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1. INTRODUCTION 

The Exponential or Fock space associated with a Gaussian process 

has been. a useful concept in both theory and applications of 

multiple Wiener integrals (see Taqqu (1986) for up to date 

references). In recent years. the wo~ks on Malliavin Calculus 6f 

Zakai (1985), probability on Fock spaces of Meyer (1985) and 

invariance principle fbr symmetric statistics of Mandelbaum and 

Taqqu (1984) have stimulated even more the subject. It has been 

cus~ornary to study the Exponential space of a process using 

multiple Wiener integrals. This has been the approach t-aken by It6 

(1951) for the Wiener process and by Surgailis (1984) for the 

Poisson rando~easure. However, there are situations where one is ~ 
first interested in studying the exponential space and only after 

that define multiple Wiener integrals through symmetric tensor 

product techniques. In this direction Neveu (1968} has identified 

the exponential spaces associated with a general Gaussian system 

of random variables and with a Poisson random measure having 

finite control measure. Following the approach of Neveu, ·in this 

~ote we identify the exponential spa9es associated with a Poisson 

random measure having <1-finite control measure and with a general 

L
2
-stochastic process with independent increments. Our approach 

uses discrete martingales techniques and the monotone class lemma 

rather than-multiple Wiener integrals. 





2. MAIN RESULTS 

Let H be a real separable Hilbert space with inner 

<·, ·>H' for.n ~ 0 H
0

n be the n-fold symmetric tensor 

Hilbert space of H with inner product <o, o>HOn and EXP(H) 
On Hilbert space orthogonal direct sum of the subspaces H 

product 

product 

.be the 

n =::: 0 

with inner product <o,o> . This space is called the Exponential 
a 

space of H and in the mathematical physics literature it is known 

as the Fock space. The elements of EXP(H) are interpreted as 

sequences h=(h
0

,h
1
,h

2
, ... ) where h

0 
is a constant, h

1 
belongs to 

H1 =H, h e Hen n 2= 2 and their inner product is given by 
Tl 

( 1 ) <h,k> = ~ <h .k >HOn. - - e La n· n 
n~o · 

Of special interest are the exponentiaL elements 

( 2) ·expo( h) = ( 1 . h. (2) -:U
2 h0.2 • ( 3! ) -v2 h 03

, ••• ) h e H 

which generate EXP(H) and whose inner product is given by 

(3) <expo(h) ,expO(k)>
9 

= exp(<h,k>H). 

Let (O,F,P} be a complete probability 

Gaussian Hilbert space of random variables 

space and 

defined on 

H be a 
g 
(O,F,P). 

Without using mui~iple Wiener integrals Neveu (1968) has shown 

(Proposition 7. j) that 

q 
. where F- = O(H 1 and for h - H 

g g 





( 5) 1f'(expo(h)) 2 = exp(h-(1/2)E(h J) 

and {1f'(expo(h}) denotes 
expected value. 

A similar result is possible for the Poisson case: Let q be a 

·centered Poisson random measure on an arbitrary measurable space 

(S, £) with control measure v and let 

( 6) H = {I (f} _q q 
2 . 

f e L (S,£,v}} 

where I (·)denotes the isometric integral with q 
random measure q. The Hilbert space of random 

respect to the 

variables H is 
q 

called the eeneral. i..zed Poisson space asso.ciated with q. · r"t is also 

shown in ~eveu (1968) (Proposition 7.13} that if v is a finite 

measure on (S.£) then 

( 7) 

where Fq 
2 . = ~(H ) and for f e L (S,E,v) 

q . 

N(S) 
( 8) "'f (expo ( I·. ( f ) ) ... q = { n (l+f(Z:))}exp<-f f(s)dv(sJJ 

j-=1 J s 

~.;here {Z } > is a sequence of j. j_i 

independent of N(S) = q(S) + VlS). 

having distrib~tion {v(S)}-
1
v(· ). 

4 

independent randcm element3. 

each Z. taking values in S and 
.J 





The next theorem extends the above result to the case where v 

is a C-finite measure on {S,£). For this situation Surgailis 

(1984} has shown an isometry between EXP(H) and L2 (0,Fq,P). 
q 

However, Surgailis uses multiple Poisson integrals techniques to 

prove it. We give a proof using the martingale convergence 

tpeorern. 

THEOREM 1- Let I-J be a C'-finite measure on (S,£). Then 

( 9) 

(10) ¢(expoi (f)) q 

co 
where: (i) S. i ~ 1 are disjoint sets in 

1. 

h · d · 1 2 ·z<i.> · 

E, 0 o> ( S. ) < (X) • 
. 1. and USi.=S; 

i.2: .i 
random (ii} for eac 1.=1,2, ... an J=, , .... 1.s an 

... J 
S. -valued 

1. 

element with distribution given by the measure -:i 
v ( S. ) v ( o) , 

1. 
and 

with. for each i=1, 2, ... , N ( S. ) 
1. 

follows a Poisson distribution 

parameter !.> ( S. ) ; 
\. 

(iii) N(S. ) 
\. 

i=l ,2, ... ' j=l ,2, ... are 

mutually independent. 

In order to prove this theorem we~se the following technical 

result: 

( i.> 
LEMMA 1.· Let v and S., N(S.). Z .. j = 1,2, .... i=1,2, ... 

\. I. J 
as in 

(i)-(iii) of the above theorem. If for some i21 g e 

then· 

. ' 





~-. 

exp<f (g-1 )dv) • 
.~ 

~i. 

Proof: Since N(S.) follows the Poisson distribution 
1. 

with 

param~ter v(S.) <oo and for each j=1,2,... z<.i.> 
1. J 

has 
< i.> z:t. , 

distribution 
( ~--1. () 

!-' ::.:. . ) !-' • ' 
1. 

using the independence of N(S.). 
I. . 

obtain: 

E n 1. c z~1.>) C 
(S.) . ] 

= i g J 

-v{S.) fs.gdv 
1. 1. = e e =e 

f {g-l)dz.> 
S. 

I. 

we 

Proof of Theorem 1- We have to prove the following three 

conditions: 

2 -
a) For each f e L {S,£,v) ¢ (expo (I· {f) ) ) -. . q 

2 q 
EL (O,F ,P). 

b) Fo~ f
1

, f
2 

e L
2
(s,£,v) 

E(¢(exp0(Iq(f
1

)) )¢(exp0(Iq{f
2
)))) = 

Since v is a <1-finite measure on (S,£) there exists a 
00 

sequence of sets {S. }.> in E such that 
. I. 1._1 O<V(Si.) <00 and d,/1Si.=S. The 

exiatence of the random elements 

satisfying (ii) and (iii) follows 

~ {\.} 
L.. . 

j 
j=l '2, .... i=l ,2' ... 

from the construction of a 

Poisson random measure N with control measure v (see for example 

Theorem 8.1 in Ikeda and Watanabe (1981)). 

6 

-------------------------- --- -------- -----------·- -- -------· --·--~- - ~--·-----·· ·-··· . 





.J 

Let f e L
2
(S.£,vJ. then for ea6h 121 f belongs to L2 (s .. B,s. ,V) 

0 1.. 1,. 

and L
1
(S.,Ens.,v). Then taking g=(1+f) in Lemma 1 we obtain 

I. 1.. 

C
(S.) ('> 

E n 1,. { 1 + f ( z .1,. ) ) ex p 
= :1 J 0 

<-J
5
rctv)) • 1 for all i•1.2 .... 
1,. 

N { S.) . . 
1.. (1..) I Then using (iii) G. = .n (1+f(Z. ))exp(-

t. J = 1 J 
si. 

fdV} is a sequence 

of independent random variables with E(G.) = 1, i~l and therefore 
1.. 

D = . n G. is a martingale. Next, using Lemma 1 with 
n 1.=1 1. -: 

the independece of Z~0 • N(S.) j~1. i~l we have: . J. . I. . . 

n 
i. =1 

= exp(f f
2
dv)Sexp(f f 2 dv) 

US. S 
< 00 • 

1.. 

2 
g=(l+f) and 

Then by the martingale convergence theorem D · converges a. s. and 
n 

in mean square to ¢(expo(Iq{f))) .. Therefore 

= lim exp<f 
n...,.oo n 

2 . 2 
f dv)=exp<f f dv)<co . s 

which shows (a l . 

2 
lim E D 

n n...,.oo 

Next let ~ 1 ,f2 e L
2
(S,E,v). Applying Lemma 1 to 

one shows in a similar manner as above that 

7 
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E(expo(Iq(f~))expO(Iq(f2 ))) 

. n fN ( si.) <i.) . 2 2 ] 

=~~: -i~1E L~~ (1+f1) ( l+f2) (Zj )expcj si. ~fi+~~):~l.>) . 

n 

=lim 11 exp<f f 1 f 2 dV) = exp(f f~f2dV) 
n-+00 i. =:1 S. S 

\. 

proving (b). 

Finally, to prove (c) let G e L
2

(0,Fq,P) and assume that 

E(Gexpo(I {f))) = 0 for all f e L2 (S,£,v). 
. q 

We have to show that G=O a. e. dP Using (10) we have that for 
Fq 

h f 2 E z .£ eac e L ( s, ; v) L ( s, , v) 

. 
2 

Next let i~1 be fixed and forge L (S.,Ens.,v) define f: s ~ ~ by 
\. 1. 

2 f(t) = g(t) t e S. and zero if t ~ S .. Then f e L (S,E,v) and 
. . \. L 

E r G ~As i. ) (1 + g { z ~ i. ) ) ) ex p ( - f_, , g d v ) ] L J = 1 ;::,_ 
. 1.. 

2 . ~ = 0 for all g e L (S. ,Ens. ,v). 
L L 

Hence, by Prop-osition 7. 13 in Neveu ( 1968) we obtain that 

ECGIF~) = 0 a.s. 
\. 

where 
q 2 . 

F; = O'(I
9

(g): gEL (S. ,Ens. ,v)) 
~ \. .\. 

n 
F~cFq i~l. Thus for each n~1 E(GI v F9 )=0 a.s.since .Fq 

\. . 1 . - 1' 
L=i 

n 
are independent 0'-fields. Let F = 

n 
v F?' then F 9 

\. = 
i.=i 

.. .. - , 

00 

vF 
n=1 

.. 
n' 

and 

and 
2 

since E(G ) < oo it follows by the martingale convergence theorem 

that G=O a.s. dP 
Fq 

The proof of the theorem is completed.' 
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Finally we prove the following general result that identifies 

the exponential space ot any Hilbert space H which is a direct sum 
" 

of an arbitrary Gaussian space H 
g 

Poisson space H , where H and H . q g q 

and an arbitrary."generalized 

are stochasticallyj~ndependent. 
·. \~ .:.~:·=:~~ ~- ~ : . 

From this result and the L•vy-ItO representation we obtain the 

exponential space associated with an 
2 ... ··: '. 

L -stochastic <::process with 
independent increments: 

THEOREM~· Let (O,F,P) be a complete probability space and q be a 

centered PQisson r~ndom measure on a measurable ~space . (S,£} 

defined on (O,F,P), with ~-finite control measure v and generating 

the Poisson space H given by (6).· Let H be a Gaussian. space on 
q g 

(O,F,P) stochastically independent of the system of random 
g Fq variables H . Define the ~-fields F = ~(H ) . = ~(H ) and the 

q g ' q 
Hilbert space·H = H e Hq Then 

·g 

where for h e H,h~hg+hq,hg e Hg,hq e Hq,Y: EXP(H}~ 

is defined by 

(12) y(expo(h)) = ~(expo(hg})¢{expO(hq)) 

where · -~· and ¢ are the isometries given in (5) and (10) 

respectively. 

Proof .. It follows by the 

h 'e H y(expo(h)) is ~n 
2 2 

E (expo ( h) ) = exp ( Eh ) . 

independence of H and H that for 

elernen t of L 2 r 0, FgvFfl, P) and 

all· 

that 

. 
Next we shall piove tbat {y(expo(hJ): h. e H} generates 

2 g q . 2 gq 
L (O,F vF ,P). Let Z e L (O,F vF ,P) .and assume that 

E(Zy(expo(h))) = 0 for all h e H. 

9 





. ".';·. ·~ ·: 

Then for each h
9 

e H
9 

and hq e Hq we have 

E(Z{~(expo(h ))¢(expo(h )}})=0. 
g q 

But {~(expo{h )) :h e H} and 
g g g generate 

L2 (0,F9 ,P) and L2 (0,Fq,P) respectively. Then for each A
1

..;; F 9 and 

A
2 

e Fq fA~ ZdP=O. But ~vFq is generated by the field C
0 

of 
1 2 

d . . . t . f t A ('""\ A .:: ~ A -= r:-q lSJOln un1ons 0 se S • • A .._ , , .._ , 
i 2 i 2 

all finite 

since Z is P-integrable, C={AeF:J ZdP=O} is a monotone class, 

Then, 

and 

by the monotone class theorem 

I ZdP = 0 
A 

A 

for C cC. That is, Z=O a.s. dP and the theorem is proved. 
° F 9vFq. 

•. 
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