that the 

metric is curved by the presence of massive objects. 

IV.2. Coupling of Theories. 

We shall now describe how to obtain electromagnetism as 

consider time-dependent t1elds. In th i ·:::. ·:::::.en·:::::.e, 

magnetism may be considered as a very special extension of 

electro~tatics or magnetostatics. 

Keeping in mind the diagrams of these theories and also 

the dual na~ure of electrostatics and magnetostatics, the 

in the diagrams, 

whose effect is to put both constitutive equations at the 

same'level. The key to perform this operation is given by 

the expressions of the 4-dimensional electromagnetic forms, 

F = E A dt + B and G - D - H A dt . These equations show 

that the electric form E and the magnetic form H 
.. · .. 

. ::;t-,:2 de·rin,:2d in the :3-dim,~n·=:io6.:;.,l •=!uot.i,~nt. manifold ttl , rnu·=:.t. 

be multiplied by dt to become forms defined in Minkowski 

space M . In technical language, we must lift t.he fonn·:::. 

from the·quotient manifold to the original manifold, but 

int.IJit.i···/el·y' und>~r-·=:.tood 8.s . .::~.~-, ''infinit.e·:::::.imC~.l 

process to the time average used to pass to the quotient. 

Diagram 8 summarizes these conclusions; 

shown th~re how to couple the columns of electrostatics and 

magneto~tatics to get of 

:21 
.. ----------·----------

-: 



elect~omagnetism. The diagonal arrows marked a 
t 

correspond 

to the add1t1onal part of the exterior differential added 

because of the time dependence of the f1elds. Th1s coupling 

o~ the columns has a well def1ned physical counterpart, 

namely, that time-varylng fields produce new fields that get 

coupled in a physical way with the previous fields. 

V. CONCLUSIONS. 

As mentioned the key idea of Tonti's method is to 

exhibit in a formal way the analogies between different 

physical theories. This gives an algorithmic strategy to 

~nalyze the equations of physics. For instance. by using 

Tonti's diagrams one may gain understanding of a difficult 

theory by comparing it w1th a simpler or better known one. 

Likewise, some new aspects of a physical theory may be 

stud1ed by trying to fill in the stages of the corresponding 

diagram. 

Also, although this is not a new idea, che 1ntroduct1on 

of some notions -~ Ul algebraic topology and differential 

geo~~try p~ovides a unified language for the various 

physical theor1es, and also means to exploit in the study of 

physics some well-known techniques of these mathematical 

branches. Such is the case of the reduction and coupling of 

theories discussed 1n this paper. 

However the most important point about these d1agrams 

is the fact that they point towards a systematic aspect of 

the methodology of physics, at bath the theoretical and 

~xper1mental levels. stemming frcm the mere fact that we are 



using mathematical models for physical theories. As <=•. 

consequence, certain procedures and conservation l2WS .at-•::2 

autom2tic within 2 given theory. Certainly it will 

·'- -1_.,_1 Ci. but. 

realizing the existence of formal or formalizable aspects in 

a science is an 

understanding of it. 

We must point out some deficiencies of Tonti's work. A 

most obvious critique is the old-fashioned mathematic21 

langu2ge employed in his works which c2uses some notational 

inconveniences, but also some unnecessary limitations in 

both the comprehension of the ideas and the 2PPlication of 

mathematic2l results. A good ex2mple of these shortcomings 

is the confusion arising in the definition of connection as 

a result of parallel transport without explaining that 

2lthough neither par2llelism nor connection are intrinsic 

not1ons in an arbitrary manifold, there is a c2nonic2l way 

to perform these operations once 2 riem2nnian metric 1s 

given, using the Levi-Civita connection. 

The problem of orientation, while fundamental 

of the difference conf i gut- e<.t. ion 

\-'.::•.r· i .::..b l es., i ·:=. <=•.l·:=.o uncle.::.. r· in Toni:; i ' ·:=. ~rJo r· k ;· ·In p.::•. t- t. i cu 12. r· 

the role of Hodge's •-oper2tor is not mentioned, 2lthough it 

1 ns.ta.nce [1,(4)], p. 

455, where a complete description of this operator is given, 

but regarding it as little more th2n a notational trick.) 

On the other hand, since Tonti's papers deal only with 

local theories ((1, (2) l, p. 57), the question 2rises 2s ~o 

····,.-, 
L·..J 
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problems are considered, is 

F:ecall th.:=..t l oc.:=..ll v 

or1entable and as ~as mentioned, 1n an orientable manifold 

nonorientable manifold; nonorientability ·=·· 

intrins1c descrlPtion Tonti'=. 

d:agrams given in this paper shows that global 

reasons for introduc1ng global me.. t. t.e r· ·=:. 1n this type of 

·:=t.urj·y: 

On the one hand, there exist physical theories such as 

which m.:; k •== 

considerations about the global structure of space-time. On 

the other hand, there are some experiments which show the 

existence of physical phenomena linked to a non trivial 

topology of the physical space where the experiment i ·::. 

performed: :=uch is the case of the Aharanov-Bohm effe~t 

where one detects magnetic perturbations in 

scatter1ng, in the absence of measurable magnetic field~, 

due to conductors wh1ch make the topology of space non 

i:<. t.heo ,.- et. i cer.l discussion of some 

consequences of this experiment. 

Of course the analysis of phys1cal fl. ill 

generality is much more complicated and 1t rema1ns to verify 

whether Tonti's scheme is still valid with this genera11ty. 

For instance, in some cases it is not clear whether physical 

if the base space .; .·
.1..:::. 



vector-bundle-valued di ffer-,~ntial m.:::y not bl:2 

1dentified with vector-valued forms, so this more general 

theory may be required, and so on. 

In a sense this shows why a postulate like P2 may not 

be enough to describe all physical quantities. But moreover, 

if we ~ake into account the symmetry principles of modern 

physics, such as the general covariance principle of general 

we are forced to 

equivariance properties of physical magnitudes which may not 

'- .. 
L..EV t.h is;. 

restrictions may be incorporated into some theories, e~~ •,; n 

gauge theories, the formal structure of the full theory of 

to be 
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even forms odd forms 
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0 0 3-forms 0 0-forms > 
p * 
0 d+ ( field eq. J td 

- -

l 

0 0 0 i-forms > 2-forms 
g * i d.} ( field eq. ~ td 
c 

0 0 a 2-forms .p.. 1-forms 
l * 

y dt c field eo. ~ t d e ' 
q, 3-forms 0 D 0-forms 

* 
.t 

constitutive equations 

:: ;: .. ; 

F . 1 Standard diagram in 3 dimensions. 19. • 
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G 
f = f(r) 

0 
~t l 

A 

r =~t [m~r J 
d 
dt 

G p=mv 0 

Fig. 2. Tonti's diagram for Newton's second law. 



even forms odd forms 

gauge freedom 0 G 
t t continuity equation 

4-potential 0 [ 4rr* J] 4-current 

+ Poisson .A. inhomogeneous eq. equation I 

0 @] Maxwell's field ~ Maxwell's dual field 

* ·homogeneous eq. + constitutive J:.. 
I 

[!d equation 

0 
+ A 

I 

~ !-. GJ , 

Fig. 3 . Tonti's diagram for Classical Electromagnetism_ 



even forms odd forms 

gauge freedom GJ 0 
+ t conservation eq. 

gravitational potential [!] * 
1> ( i6rr*T J 

energy-momentum 
tensor 

+ Einstein A 

equation I 

0 0 
~ A. 

I 

G ·0 
+ t 

0 0 

Fi9. 4 Tonti's diagram for the linearized Einstein 



even forms odd forms 
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-Poisson~ 
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~ GJ 
. sl 
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Fig. 5 • Reduction of Electrostatics. 
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even forms odd forms 
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GJ 
l 

[ A=A+¢dt] 

l 
[ F =B+Ei\dt ] 

l 
gJ 

l 
GJ 

even forms odd forms 

GJ 
i 

rr-* J = 
IT*(j-pdt) 

i 
[c=D-Hi\dt ] 

i 
0 

GJ 
Fig. 8 . Coupling of Electrostatics and Magnetostatics. 


