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Introduction

Many interesting kind of geometric-algebraic stacks are defined as the quotient stack asso-

ciated to a groupoid in algebraic spaces. More precisely, if (U,R, s, t, c) is a groupoid in

algebraic spaces we have the quotient stack [U/R]. Some of them are quotients by the action

of a group space into an algebraic space. When we have 1-morphisms X −→ Z and Y −→ Z

of quotient stacks, some natural questions arise: if a fibre or a 2-fibre product exists, is this

also a quotient stack? If the answer is affirmative, what is the associated groupoid? What if

one of those 1-morphisms has an special property like to be an open immersion? In this work

we are going to give some results about these questions, trying to solve it in the most general

possible case.

While in categories over a fixed category C there are always a fibre product and a 2-fibre

product, when we are working with fibred categories we have found that a fibre product does

not always exist. However, we found a condition about the fibred product as a category over

C and a class of fibred categories and 1-morphisms for which fibre product can always be

constructed. We say that the fibre product has componentwise pullbacks if it satisfies that

condition. In particular, when we define a quotient stack as the stackification of the fibred

category associated to a functor induced by a groupoid in algebraic spaces, the fibred category

belongs to this class and we can take the fibre product.
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In groupoid categories, we have shown that a fibre product always exists and the obtained

groupoid category is easy to compute. Then we have proved that the functoriality related to

the associated functor of a groupoid category is compatible with fibre product. However, we

have shown that the fibre product and the 2-fibre product on fibred categories are not always

isomorphic, even worse they may not be equivalent as categories, so we can not conclude that

the 2-fibre product has also the simple form obtained for the fibre product.

Stackification process is compatible with 2-fibre products, but we did not find a similar result

in the literature about fibre products and stackification when the fibre product exists. Here

we find the following problem: when is stackification compatible with fibre product? If it

is not always the case, in which instances can we ensure it? We conclude that if the fibred

categories are such that fibre product has componentwise pullbacks, then stackification is

compatible with fibre product. In particular the result is true for fibred categories associated

to functors, then for quotient stacks, and so this makes possible to determine the form of

the fibre product of quotient stacks in a very simple way. Furthermore, in the case that

one of the 1-morphisms is an open immersion, although we have not proved the same for

2-fibre product, we can compute the “strong” change of base via any 1-morphism and we

have proved that this is also an open immersion. Here the word strong is used in order to

emphasize that we are taking fibre product and not 2-fibre product. The last statement is not

a direct result from the theory of stacks, because in fibred categories and therefore in stacks,

change of base is made by taking 2-fibre product, not fibre product. Then we needed to give

a different argument in order to conclude what we have done.

We have found a close relation between the fibre product and the 2-fibre product of categories

over C which has interesting desirable properties. More precisely, there is a canonical fully

faithful functor H : X ×Z Y −→ X ×2
Z Y , which is compatible with stackification. We have

also found some results that ensure when fibre and 2-fibre products are isomorphic, which
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are interesting in some algebro-geometrical constructions of stacks. In those cases the results

found in this work are less interesting, but they have the advantage of being applied directly

considering fibre products instead 2-fibre products.

Some questions arise at the end: what about “strong” change of base via another kind of

1-morphisms different from open immersions? Also, what kind of properties has the fully

faithful functor from the fibre product into the 2-fibre product? This questions are not solved

here, but leaves open a project which the author is interested in and will deal with later.

The literature is extensive and each of the references has its own notation and style. In order

to keep the things simple, the theory as exposed here and its principal results are taken from

Stacks Project, which in many of the cases has the same references than the cited in the

bibliography at the end of this work. Since this is such an extensive book (more than 5000

pages and growing) many of the results are not completely proved there, so we include a

proof of most of them when we consider it necessary, especially when they are constructive.

In some cases we made original proofs and discover some other results not mentioned there,

which later we use in the results we are pursuing. In order to indicate to the reader which

results we have taken we use the tagging system proposed in the Stacks Project web site,

which consist of a chain of four alpha-numerical characters. This is good because the project

is still open, is not suitable to keep a traditional numeration for chapters, definitions, lemmas,

theorems, etc., as done by default in LATEX. Those tags never change, they are determined

once the part is added and remains in the servers even if it is wrong or removed from the

project. Then, at the right side of every definition, lemma, theorem, example, etc., that we

take from Stacks Project, there is the corresponding tag which is a hyperlink to the page

where the specific tag is located, for those who read this work in a digital device. For those

who read the physical version of this work, if it is necessary to find a tag, in the web page

http://stacks.math.columbia.edu/tag there is a browser created for this purpose.

3
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The examples, different from those that illustrate definitions, were built after trying to prove

unsuccessfully some results. Then, when we saw some obstacle to continue, we decide to

create instances where they were unavoidable. They are original from the author.

At the beginning of the work this was supposed to be a thesis in algebraic geometry. However,

when we saw a possible way and we designed a plan of realization, turned out to be more

categorical than geometric. The principal advantage of this is that the scope is extended

beyond geometry, since we can replace C for any category with a Grothendieck topology,

not only schemes or algebraic spaces with some specific nice topology like the étale site.

Then the results can be applied to many categories similar to those which are of interest in

algebraic geometry. Also, the categorical approaching helps us to understand what are the

essential characteristics of the objects we are studying.
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Chapter

1 Fibred categories

In this chapter we are going to introduce fibred categories as the basic 2-categorical concept

in order to define stacks, which will be introduced in a separated chapter. Here we are inter-

ested in more general facts like fibre and 2-fibre products and strongly cartesian morphisms

or pullbacks, which allow us to consider “restrictions” of morphisms and therefore locally

defined morphisms when we are working on categories with Grothendieck topologies. Many

subsequent developments are based in what is in this chapter, so we encourage the reader to

see at least the results. In particular, the fibred category associated to a functor is important in

order to consider quotient stacks and we give some functorial properties which will be used

later.

We consider categories over a fixed category and later fibred categories through the concept

of strongly cartesian morphism. Then we show some results when the fibre categories are

groupoids, in particular setoids or sets.
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2-CATEGORIES

1.1 2-categories

Given categories A,B we have the category Fun(A,B), whose objects are functors from A

to B and its morphisms are natural transformations of functors, i.e. if F,G,H : A −→ B are

functors and α : F =⇒ G, β : G =⇒ H are natural transformations, the composition rule

β ◦ α : F =⇒ H, called vertical composition, is defined for an object x of A by (β ◦ α)x =

βx ◦ αx. We illustrate this composition in the following diagram:

A

F

""�� α

G
//
<<

H
�� β

B // A
F

))

H

55�� β◦α B

Given categories A, B and C there is a composition law ◦ : Ob(Fun(A,B)) ×

Ob(Fun(B, C)) −→ Ob(Fun(A, C)) defined by composition of functors ◦( f , g) = g ◦ f . This

law is associative and the identity functors act as units. Then we have a category whose

objects are categories and morphisms are functors which is denoted Cat.

If F,G : A −→ B are functors and α : F =⇒ G is a natural transformation, then for any

functor H : B −→ C it can be defined a natural transformation Hα : H ◦ F =⇒ H ◦ G by

(Hα)x = H(αx) for all x ∈ Ob(A). In this way H(_) is a functor Fun(A,B) −→ Fun(A, C). In

order to see it, we need to check that H(idF) = idH◦F and H(β ◦α) = Hβ ◦ Hα. If idF : F =⇒ F

is the identity transformation, then for all x ∈ Ob(A) it follows (H(idF))x = H((idF)x) =

H(idF(x)) = idH(F(x)) = idH◦F(x) = (idH ◦ F)x and (H(β ◦ α))x = H((β ◦ α)x) = H(βx ◦ αx) =

H(βx) ◦ H(αx) = (Hβ)x ◦ (Hα)x = (Hβ ◦ Hα)x. In particular, idBα = α.

Similarly, given functors R, S : B −→ C and a natural transformation γ : R =⇒ S , then for

all functor F : A −→ B we define γF : R ◦ F =⇒ S ◦ F by (γF)x = γF(x) for x ∈ Ob(A) and
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1. FIBRED CATEGORIES

(_)F : Fun(B, C) −→ Fun(A, C) is a functor with (idR)F = idR◦F and (γ ◦ δ)F = γF ◦ δF . Also

we see that γidB = γ.

The preceding constructions satisfy the further properties H1(H2α) = (H1◦H2)α, (γF1)F2 = γ(F1◦F2)

and H(εF) = (Hε)F , provided that those compositions can be defined. Finally, given functors

F,G : A −→ B and R, S : B −→ C and natural transformations α : F =⇒ G and γ : R =⇒ S ,

the following diagram commutes:

R ◦ F Rα +3

γF

��

R ◦G
γG

��
S ◦ F

S α
+3 S ◦G

that is to say, γG◦Rα = Sα◦γF . In order to proof this, we shall see what happens at each object

x of A. We have a morphism αx : F(x) −→ G(x) in B and, since R, S : B −→ C are functors,

they induce the morphisms R(αx) and S (αx). But R(αx) = (Rα)x and S (αx) = (Sα)x. Also

γF(x) = (γF)x and γG(x) = (βG)x. Since γ is a natural transformation of functors, considering

the morphism αx in B, we have the following commutative squares:

R(F(x))
R(αx) //

γF(x)

��

R(G(x))
γG(x)

��
S (F(x))

S (αx)
// S (G(x))

//oo

R(F(x))
(Rα)x //

(γF )x

��

R(G(x))

(γG)x

��
S (F(x))

(S α)x

// S (G(x))

This compatibility relation allow us to define the horizontal composition of natural transfor-

mation as:

A
F

))

G

55�� α B
R

((

S

66�� γ C = A
R◦F

((

S ◦G

66�� γ?α C

where γ ? α = γG ◦ Rα = Sα ◦ γF . Hence we may recover the transformations Rα and γF as

Rα = idR ? α and γF = γ ? idF . Furthermore, all of the rules above are consequences of the

properties stated in the next lemma.
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2-CATEGORIES

Lemma 1.1.1. (003F) Horizontal and vertical compositions satisfy the following properties:

1. ◦ and ? are associative.

2. The identity transformations idF are units for ◦.

3. For any category A, the identity transformations of the identity functors, i.e. the trans-

formations ididA , are units for ◦ and ?.

4. Given a diagram

A

F

""�� α

G
//
<<

H
�� β

B

R

""�� γ

S
//
<<

T
�� δ

C

we have (δ ◦ γ) ? (β ◦ α) = (δ ? β) ◦ (γ ? α)

Proof. Properties (1) − (3) are immediate from the definitions. To see (4), by using the

previous notation we have

(δ ◦ γ) ? (β ◦ α) = (δ ◦ γ)H ◦ R(β ◦ α) = δH ◦ γH ◦ Rβ ◦ Rα

(δ ? β) ◦ (γ ? α) = (δH ◦ Sβ) ◦ (γG ◦ Rα) = δH ◦ (Sβ ◦ γG) ◦ Rα

and by definition γ ? β = γH ◦ Rβ = Sβ ◦ γG and this conclude the proof. �

Another way of formulating (4) is that the composition of functors and the horizontal com-

position of natural transformations induces a functor

(◦, ?) : Fun(A,B) × Fun(B, C) −→ Fun(A, C)

whose source is the product category. Then Cat is a category where for every pair of cate-

gories, the morphisms Fun(A,B) are itself a category, in which the morphisms have, together

8
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1. FIBRED CATEGORIES

with the usual composition (vertical), one horizontal composition satisfying the properties in

the previous lemma. It gives rise to the concept of 2-category in the next definition.

Definition 1.1.1 (2-category). (003H) A 2-category C, consists of the following data:

1. A class of objects Ob(C).

2. For each pair x, y ∈ Ob(C) a category MorC(x, y). The objects of this category are

called 1-morphisms and denoted F : x −→ y. Given another 1-morphism G : x −→ y,

a morphism α from F to G in MorC(x, y) are called 2-morphisms and denoted α : F =⇒

G. The composition of 2-morphisms on MorC(x, y) will be named vertical composition

and denoted β ◦ α, where β : G =⇒ H.

3. For all x, y, z ∈ Ob(C) a functor

(◦, ?) : MorC(x, y) ×MorC(y, z) −→ MorC(x, z)

The image of a pair of 1-morphisms (F, S ) is calle composition of F and S which is

denoted S ◦ F. The image of a pair (α, γ) : (F,G) =⇒ (R, S ) of 2-morphisms, where

α : F =⇒ G and γ : R =⇒ S will be called horizontal composition and be denoted

γ ? α.

These data satisfies the following rules:

i. The class of objects with the set of 1-morphisms and the composition of 1-morphisms

forms a category.

ii. Horizontal composition of 2-morphisms is associative.

iii. For each x ∈ Ob(C), the identity 2-morphism of the identity 1-morphism ididx is a unit for

horizontal composition.

9
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2-CATEGORIES

Remark. Since (◦, ?) is a functor, and the pair (idF , idR) is the identity of (F,R) in the product

category MorC(x, y) ×MorC(x, y), then we have

idR ? idF B (◦, ?)(idF , idR) = id(◦,?)(F,R) C idR◦F

Example 1. (003J) The following are examples of 2-categories. The last two will be con-

structed after.

1. The 2-category of categories Cat

2. The 2-category of grupoids.

3. The 2-category of fibre categories over a fixed category.

Example 2. Let C be a 2-category and g : y −→ z, f : x −→ z two 1-morphisms on C. The

2-category of 2-commutative diagrams relative to the pair ( f , g) is defined as follows:

1. Objects are quadruples (w, a, b,ϕ), where w ∈ Ob(C) and a : w −→ x and b : w −→ y

are 1-morphisms and ϕ : f ◦a =⇒ g◦b is a 2-isomorphism. Hence, objects correspond

to diagrams with the form:

w

b

��

a //

��))

ϕ

x

f

��
y g

//

⇔

z

We say such diagrams are 2-commutative.

2. The 1-morphisms from (w′, a′, b′,ϕ′) to (w, a, b,ϕ) are triples (k : w′ −→ w,α : a′ =⇒

a ◦ k, β : b′ =⇒ b ◦ k) such that the next diagram is commutative

f ◦ a′

ϕ′

��

id f?α +3 f ◦ a ◦ k

ϕ?idk

��
g ◦ b′

idg?β
+3 g ◦ b ◦ k

10
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1. FIBRED CATEGORIES

In this case we say the following diagram is 2-commutative

w′

k

  

b′

##

a′

��

t
β

wα

w

b

��

a //

)) ��
ϕ

x

f

��
y g

//

⇔

z

3. Given a second 1-morphims(k′,α′, β′) : (w′′, a′′, b′′,ϕ′′) −→ (w′, a′, b′,ϕ′), the compo-

sition (k,α, β) ◦ (k′,α′, β′) : (w′′, a′′, b′′,ϕ′′) −→ (w, a, b,ϕ) is defined by

(k′′,α′′, β′′,ϕ′′) = (k ◦ k′, (α ? idk′) ◦ α′, (β ? idk′) ◦ β′)

This triple makes sense because k′′ : w′′ −→ w, α′′ : a′′ −→ a ◦ (k ◦ k′) and β′′ : b′′ −→

b ◦ (k ◦ k′) are well defined as we may see at the diagrams

α′

��
w′

k
))

k

55�� idk

a′′

  
w

a′
((

a◦k

66�� α z

β′

��
w′

k
))

k

55�� idk

b′′

  
w

b′
((

b◦k

66�� β z

Moreover, in the diagrama below the two sub-rectangles are commutative and therefore

is the external one

f ◦ a′′

ϕ′′

��

id f?α
′′

+3 f ◦ a′ ◦ k′

ϕ′?idk′

��

id f?α?idk′ +3 f ◦ a ◦ (k ◦ k′)

ϕ?idk◦k′ ϕ?idk?idk

��
g ◦ b′′

idg?β
+3 g ◦ b′ ◦ k′

idg?β?idk′
+3 g ◦ b ◦ (k ◦ k′)

Here we have used idk◦k′ = idk ? idk′ and the associativity of horizontal composition to

see that the right one is commutative and (id f ? α ? idk′) ◦ (id f ? α
′) = (id f ◦ id f ) ?

((α ? idk′) ◦ α) = id f ? α
′′. Similarly (idg ? α ? idk′) ◦ (idg ? β

′) = idg ? β
′′.

11



2-CATEGORIES

4. A 2-morphism from a 1-morphism (k1,α1, β1) to a 1-morphism (k2,α2, β2) is given by

a 2-morphism δ : k1 =⇒ k2 in C such that the next diagrams are commutative

a′
α1 +3

α2 �&

a ◦ k1

ida?δ

��
a ◦ k2

b′
β1 +3

β2 �&

a ◦ k1

idb?δ

��
b ◦ k2

5. Vertical and horizontal compositions of 2-morphisms are the inherited from C.

Definition 1.1.2 (Sub 2-category). (02X7) Let C be a 2-category. A sub 2-category C′ of

C is given by a sub class Ob(C′) of Ob(C) and subcategories MorC′(x, y) of the categories

MorC(x, y) for every x, y ∈ Ob(C′), such that with the operations ◦ (composition of 1-

morphisms), ◦ (vertical composition of 2-morphisms) and ? (horizontal composition of 2-

morphims) forms a 2-category.

Some 2-categories has the property that all the 2-morphisms are actually 2-isomorphims.

This class of 2-categories are important and of course it is easier to work with these.

Definition 1.1.3 ((2,1)-category). (003I) A (2,1)-category is a 2-category in which every 2-

morphism is a 2-isomorphism.

Example 3. For any 2-category there is a (2,1)-category obtained by allowing only 2-

isomorphisms. This (2,1)-category is also a sub 2-category. As a concrete examples we

have:

1. The (2,1)-category of categories.

2. The (2,1)-category of groupoids.

3. The (2,1)-category of fibre categories over a fixed category.

12
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1. FIBRED CATEGORIES

Equivalence of objects (isomorphism) has a generalization in 2-categories as follows.

Definition 1.1.4 (Equivalence of objects). (003L) Two objects x, y of a 2-category are equiv-

alents if there exists 1-morphisms F : x −→ y and G : y −→ x such that F ◦G is 2-isomorphic

to idy and G ◦ F is 2-isomorphic to idx.

Here, F ◦ G 2-isomorphic to idy means that exists α : F ◦ G =⇒ idy and β : idy =⇒ F ◦ G

such that β ◦ α = idF◦G and α ◦ β = ididy . The concept of functor has also a generalization.

Definition 1.1.5 (Functor and pseudo-functor in a 2-category). (003N) Let A be a category

and C be a 2-category.

1. A functor from A to C is a functor (in the usual sense) from A to the category formed

out of Ob(C) and the 1-morphisms.

2. A pseudofunctor ϕ from A to the 2-category C is given by the following data:

a. For each x ∈ Ob(A) an object ϕ(x) ∈ Ob(C).

b. For every pair x, y ∈ Ob(A) and any morphism f : x −→ y, a 1-morphism ϕ( f ) :

ϕ(x) −→ ϕ(y).

c. For every x ∈ Ob(A) a 2-morphism αx : idϕ(x) =⇒ ϕ(idx).

d. For every pair of composable morphisms f : x −→ y and g : y −→ z on A a

2-morphism αg, f : ϕ(g ◦ f ) =⇒ ϕ(g) ◦ ϕ( f ).

These data are subject to the following conditions:

i. The 2-morphisms αx and αg, f are 2-isomorphims.

13
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2-CATEGORIES

ii. For any morphism f : x −→ y in A we have αidy, f = αy ? idϕ( f ).

ϕ(x)
ϕ( f )

**

ϕ( f )
44�� idϕ( f ) ϕ(y)

idϕ(y)
**

ϕ(idy)
44�� αy ϕ(y) = ϕ(x)

ϕ( f )
**

ϕ(idy)◦ϕ( f )
44�� αidy , f ϕ(y)

and also for any morphism f : x −→ y in A we have α f ,idx = idϕ( f ) ? αx

iii. For any triple of morphisms f : w −→ x, g : x −→ y and h : y −→ z in A we have

(idϕ(h)?αg, f )◦αh,g◦ f = (αh,g? idϕ( f ))◦αh◦g, f . In other words the following diagram

commutes

ϕ(h ◦ g ◦ f )
αh◦g, f +3

αh,g◦ f

��

ϕ(h ◦ g) ◦ ϕ( f )

αh,g?idϕ( f )

��
ϕ(h) ◦ ϕ(g ◦ f )

idϕ(h)?αg, f

+3 ϕ(h) ◦ ϕ(g) ◦ ϕ( f )

Now we introduce the concept of 2-final object, which allow us to define what a 2-fibre

product is.

Definition 1.1.6 (2-final object). (003P) A 2-final object in a 2-category C is an object x of

C such that:

1. For all y ∈ Ob(C) exists a 1-morphism y −→ x.

2. Each pair of 1-morphisms y −→ x are 2-isomorphic by a unique 2-morphism.

Definition 1.1.7 (2-fibre product). (003Q) Let C be a 2-category and f : x −→ z, g : y −→ z

two 1-morphisms on C. A 2-fibre product on C of f and g is a 2-final object in the 2-category

of 2-commutative diagrams on C related to the pair ( f , g).

Then, a 2-fibre product of f and g on C is given by a quadruple (w, a, b,ϕ) in the 2-category

o 2-commutative diagrams related to ( f , g) such that for any other quadruple (w′, a′, b′,ϕ′)

14

http://stacks.math.columbia.edu/tag/003P
http://stacks.math.columbia.edu/tag/003Q


1. FIBRED CATEGORIES

there exist a triple (k1,α1, β1) which is a 1-morphism in the 2-category of 2-commutative

diagrams related to ( f , g) such that if there ir another triple (k2,α2, β2), then exists a unique

2-isomorphism δ : k1 =⇒ k2 on C, satisfying (ida ? δ) ◦ α1 = α2 and (idb ? δ) ◦ β1 = β2.

1.2 Categories over a category

If p : S −→ C a functor between categories, we say that p : S −→ C is a category over C. In

the following definition we are going to introduce the 2-category of categories over C.

Definition 1.2.1 (2-Category of categories over C). (003Y) Let C be a category. The 2-

category of categories over C is the 2-category constructed as follows:

1. Objects are pairs (S, p), where S is a category and p : S −→ C is a functor.

2. The 1-morphisms (S, p) −→ (S ′, p′) are functors G : S −→ S ′ such that p′ ◦G = p.

3. Given G,H : (S, p) −→ (S ′, p′), the 2-morphisms from G to H are natural transforma-

tions α : G =⇒ H which satisfy p′(αx) = idp(x), for all x ∈ Ob(S).

4. Compositions are defined as before on functors and natural transformations of Cat.

Then is clear that the 2-category of categories over C is a sub 2-category of Cat. This is

denoted as Cat /C.

Definition 1.2.2 (Fibre category and lift). (02XH) Let C be a category and p : S −→ C a

category over C

1. The fibre category over an object U ∈ Ob(C) is the category SU whose objects are

Ob(SU) = {x ∈ Ob(S) | p(x) = U} and for x, y ∈ Ob(SU), HomSU (x, y) = {ϕ ∈

MorS(x, y) | p(ϕ) = idU}.

15
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2. A lift of an object U ∈ Ob(C) is an object x ∈ Ob(S) such that p(x) = U. Namely

x ∈ SU . We say that x is over U.

3. Similarly a lift of a morphism f : V −→ U of C is a morphism ϕ : y −→ x of S such

that p(ϕ) = f .

If F : (S, p) −→ (S ′, p′) is a 1-morphism of categories over C, then the restriction of F to

SU is a functor between fibre categories F|U : SU −→ S ′U . In fact, to see that is enough to

show that for all x ∈ SU we have F(x) ∈ S ′U and for any x
ϕ

−→ y ∈ MorSU (x, y) it follows

F(ϕ) ∈ MorSU (F(x), F(y)), which is true because p′(F(x)) = p(x) = U and since p(ϕ) = idU ,

then p′(F(ϕ)) = p(ϕ) = idU .

Now we will see that in the (2,1)-category of categories over a fixed category C, there exists

a 2-fibre product. This is a constructive proof, which is very useful in the following results

related to fibred categories. In order to keep things simple, we do not include all the details,

they are straightforward and easy to do. Also, there is a difference here respect to Stacks

Project, since we don’t ask for the condition p( f ) = q(g), because this is a consequence of

the commutativity of the diagram below.

Lemma 1.2.1 (Existence of 2-fibre product). (0040) Let C be a category with fibre product.

The (2,1)-category of categories over C has 2-fibre product.

Proof. Let p : X −→ C, q : Y −→ C, r : Z −→ C be categories over C and F : X −→ Z ,

G : Y −→ Z two 1-morphisms of categories over C. An explicit 2-fibre product (X ×Z
Y , prX , prY ,ψ) of F and G on Cat /C is given by:

1. An object X ×Z Y is a quadruple (U, x, y,α) where U ∈ Ob(C), x ∈ XU , y ∈ YU and

α : F(x) −→ G(y) is an isomorphism in ZU .
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2. A morphism (U, x, y,α) −→ (U′, x′, y′,α′) is a pair ( f , g) with f : x −→ x′ a morphism

in X and g : y −→ y′ is a morphism in Y such that the following diagram commutes

F(x) α //

F( f )
��

G(y)

G(g)
��

F(x′)
α′
// G(y′)

In particular we have:

p( f ) = idU′ ◦ p( f )

= r(α′) ◦ r(F( f ))

= r(α′ ◦ F( f ))

= r(G(g) ◦ α)

= r(G(g)) ◦ r(α)

= q(g) ◦ idU

= q(g)

3. The 1-morphisms prX : X ×ZY −→ X and prY : X ×ZY −→ Y are the forgetful func-

tors, that is to say, if (U, x, y,α) ∈ Ob(X ×Z Y), prX (U, x, y,α) = x, prY(U, x, y,α) = y

and if (U, x, y,α)
( f ,g)
−→ (U′, x′, y′,α′) is a 1-morphism in X ×Z Y , prX ( f , g) = f and

prY( f , g) = g. The 2-isomorphism ψ : F ◦ prX =⇒ G ◦ prY is the natural transfor-

mation defined by ψ(U,x,y,α) : F(prR(U, x, y,α)) = F(r)
α
−→ G(t) = G(prT (U, x, y,α)),

which is invertible because α is an isomorphism in S. �

Lemma 1.2.2. (02XI) Let C be a category, F : X −→ Z and G : Y −→ Z 1-morphisms of

categories over C. For all U ∈ Ob(C) we have the following equality of fibre categories:

(X ×Z Y)U = XU ×ZU YU

17
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Proof. In the construction of X ×Z Y we have the following diagram, in which the triangles

are commutative

X ×Z Y prY //

prX

��

s

$$

Y
q

��
G

��

C

X

p
::

F
// Z

r
__

Now, by definition of fibre category and 2-fibre product in Cat we have Ob((X ×Z Y)U) is

the class of quadruples (U, x, y,α), with x ∈ Ob(XU), y ∈ Ob(YU) and α : F(x) −→ G(y) an

isomorphism in ZU .

A morphism from (U, x, y,α) to (U, x′, y′,α′) is a pair (a, b) such that the diagram

F(x) α //

F( f )
��

G(y)

G(g)
��

F(x′)
α′
// G(y′)

is commutative, since U is fixed, the objects of (X ×Z Y)U may be seen as triples (x, y,α)

with the previous features. It is easy to see that this defines an isomorphism between these

categories. �

In the study of 2-categories, the concept of fibre product is replaced by the most suitable

concept of 2-fibre product and the first one is not considered anymore. We will give an

example that shows why the 2-fibre product is more suitable than fibre product. However,

the concept of fibre product also makes sense and indeed in categories over C there is always

a fibre product, which will be constructed in the next lemma. As we shall show, we can

be working on categories and build a natural category which is a fibre product, but is not a

2-fibre product. Therefore we are going to make some considerations about fibre products in

categories over C.

18
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Lemma 1.2.3 (Existence of fibred product). Let p : X −→ C, q : Y −→ C and r : Z −→ C

categories over C and F : X −→ Z , G : Y −→ Z 1-morphisms of categories over C. Then

there exists s : W −→ C, a category over C, which is a fibre product of F and G.

Proof. We are going to define W in a similar way as the fibre product is built in the category

of sets. More precisely, let

Ob(W) = {(x, y) | x ∈ Ob(X ), y ∈ Ob(Y), F(x) = G(y)}

If (x, y), (x′, y′) ∈ Ob(W) we define

HomW((x, y), (x′, y′)) = {( f , g) | f ∈ HomX (x, x′), g ∈ HomY(y, y′), F( f ) = G(g)}

Composition in W is defined with the formula ( f ′, g′) ◦W ( f , g) := ( f ′ ◦X f , g′ ◦Y g) provided

the composition makes sense. Then is easy to see that composition is well defined, associative

and (idx, idy) is the identity of (x, y).

The projections prX : W −→ X and prY : W −→ Y are defined by prX (x, y) = x and

prY(x, y) = y in the objects and by prX ( f , g) = f and prY( f , g) = g in the morphisms. Then

is trivial to show that F ◦ prX = G ◦ prY . We define s : W −→ C as any of the compositions

r◦(F◦ prX ), r◦(G◦ prY), p◦ prX or q◦ prY wich are equal because F and G are 1-morphisms

of categories over C and the commutativity of the square as is showed in the next diagram

W prX //

prY

��

s   

X
p

��
F

��

C

Y
G

//
q

??

Z

r
__

Hence s : W −→ C is a category over C and by construction is clear that prX and prY are

1-morphisms of categories over C.
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In order to prove the universal property, let t : V −→ C a category over C and A : V −→ X ,

B : V −→ Y 1-morphisms of categories over C such that F ◦ A = G ◦ B. Consider the

following diagram

V
C

  

B

$$

A

��
W prX //

prY
��

X
F
��

Y
G
// Z

If there is a 1-morphism C : V −→ W such that prX ◦ C = A and prY ◦ C = B, then given

v ∈ Ob(V), let c(v) = (x, y). Hence x ∈ Ob(X ), y ∈ Ob(Y) and F(x) = G(y). Therefore

prX ◦ C(v) = x and prY ◦ C(v) = y, that is to say, A(v) = x and B(v) = y. So, if there

is a such C, it must be defined for v ∈ Ob(V) by C(v) = (A(v), B(v)). In the same way, if

h ∈ HomV(v, v′) it must satisfy C(h) = (A(h), B(h)). Lets see that C defined in this manner

is a functor. For v ∈ Ob(V) we have (A(v), B(v)) ∈ Ob(W), because F ◦ A = G ◦ B. In the

same way if f ∈ HomV(v, v′), we have (A( f ), B( f )) ∈ HomW(C(v),C(v′)), and so C is well

defined. Now,

C(h′ ◦ h) = (A(h′ ◦ h), B(h′ ◦ h))

= (A(h′) ◦ A(h), B(h′) ◦ B(h))

= (A(h′), B(h′)) ◦ (A(h), B(h))

= C(h′) ◦C(h)

provided the composition h′ ◦ h makes sense. Also

C(idv) = (A(idv), B(idv))

= (idA(v), idB(v))

= id(A(v),B(v))
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= idC(v)

Then we have the universal property for (W , prX , prY) and so, this is a fibre product of F and

G in the category of categories over C. �

Remark. When there is possibility of confusion, we denote the fibre product as X ×Z Y and

the 2-fibre product as X ×2
Z Y in order to avoid ambiguity.

1.3 Fibred categories

Stacks are fibred categories with two more features that we are going to introduce later. The

most important properties of fibred categories in groupoids , setoids or sets are satisfied by a

more ample class of categories, then we will study those before.

Let p : S −→ C a category over C. Given an object x ∈ Ob(S) with p(x) = U and a morphism

f : V −→ U, we want to give some sense to a “fibre product” V ×U x” or pullback of x via

V
f
−→ U. This is drawn in the diagram below. That fibre product is not really defined because

x and U are not in the same category, the arrow x // U means p(x) = U. For z ∈ Ob(S)

a morphism from z to V ×U x must be a pair (g,α) where g : p(z) −→ V and α : z −→ x

morphisms such that p(α) = f ◦ g.

z
p
��

α

##
(g,α)

$$
p(z)

g
$$

V ×U x //

��

x

��
V

f
// U

If there exists a morphism V ×U x −→ x in S as before, we say this is a strongly cartesian

morphism. The following definition that appears here is different from the one in Stacks
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Project, but we actually proved that both are equivalent. The reason why to prefer this one is

because in the subsequent results is easier to include diagrams and so is better to work with

this. When we prove that some morphism is strongly cartesian, we show that the morphism

satisfy the condition below.

Definition 1.3.1 (Strongly cartesian morphism). Let p : S −→ C be a category over C. A

morphism ϕ : y −→ x in S is strongly cartesian if and only if for all z ∈ Ob(S), given a

pair (g,α) ∈ MorC(p(z), p(y))×MorS(z, x) such that p(α) = p(ϕ) ◦ g there exists a morphism

γ : z −→ y which is unique such that p(γ) = g and ϕ ◦ γ = α.

Lemma 1.3.1. (02XL) Let p : S −→ C be a category over C.

1. The composition of strongly cartesian morphisms is a strongly cartesian morphism.

2. Any isomorphism in S is strongly cartesian.

3. If ϕ is a morphism with p(ϕ) an isomorphism in C, then ϕ is an isomorphism in S.

Proof.

1. Let ϕ : x −→ y and ψ : y −→ z be strongly cartesian morphisms on S over g and f

respectively. We want to prove that ψ ◦ ϕ is strongly cartesian over f ◦ g. For this, let

w ∈ Ob(S) over R and (α, h) as shown in the next diagram

w

�� γ
��

β

��

α

��
R

h ��

x

��

ϕ
// y

��

ψ
// z

��
U g

// V
f
// W

22
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Since ψ is strongly cartesian, there exists a unique β : w −→ y over g ◦ h such that

ψ ◦ β = α. In the same way, using now the pair (β, h) there exists a unique γ : w −→ x

over h such that ϕ ◦ γ = β. Hence (ψ ◦ ϕ) ◦ γ = α. If there is another morphism

γ′ : w −→ x such that (ψ ◦ϕ) ◦ γ′ = α, then β′ = ϕ ◦ γ′ is a morphism from w to y such

that ψ ◦β′ = α and therefore β′ = β. But γ is the only such that ϕ ◦ γ = β and so γ′ = γ.

2. Let ϕ : x −→ y be an isomorphism over f , then f is also an isomorphism. Given z over

w and a pair (α, g) such that α : z −→ y is over f ◦ g, then γ = α ◦ ϕ−1 : z −→ x is the

only morphism over g such that ϕ ◦ γ = α.

3. If ϕ : y −→ x is a strongly cartesian morphism and p(ϕ) is an isomorphism in C we

shall see that ϕ is an isomorphism. The pair (p(ϕ)−1, idx) satisfy p(idx) = idp(x) = p(ϕ)◦

p(ϕ)−1. Since ϕ is strongly cartesian there exists a unique morphism ψ ∈ MorS(x, y)

such that p(ψ) = p(ϕ)−1 and ϕ ◦ ψ = idx. Likewise, the pair (idp(y),ϕ) is such that

p(ϕ) = p(ϕ)◦idp(y) and therefore there is a unique η ∈ MorS(y, y) such that p(η) = idp(y)

and ϕ ◦ η = ϕ. But idy has these properties as also has ψ ◦ ϕ, because p(ψ ◦ ϕ) =

p(ψ) ◦ p(ϕ) = p(ϕ)−1 ◦ p(ϕ) = idp(y) and ϕ ◦ (ψ ◦ ϕ) = idx ◦ ϕ = ϕ. Unicity says

ψ ◦ ϕ = η = idy. Then ψ is the inverse morphism of ϕ. �

Lemma 1.3.2. (06N4) Let p : S −→ C be a category over C, x
γ

−→ y and z
β

−→ y morphisms

in S. Suppose that:

1. x −→ y is strongly cartesian.

2. p(x) ×p(y) p(z) exists in C.

3. There is a strongly cartesian morphism α : w −→ z in S satisfying p(w) = p(x)×p(y) p(z)

and p(α) = pr2 : p(x) ×p(y) p(z) −→ p(z).

23

http://stacks.math.columbia.edu/tag/06N4


FIBRED CATEGORIES

Then exists x ×y z and is isomorphic to w.

Proof. Consider the following diagram

v

��

ϕ

$$

ε

$$

η
22

w

��

α //

δ
**

z

��

β

**p(v)
ψ

##

p(η) 11

p(ε)

%%

x
γ

//

��

y

��

p(w)
p(α) //

pr1
**

p(z)

p(β)

**p(x)
p(γ)

// p(y)

Since α is strongly cartesian, the pair (pr1, β◦α) is such that p(γ)◦pr1 = p(β)◦p(α) = p(β◦α).

Hence exists a unique morphism w
δ
−→ x with p(δ) = pr1 and γ ◦ δ = β ◦ α. If v ∈ ObS and

we have morphisms V
η

−→ x and v
ε
−→ z such that γ◦η = β◦ ε, then p(γ)◦ p(η) = p(β)◦ p(ε)

and because p(w) = p(x) ×p(y) p(z), there exists a unique morphism p(v)
g
−→ p(w) such

that pr1 ◦ g = p(η) and p(α) ◦ g = p(ε). Since w
α
−→ z is strongly cartesian, there is a

morphism v
ϕ

−→ w which is unique such that p(ϕ) = g and α ◦ ϕ = ε. Thus η = δ ◦ ϕ

because both are morphism v −→ x satisfying p(δ ◦ ϕ) = p(δ) ◦ p(ϕ) = pr1 ◦ g = p(η) and

γ ◦ δ ◦ ϕ = β ◦ α ◦ ϕ = β ◦ ε = γ ◦ η and since x
γ

−→ y is strongly cartesian there exists a

unique morphism with these properties. Then by unicity of g, ϕ is the unique morphism such

that α ◦ ϕ = ε and δ ◦ ϕ = η. Therefore w = x ×y z. �

Definition 1.3.2 (Fibred category). (02XM) A category p : S −→ C over C is said to be

fibred over C, if given U ∈ Ob(C) and x ∈ Ob(SU), then for every morphism f : V −→ U in

C there exists a strongly cartesian morphism in S which is a lift of f .
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If p : S −→ C is a fibred category. For any f : V −→ U and every x ∈ Ob(SU) exists

a strongly cartesian morphism y −→ x over f . Moreover, given another strongly cartesian

morphism z −→ x over f , is clear that there is a unique isomorphism z −→ y such that

z −→ y −→ x = z −→ y. Then for all f : V −→ U = p(x), we can choose a strongly cartesian

morphism in S over f , which we denote f ∗x −→ x and is called a pullback of x over f .

Lemma 1.3.3 (Pullback functor). Let p : S −→ C be a fibred category. Then for any

morphism ϕ : x −→ x′ in SU and every f : V −→ U there exists a unique morphism

f ∗ϕ : f ∗x −→ f ∗x′ in SV such that the following diagram commutes

f ∗x
f ∗ϕ //

��

f ∗x′

��
x

ϕ
// x′

Furthermore, this define a functor f ∗ : SU −→ SV .

Proof. In fact, consider the diagram

f ∗x α //

f ∗ϕ
""

��

x

��

ϕ

��
f ∗x′

β

//

��

x′

��

V
f
//

idV ##

U
idU

  
V

f
// U

By definition of the fibre category SU , the morphism ϕ : x −→ x′ is such that p(ϕ) = idU and

therefore the pair (idV ,ϕ ◦ α) satisft p(ϕ ◦ α) = p(ϕ) ◦ p(α) = p(α) = f = f ◦ idU . Since

f ∗x′ −→ x′ is strongly cartesian, there is a unique morphism f ∗ϕ : f ∗x −→ f ∗x′ such that

p( f ∗ϕ) = idV , that is to say f ∗ϕ is a morphism in SV and β ◦ f ∗ϕ = ϕ ◦ α as we wanted.
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Now, f ∗idx is the unique morphism f ∗x −→ f ∗x such that p( f ∗idx) = idV = idp( f ∗x) and

α ◦ f ∗idx = idx ◦ α = α. But id f ∗x satisfy p(id f ∗x) = idp( f ∗x) and α ◦ id f ∗x = α. Hence

f ∗idx = id f ∗x. Let x′′ ∈ Ob(SU) and γ : f ∗x′′ −→ x′′ its chosen lift. If ψ : x′ −→ x′′ is a

morphism in SU , then f ∗(ψ ◦ ϕ) and f ∗ψ ◦ f ∗ϕ are morphisms from f ∗x to f ∗x′′ such that

p( f ∗(ψ◦ϕ)) = idV = idV ◦idV = p( f ∗ψ)◦p( f ∗ϕ) = p( f ∗ψ◦ f ∗ϕ) and γ◦ f ∗(ψ◦ϕ) = ψ◦ϕ◦α =

ψ ◦ β ◦ f ∗ϕ = γ ◦ f ∗ψ ◦ f ∗ϕ. Since γ is strongly cartesian there exists a unique morphism

with such properties and therefore f ∗(ψ ◦ ϕ) = f ∗ψ ◦ f ∗ϕ. This show that f ∗ : SU −→ SV is

indeed a functor. �

Definition 1.3.3 (Choice of pullbacks). (02XN) Let p : S −→ C be a fibred category.

1. A choice of pullbacks for p : S −→ C is given by a choice of a strongly cartesian

morphism f ∗x −→ x over f , for any x ∈ Ob(SU) and every morphism f : V −→ U in

C.

2. Given a choice of pullbacks, then for any morphism f : V −→ U in C the functor

f ∗ : SU −→ SV constructed in the previous lemma is called pullback functor associated

to the choices f ∗x −→ x.

As idx is strongly cartesian, then clearly id∗U x � x by a unique isomorphism. Then we can

make a choice of pullbacks with id∗U x = x and id∗U x −→ x the identity morphism.

Lemma 1.3.4 (Pseudo-functoriality). (02XO) Assume p : S −→ C is a fibred category with

a choice of pullbacks.

1. For every pair of composable morphisms f : V −→ U and g : W −→ V in C there

exists a unique invertible natural transformation

αg, f : ( f ◦ g)∗ −→ g∗ ◦ f ∗
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of functors SU −→ SV such that for all x ∈ Ob(SU) the following diagram commutes

( f ◦ g)∗x

(αg, f )x

%% ##
g∗ f ∗x // f ∗x // x

2. For all U ∈ Ob(C) there is an invertible natural transformation αU : idSU −→ (idU)∗ of

functors SU −→ SU .

3. The quadruple (U 7−→ SU , f 7−→ f ∗,αg, f ,αU) defines a pseudo functor from Cop to the

(2,1)-category of categories.

The next lemma shows that equivalence of categories is a good notion in order to identify

categories over C.

Lemma 1.3.5. (042G) Let C be a category and S1,S2 categories over C which are equiva-

lentes as categories over C. Then, S1 is fibred over C if and only if S2 is fibred over C.

Proof. Since S1 and S2 are equivalent as categories over C, there are functors F : S1 −→ S2

and G : S2 −→ S1 over C and invertible natural transformations i : F ◦ G −→ idS2 and

j : G ◦F −→ idS1 . We shall see that F preserves strongly cartesian morphisms. If ϕ : x −→ y

is a strongly cartesian morphism in S1 over f , then F(ϕ) : F(x) −→ F(y) is a strongly

cartesian morphism in S2 over f . Given z′ ∈ Ob(S2) over W, g : W −→ U a morphism in C

and α : z′ −→ F(y) a morphism in S2 over f ◦ g we need to show that exists β : z′ −→ F(x)

over g which is unique such that F(ϕ) ◦ β = α. Consider the following diagrams:
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z

��

η
,,

ε

!!
x

ϕ //

��

y

��

W
g ##

U
f

// V

F //

F(z)

��

γ

""

δ=F(ε)

��
F(η)

++

z′
α

""
β

""

��

F(x)
F(ϕ) //

��

F(y)

��

W
g ##

U
f

// V

Since F is essentially surjective, there is z ∈ Ob(S1,W) and an isomorphism γ : F(z) −→ z′

over idW . Let δ = α ◦ γ. Then δ : F(z) −→ F(y) is a morphism over f ◦ g and since F is

fully faithful there exists ε over f ◦ g which is unique such that F(ε) = γ. But ϕ is strongly

cartesian and so there exists an unique η : z −→ x satisfying ϕ ◦ η = ε. Hence F(η) is a

morphism from F(z) to F(x) such that F(ϕ) ◦ F(η) = F(ε) = δ and again since F is fully

faithful, F(η) is unique with this property. Let β = F(η) ◦ γ−1. We will show that β is unique

satisfying F(ϕ) ◦ β = α. Indeed,

F(ϕ) ◦ β = F(ϕ) ◦ F(η) ◦ γ−1

= F(ε) ◦ γ−1

= δ ◦ γ−1

= α ◦ γ ◦ γ−1

= α

If β′ : z′ −→ F(x) is another morphism with that property, then F(ϕ)◦β′◦γ = α◦γ = δ = F(ε)

and therefore β′ ◦ γ = F(η) and so β′ = F(η) ◦ γ−1 = β. Hence F(ϕ) is strongly cartesian. In

this way any equivalence preserves strongly cartesian morphisms and so S1 is fibred if and

only if S2 is fibred. �
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Definition 1.3.4 (2-category of fibred categories). (02XP) Let C be a category. The 2-

category of fibred categories over C is the sub 2-category of the 2-category of categories

over C defined as follows:

1. Objects are fibred categories (S, p) over C.

2. The 1-morphisms (S, p) −→ (S ′, p′) are functors G : S −→ S ′ such that p′ ◦ G = p

and such that G maps strongly cartesian morphisms to strongly cartesian morphisms.

3. Given 1-morphisms G,H : (S, p) −→ (S ′, p′), the 2-morphisms t : G −→ H are

natural transformations such that p′(tx) = idp(x) for all x ∈ Ob(S).

Lemma 1.3.6. (02XQ) Let C be a category. The (2,1)-category of fibred categories over C

has 2-fibre products and they are described as in categories over C.

Proof. For this, given F : X −→ Z and G : Y −→ Z 1-morphisms of fibred categories over

C we need to prove that X ×ZY is a fibred category over C. Let (U, x, y,ϕ) ∈ Ob(X ×ZY) and

f : V −→ U a morphism in C. Then x ∈ XU , y ∈ YU and ϕ : F(x) −→ G(y) is an isomorphism

in ZU . Since X and Y are fibred, there exist strongly cartesian morphism a : f ∗x −→ x and

b : f ∗y −→ y over f . Because F and G are 1-morphisms of fibred categories, F(a) and F(b)

are strongly cartesian morphisms in Z . Since ϕ : F(x) −→ G(y) is an isomorphism, then

f ∗ϕ : f ∗F(x) −→ f ∗G(y) is isomorphism. Moreover, the following diagram is commutative,

being α and β the only morphisms making commute the respective triangles

f ∗F(x)

α

�� $$

f ∗ϕ // f ∗G(y)

zz
β

��
F( f ∗x)

F(a)
// F(x)

ϕ
// G(y) G( f ∗y)

G(b)
oo

f ∗x

OO

a
// x

OO

y

OO

f ∗y

OO

b
oo
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Therefore β ◦ f ∗ϕ ◦ α−1 is an isomorphism such that the rectangle

F( f ∗x)

F(a)
��

// G( f ∗y)

F(b)
��

F(x)
ϕ

// G(y)

is commutative, that is to say, (V, f ∗x, f ∗y, β ◦ f ∗ϕ ◦ α−1) is an object of X ×Z Y and (a, b)

is a morphism from (V, f ∗x, f ∗y, β ◦ f ∗ϕ ◦ α1) to (U, x, y,ϕ). It remains to show that (a, b)

is strongly cartesian. Given (W, x′, y′,ϕ′), an object of X ×Z Y , (a′, b′) : (W, x′, y′,ϕ′) −→

(U, x, y,ϕ) and g : W −→ V such that s(a′, b′) = f ◦ g. Then p(a) = f = q(b) and p(a′) =

f ◦ g = q(b′). Since a : f ∗x −→ x and b : f ∗y −→ y are strongly cartesian morphisms, there

are morphisms c : x′ −→ f ∗x and d : y′ −→ f ∗y which are unique satisfying p(c) = g = q(d),

a′ = a ◦ c and b′ = b ◦ d. Hence, in the following diagram the side triangles, and the lower

and the external rectangles are commutative.

F(x′)

F(a′)

��

F(c)

��

ϕ′ // G(y′)

G(d)

��
G(b′)

��

F( f ∗x)

F(a)

��

β◦ f ∗ϕ◦α−1
// G( f ∗y)

G(b)

��
F(x)

ϕ
// G(y)

We want to show that the upper rectangle is commutative. We have F(b) ◦ (β ◦ f ∗ϕ ◦ α−1) ◦

F(c) = F(b) ◦ (F(d) ◦ ϕ′) and commutativity follows since F(b) is strongly cartesian. Then

(c, d) is a morphism from (W, x′, y′,ϕ′) to (V, f ∗x, f ∗y, β ◦ f ∗ϕ ◦ α−1) and by construction

r(c, d) = p(c) = q and (a, b) ◦ (c, d) = (a ◦ c, b ◦ d) = (a′, b′). Furthermore, it is clear that is

the unique with these properties and therefore (a, b) is strongly cartesian over f . �
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Fibre product in fibred categories

As we have seen, the (2,1)-category of fibred categories has 2-fibre products and is the same

constructed in categories over C. The analogue statement relating fibre product is not true

in general, that is to say, in general the fibre product of fibred categories over C constructed

before does not work in fibred categories. Furthermore, in some cases there is no possible

construction of a fibre product. Before we enter into this this, we will analyze what could

be the trouble that does not allows us to determine the existence of fibre product in the 2-

category of fibred categories over C and what conditions are required in order to prove that

the fibre product of categories over C works also in the 2-category of fibred categories over

C.

Suppose p : X −→ C, q : Y −→ C and r : Z −→ C are fibred categories over C and F and G

are 1-morphisms of categories over C. We wish s : W −→ C to be a fibred category over C.

Let U ∈ Ob(C), (x, y) ∈ Ob(WU) and f : V −→ U be a morphisms of C. We need to prove

that there is a strongly cartesian lift of f in W . Since X and Y are fibred categories there are

α : f ∗x −→ x and β : f ∗y −→ y strongly cartesian lifts of f in X and Y respectively. The

pairs ( f ∗x, f ∗y) and (α, β) are good candidates for being a pullback in the fibred product. We

have p( f ∗x) = V = q( f ∗y), but as we will see, in general there is not enough information to

conclude F( f ∗x) = G( f ∗y) and therefore we are not sure whether or not ( f ∗x, f ∗y) ∈ Ob(W).

Example 4. Consider C one category with Ob(C) = {U,V} and the class of morphisms is

{idU , idV ,V
f
−→ U}, where f is an abstract arrow. We can picture this category as is shown in

the following diagram:

V
f //idV 88 U idUgg

Then C is a category with fibre products and there is a natural topology in C where { f : V −→

U} is a covering. In fact, the only four possible fibre products are:
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V
idV //

idV
��

V

idV
��

V
idV

// V

U
idU //

idU
��

U

idU
��

U
idU

// U

V
f //

idV
��

U

idU
��

V
f
// U

V
idV //

idV
��

V
f
��

V
f
// U

1 2 3 4

In the first two cases the fibre product is clear since all arrows are identities. In the third

one, in order to verify the universal property there is only one option for an object in C with

morphisms to U and V , namely V and the morphisms idV and f respectively. Then idV is a

morphism such that f ◦ idV = f and idV ◦ idV = idV and is the only one with this property.

In the fourth case there is also only one option V with idV as arrow in both cases. Then C has

fibre products.

We shall see Cov τ = {{idU}, {idV}, { f }} is a topology in C. The only isomorphisms in C are

idU and idV and {idU}, {idV} ∈ Cov τ. Given {V
f
−→ U} ∈ Cov τ and any covering of V , that

is to say {idV}, then {V
idV
−→ V

f
−→ U} = { f } ∈ Cov τ. In the same way, given {U

idU
−→ U} and

any covering of U, that is to say { f } or idU itself, then {V
f
−→ U

idU
−→ U} = { f } ∈ Cov τ or

{U
idU
−→ U

idU
−→ U} = {idU} ∈ Cov τ. With respect to change of base, the result follows from

the analysis done before with the fibre products. Therefore C is a site.

Consider also X = x1
α //idx1 66 x2 idx2hh and Y = y1

β //idy1 77 y2 idy2gg as before and

Z the category whose graph is pictured in the diagram

z1
oo ϕ //

γ
  

%%
z2

δ~~

gg

z3GG

where loop arrows means identity and bidirectional arrows means isomorphism. We ask also

the diagram to be commutative. We define p : X −→ C and q : Y −→ C by p(x1) = V =

q(y1), p(x2) = U = q(y2) and p(α) = f = q(β) we can see X and Y are fibred over C. We
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define also r : Z −→ C by r(z1) = r(z2) = V and r(z3) = U in the objects and r(γ) = r(δ) = f

and r(ϕ) = idV in the morphism which are not identities. Then γ and δ are strongly cartesian

lifts of f and we may choose any as pullback. Hence Z is a fibred category over C.

Now, consider F : X −→ Z and G : Y −→ Z functors defined by F(x1) = z1, G(y1) = z2

and F(x2) = z3 = G(y2) in objects and F(α) = γ and G(β) = δ in the not identity morphisms.

Then F and G are trivially 1-morphisms of categories over C and send strongly cartesian

morphisms to strongly cartesian morphisms, so they are 1-morphisms of fibred categories

over C. Then (x2, y2) ∈ X ×Z Y , but (x1, y1) < (X ×Z Y). Indeed (x2, y2) is the only object

of X ×Z Y and its identity is the only morphism. Hence X ×Z Y is the trivial category

and therefore the projections are also trivial. The natural functor t : X ×Z Y is given by

t(x2, y2) = V and t(id(x2,y2)) = idV . Thus X ×Z Y is not fibred over C because f has not even a

lift, and much less a strongly cartesian one.

The handicap here is that in general it can not be proved that ( f ∗x, f ∗y) is an object of X ×Z Y

and therefore the strongly cartesian lifting may not exist. This does not imply that a fi-

bre product doesn’t exists, but the fibre product constructed in categories over C, in general

doesn’t work in fibred categories. However we can prove that in this example none con-

struction can be done. Suppose there exists a fibred category t : W −→ C which is a fibre

product. Hence there are 1-morphisms prX : W −→ X and prY : W −→ Y such that

F ◦ prX = G ◦ prY . There are two classes of objects in W , those {w1
i }i∈I who are sent to x1 via

prX and therefore are sent to U via the functor t and {w2
j} j∈J which are sent to x2 via prX and

to V via t. Then {w1
i }i∈I must be mapped to {y1} and {w2

j} j∈J must be mapped to {y2}. However,

when we apply F and G, the w1
i ’s are sent to z1 and z2 respectively, and commutativity implies

they must be equal, which is not true. Therefore there is only one family of objects, namely

the w2
j’s. This means all objects of W are sent to V via s and the same argument as before

shows that W can not be fibred.
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Then, we need to ask ( f ∗x, f ∗y) ∈ Ob(W) for every U ∈ Ob(C), (x, y) ∈ Ob(W) and f :

V −→ U a morphism in C. We need to ask also (α, β) ∈ HomW(( f ∗x, f ∗y), (x, y)) which does

not follows directly from ( f ∗x, f ∗y) ∈ Ob(W).

Example 5. Consider C, X and Y as in the previous example, but this time Z is the category

whose graph is

z1ϕ 77

γ

!!

δ

;; z2

Where ϕ is a non trivial automorphism such that γ = δ ◦ ϕ. Define r(z1) = V , r(z2) = V

and r(γ) = r(δ) = f . Then r : Z −→ C is a fibred category over C. Define F : X −→ Z

and G : Y −→ Z by F(xi) = zi = G(yi) for i = 1, 2, but F(α) = γ and G(β) = δ. Then

(x1, y1) ∈W , but (α, β) is not a morphism of W .

However, if we are in the case ( f ∗x, f ∗y) ∈ Ob(W) for every U ∈ Ob(C), (x, y) ∈ Ob(W) and

f : V −→ U a morphism in C and (α, β) is a morphism in W from ( f ∗x, f ∗y) to (x, y) then we

can prove that W is also a fibre product in the 2-category of fibred categories over C. Before

that we present the following definition.

Definition 1.3.5 (Componentwise pullbacks). Given 1-morphisms of fibred categories F :

X −→ Z and G : Y −→ Z over C, we say that X ×Z Y , considered as category over C, has

componentwise pullbacks if given (x, y) ∈ Ob(X ×Z Y) over V and f : U −→ V a morphism

in C we have ( f ∗x, f ∗y) and ( f ∗x −→ x, f ∗y −→ y) are respectively an object and a morphism

of X ×Z Y .

Theorem 1. If F : X −→ Z and G : Y −→ Z are 1-morphisms of fibred categories over C

such that the X ×Z Y has componentwise pullbacks, then X ×Z Y is a fibred category over C.
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Proof. We shall prove that (α, β) is the strongly cartesian lift of f in W , so we can write

f ∗(x, y) = ( f ∗x, f ∗y). For construction we have s( f ∗x, f ∗y) = p( f ∗x) = V and s(α, β) =

p(α) = f , so f ∗(x, y) −→ (x, y) is a morphism in W over f . Let (x′, y′) be an object of W

over W, g : W −→ V a morphism of C and (u, v) : (x′, y′) −→ (x, y) a morphism in W over

f ◦ g. Let us show that there exists a morphism (u′, v′) : (x′, y′) −→ (x, y) in W over g such

that in the following diagram the upper triangle is commutative

(x′, y′)
(u′,v′) ''

��

(u,v)

''
( f ∗x, f ∗y)

��

(α,β)
// (x, y)

��

W
g (( V

f
// U

Then f ◦ g = s(u, v) which is equal to both p(u) and q(v). The diagram can be splitted in two

diagrams one of them in X and the other one in Y respectively, as follows:

x′

��

u′ ""

u

!!
f ∗x

��

α
// x

��

W
g ##

V
f
// U

y′

��

v′ ""

v

  
f ∗y

��

β

// y

��

W
g ##

V
f
// U

Since f ∗x −→ x and f ∗y −→ y are strongly cartesian, there are morphisms u′ : x′ −→ f ∗x and

v′ : y′ −→ f ∗y over g which are unique making the respective triangles commutative. Now,

α◦u′ = u and β◦v′ = v, then F(α)◦F(u′) = F(u) and G(β)◦G(v′) = G(v). Since F(u) = G(v)

and F(α) = G(β), then F(α) ◦ F(u′) = F(α) ◦ G(v′) in Z . But F is a 1-morphism of fibred

categories and therefore F(α) is a strongly cartesian morphism and so, F(u′) = G(v′). Hence

(u′, v′) is a morphism in W and by construction is clear that this is the only one making the

triangle commutative. Then s : W −→ C is fibred.
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We must prove that prX : W −→ X and prY : W −→ Y are 1-morphisms of fibred categories

over C, that is to say, they preserve strongly cartesian morphism. Let (γ, δ) : (x′, y′) −→ (x, y)

be a strongly cartesian morphism in W over f and (α, β) : ( f ∗x, f ∗y) −→ (x, y) the strongly

cartesian lift built before. Since W is fibred, there is an isomorphism (ϕ,ψ) : (x′, y′) −→

( f ∗x, f ∗y) unique such that (α, β) ◦ (ϕ,ψ) = (γ, δ). Then α ◦ ϕ = γ and β ◦ ψ = δ and

therefore γ and δ are each one composition of two strongly cartesian morphism in X and Y

respectively. Hence γ and δ are also strongly cartesian morphisms. The conclusion follows

from the fact prX (γ, δ) = γ and prY(γ, δ) = δ. A similar argument shows that if V is a fibred

category and A : V −→ X and B : V −→ Y are 1-morphisms of fibred categories over C, the

1-morphism γ : V −→ X ×Z Y of categories over C given by the universal property is also a

1-morphism of fibred categories over C. �

Relation between X ×Z Y and X ×2
Z Y

There is a close relation between the fibre product and the 2-fibre product, more precisely we

have the following statement

Proposition 1.3.1. Let p : X −→ C, q : Y −→ C and r : Z −→ C be categories over C and

F : X −→ Z and G : Y −→ Z 1-morphisms of categories over C. There is a canonical

1-morphism

H : X ×Z Y −→ X ×2
Z Y

of categories over C. Furthermore, this is a fully faithful functor. If X ,Y ,Z are fibred cate-

gories, F,G are 1-morphisms of fibred categories and X ×Z Y has componentwise pullbacks,

then H is a 1-morphism of fibred categories.

Proof. The fibre product X ×Z Y and the 2-fibre product X ×2
Z Y are the categories with the

following data:
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1. Ob(X ×Z Y) = {(x, y) | x ∈ Ob(X ), y ∈ Ob(Y), F(x) = G(y)}

HomX×ZY((x, y), (x′, y′)) = {( f , g) | f ∈ HomX (x, x′), g ∈ HomY(y, y′), F( f ) = G(g)}

2. Ob(X ×2
Z Y) = {(U, x, y,α) | U ∈ Ob(C), x ∈ Ob(XU), y ∈ Ob(YU),α : F(x)←→ G(y)}

HomX×2
ZY((U, x, y,α), (U′, x′, y′,α′)) = {( f , g) | f ∈ HomX (x, x′), g ∈ HomY(y, y′),

α
′ ◦ F( f ) = G(g) ◦ α}

Define H : X ×Z Y −→ X ×2
Z Y as follows: given (x, y) ∈ Ob(X ×Z Y) let H(x, y) =

(U, x, y, idF(x)), where U = p(x) = q(y) and since F(x) = G(y), then idF(x) is a morphism

from F(x) to G(y) which is actually an isomorphism in ZU and therefore (U, x, y, idF(x)) ∈

Ob(X ×2
Z Y). If ( f , g) ∈ HomX×ZY((x, y), (x′, y′)), then F( f ) = G(g) and so, the diagram

F(x)
idF(x) //

F( f )
��

G(y) = F(x)

G(g)=F( f )
��

F(x′)
idF(x′)

// G(y′) = F(x′)

is trivially commutative. Hence ( f , g) ∈ HomX×2
ZY(H(x, y),H(x′, y′)). Moreover, the compo-

sition rule and identities are the same, so H is a functor. This functor is fully faithful.

Now, if X ×Z Y has componentwise pullbacks, we have proved before that X ×Z Y is a fibred

category over C. Let ( f , g) : (x′, y′) −→ (x, y) be a strongly cartesian morphism in X ×Z Y

and h = p( f ) = q(g). Consider h∗(x, y) = (h∗x, h∗y) and the pullback (h∗x −→ x, h∗y −→ y)

of (x, y) over h. Hence there is an isomorphism (x′, y′) −→ (h∗x, h∗y) such that the following

triangle commutes

(x′, y′)

$$

oo // (h∗x, h∗y)

yy
(x, y)
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Since isomorphisms are strongly cartesian morphisms and H is a functor, is enough to show

that H(h∗x −→ x, h∗y −→ y) := (h∗x −→ x, h∗y −→ y) is a strongly cartesian morphism in

X ×2
Z Y . But it follows from this pair is exactly the pullback of (x, y) over h. Hence H is a

1-morphism of fibred categories over C. �

As we will see in the next examples, in general this functor is not essentially surjective and

therefore H is not an equivalence of categories, even if we are in the case X , Y and Z are

fibred categories and X ×Z Y has componentwise pullbacks.

Example 6. Let V
f //idV 88 U idUgg be the site with the same topology as in previous

examples. Consider the following graph, where Ob(X ) = {x1, x2}, Ob(Y) = {y1, y2, y3} and

Ob(Z) = {z1, z2, z3}. The curly arrows means 1-morphisms of fibred categories.

x1
α //

  

x2

''

y3
��

��

y1
β //

ww

y2

~~
z1
oo

ϕ
//

γ

;;

��

z2 δ
//

~~

z3

��
V

f
// U

Then Y has an additional object z3 with only the identity morphism, and p, r and F are

defined as in the first example, so p : X −→ C and r : Z −→ C are fibred categories over C

and F : X −→ Z is a 1-morphisms of fibred categories over C. Defining q(y1) = q(y3) = V ,

q(y2) = U and q(β) = f we have q : Y −→ C is a fibred category in which β is a strongly

cartesian lift of f . The 1-morphism G : Y −→ Z is defined by G(y1) = z1, G(y2) = z3,

G(y3) = and G(β) = γ. This time we have (x1, y1) and (α, β) are in X ×Z Y and therefore

X ×Z Y is a fibred category over C. Moreover, Ob(X ×Z Y) = {(x1, y1), (x2, y2)}. On the

other hand, Ob(X ×2
Z Y) = {(V, x1, y1, idz1), (U, x2, y2, idz3), (V, x1, y3,ϕ)}, but since there are
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no morphisms between y1 and y3 nor y2 and y3, then (V, x1, y3,ϕ) is neither isomorphic to

H(x1, y1) nor to H(x2, y2). Hence H : X ×Z Y −→ X ×2
Z Y is not essentially surjective.

In the previous example the problem is that the fibre category ZV was disconnected. However,

even if every fibre category is a connected groupoid we can not conclude H is essentially

surjective.

Example 7. Consider the following graph,1 where Ob(X ) = {x1, x2}, Ob(Y) = {y1, y2},

Ob(Z) = {z1, z2, z3} and C is the same as before. The curly arrows means 1-morphisms of

fibred categories.

x2

��

x1

α

~~

��

y1

��

β

  
y2

��
z2 hh

ϕ

66

##

z1
δ //γoo

��

z3

||

V
f

��
U

Then X , Y and Z are fibred categories over C, whose fibre categories are always connected

groupoids. We have X ×Z Y = {(x1, y1)} and X ×2
Z Y = {(V, x1, y1, idz1), (U, x2, y2,ϕ)}. The

pair (α, β) is a morphism from (V, x1, y1, idz1) to (U, x2, y2,ϕ) because F(α) = γ, G(β) = δ and

therefore the diagram

F(x1)
idZ1 //

F(α)
��

G(y1)

G(β)
��

F(x2)
ϕ
// G(y2)

1The shape of this diagram was inspired in Amelia, my newborn daughter.
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is commutative. However we don’t have (V, x1, y1, idz1) � (U, x2, y2,ϕ) because there is not a

morphism in the other direction. Note that in this example X ×Z Y is still fibred, since there

is no object over U it is not necessary that exists a strongly cartesian morphism over f .

1.4 Fibred category associated to a functor

Suppose that C is a category and F : Cop −→ Cat is a functor from C to the 2-category of

categories. We will construct a fibred category SF over C as follows:

Ob(SF) = {(U, x) | U ∈ Ob(C), x ∈ Ob(F(U))}

For a pair (U, x) and (V, y) in Ob(SF) we define

HomSF ((V, y), (U, x)) = {( f , a) | f ∈ HomC(V,U), a ∈ HomF(V)(y, F( f )(x))}

In order to define the composition of morphisms we we use F(g) ◦ F( f ) = F( f ◦ g) for a

pair of composable morphisms in C. More precisely, composition of (V, y)
( f ,a)
−→ (U, x) and

(W, z)
(g,b)
−→ (V, y) is defined by ( f ◦ g, F(g)(a) ◦ b), which is showed in the next diagram

U � // F(U) 3 x

F( f )
��




&&
V

f

OO

� // F(V) 3 y

F(g)
��




&&

a
// F( f )(x)

�

''
W

g

OOf◦g

CC

� // F(W) 3 z
b
// F(g)(y)

F(g)(a)
// F(g)(F( f )(x))

It is easy to see that ( f ◦ g, F(g)(a) ◦ b) is in HomSF ((W, z), (U, x), since f ◦ g : W −→ U and

F(g)(a) ◦ b : z −→ F( f ◦ g)(x). If (h, c) is a morphism such that the composition (h, c) ◦ (g, b)

is well defined, then

(h, c) ◦ ((g, b) ◦ ( f , a)) = (h, c) ◦ (g ◦ f , F( f )(b) ◦ a)
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= (h ◦ (g ◦ f ), F(g ◦ f )(c) ◦ F( f )(b) ◦ a)

and on the other hand

((h, c) ◦ (g, b)) ◦ ( f , a) = (h ◦ g, F(g)(c) ◦ b) ◦ ( f , a)

= ((h ◦ g) ◦ f , F( f )(F(g)(c) ◦ b) ◦ a)

= (h ◦ (g ◦ f ), (F( f ) ◦ F(g))(c) ◦ F( f )(b) ◦ a)

and so the composition is associative. Moreover, given (V, y) ∈ Ob(SF), the pair (idV , idy) is in

HomSF ((V, y), (V, y)), since idV : V −→ V e idy : y −→ (idV)∗y, inasmuch as F(idV) = idF(V).

Thus we have (idV , idy)◦ (g, b) = (idV ◦g, F(g)(idy)◦b) = (g, b), because F(g) is a functor and

so F(g)(idy) = idF(g)(y). Also ( f , a) ◦ (idV , idy) = ( f ◦ idV , F(idV)(a) ◦ idx) = ( f , a), insomuch

as F(idV)(a) = idF(V)(a) = a. Then SF is a category.

The functor pF : SF −→ C is defined by (U, x) 7−→ U and for (V, y)
( f ,a)
−→ (U, x), pF( f , a) = f .

The fibre category over U ∈ Ob(C) is clearly SF,U = F(U). We shall show that the pair

(SF , pF) is a fibred category over C. If (V, y) ∈ Ob(SF), then pF(V, y) = V . Let f : U −→ V a

morphism in C. We will build an object f ∗(V, y) ∈ SF over U and a morphism F( f )(V, y) −→

(V, y) strongly cartesian over f . Since F( f ) : F(V) −→ F(U) is a functor and y ∈ Ob(F(V)),

then F( f )(y) ∈ F(U) and so (U, F( f )(y) ∈ Ob(SF). Thus define f ∗(V, y) := (U, F( f )y).

The pair ( f , idF( f )(y)) is clearly a morphism from (U, F( f )(y)) to (V, y). Let (W, z) ∈ Ob(SF),

g : W −→ U morphism in C and ( f ◦ g, a) : (W, z) −→ (V, y) a morphism in SF over f ◦ g as
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showed in the next diagram

(W, z)
(g,a)

''

( f◦g,a)

$$

��

(U, F( f )(y))
( f ,idF( f )(y))

//

��

(V, y)

��

W

g '' U
f

// V

Hence a : z −→ F( f ◦ g)(y) or equivalently a : z −→ (F( f ) ◦ F(g))(y) and therefore

(g, a) is a morphism in SF from (W, z) to (U, F( f )(y)) and satisfy ( f , idF( f )(y)) ◦ (g, a) =

( f ◦ g, F(g)(idF( f )(y)) ◦ a) = ( f ◦ g, id(F(g)◦F( f ))(y) ◦ a) = ( f ◦ g, a). If there exists (g, b) from

(W, z) to (U, F( f )(y)) such that ( f , idF( f )(y)) ◦ (g, b) = ( f ◦ g, a), then F(g)(idF( f )(y)) ◦ b = a and

so b = a. Consequently ( f , idF( f )(y)) is strongly cartesian and therefore pF : SF −→ C is a

fibred category.

Summarizing, if (V, y) ∈ SF and f : U −→ V is a morphisms in C, then we can define

f ∗(V, y) = (U, F( f )(y)) and ( f , idF( f )(y)) is the strongly cartesian lift of f . Let g : W −→ U

be another morphism, then g∗(U, F( f )(y)) = (W, F(g)(F( f )(y))) and (g, idF(g)(F( f )(y))) is the

strongly cartesian lift of g. Then we have

g∗( f ∗(V, y)) = g∗(U, F( f )(y))

= (W, F(g)(F( f )(y)))

= (W, (F(g) ◦ F( f ))(y))

= (W, F( f ◦ g)(y))

= ( f ◦ g)∗(V, y)

and so ( f ◦ g)∗ = g∗ ◦ f ∗ in the objects. Furthermore

( f , idF( f )(y)) ◦ (g, idF(g)(F( f )(y))) = ( f ◦ g, F(g)(idF( f )(y)) ◦ idF(g)(F( f )(y)))
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= ( f ◦ g, idF(g)(F( f )(y)) ◦ idF(g)(F( f )(y)))

= ( f ◦ g, idF(g)(F( f )(y)))

= ( f ◦ g, idF( f◦g)(y))

Therefore strongly cartesian liftings are compatible with composition in C and we may con-

clude ( f ◦ g)∗ = g∗ ◦ f ∗.

Functoriality

In this subsection we are going to see some functorial properties about the fibred category

associated to a functor. The most important in this research is the related to the compatibility

with fibre products when those exist. At the end we put together these results in a useful

theorem.

If α : F −→ G is a natural transformation of functors, there is a canonical 1-morphism

α̃ of fibred categories over C from SF to SG. Indeed, given U ∈ C, there is a functor2

αU : F(U) −→ G(U) and for U
f
−→ V a morphism in C the rectangle

F(U)
αU // G(U)

F(V)

F( f )

OO

αV
// G(V)

G( f )

OO

is commutative. If (U, x) ∈ Ob(SF), then x ∈ Ob(F(U)) and so αU(x) ∈ G(U). Hence

α̃(U, x) := (U,αU(x)) ∈ Ob(SG). If ( f , a) : (U, x) −→ (V, y) is a morphism in SF , then f :

U −→ V and a : x −→ F( f )(y). Therefore αU(a) : αU(x) −→ αU(F( f )(y)) and αU(F( f )(y)) =

G( f )(αU(y)). Hence α̃( f , a) := ( f ,αU(a)) is a morphism in SG from (U,αU(x)) to (V,αU(y)).

2In Cat the morphisms are functors
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Let us show compatibility with composition and identity. Given ( f , a) : (U, x) −→ (V, y) and

(g, b) : (V, y) −→ (W, z) we have

α̃((g, b) ◦ ( f , a)) = α̃(g ◦ f , F( f )(b) ◦ a)

= (g ◦ f ,αU(F( f )(b) ◦ a))

= (g ◦ f ,αU(F( f )(b)) ◦ αU(a))

= (g ◦ f ,G( f )(αV(b)) ◦ αU(a))

= (g,αV(b)) ◦ ( f ,αU(a))

= α̃(g, b) ◦ α̃( f , a)

and so we have compatibility with composition. On the other hand if (V, y) ∈ SF , then

α̃(id(V,y)) = α̃(idV , idy)

= (idV ,αV(idy))

= (idV , idαV (y))

= id(V,αV (y))

= idα̃(V,y)

and so we have compatibility with identity. Then α̃ : SF −→ SG is a functor. Moreover,

pG ◦ α̃ = pF and therefore is a 1-morphism of categories over C. In order to see that this is a

1-morphism of fibred categories over C we need to prove that this functor preserves strongly

cartesian morphisms. Let ( f , a) : (U, x) −→ (V, y) be a strongly cartesian morphism in SF ,

we shall see α̃( f , a) : α̃(U, x) −→ α̃(V, y) is a strongly cartesian morphism in SG. It is enough

to see that for the strongly cartesian lift ( f , idF( f )(y)) : (U, F( f )(y)) −→ (V, y) of f with target

(V, y) in SF , the morphism ( f , idF( f )(y)) is strongly cartesian in SG. This is immediate since

α̃( f , idF( f )(y)) = ( f ,αU(idF( f )(y)))
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= ( f , idαU (F( f )(y)))

= ( f , idG( f )(αV (y)))

which is the strongly cartesian lift of f with target (V,αV(y)) in SG.

If η : P −→ R and θ : R −→ T are natural transformations of functors R, S ,T : Cop −→ Cat,

we claim θ̃ ◦ η = θ̃◦ η̃. In fact, given (U, x) ∈ Ob(SP) we have η̃(U, x) = (U, ηU(x)) ∈ Ob(SR)

and then

(̃θ ◦ η̃)(U, x) = θ̃(̃η(U, x))

= θ̃(U, ηU(x)))

= (U, θU(ηU(x)))

= (U, (θU ◦ ηU)(x))

= (U, (θ ◦ η)U(x))

= θ̃ ◦ η(U, x)

In the same way if ( f , a) is a morphisms from (U, x) to (V, y), then η̃( f , a) = ( f , ηU(a)) and

we have θ̃( f , ηU(a)) = ( f , (θ ◦ η)U(a)) = θ̃ ◦ η( f , a).

Fibred categories of the form SF forms a sub 2-category of the 2-category of fibred categories.

We want to see if they are a complete sub 2-category. Given X = SF , Y = SG and A = X −→

Y a 1-morphism of fibred categories over C, we have this question: there is a unique natural

transformation α : F −→ G such that α̃ = A? Unicity is true, since if α, β : F −→ G are

natural transformations such that α̃ = β̃, then for any U ∈ Ob(C) and every x ∈ F(U) we

have (U, x) ∈ Ob(SF) and so α̃(U, x) = β̃(U, x) which means (U,αU(x)) = (U, βU(x)) and

therefore αU(x) = βU(x). Hence α = β. In other words, the functorial assignation F 7−→ SF

and (α : F −→ G) 7−→ (α̃ : SF −→ SG) is faithful. However, we will see this is fully faithful

if and only if A commutes with choice of pullbacks.
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As before, given U ∈ Ob(C) and x ∈ Ob(F(U)), (U, x) ∈ Ob(SF) and so A(U, x) ∈ SG.

Since q(A(U, x)) = p(U, x) = U we have A(U, x) = (U, y) for some y ∈ Ob(G(U)). If we

have A(U, x) = α̃(U, x) := (U,αU(x)) then we must to define αU(x) = y. If a : x1 −→ x2

is a morphism in F(U), then (idU , a) is a morphism in SF from (U, x1) to (U, x2). Therefore

A(idU , a) is a morphism in SG from A(U, x1) = (U,αU(x1)) to A(U, x2) = (U,αU(x2)). Since

q(A(idU , a)) = p(idU , a) = idU we have A(idU , a) = (idU , b). Again, if A(idU , a) = α̃(idU , a) :=

(idU ,αU(a)), then we must define αU(a) = b. In particular, since (idU , idx) = id(U,x) in SF and

A is a functor, then

(idU ,αU(idx)) = A(idU , idx)

= A(id(U,x))

= idA(U,x)

= id(U,alphaU (x))

= (idU , idαU (x))

and so αU(idx) = idαu(x). If a1 : x1 −→ x2 and a2 : x2 −→ x3 are morphisms in F(U) and then

(idU ,αU(a2 ◦ a1)) = A(idU , a2 ◦ a1)

= A((idU , a2) ◦ (idU , a1))

= A(idU , a2) ◦ A(idU , a1)

= (idU ,αU(a2)) ◦ (idU ,αU(a1))

= (idU ,αU(a2) ◦ αU(a1))

and therefore αU : F(U) −→ G(U) is a functor. Now, these functors define a natural trans-

formation {aU}U∈Ob(C) if and only if for every morphism U
f
−→ V in C the following square
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is commutative

F(U)
αU // G(U)

F(V)

F( f )

OO

αV
// G(V)

G( f )

OO

That is to say αU(F( f )(z)) = G( f )(αV(z)) for all z ∈ F(V). Given (V, z) ∈ SF we have

f ∗(V, z) = (U, F( f )(z)) and ( f , idF( f )(z)) : (U, F( f )(z)) −→ (V, z) is the strongly cartesian

lift of f in SF . Hence A( f ∗(V, z)) = A(U, F( f )(z)) = (U,αU(F( f )(z))). On the other hand

A(V, z) = (V,αV(z)), and so f ∗A(V, z) = (U,G( f )(αV(z))). Therefore, f ∗A(V, z) = A( f ∗(V, z)) if

and only if αU(F( f )(z)) = G( f )(αV(z)).

Since α̃ : SF −→ SG comes from a natural transformation, then α̃ send the strongly cartesian

lift of f in SF into the strongly cartesian lift of f in SG.

Now we are going to show that this construction preserves fibre products. Let F,G,H :

Cop −→ Cat functors and α : F −→ H and β : G −→ H are natural transformations. Hence

there exists the fibre product F ×H G : Cop −→ Cat defined as follows:

Given U ∈ Ob(C), we have morphisms αU : F(U) −→ H(U) and βU : G(U) −→ H(U), and

so we can consider the fibre product F(U)×H(U) G(U) wich is the category whose objects are

pairs (x, y) where x ∈ Ob(F(U)), y ∈ Ob(G(U)) and αU(x) = βU(y) and the morphisms from

(x, y) to (x′, y′) are pairs (a, b) with a : x −→ x′ and b : y −→ y′ morphisms in F(U) and G(U)

respectively such that αU(a) = βU(b). The composition law is (a, b) ◦ (a′, b′) := (a ◦ a′, b ◦ b′)

which is well defined because of αU and βU are functors. Projections prF(U) and prG(U) are

defined as . Define (F ×H G)(U) := F(U) ×H(U) G(U) and for f : U −→ V a morphism in C,

(F ×H G)( f ) : (F ×H G)(V) −→ (F ×H G)(U) is the only morphism such that in the following
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cube the upper and left faces are commutative

(F ×H G)(V) //

(F( f ),G( f ))
''

��

G(V)
G( f )

  

βV

��

(F ×H G)(U) //

��

G(U)

βU

��

F(V)
αV //

F( f ) ''

H(V)
H( f )

  
F(U)

αU
// H(U)

which is given by the universal property of the fibre product F(U)×H(U)G(U). More precisely,

if α and β are natural transformations, then the lower and right faces are commutative and

front and back are commutative because are indeed cartesian. Hence we can use this and

the universal property of fibre product in order to prove the existence and unicity of such a

morphism. This morphism is indeed (F( f ),G( f )), which is defined for (x, y) ∈ (F ×H G)(V)

by (F( f ),G( f ))(x, y) := (F( f )(x),G( f )(y)). If g : V −→ W is another morphism, the same

argument shows that (F ×H G)(g ◦ f ) = (F ×H G)( f ) ◦ (F ×H G)(g). Also, considering

idU : U −→ U, F(idU) = idF(U), G(idU) = idG(U) and H(idU) = idH(U), and so (F×H G)(idU) =

id(F×HG)(U). Therefore F ×H G : Cop −→ Cat is a functor.

We will define now the projections. Let prF : F ×H G −→ F defined for U ∈ C by prF,U :

(F ×H G)(U) −→ F(U) as the projection prF(U) : F(U) ×H(U) G(U) −→ F(U). Hence,

given U
f
−→ V , since the cube’s left face is commutative, pF is a natural transformation.

Analogously prG : F ×H G −→ G is defined. Clearly α ◦ prF = β ◦ prG. In order to prove the

universal property, let R : Cop −→ Cat be a functor with natural transformations γ : R −→ F
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and δ : R −→ G such that α ◦ γ = β ◦ δ. Then for U ∈ Ob(C) we have a commutative diagram

R(U)
εU

&&

δU

%%

γU

''

(F ×H G)(U)
prG(U) //

prF(U)

��

G(U)

βU

��
F(U)

αU
// H(U)

Lets show {εU}U∈Ob(C) defines a natural transformation ε : R −→ F ×H G. If f : U −→ V is a

morphism in C, we want to see the next square is commutative:

R(V)
R( f ) //

εV

��

R(U)

εU

��
(F ×H G)(V)

(F×HG)( f )
// (F ×H G)(U)

For this look at the following diagram

R(U)

γU
��

δU

''

εU

&&
R(V)

R( f )
<<

εV
""

γV

��

δV

''

(F ×H G)(U)

prF(U)
��

prG(U) // G(U)

βU

��

(F ×H G)(V)
(F×HG)( f )

88

prF(V)

��

prG(V)
// G(V)

G( f )
AA

βV

��

F(U)
αV // H(U)

F(V)
F( f )

88

αV
// H(V)

H( f )

AA

Consider the two morphisms (F ×H G)( f ) ◦ εV and εU ◦ R( f ) and compose them with both

prF and prG. Then we have:

prF(U) ◦ ((F ×H G)( f ) ◦ εV) = F( f ) ◦ prF(V) ◦ εV
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= F( f ) ◦ γV

= γU ◦ R( f )

= prF(U) ◦ (εU ◦ R( f ))

and

prG(U) ◦ ((F ×H G)( f ) ◦ εV) = G( f ) ◦ prG(V) ◦ εV

= G( f ) ◦ δV

= δU ◦ R( f )

= prG(U) ◦ (εU ◦ R( f ))

But, for the universal property of the fibre product (F ×H G)(U) there is only a morphism

with this property and so they are equal as we wanted. Then ε is a natural transformation and

the construction shows this is the unique such that prF ◦ ε = γ and prG ◦ ε = δ. Then F ×H G

is a fibre product in the Cat and we are done.

Considering the corresponding associated fibred categories pF : SF −→ C, pG : SG −→ C,

pH : SH −→ C and pF×HG −→ C we have 1-morphisms of fibred categories α̃ : SF −→

SH, β̃ : SG −→ SH, ρ̃F : SF×HG −→ SF and ρ̃G such that β̃ ◦ ρ̃G = α̃ ◦ ρ̃F , where ρ̃F is

p̃rF . Furthermore, this is more then simple commutativity, the associated square is actually

cartesian. We need only to show the universal property is satisfied. Let q : Z −→ C be a

fibred category over and γ : Z −→ SF and δ : Z −→ SG, 1-morphisms of fibred categories

over C such that the following diagram commutes

Z
ε

""

γ

##

δ

!!
SF×HG

ρ̃G //

ρ̃F
��

SG

β̃

��
SF

α̃

// SH
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We will construct a 1-morphism ε : Z −→ SF×HG which is unique making the triangles in

the diagram commutative. If z ∈ Ob(Z), then γ(z) ∈ Ob(SF) and so γ(z) = (U, x), with

U ∈ Ob(C) and x ∈ Ob(F(U)). Since γ is a morphism of categories over C, then pF ◦ γ = q

and then q(z) = pF ◦ γ(z) = pF(U, x) = U. Therefore δ(z) = (U, y) with y ∈ Ob(G(U)).

Moreover, α̃ ◦ γ = β̃ ◦ δ and so α̃(U, x) = β̃(U, y), which means (U,αU(x)) = (U, βU(y))

and we have αU(x) = βU(y). Then (U, (x, y)) ∈ Ob(SF×HG). We define ε(z) = (U, (x, y)),

where U = q(z), (U, x) = γ(z) and (U, y) = δ(z). If c : z1 −→ z2 is a morphism in Z ,

then γ(c); γ(z1) −→ γ(z2) is a morphisms in SF . Writing γ(z1) = (U, x1) and γ(z2) = (V, x2),

where U = q(z1) and V = q(z2), we have γ(c) = ( f , a) with f : U −→ V a morphism in C

and a : x1 −→ F( f )(x2) a morphism in F(U). Moreover, q(c) = pF ◦ γ(c) = f . Therefore

δ(c) : δ(z1) −→ δ(z2) is a morphism in SG. Writing δ(z1) = (U, y1) and δ(z2) = (V, y2), we

have γ(c) = ( f , b) with b : y1 −→ G( f )(y2) a morphism in G(U). Since α̃ ◦ γ = β̃ ◦ δ and by

definition α̃◦γ(c) = α̃( f , a) = ( f ,αU(a)) and β̃◦ δ(c) = β̃( f , b) = ( f , βU(b)), then ( f ,αU(a)) =

( f , βU(b)) and so αU(a) = βU(b). Hence (a, b) ∈ Hom(F×HG)((x1, F( f )(x2)), (y1,G( f )(y2)))

and therefore ( f , (a, b)) ∈ HomSF×HG ((U, (x1, y1)), (V, (x2, y2))). Define ε(c) = ( f , (a, b)). then

ρ̃F ◦ ε(z) = ρ̃(U, (x, y)) = (U, x) = γ(z) and ρ̃F ◦ ε(c) = ρ̃F( f , (a, b)) = ( f , a) = γ(c), and so

ρ̃F ◦ ε = γ. In the same way ρ̃G ◦ ε = δ. If there exists η : Z −→ SF×HG with these properties,

if η(z) = (U′(x′, y′)), then ρ̃F ◦ η(z) = (U′, x′), but ρ̃F ◦ η = γ and it follows (U′, x′) = (U, x)

and so η(z) = ε(z). Similarly, η(c) = ε(c) for any morphism c in Z .

The proof ends once it is stablished that ε : Z −→ SF×HG is a 1-morphism of fibred categories

over C. For this only rest to show pF×HG ◦ε = q and ε preserves strongly cartesian morphisms.

If z ∈ Ob(Z), then

pF×HG ◦ ε(z) = pF×HG(U, (x, y))

= pF(U, x)

= pF(γ(z))
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= q(z)

Now, if z2 ∈ Ob(Z) and f : U −→ q(z2) a morphism in C, let c : z1 −→ z2 be the strongly

cartesian morphism lift of f in Z . Is enough to show that ε(c) is strongly cartesian in SF×HG.

By hypothesis γ(c) and δ(c) are strongly cartesian in SF and SG respectively. Writing ε(z1) =

(U, (x1, y1)), ε(z2) = (V, (x2, y2)) and ε(c) = ( f , (a, b)) we have U = q(z1), V = q(z2), (U, x1) =

γ(z1), (U, y1) = δ(z1), (V, x2) = γ(z2), (V, y2) = δ(z2), ( f , a) = γ(c) and ( f , b) = δ(c). If

(W, (x, y)) is an object of SF×HG, g : W −→ U is a morphism in C and ( f ◦ g, (d, e)) :

(W, (x, y)) −→ (V, (x2, y2)) is a morphism, then γ( f ◦ g, (d, e)) = ( f ◦ g, d), δ( f ◦ g, (d, e)) =

( f ◦ g, e) and α̃ ◦ γ( f ◦ g, (d, e)) = β̃ ◦ δ( f ◦ g, (d, e)). Hence α̃( f ◦ g, d) = β̃( f ◦ g, e). Consider

the following array of diagrams where arrows connecting them means the respective functor

transforms one diagram in another, using the notation as above

(W, (x, y))
(g,(r,s))

''��

( f◦g,(d,e))

$$
W

g
''

(U, (x1, y1))
( f ,(a,b))

ε(c) //

��

(V, (x2, y2))

��
U

f
// V

ρ̃G // (W, y)
(g,s)

$$��

( f◦g,e)

��
W

g
$$

(U, y1)
( f ,b)

//

��

(V, y2)

��
U

f
// V

ρ̃F

��
β̃

��

(W, x)
(g,r)

$$��

( f◦g,d)

  
W

g
%%

(U, x1)
( f ,a)

//

��

(V, x2)

��
U

f
// V

α̃

//

(W,m)
(g,t)

%%��

( f◦g,l)

  
W

g
%%

(U,m1)
( f ,k)

//

��

(V,m2)

��
U

f
// V
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The morphisms ( f , a) and ( f , b) are strongly cartesian in SF and SG respectively, and so

there are morphisms (g, r) and (g, s) which are unique such that the triangles in the respective

diagrams are commutative. We shall see (g, (r, s)) is a morphisms in SF×HG. We already know

α̃(U, x) = β̃(U, y) =: (U,m), α̃(U, x1) = β̃(U, y1) =: (U,m1), α̃(V, x2) = β̃(V, y2) =: (V,m2) and

also α̃( f , a) = β̃( f , b) =: ( f , k) is strongly cartesian. Since α̃( f ◦ g, d) = β̃( f ◦ g, e) we have

αU(d) = βU(e) := l and so ( f ◦ g, l) is a morphism in SH. Therefore there exists a morphism

(g, t) : (W,m) −→ (U,m1) unique such that the respective triangle commutes. But α̃(g, r) and

β̃(g, s) satisfy that property and so are equal. Hence αU(r) = βU(s) and it follows (g, (r, s)) is

a morphism in SF×HG and is such that

( f , (a, b)) ◦ (g, (r, s)) = ( f ◦ g, (F ×H G)(a, b) ◦ (r, s))

= ( f ◦ g, (F(g)(a),G(g)(b)) ◦ (r, s))

= ( f ◦ g, (F(g)(a) ◦ r,G(g)(b) ◦ s))

= ( f ◦ g, (d, e))

where we use ( f ◦ g, d) = ( f , a) ◦ (g, r) := ( f ◦ g, F(g)(a) ◦ r) and ( f ◦ g, e) = ( f , b) ◦ (g, s) :=

( f ◦ g,G(g)(b) ◦ s). Is easy to see that (g, (r, s)) is unique satisfying the equality above.

Therefore there exists SF ×SH SG and is given by SF×HG, that is to say, there exists fibre

product in the category of fibred categories as long as these are fibred categories associated

to functors and the 1-morphism are induced by natural transformations of such functors.

We can summarize the previous results in the following theorem.

Theorem 2. Given a functor F : Cop −→ Cat there is a canonical fibred category pF :

SF −→ C. If α : F −→ G is a natural transformation of functors, there is a 1-morphism of

fibred categories α̃ : SF −→ SG such that the construction is compatible with composition,

identities and fibre product.
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With the notation as before, another fibre product can be constructed as follows:

Define the category SF,G,H with

Ob(SF,G,H) = {(X,Y) | X ∈ Ob(SF),Y ∈ Ob(SG) and α̃(X) = β̃(Y)}

Hence, if X = (U, x) and Y = (V, y) then α̃(X) = α̃(U, x) = (U,αU(x)) and β̃(Y) = β̃(V, y) =

(V, βVy) and therefore U = V and αU(x) = βU(y). Then an object of SF,G,H has the form

((U, x), (U, y)). A morphism from ((U, x1), (U, y1)) to ((V, x2), (V, y2)) in SF,G,H is a pair (r, s)

with r : (U, x1) −→ (V, x2) and s : (U, y1) −→ (V, y2) morphisms in SF and SG respectively

such that α̃(r) = β̃(s). Hence r = ( f , a) where f : U −→ V a morphism in C and a : x1 −→

F( f )(x2) a morphism in F(U). Similarly s = (g, b) with g : U −→ V and b : y1 −→ G( f )(y2).

Now, α̃(r) = β̃(s) if and only if f = g and and αU(a) = αU(b). Therefore a morphism has

the form (( f , a), ( f , b)). Given a morphism (r′, s′) from ((V, x2), (V, y2)) into a third object

((W, x3), (W, y3)) of SF,G,H we define (r′, s′) ◦ (r, s) := (r′ ◦ r, s′ ◦ s), making the compositions

in SF and SG according to the case. Then SF,G,H is a category and is easy to see that SF,G,H �

SF×HG. Let ϕ : SF×HG −→ SF,G,H be the functor defined by ϕ(U, (x, y)) = ((U, x), (U, y)) in

the objects and ϕ( f , (a, b)) = (( f , a), ( f , b)) in the morphisms. Then ϕ is an isomorphism.

Therefore SF,G,H is a fibre product of α̃ : SF −→ SH and β̃ : SG −→ SH.

In particular, if X = SF , Y = SG and Z = SH, the construction X ×Z Y we have done before

in categories over C is also valid in fibred categories which are induced by functors. Here

( f ∗x −→ x, f ∗y −→ y) : ( f ∗x, f ∗y) −→ (x, y) is the strongly cartesian lift of f .

Then if the categories are associated to functors F : C −→ Cat and the 1-morphisms comes

from natural transformations, the fibre product always exists and is given like any of the both

equivalent constructions. In particular we can do this when the fibred categories are quo-

tients [U/R]p of groupoids (U,R, s, t, c) and the 1-morphisms are induced by morphisms of
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groupoids. From now on we will concentrate the efforts in fibred categories and 1-morphisms

of such type looking for a quite general result.

Definition 1.4.1 (Split fibred category). (02XW) Let C be a category. A split fibred category

over C is a fibred category over C 1-isomorphic to one of these categories SF , where F :

Cop −→ Cat is a functor.

Lemma 1.4.1. (02XX) Let C be a category. A fibred category p : S −→ C is split if and only

if for some choice of pullbacks, the functors ( f ◦ g)∗ and g∗ ◦ f ∗ are equal.

Lemma 1.4.2. (004A) If p : S −→ C is a fibred category, then there exists a functor F :

Cop −→ Cat such that S is equivalent to SF as fibred category over C. In other words, every

fibred category is equivalent to a split one.

The following sections introduce some classes of fibred categories depending in what addi-

tional structure the fibre categories have. The most important are groupoids, sets and setoids.

There are some results that we have for any fibred category, but also each of these clases has

particular properties. For the subsequent results in this work is enough with fibred categories

in general or in some cases fibred categories in groupoids. Fibred categories in sets and se-

toids are important in order to define when a fibred category is representable, so we expose

here the principal results.

1.5 Fibred categories in groupoids

Definition 1.5.1 (Fibred category in groupoids). A category p : S −→ C over C is a cate-

gory fibred in groupoids if this is a fibred category over C and for any U ∈ Ob(C), the fibre

category SU is a groupoid.
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Remark. This definition is different than the presented in Stacks Project and some books,

although they are equivalent. We prefer the presented here because is easier to recall and is

more like the definitions for fibred categories in sets and setoids.

Lemma 1.5.1. (03WQ) Given a fibred category p : S −→ C, let S ′ be the sub-category of S

defined as follows:

1. Ob(S ′) = Ob(S)

2. For x, y ∈ Ob(S ′), the set of morphisms from x to y is the set of the strongly cartesian

morphisms from x to y.

Then p′ : S ′ −→ C, defined as the restriction of p to S ′, is a fibred categories in groupoids

over C.

Lemma 1.5.2. (003V) If p : S −→ C is a fibred category in groupoids, then every morphisms

of S is strongly cartesian.

Proof. Let x
ϕ

−→ y a morphism in S and f = p(ϕ). Since p : S −→ C is fibred, there is a

strongly cartesian morphism f ∗y
ψ

−→ y which is a lift of f . Then, there exist α : x −→ f ∗x in

Sp(x) unique such that x
α
−→ f ∗y

ψ

−→ y = x
ϕ

−→ y. But Sp(x) is a groupoid and therefore α is

an isomorphism and therefore is strongly cartesian. Then ϕ = ψ ◦α is strongly cartesian. �

Definition 1.5.2. (02XS) Let C be a category. The 2-category of fibred categories in groupoids

over C is 2-category defined as follows:

1. Its objects are fibred categories in groupoids over C.

2. The 1-morphisms (S , p) −→ (S ′, p′) are functors G : S −→ S ′ such that p′ ◦G = p
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3. Its 2-morphisms t : G −→ H for G,H : (S, p) −→ (S ′, p′) are natural transformations

such that p′(tx) = idp(x) for all x ∈ Ob(S).

Remark. The 2-category of fibred categories in groupoids is a sub 2-category of the 2-

category of fibred categories. Note that since every morphism of S is strongly cartesian, then

any functor G : S −→ S ′ preserve them. Moreover, every 2-morphism is isomorphism, and

therefore this 2-category is actually a (2,1)-category.

Lemma 1.5.3. (0041) Let C be a category. The 2-category of fibred categories in groupoids

over C has 2-fibre products and they are described as in categories over C.

Proof. Given U ∈ C we have that XU , YU and ZU are groupoids. Then let (a, b) :

(U, x, y,α) −→ (U, x′, y′,α′) be a morphism in (X ×2
Z Y)U . Since s(a, b) = idU , then

p(a) = q(b) = idU and therefore a : x −→ x′ and b : y −→ y′ are morphisms in XU and

YU respectively. Hence a and b are isomorphisms. We shall see that (a−1, b−1) is a morphism

from (U′, x′, y′,α′) to (U, x, y,α) in (X×2
ZY)U . Since F(b)◦α = α′◦F(a) and F(a−1) = F(a)−1,

F(b−1) = F(b)−1, then α ◦ F(a−1) = F(b−1) ◦ α′ and is clear that s(a−1, b−1) = idU . Moreover,

(a−1, b−1) ◦ (a, b) = (idx, idy) = id(U,x,y,α) and (a, b) ◦ (a−1, b−1) = (idx′ , idy′) = id(U′,x′,y′,α′) and

so (a, b) is an isomorphism and therefore (X ×2
Z Y)U is a groupoid. �

Lemma 1.5.4. (003Z) Let p : S −→ C and p′ : S ′ −→ C be fibred categories in groupoids

and let G : S −→ S ′ be a functor over C.

1. G is faithful (resp. fully faithful, resp. an equivalence) if and only if for any U ∈

Ob(C) the induced functor GU : SU −→ S ′U is faithful (resp. fully faithful, resp. an

equivalence).

2. If G is an equivalence, then G is an equivalence in the 2-category of fibred categories

in groupoids over C.
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Lemma 1.5.5. (06N6) Let p : S −→ C be a fibred category in groupoids, x −→ z and y −→ z

morphisms of S. If exists p(x) ×p(z) p(y), then exists x ×z y and p(x ×z y) = p(x) ×p(z) p(y).

Proof. It follows from the analog statement for categories over C taking in account that in

a fibred categories in groupoids all the morphisms are strongly cartesian and therefore the

conditions are satisfied automatically. �

Remark. If F : X −→ Y is a 1-morphism of fibred categories in groupoids, X is not

necessarily a fibred category over Y . However, the next lemma states that we are really close

to this.

Lemma 1.5.6. (06N7) If F : X −→ Y is a 1-morphism of fibred categories in groupoids over

C, Then there exists a factorization X −→ X ′ −→ Y of 1-morphisms of fibred categories in

groupoids over C such that X −→ X ′ is an equivalence over C and X ′ is a fibred category in

groupoids over Y .

If F : Cop −→ Gpds is a functor, then it induces a fibred category pF : SF −→ C which is a

fibred category in groupoids. The same constructions made in fibred categories are possible

here. In particular, a split fibred category in groupoids is a fibred category in groupoids

equivalent to a category SF , where F : Cop −→ Gpds is a functor. The same result as before

allow us to conclude that every fibred category in groupoids is equivalent over C to a split

one.

1.6 Fibred categories in sets

Definition 1.6.1 (Discrete category). (02Y0) A category is discrete if its only morphisms are

the identities of the objects.
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Definition 1.6.2 (Fibred category in sets). (0043) Let C be a category. A fibred category in

sets is a fibred category whose fibre categories are discrete.

Remark. Is easy to see that every category fibred in sets is a fibred category fibred in

groupoids.

Example 8. If F : Cop −→ Sets is a functor, then SF is the category fibred in sets with:

Ob(SF) := {(U, x) | U ∈ Ob(C), x ∈ F(U)}

where we have used that F(U) is a set, that is to say, a discrete category. If (V, y) and (U, x)

are in Ob(SF) we have

HomF(V)((V, y), (U, x)) := { f ∈ HomC(V,U) | F( f )(x) = y}

More precisely, this is the set of pairs ( f , a) where f ∈ HomC(V,U) and a ∈

HomF(V)(y, F( f )(x)), but in this case F(V) is a discrete category and this means y = F( f )(x)

and a is the identity map. The functor pF : SF −→ C is given by (U, x) 7−→ U and f 7−→ f .

The composition in SF is inherited from the composition in C and so g∗ ◦ f ∗ = ( f ◦ g)∗ for

any pair of composable morphisms in C. The functor pF : SF −→ C is given by pF(U, x) = U

and pF( f ) = f . Since every fibre category SF,U = {(U, x) | x ∈ F(U)} is isomorphic to the set

F(U), then SF is a fibred category in sets.

Definition 1.6.3 (2-category of fibred categories on sets). (04S8) Let C be a category. The

2-category of fibred categories in sets over C is the sub 2-category of the 2-category of fibred

categories in groupoids over C defined as follows:

1. The objects are categories p : S −→ C fibred in sets.

2. The 1-morphisms (S, p) −→ (S ′, p′) are functors G : S −→ S ′ such that p′ ◦G = p.
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3. The 2-morphisms t : G −→ H for G,H : (S , p) −→ (S ′, p) are natural transformations

such that p′(tx) = idp(x), for all x ∈ Ob(S).

Remark. Since this is a full sub 2-category of the 2-category of fibred categories in

groupoids, all the 2-morphisms are isomorphisms and therefore this is in fact a (2,1)-category.

Lemma 1.6.1. (0047) Let C be a category. The 2-category of fibred categories in sets over C

has 2-fibre product and is the same as fibred categories in groupoids.

Here is a result that relate fibre and 2-fibre products imposing a strong condition over the

fibred category Z .

Proposition 1.6.1. Let p : X −→ C, q : Y −→ C and r : Z −→ C be fibred categories over C

and F : X −→ Z and G : Y −→ Z 1-morphisms of fibred categories over C. If Z is fibred

in sets, then the 2-fibre product 2-fibre product X ×2
Z Y is also a fibre product, and therefore

X ×Z Y is a fibred category.

Proof. Recall that the objects of X ×2
Z Y are cuadruples (U, x, y,α), where U ∈ Ob(C),

x ∈ Ob(XU), y ∈ Ob(YU) and α : F(x) −→ G(y) is an isomorphism in ZU . Since Z is fibred

in sets, then the fibre category ZU is discrete and therefore F(x) = G(y) and α is the identity

morphism. Hence (x, y) ∈ Ob(X ×Z Y), where X ×Z Y is the fibre product which exists in

categories over C. Moreover, the morphisms are the same and so X ×2
Z Y = X ×Z Y . �

Lemma 1.6.2. (02Y2) Let C be a category. The only morphisms between fibred categories

in sets over C are identities, that is to say, the 2-category of fibred categories in sets is a

category. Moreover, there is an equivalence

{category of presheaves

of sets over C

}
←→

{category of fibred cate-

gories in sets over C

}
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The functor from left to right is F 7−→ SF and the functor in the other direction assign to

p : S −→ C, the presheaf U 7−→ Ob(SU).

Example 9. (0044) Let C be a category and x ∈ Ob(C). Recall that C/X is the category whose

objects are morphisms Y −→ X in C and the morphisms from Y −→ X to Y ′ −→ Y are the

morphisms Y −→ Y ′ in C such that the next triangle commutes

Y

��

// Y ′

~~
X

Consider the representable presheaf hX = HomC(_, X), and the forgetful functor p : C/X −→

C. Since the fibre category (C/X)U has as objects the morphisms h : U −→ X and the

morphisms are only the identities, the correspondence from the previous lemma implies

hX ←→ C/X

Therefore the category C/X is canonically isomorphic to the category ShX associated to hX.

Hence we could define a category to be representable if it is a fibred category in sets whose

correspondent presheaf is representable in the usual sense. However it is preferable to have a

notion which is invariant under equivalences. In order to make this precise, we are going to

show which are the fibred categories in groupoids that are equivalent to fibred categories in

sets.

1.7 Fibred categories in setoids

Definition 1.7.1 (Setoid). (02XZ) A setoid is a groupoid where every object has exactly one

automorphism: the identity.
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If C is a set together with an equivalence relation ∼, then we can construct a setoid C as

follows: Ob(C) = C and for x, y ∈ C we define HomC(x, y) = ∅ unless x ∼ y in which case

HomC(x, y) = {1}. Transitivity of ∼ means that morphisms can be composed. Reciprocally,

every setoid defines a equivalence relation in its objets (isomorphism) such that the category

can be recovered up to unique isomorphism with the previous construction.

Discrete categories are setoids. For any setoid C there is a canonical way to construct an

equivalent discrete category, namely we replace Ob(C) by the set of isomorphism classes and

identities morphisms are added. In terms of sets this corresponds to take the quotient by the

equivalence relation.

Definition 1.7.2 (Fibred category in setoids). (04SA) Let C be a category. A fibred category

in setoids is a fibred category whose fibre categories are setoids.

Definition 1.7.3 (2-category of fibred categories in setoids). (02Y1) Let C be a category.

The 2-category of fibred categories in setoids over C is the sub 2-category of fibred categories

in groupoids over C defined as follows:

1. The Objects are categories p : S −→ C fibred in setoids.

2. The 1-morphisms (S, p) −→ (S ′, p′) are functors G : S −→ S ′ such that p′ ◦G = p.

3. The 2-morphisms t : G −→ H for G,H : (S, p) −→ (S ′, p′) are natural transformations

such that p′(tx) = idp(x),∀x ∈ Ob(S).

Once again this is a (2, 1)-category.

Lemma 1.7.1. (04SB) Let C be a category. The 2-category of fibred categories in sets over C

has 2-fibre product and is the same as fibred categories in groupoids.

Lemma 1.7.2. (0045) Let p : S −→ C a fibred category.
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1. If S −→ S ′ is an equivalence over C and S ′ is fibred in sets, then:

a) S is a fibred category in setoids over C,

b) For each U ∈ Ob(C) the map Ob(SU) −→ Ob(S ′U) identify Ob(S ′U) with the set of

isomorphism classes of Ob(SU).

2. If p : S −→ C is a fibred category in setoids, there is a fibred category in sets p′ :

S ′ −→ C and a canonical equivalence S −→ S ′ over C.

Lemma 1.7.3. (04SC) The construction from the previous lemma gives a functor

F :
{2-category of fibred cate-

gories in setoids over C

}
−→

{Category of fibred cate-

gories in sets over C

}
This functor is an equivalence in the following sense:

1. If f , g : S1 −→ S2 are 1-morphisms satisfying F( f ) = G(g), then there is a unique

2-isomorphism f −→ g.

2. For any morphism h : F(S1) −→ F(S2) there is a 1-morphism f : S 1 −→ S2 such that

F( f ) = h.

3. Every fibred category in sets S is equal to F(S ).

Definition 1.7.4 (Representable fibred category). (0046) A fibred category p : S −→ C is

representable if there is X ∈ Ob(C) and an equivalence j : S −→ C/X. As usual we say that

X represents S.

Lemma 1.7.4. (02Y3) Let p : S −→ C a fibred category.

1. S is representable if and only if the following conditions are satisfied:
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a) S is fibred in setoids.

b) The presheaf U 7−→ Ob(SU)/ � is representable.

2. If S is representable, the pair (X, j) is determined in a unique form up to isomorphism.

64



Chapter

2 Stacks

2.1 The Mor(x, y) presheaves

Assume C is a category and p : S −→ C a fibred category. Given U ∈ Ob(C) and x, y ∈

Ob(SU) we will define a functor

Mor(x, y) : (C/U)op −→ Sets

Recall that C/U is the category whose objects are morphisms f : V −→ U in en C and for

f : V −→ U and f ′ : V ′ −→ U, HomC/U( f ′, f ) is the set of morphisms g : V ′ −→ V such

that the next diagram commutes

V ′

f ′   

g // V

f��
U

For f : V −→ U we define Mor(x, y)( f ) := HomSV ( f ∗x, f ∗y), wich make sense, since f ∗x y

f ∗y are objects in SV and we can consider the set MorSV ( f ∗x, f ∗y).
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If f ′ : V ′ −→ U is a second object in C/U, then Mor(x, y)( f ′ : V ′ −→ U) =

HomSV′ ( f ′∗x, f ′∗y). Let g : V ′ −→ V ∈ MorC/U( f ′, f ), that is to say, f ◦ g = f ′. We

want to define a function HomSV ( f ∗x, f ∗y) −→ HomSV′ ( f ′∗x, f ′∗y). For this, remember that

exists a unique invertible natural transformation αg, f : ( f ◦ g)∗ −→ g∗ f ∗ such that for each

x ∈ SU the following diagram is commutative

( f ◦ g)∗x
(αg, f )x //

&&

g∗ f ∗x // f ∗x

{{
x

Therefore, we can do the next composition

f ′∗x
(αg, f )x //

ϕ|V′

��

g∗ f ∗x

g∗ϕ
��

f ′∗y g∗ f ∗y
(αg, f )−1

y

oo

and then we can define

HomSV ( f ∗x, f ∗y) // HomSV′ ( f ′∗x, f ′∗y)

ϕ
� // ϕ|V′

That is to say (Mor(x, y)(g))(ϕ) = (αg, f )−1
y ◦ g∗ϕ ◦ (αg, f )x.

We shall show that Mor(x, y) thus define is a functor. Let f ′′ : V ′′ −→ V ′ another object in

C/U and g′ : V ′′ −→ V ′ in HomC/U( f ′′, f ′). Hence f ′ ◦ g′ = f ′′ and therefore f ′′ = f ′ ◦ g′ =

f ◦ g ◦ g′. If ϕ ∈ HomSV ( f ∗x, f ∗y), then Mor(x, y)(g ◦ g′) = (αg◦g′, f )−1
y ◦ (g ◦ g′)∗ϕ ◦ (αg◦g′, f )x.

Now, by definition of αg′,g the next diagram is commutative

(g ◦ g′)∗ f ∗x

(g◦g′)∗ϕ

��

(αg′ ,g) f ∗ x // (g′∗ ◦ g∗) f ∗x

g′∗g∗ϕ

��
(g ◦ g′)∗ f ∗y

(αg′ ,g) f ∗y

// (g′∗ ◦ g∗) f ∗y
(αg′ ,g)−1

f ∗yoo
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and we have (g◦g′)∗ϕ = (αg′,g)−1
f ∗y ◦g′∗g∗ϕ◦ (αg′,g) f ∗x. Thus Mor(x, y)(g◦g′)(ϕ) = (αg◦g′, f )−1

y ◦

(αg′,g)−1
f ∗y ◦ g′∗g∗ϕ ◦ (αg,g′) f ∗x ◦ (αg◦g′, f )x. Like the quadruple (U 7−→ SU , f 7−→ f ∗,αg, f ,αU)

is a pseudo functor from Cop to the (2,1)-category of categories, then (αg′,g) f ∗ ◦ αg′◦g, f =

g′∗(αg, f )◦αg′,g◦ f and in particular, for x, y ∈ Ob(SU) it follows (αg◦g′, f )−1
y ◦(αg′,g)−1

f ∗y = (αg′, f )−1
y ◦

g′∗(αg, f )−1
y and (αg′,g) f ∗x ◦ (αg◦g′, f )x = g′∗(αg, f )x ◦ (αg′, f ′)x. Therefore

Mor(x, y)(g ◦ g′)(ϕ) = (αg′, f ′)−1
y ◦ g′∗(αg, f )−1

y ◦ g′∗g∗ϕ ◦ g′∗(αg, f )x ◦ (αg′, f ′)x

= (αg′, f ′)−1
y ◦ g′∗((αg, f )−1

y ◦ g∗ϕ ◦ (αg, f )x) ◦ (αg′, f ′)x

Consequently we have

(Mor(x, y)(g′) ◦Mor(x, y)(g))(ϕ) = Mor(x, y)(g′)(Mor(x, y)(g)(ϕ))

= Mor(x, y)(g′)((αg, f )−1
y ◦ g∗ϕ ◦ (αg, f )x)

= (αg′, f ′)−1
y ◦ g′∗((αg, f )−1

y ◦ g∗ϕ ◦ (αg, f )x) ◦ (αg′, f ′)x

= Mor(x, y)(g ◦ g′)(ϕ)

Since ϕ is arbitrary Mor(x, y)(g ◦ g′) = Mor(x, y)(g′) ◦Mor(x, y)(g), and we have stability by

composition. Moreover, as (αidV , f ) = id f ∗ and id f = idV , then Mor(x, y)(idV)(ϕ) = (αidV , f )
−1
y ◦

id∗Vϕ◦(αidV , f )x = ϕ and thus Mor(x, y)(id f ) = idMorSV ( f ∗x, f ∗y) = idMor(x,y)( f ). We have stability

by identity and we are done.

Definition 2.1.1 (Presheaf of morphisms). (02ZB) Let p : C −→ C be a fibred category.

Given an object U of C and a pair of objects x, y ∈ SU , the functor Mor(x, y) defined as

before is called presheaf of morphisms from x to y.

Lemma 2.1.1. (042V) If F : S1 −→ S2 is a 1-morphism of fibred categories over C, U ∈

Ob(C) and x, y ∈ Ob(SU), then exists a canonical natural transformation of presheaves in

C/U

α : MorS1(x, y) =⇒ MorS2(F(x), F(y))
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Moreover, if F : S 1 −→ S 2 is an equivalence of categories, then α is invertible.

Proof. We want to define for any f ∈ Ob(C/U) a function α f : MorS1(x, y)( f ) −→

MorS2(F(x), F(y))( f ), that is to say, α f : HomS 1,V ( f ∗x, f ∗y) −→ HomS2,V ( f ∗F(x), f ∗F(y))

so that α = {α f } f∈C/U be a natural transformation. Thus, given ϕ ∈ MorS1,V ( f ∗x, f ∗y), we

want α f (ϕ) ∈ MorS2,V ( f ∗F(x), f ∗F(y)).

The morphism f ∗x −→ x is strongly cartesian and then F( f ∗x) −→ F(x) is strongly cartesian

and like p′ ◦ F = p, then p′(F( f ∗x) −→ F(x)) = p′ ◦ F( f ∗x −→ x) = p( f ∗x −→ x)

and therefore F( f ∗x −→ F(x)) is over f . But, as by definition f ∗F(x) −→ F(x) is also

strongly cartesian over f , then there exists an unique isomorphism µV : f ∗(F(x)) −→ F( f ∗x)

such that f ∗(F(x))
µV
−→ F( f ∗) −→ F(x) = f ∗(F(x)) −→ F(x). Moreover, p′(F( f ∗x)) =

p( f ∗x) = V and therefore F( f ∗) ∈ SV . Similarly, given another y ∈ Ob(SU) there is an

unique isomorphism ηV : F∗(F(y)) −→ F(y) such that f ∗(F(y))
ηV
−→ F( f ∗) −→ F(y) =

f ∗(F(y)) −→ F(y). Therefore, given ϕ ∈ MorS 1,V ( f ∗x, f ∗y) we define α f (ϕ) = f ∗(F(x))
µV
−→

F( f ∗x)
F(ϕ)
−→ F( f ∗y)

η−1
V
−→ f ∗(F(y)), that is to say, α f (ϕ) = η−1

V ◦ F(ϕ) ◦ µV and like µV and νV

are isomorphisms, α f (ϕ) is the unique morphisms in SV such that ηV ◦ α f (ϕ) = F(ϕ) ◦ µV .

We shall see that α = {α f } is a natural transformation from MorS1(x, y) to MorS2(F(x), F(y)).

For this, we will prove that if g : V ′ −→ V ∈ MorC/U( f ′, f ), then the following diagram

commutes

MorS1(x, y)( f )

g∗

��

α f //MorS2(F(x), F(y))( f )

g∗

��
MorS1(x, y)( f ◦ g)

α f◦g
//MorS2(F(x), F(y))( f ◦ g)
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This is the same as for ϕ ∈ MorS1(x, y)( f ), we have g∗(α f (ϕ)) = α f◦g(g∗(ϕ)). To do this

consider the next diagram:

g∗ f ∗(F(x))
δ

zz
µV′

��

g∗α f (ϕ)
))

α f◦g(g∗ϕ)
44

g∗ f ∗(F(y))

ηV′

��

ε

$$
f ∗(F(x))





µV

��

α f (ϕ) 22 f ∗(F(y))

ηV

�� ��

F(g∗ f ∗x)
F(β)

vv

F(g∗ϕ)
// F(g∗ f ∗y)

F(γ)

((
F(x) F( f ∗x)oo

F(ϕ) 22 F( f ∗y) // F(y)

g∗ f ∗x

OO

βvv

g∗ϕ
// g∗ f ∗y

OO

γ ((
x

OO

f ∗x

OO

oo

ϕ

22 f ∗y

OO

// y

OO

We want to prove that the two morphisms at the top are equal. By construction we have:

• α f (ϕ) is the only morphism in SV such that ηV ◦ α f (ϕ) = F(ϕ) ◦ µV .

• g∗α f (ϕ) is the only morphism in SV′ such that ε ◦ g∗α f (ϕ) = α f (ϕ) ◦ δ.

• α f◦g(g∗ϕ) is the only morphism in SV such that ηV′ ◦ α f◦g(g∗ϕ) = F(g∗ϕ) ◦ µV′ .

In order to see α f◦g(g∗ϕ) = g∗α f (ϕ), is enough to show ε ◦ α f◦g(g∗ϕ) = α f (ϕ) ◦ δ ans since

ηV is an isomorphism, this is equivalent to show ηV(ε ◦ α f◦g(g∗ϕ)) = ηV(α f (ϕ) ◦ δ). Now,

ηV ◦α f (ϕ)◦δ = F(ϕ)◦µV ◦δ and in the other hand F( f ∗x) −→ F(x) and F( f ∗y) −→ F(y) are

strongly cartesian, and thus F(β) ◦ µV′ = µV ◦ δ and F(γ) ◦ ηV′ = ηV ◦ ε. Therefore we have

ηV ◦ ε ◦ α f◦g(g∗ϕ) = F(γ) ◦ ηV′ ◦ α f◦g(g∗ϕ)

= F(γ) ◦ F(g∗ϕ) ◦ µV′
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= F(γ ◦ g∗ϕ) ◦ µV′

= F(ϕ ◦ β) ◦ µV′

= F(ϕ) ◦ F(β) ◦ µV′

= F(ϕ) ◦ µV ◦ δ

So, g∗α f (ϕ) = α f◦g(g∗ϕ) and then α is a natural transformation. If F : S1 −→ S2 is fully

faithful, then HomS1,V ( f ∗x, f ∗y) ←→ HomS2,V (F( f ∗x), F( f ∗y)). Moreover, by construction

HomS2,V (F( f ∗x), F( f ∗y)) ←→ HomS2,V( f ∗F(x), f ∗F(y)) and then α f is bijective. Further-

more, following the previous proof, we may see α−1
f defines a natural transformation which

is the inverse of α. Therefore, if F : S1 −→ S2 is fully faithful, α is an invertible natural

transformation. �

2.2 Descent data in fibred categories

Before we treat about descent datums, we shall define the category of families of morphisms

with fixed target in C, which will be useful in the definition of the category of descent data.

Definition 2.2.1 (Category of families of fixed target). Let C be a category U = { fi : Ui −→

U}i∈I and V = {gi : Vl −→ V} families of morphisms in C with fixed target.

1. A morphism from U to V is a system (h,α, hi), where h : U −→ V is a morphisms in C,

α : I −→ J a function and hi : Ui −→ Vα(i) a morphism for each i ∈ I, such that the

following diagram commutes

Ui

fi
��

hi // Vα(i)

gα(i)

��
U

h
// V

70



2. STACKS

2. Given another family W = {Wm −→ W}m∈M, and (k, β, kl) a morphism from V to W we

define the composition of such morphisms as the system (k ◦ h, β ◦ α, kαi ◦ hi). Then,

commutativity of the next diagram is clear

Ui

fi
��

hi // Vα(i)

gα(i)

��

kα(i) // Wβ(α(i))

kβ(α(i))

��
U

h
// V g

// W

Moreover, there is a canonical morphisms from U to U given by (idU , idI , idUi), which

is the identity of the composition defined before.

3. In the case V = U and U −→ V the identity, we say U is a refinement of V .

Assume C is a category with fibre product and p : S −→ C a fibred category. Let U =

{ fi : Ui −→ U}i∈I be a family of morphisms of C. We will denote Ui j = Ui ×U U j, Ui jk =

Ui ×U U j ×U Uk, pri j
i jk : Ui jk −→ Ui j as pri j and pri

i j : Ui j −→ Ui as pri. Suppose this family

is such that for all i ∈ I exists xi ∈ Ob(SUi) and for all (i, j) ∈ I2 exists an isomorphism

ϕi j : pr∗i xi −→ pr∗j x j in SUi j . Hence, considering pri j there exists a unique morphism pr∗i jϕi j :

(pri
i jk)
∗xi −→ (pr j

i jk)
∗x j such that the following diagram commutes

(pri
i jk)
∗xi

��

pr∗i jϕi j
// (pr j

i jk)
∗x j

��
pr∗i xi ϕi j

// pr∗j x j

Here we use pri
i jk = pri ◦ pri j and then (pri

i jk)
∗ = pr∗i j ◦ pr∗i , because we are omitting the

2-isomorphisms αpri j,pri , and compatibility of this 2-isomorphism with the commutativity of
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the diagram above. Therefore consider the next diagram:

(pri
i j)
∗xi

ϕi j

++

%%

(pr j
i j)
∗x j

yy
Ui j

(pri
i jk)
∗xi

OO

zz

(pri j)∗ϕi j
,,

%%

(prik)∗ϕik

��

(pr j
i jk)
∗x j

OO

%%yy

(pr jk)∗ϕ jk

��

(pri
ik)
∗xi

ϕik

��

%%

Ui jk

pri j

OO

prik

yy

pr jk

%%

(pr j
jk)
∗x j

yy

ϕ jk

��

Uik U jk

(prk
i jk)
∗xk

OO

yy %%
(prk

ik)
∗xk

OO

(prk
jk)
∗xk

OO

If the central triangle is commutative in SUi jk , that is to say, if pr∗jkϕ jk ◦ pr∗i jϕi j = pr∗jkϕ jk, we

say cocycle condition is satisfied for ( fi, xi,ϕi j).

Definition 2.2.2 (Category of descent data). (026B) Let C be a category with fibre product,

p : S −→ C a fibred category and U = { fi : Ui −→ U}i∈I a family of morphisms in C.

1. A descent datum in S relative a the family U is a system (xi,ϕi), where xi is an object

of SUi for each i ∈ I, for each pair (i, j) ∈ I2 a morphisms ϕi j : pr∗i xi −→ pr∗j x j in SUi j ,

72

http://stacks.math.columbia.edu/tag/026B


2. STACKS

such that for every triple (i, j, k) ∈ I3 the triangle

(pri
i jk)
∗xi

pr∗i jϕi j
//

pr∗i jϕik ##

(pr j
i jk)
∗x j

pr∗jkϕ jk{{
(prk

i jk)
∗xk

is commutative, i.e, cocycle condition is satisfied for ( fi, xi,ϕi j).

2. A morphism ψ : (xi,ϕi j) −→ (x′i ,ϕ
′
i j) of descent data is a family of morphisms ψi :

xi −→ x j in SUi such that the diagrams:

pr∗i xi

pr∗i ψi

��

ϕi j // pr∗j x j

pr∗jψ j

��
pr∗i x′i ϕ′i j

// pr∗j x
′
j

are commutative in SUi j .

Lemma 2.2.1. Let C be a category with fibre product, p : S −→ C a fibred category and

U : { fi : Ui −→ U}i∈I a family of morphisms. Then, descent data and morphisms of descent

data defines are a category called category of descent data relative to U , which is denoted

DD(U).

Proof. If ψ = (ψi) : (xi,ϕi j) −→ (x′i ,ϕ
′
i j) and ψ′ = (ψ′i) : (x′i .ϕ

′
i j) −→ (x′′i ,ϕ

′′
i j) are morphisms

of descent data, we define ψ′ ◦ ψ = (ψ′i ◦ ψi). Since pr∗i is a functor from SUi to S Ui j then
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pr∗i (ψ′i ◦ ψi) = pr∗iψ
′
i ◦ pr∗iψi and therefore the following diagram commutes

pr∗i xi

pr∗i ψi

��

ϕi j //

pr∗i (ψ′i◦ψi)

��

pr∗j x j

pr∗jψ j

��
pr∗j (ψ

′
j◦ψ j)

��

pr∗i x′i

pr∗i ψ
′
i

��

ϕ′i j

// pr∗j x
′
j

pr∗jψ
′
j

��
pr∗i x′′i ϕ′i j

// pr∗j x
′′
j

This prove that ψ′ ◦ψ is a morphism of descent data. Moreover (idxi) : (xi,ϕi j) −→ (xi,ϕi j) is

the identity of the descent datum (xi,ϕi j), because of pr∗i is a functor, then pr∗i (idxi) = idpr∗i xi

thus commutativity of the respective triangle is trivial. �

Remark. Although the main interest in the definition of descent data is when C is a site and

{Ui −→ U} is a covering in the respective Grothendieck topology, the concept makes sense in

general situations. For example we can consider the collection of all the families for which

every descent datum is effective as we will see later in order to define stacks.

Pullback of descent data

Lemma 2.2.2. (02XZD) Let C be a category with fibre product, p : S −→ C a fibred category,

U = { fi : Ui −→ U} and V = {gl : Vl −→ V} families of morphisms in C and (h,α, hi) a

morphism from U to V .

1. If (Yl,ϕlm) is a descent datum relative to V , then the system

(h∗i Yα(i), (hi × h j)∗ϕα(i)α( j))

is a descent datum relative to U .
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2. This construction defines a functor DD(V) −→ DD(U).

Proof.

1. Consider the following diagram

pr∗
α(i)Yα(i)

ϕα(i)α( j)
++

vv ��

pr∗
α( j)Yα( j)

((��

pr∗i h∗i Yα(i)

(hi×h j)∗ϕα(i)α( j)
++

OO

xx

��

pr∗jh
∗
jYα( j)

OO

&&

��

Yα(i)

��

h∗i Yα(i)

��

oo Vα(i)α( j)

prα(i)

uu

prα( j)

**

h∗jYα(i)

��

// Yα( j)

��

Ui j

priww pr j ''

(hi×h j)

OO

Vα(i)

gα(i)

��

Uihi

oo

fi ''

U j h j

//

f jvv

Vα( j)

gα( j)

��

U

h

��
V

The lower rectangles are commutative by definition of morphism of families. Hence

gα(i) ◦ hi ◦ pri = gα( j) ◦ h j ◦ pr j and the universal property of the fibre product Vα(i)α( j)

implies the existence of a morphism hi × h j : Ui j −→ Vα(i)α( j) unique such that prα(i) ◦

(hi×h j) = hi◦pri and prα( j)◦(hi×h j) = h j◦pr j. Then (hi×h j)∗◦pr∗
α(i)Yα(i) = pr∗i h∗i Yα(i) and

(hi × h j)∗ ◦ pr∗
α( j)Yα( j) = pr∗jh

∗
jYα( j) and therefore (hi × h j)∗ϕα(i)α( j) is the only morphism

such that te upper square commutes. Hence, considering a triple (i, j, k) ∈ I3, in the
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next diagram the central triangle is commutative

(pri
i jk)
∗h∗i Yα(i)

  

pr∗i j((hi×h j)∗ϕα(i)α( j))

((

pr∗ik((hi×hk)∗ϕα(i)α(k))

##

(pr j
i jk)
∗h∗jYα( j)

~~

pr∗jk((h j×hk)∗ϕα( j)α(k))

{{

(prα(i)
α(i)α( j)α(k))

∗Yα(i)
pr∗
α(i)α( j)ϕα(i)α( j)

//

pr∗
α(i)α(k)ϕα(i)α(k)

��

(prα( j)
α)(i)α( j)α(k))

∗Yα( j)

pr∗
α( j)α(k)ϕα( j)α(k)

��

(prα(k)
α(i)α( j)α(k))

∗Yα(k)

(prk
i jk)
∗h∗kYα(k)

OO

This is because of the cocycle condition on (Yl,ϕlm). Moreover, in the same way we

construct hi × h j, there is a morphism hi × h j × hk : Ui jk −→ Vα(i)α( j)α(k) unique such that

prα(i)α( j) ◦ (hi×h j×hk) = (hi×h j)◦ pri j. Therefore (hi×h j×hk)∗ ◦ pr∗
α(i)α( j) = pr∗i j ◦ (hi×

h j)∗ and so pr∗i j((hi × h j)∗ϕα(i)α( j)) is the only morphism making the upper rectangle

commutes. Similarly, the other two rectangles are commutative and for unicity of

pr∗ik((hi × hk)∗ϕα(i)α(k)), the external is commutative. Then for each triple (i, j, k) ∈ I3

cocycle condition is satisfied and so (h∗i Yα(i), (hi × h j)∗ϕα(i)α( j)) is a descent datum in S

relative to U .

2. Let (Y ′l ,ϕ
′
lm) be another descent datum in S relative to V and σ = (σl)l∈L : (Yl,ϕlm) −→

(Y ′l ,ϕ
′
lm) a morphism of descent data. Then σl : Yl −→ Y ′l is a morphism in SVl such
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that the next diagram commutes

pr∗l Yl

pr∗l σl

��

ϕlm // pr∗mYm

pr∗mσm

��
pr∗l Y ′l ϕlm

// pr∗mY ′m

We shall show that (h∗iσα(i))i∈I is a morphism of descent data from (h∗i Yα(i), (hi ×

h j)∗ϕα(i)α( j)) to (h∗i Y ′
α(i), (hi × h j)∗ϕ′α(i)α( j)). In fact, recall that pr∗i h∗i = (hi × hi)∗(pr∗

α(i)

and so in the following diagram

pr∗i h∗i Yα(i)

pr∗i (h∗i σα(i))

��

(hi×h j)∗ϕα(i)α( j) //

##

pr∗jh
∗
jYα( j)

pr∗j (h
∗
jσα( j))

��

{{
pr∗

α(i)Yα(i)

pr∗
α(i)σα( j)

��

ϕα(i)α( j) // pr∗
α( j)Yα( j)

pr∗
α( j)σα( j)

��
pr∗

α(i)Y
′
α(i) ϕ′

α(i)α( j)

// pr∗
α( j)Y

′
α( j)

pr∗i h∗i Yα(i) (hi×h j)∗ϕ′α(i)α( j)

//

;;

pr∗jh
∗
jY
′
α( j)

cc

the central square commutes because σ is a morphism of descent data in S relative to

V and as (hi × h j)∗ is a functor we have

pr∗j(h
∗
jσα( j)) ◦ (hi × h j)∗(ϕα(i)α( j)) = (hi × h j)∗(pr∗α( j)σα( j)) ◦ (hi × h j)∗(ϕα(i)α( j))

= (hi × h j)∗(pr∗α( j)σα( j) ◦ ϕα(i)α( j))

= (hi × h j)∗(ϕ′α(i)α( j) ◦ pr∗α( j)σα(i))

= (hi × h j)∗(ϕ′α(i)α( j)) ◦ (hi × h j)∗(pr∗α(i)σα(i))

= (hi × h j)∗(ϕ′α(i)α( j)) ◦ pr∗i (h∗iσα(i))
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and so we have commutativity of external square, which is what we want. In particular,

for (idYl)l∈L : (Yl,ϕlm) −→ (Yl,ϕlm) we have h∗i (idYα(i)) = idh∗i Yα(i) .

This shows that the asignation (Yl,ϕlm) 7−→ (h∗i Yα(i), (hi × h j)∗ϕα(i)α( j)) and (σl)l∈L 7−→

(h∗iσα(i))i∈I is a functor from DDV to DDU . �

Effective descent data

Lemma 2.2.3. (026E) Let C be a category with fibre product, p : S −→ C a fibred category

and U = { fi : Ui −→ U} a family of morphisms in C

1. If x is an object of SU , then (x, idx) is a descent datum relative to the family {idU :

U −→ U} called trivial descent datum asociated to x.

2. Given an object x of SU , we have a canonical descent datum relative to the family

of objects f ∗i x, obtained by changing of base the trivial descent datum (x, idx) via the

obvious morphism of families { fi : Ui −→ U} −→ {idU : U −→ U}. We denote this

descent datum ( f ∗i x, cani j).

3. The morphisms cani j : pr∗i f ∗i x −→ pr∗j f ∗j x are equal to (αpr j, f j)x ◦ (αpri, fi)
−1
x .

Proof.

1. Clearly (x, idx) is a descent datum relative to the family {idU : U −→ U}, because as

id∗U x � x and U ×U U = U, we can take a choice of pullbacks with id∗U x = x and so the

conditions of descent are trivially satisfied.

2. The morphism of families { fi : Ui −→ U} −→ {idU : U −→ U} is given by (idU ,α, fi),

where α : I −→ {1} is the constant function, being {1} the set of indexes of the family
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{idU : U −→ U}. In this case the diagram

Ui

fi
��

fi // U

idU
��

U
idU

// U

is obviously commutative. Since (x, idx) is a descent datum in S relative to {idU :

U −→ U}, then changing the case with the morphism above we have a descent datum

in S relative to U given by the system

( f ∗i x, ( fi × f j)∗idx)

This can be summarized in the following diagram

pr∗i f ∗i

cani j
''

�� ��

pr∗j f ∗j

�� ��
f ∗i x

�� ��

Ui j

pri
�� pr j

��

f ∗j x

����
Ui

fi
��

x

��

U j

f j

��
U

where cani j,x = ( fi × f j)∗idx is the canonical isomorphism given by the equality fi ◦

pri = f j ◦ pr j, that is to say, is the only morphism such that the upper face of the

cube commutes. Hence ( f ∗i x, cani j,x) is a descent datum in S relative to the family

fi : Ui −→ U.
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3. We use fi ◦ pri = pr j ◦ f j as morphisms Ui ×U U j −→ U. Then in the next diagram

pr∗i f ∗i x
(αpri , fi )

−1
x

//

��

cani j,x

''
( fi ◦ pri)∗x

��

(αpr j , f j )x

// pr∗j f ∗j x

��
f ∗i x // x f ∗j xoo

the isomorphisms (αpri, fi)x and (αpr j, f j)x are unique such that the lower rectangles are

commutatives an so (αpr j, f j)x ◦ (αpri, fi)
−1
x is unique such that the compose rectangle is

commutative. But for previous numeral cani j,x is the unique with such property and

therefore cani j,x = (αpr j, f j)x ◦ (αpri, fi)
−1
x . �

Definition 2.2.3 (Effective descent datum). (026E) A descent datum (xi,ϕi j) relative to { fi :

Ui −→ U} is called effective is there exists an object x of SU such that (xi,ϕi j) is isomorphic

to ( f ∗i x, cani j).

Therefore a descent datum (xi,ϕi j) relative to { fi : Ui −→ U} is effective if there is x ∈ Ob(SU)

and morphisms ψi : xi −→ f ∗i x such that for each i ∈ I the following diagram is commutative

pr∗i xi

pr∗i ψi

��

ϕi j // pr∗j x j

pr∗jψ j

��
pr∗i f ∗i x cani j

// pr∗j f ∗j x

Now, given a morphism x
ϕ

−→ y en SU , we shall see that ( f ∗i ϕ)i∈I is a morphism of descent

data ( f ∗i x, cani j,x) −→ ( f ∗i y, cani j,y). For this we must prove that for every (i, j) ∈ I2 the
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external rectangle in the next diagram is commutative

pr∗i f ∗i x
cani j,x //

pr∗i f ∗i ϕ

��

""

pr∗j f ∗j x

pr∗j f ∗j ϕ

��

||
f ∗i x //

f ∗i ϕ

��

x

ϕ

��

f ∗j xoo

f ∗i ϕ j

��
f ∗i y // y f ∗j yoo

pr∗i f ∗i y cani j,y
//

<<

pr∗j f ∗j y

bb

cani j,x is the only morphism such that pr∗i f ∗i x
cani j,x
−→ pr∗j f ∗j x −→ f ∗j x −→ x = pr∗i f ∗i x −→

f ∗i x −→ x an so in the previous diagram all the sub rectangles are commutative. Consecuently

we have the following equality of diagrams

pr∗i f ∗i x

pr∗i f ∗i ϕ

��

cani j,x // pr∗j f ∗j x

pr∗j f ∗j ϕ

��

// f ∗j x

f ∗j ϕ

��

// x = pr∗i f ∗i x

��

pr∗i f ∗i ϕ

��

// f ∗i x

f ∗i ϕ

��

// x

��
pr∗i f ∗i y cani j,y

// pr∗j f ∗j y // f ∗j y // y = pr∗i f ∗i y // f ∗i y // y

On the right side both rectangles commutes and so pr∗i f ∗i x
cani j,x
−→ pr∗j f ∗j x

pr∗j f ∗j ϕ
−→ pr∗j f ∗j y and

pr∗i f ∗i x
pr∗i f ∗i ϕ
−→ pr∗i f ∗i y

cani j,y
−→ pr∗j f ∗j y are morphisms which composed with pr∗j f ∗j y −→ f ∗j y −→ y

are equal, and since the last one is strongly cartesian, being the composition of strongly

cartesian morphisms, thus are equals y we have the required commutativity.

Now, if y
ψ

−→ z is another morphism in SU and ( f ∗i ψ)i∈I is the canonical morphism of descent

data obtained as before, then ( f ∗i (ψ ◦ ϕ))i∈I = ( f ∗i ψ ◦ f ∗i ϕ)i∈I = ( f ∗i ψ)i∈I ◦ ( f ∗i ϕ)i∈I turns to be

a morphism of canonical descent data. Also, considering x
idx
−→ x, by construction (id f ∗i x)i∈I

is an endomorphism of the canonical descent datum ( f ∗i x, cani j) and is indeed the identity
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morphism. Thereby, given a family U = { fi : Ui −→ U} of morphisms in C we have a functor

SU −→ DD(U)

Therefore, a descent datum is effective if this is in the essential image of that functor.

2.3 Stacks

Definition 2.3.1 (Stack). (026F) Let C be a site. A stack over C is a fibred category p : S −→

C satisfying the following conditions:

1. For any U ∈ Ob(C) and every x, y ∈ SU , the functor Mor(x, y) is a sheaf in the site

C/U.

2. For each covering U = { fi : Ui −→ U}i∈I of the site C, every descent datum in S relative

to U is effective.

Lemma 2.3.1. (02ZF) Assume C is a site and p : S −→ C a fibred category. The follow

conditions are equivalent:

1. S is a stack over C.

2. For any covering U = { fi : Ui −→ U}i∈I of C, the functor SU −→ DD(U) which

associate to each object its canonical descent datum relative to U is an equivalence of

categories.

Proof.

Let U = { fi : Ui −→ U}i∈I ∈ Cov(τ). The functor SU −→ DD(U) is defined for x ∈ Ob(SU)

as the descent datum ( f ∗i x, cani j,x) and for x
ϕ

−→ y a morphism in SU as the morphism of
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descent data ( f ∗i ϕ)i∈I , where f ∗i ϕ : f ∗i x −→ f ∗i y is the only morphism such that the following

diagram commutes

f ∗i x
f ∗i ϕ //

��

f ∗i y

��
x

ϕ
// y

Therefore SU −→ DD(U) is essentially surjective if and only if fiven (Xi,ϕi j) in DD(U) there

exists x ∈ Ob(SU) such that ( f ∗i x, cani j,x) � (Xi,ϕi j), that is to say every descent datum in S

relative to U is effective.

Now, SU −→ DD(U) is fully faithful if given x, y ∈ Ob(S U), the canonical function

ξ : MorSV (x, y) −→ MorDD(U )(( f ∗i x, cani j,x), ( f ∗i y, cani j,y))

is bijective. This function is defined as follows: given x
ϕ

−→ y, there is a morphism ψ =

( f ∗i ϕ)i∈I from ( f ∗i x, cani j,x) to ( f ∗i y, cani j,y) and we define ξ(ϕ) = ψ.

If C is a category with fibre product and τ is a Grothendieck topology on C, Then for U ∈

Ob(C), the category C/U has fibre product and there is a induced topology on C/U denoted

τ/U. The fibre product in C/U is defined according to the next diagram:

Vi j

pri

��

fi j

��

pr j

��
Vi

fi //

gi

  

U V jf j

oo

g j

~~
V

f

OO

More precisely fi × f f j = fi j, where fi j := fi ◦ pri = f j ◦ pr j, being the last two equal because

of Vi j = Vi ×V V j and so the external square commutes and since gi, g j are morphisms of C/U

the internal triangles are commutatives. We define Cov(τ/U) as the families {gi : Vi −→ V}
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in Cov(τ) wichVi,V ∈ Ob(SU) and gi ∈ MorC/U(Vi,V). Then it makes sense that Mor(x, y) to

be a sheaf when Cτ is a site.

In general, given a functor F : Cop −→ D in a site Cτ and D a category with arbitrary products,

F is a sheaf provided that for all {Vi
gi
−→ V} ∈ Cov(τ) the following diagram is exact:

F(V) π //
∏
i∈I

F(Vi)
π1 //

π2
//

∏
(i, j)∈I2

F(Vi ×V V j)

In order to construct the morphisms π,π1,π2, consider the following: for each i ∈ I, F(Vi) ∈

Ob(D) and as D has arbitrary products, there is
∏
i∈I

F(Vi). Now gi : Vi −→ U and so F(gi) :

F(V) −→ F(Vi) is a morphism in D for any i ∈ I. By the universal property of fibre product

there is π =
∏
i∈I

F(gi) : F(V) −→
∏
i∈I

F(Vi) unique such that the diagram

F(V)
∏

F(gi)
��

F(gi)

##∏
i∈I

F(Vi) πi
// F(Vi)

is commutative. Given (i, j) ∈ I2 we have a fibre product

Vi ×V V j

pri
i j
��

pr j
i j // V j

g j

��
Vi gi

// U

Hence there is a morphism F(Vi)
F(pri

i j)
−→ F(Vi×V V j) an so

∏
i∈I

F(Vi)
πi
−→ F(Vi)

F(pri
i j)

−→ F(Vi×V V j).

As before the universal property of the fibre product leads the existence of a unique morphism
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π1 such that the diagram ∏
i∈I

F(Vi)

π1

��

πi // F(Vi)

F(pri
i j)

��∏
(i, j)∈I2

F(Vi ×V V j) πi j
// F(Vi ×V V j)

is commutative. Hence πi j ◦ π1 = F(pri
i j) ◦ πi. In the same way there is π2 unique such that

πi j ◦ π2 = F(pr j
i j) ◦ π j. Therefore we have π1 =

∏
(i, j)

F(pri
i j) ◦ πi and π2 =

∏
(i, j)

F(pri
i j) ◦ π j.

In the case of interest F = Mor(x, y), where where given V
f
−→ U ∈ Ob(C/U),

Mor(x, y)( f ) := HomSV ( f ∗x, f ∗y) and V ′
g
−→ V ∈ HomC/U( f , f ′), Mor(x, y)(g) is the function

defined as:

HomSV ( f ∗x, f ∗y) // HomSV′ ( f ′∗x, f ′∗y)

ϕ
� // (αg, f )−1

y ◦ g∗ϕ ◦ (αg, f )x

Then Mor(x, y) is a sheaf if and only if given {gi : Vi −→ V} ∈ Cov(τ/U) the following

diagram is exact

Mor(x, y)( f ) π //
∏
i∈I

Mor(x, y)( fi)
π1 //

π2
//

∏
(i, j)∈I2

Mor(x, y)( fi j)

where π =
∏
i∈I

Mor(x, y)(gi), π1 =
∏

(i, j)∈I2

Mor(x, y)(pri
i j)◦πi and π2 =

∏
(i, j)∈I2

Mor(x, y)(pr j
i j)◦π j.

Therefore Mor(x, y) is a sheaf if the next diagram is exact

HomSV ( f ∗x, f ∗y) π //
∏
i∈I

HomSVi
( f ∗i x, f ∗i y)

π1 //

π2
//

∏
(i, j)∈I2

HomSVi j
(pr∗i f ∗i x, pr∗i f ∗i y)

If ψ = (ψi)i∈I ∈
∏
i∈I

HomS Vi
( f ∗i x, f ∗i y) is such that π1(ψ) = π2(ψ), there exists a unique

x
ϕ

−→ y ∈ HomS V (x, y) such that π(ϕ) = ψ. Now, π1(ψ) =
∏

(i, j)∈I2

(Mor(x, y)(pri) ◦ πi)(ψ) =
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∏
(i, j)∈I2

Mor(x, y)(pri)(ψi) =
∏

(i, j)∈I2

(αpri, fi)
−1
y ◦ pr∗iψi ◦ (αpri, fi)x. Then π1(ψ) = π2(ψ) if and only

if por each (i, j) ∈ I2 we have

(αpri, fi)
−1
y ◦ pr∗iψi ◦ (αpri, fi)x = (αpr j, f j)

−1
y ◦ pr∗jψ j ◦ (αpr j, f j)x

On the other hand, an element of HomDD(U )(( f ∗i x, cani j,x), ( f ∗i y, cani j,y)) is a family ψ = (ψi)i∈I ,

where ψi : f ∗i x −→ f ∗i y are morphisms in SVi such that the diagram

pr∗i f ∗i x

pr∗i ψi

��

cani j,x // pr∗j f ∗j x

pr∗jψ j

��
pr∗i f ∗i y cani j,y

// pr∗j f ∗j y

is commutative in SVi j , so cani j,y ◦ pr∗iψi = pr∗jψ j ◦ cani j,x. Since cani j,x = (αpr j, f j)x ◦

(αpri, fi)
−1
x , it follows (αpr j, f j)y ◦ (αpri, fi)

−1
y ◦ pr∗iψi = pr∗jψ j ◦ (αpr j, f j)x ◦ (αpri, fi)

−1
x . Hence

HomDD(U )(( f ∗i x, cani j,x), ( f ∗i y, cani j,y)) is equal to the set of ψ = (ψi)i∈I ∈
∏
i∈I

HomS Vi
( f ∗i x, f ∗i y)

such that π1(ψ) = π2(ψ).

Given ψ = (ψi)i∈I , if exists ϕ ∈ HomSU (x, y) satisfying ξ(ϕ) = ψ, then π( f ∗ϕ) :=∏
i∈I

g∗i

 ( f ∗ϕ) =
∏
i∈I

(g∗i f ∗ϕ) ≈ ( f ∗i ϕ)i∈I =: α(ϕ) and so f ∗ϕ is the unique such that

π( f ∗ϕ) = ψ. Reciprocally, givenψ = (ψi)i∈I such that π1(ψ) = π2(ψ), there exists f ∗x
ρ

−→ f ∗y

such that π(ρ) = ψ, that is to say g∗i ρ = ψi, for all i ∈ I. Then there exists ϕ : x −→ y with

ρ = f ∗ϕ.

This shows that π is the equalizer of π1 and π2 if and only if α is bijective. In other words,

Mor(x, y) is a sheaf if and only if SU −→ DD(U) is fully faithful.

Summarizing p : S −→ C is a stack if and only if for every covering U = { fi : Vi −→ V}

of C, the functor SU −→ DD(U) is fully faithful and essentially surjective, in other words

SU −→ DD(U) is an equivalence of categories. �
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Now we are going to give a result which implies that any scheme or algebraic space can be

seen as a stack.

Proposition 2.3.1. Let C be a site. If F : Cop −→ Sets is a sheaf, then the fibred category in

sets pF : SF −→ C is a stack over C.

Proof. If F : Cop −→ Sets is a functor, then SF is the category fibred in sets with:

Ob(SF) := {(U, x) | U ∈ Ob(C), x ∈ F(U)}

where we have used that F(U) is a set, that is to say, a discrete category. If (V, y) and (U, x)

are in Ob(SF) we have

HomF(V)((V, y), (U, x)) := { f ∈ HomC(V,U) | F( f )(x) = y}

More precisely, this is the set of pairs ( f , a) where f ∈ HomC(V,U) and a ∈

HomF(V)(y, F( f )(x)), but in this case F(V) is a discrete category and this means y = F( f )(x)

and a is the identity map. The functor pF : SF −→ C is given by (U, x) 7−→ U and f 7−→ f .

Let U = { fi : Ui −→ U}i∈I be a covering in C. We want to show the functor SF,U −→

DD(U) is an equivalence of categories. If (xi,ϕi j) ∈ DD(U), then xi ∈ SF,Ui = F(Ui) and

ϕi j : (pri
i j)
∗xi −→ (pr j

i j)
∗x j is an isomorphism for every i, j ∈ I. Since F(Ui ×U U j) is

discrete ϕi j must be the identity. The cocycle conditions are always satisfied and therefore

are not required. Hence a descent datum is a collection (xi)i∈I such that xi ∈ F(Ui) and

(pri
i j)
∗xi = (pr j

i j)
∗x j for all i, j ∈ I. On the other hand if x ∈ SF,U = F(U), the canonical

descent datum relative to U is ( f ∗i x, cani j,x), where cani j,x = (αpr j, f j)x ◦ (αpri, fi)
−1
x = id( fi× f j)∗x,

because we are in the case the pullback is compatible with composition. Now, since F is a

sheaf the following diagram is exact

F(U) π //
∏
i∈I

F(Ui)
π1 //

π2
//

∏
(i, j)∈I2

F(Ui ×U U j)
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This says that if (xi)i∈I is such that (pri
i j)
∗xi = (pr j

i j)
∗x j for all i, j ∈ I, then there exists a

unique x ∈ F(U) such that F( fi)(x) = xi. Therefore, if F is a sheaf, then SF,U −→ DD(U) is

an equivalence of categories and so p f : SF −→ C is a stack. �

Corollary 2.1. If C is a site where every representable functor is a sheaf, then for any X ∈

Ob(C) the category fibred in sets pX : SX −→ C is a stack over C.

Lemma 2.3.2. (042W) Let C be a site and S1 and S2 categories over C which are equivalents

as categories over C. Then S1 is a stack over C if and only if S2 is a stack over C.

2.4 Stackification of fibred categories

The statement of the following proposition is different from the correspondent in Stacks

Project. The principal ideas of the proof are inspired in the ones exposed there, but some

definitions have been changed in order to make more convenient the subsequent construc-

tions. Also, although they are not presented here, we wrote all the details, since they are

necessary in the functoriality properties that we have found.

Lemma 2.4.1. (02ZN) Let C be a site and p : S −→ C a fibred category over C. There exists a

stack p′ : S ′ −→ C and a 1-morphism G : S −→ S ′ of fibred categories over C satisfying the

following universal property: For any stack q : X −→ C and every 1-morphism H : S −→ X

of fibred categories over C, there exists a 1-morphism H′ : S ′ −→ X of stacks over C such

that the following diagram is 2-commutative

S

H ��

G // S ′

H′~~
X

Proof.
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We will construct the stack S ′ in three stages.

1. Locally equal morphisms: Given x ∈ Ob(S ) over U and y ∈ Ob(S), we say that two

morphisms a, b : x −→ y of S such that p(a) = p(b) are locally equal if there is a covering

{ fi : Ui −→ U} of C such that f ∗i x −→ x
a
−→ y = f ∗i x −→ x

b
−→ y. We shall see this

define an equivalence relation. Clearly a ∼ a and a ∼ b implies b ∼ a. Now, if a ∼ b and

b ∼ c, there are coverings { fi : Ui −→ U}I and {g j : V j −→ U}J such that f ∗i x −→ x
a
−→

y = f ∗i x −→ x
b
−→ y and g∗j x −→ x

b
−→ y = g∗j x −→ x

c
−→ y. Consider the covering

{g j ◦ f ′i = fi ◦ g′j : Ui ×U V j −→ U} pictured in the diagram

Ui ×U V j

g′j
��

f ′i // V j

g j

��
Ui fi

// U

Then we have

( fi ◦ g
′

j)
∗x −→ f ∗i x −→ x

a
−→ y = ( fi ◦ g

′

j)
∗x −→ f ∗i x −→ x

b
−→ y

= (g j ◦ f
′

i )∗x −→ g∗j x −→ x
b
−→ y

= (g j ◦ f
′

i )∗x −→ g∗j x −→ x
c
−→ y

That is to say, ( fi ◦ g
′

j)
∗x −→ x

a
−→ y = ( fi ◦ g

′

j)
∗x −→ x

c
−→ y and so a ∼ c. Hence

∼ is an equivalence relation and we can consider S/ ∼ in order to obtain a new category

S1 identifying locally equal morphisms. We use the following fact: if a, b : x −→ y and

c, d : y −→ z are locally equal, then c ◦ a, d ◦ b : x −→ z are locally equal and therefore the

composition of equivalence classes is well defined. Since p(a) = p(b) when a ∼ b, we also

have a functor p1 : S1 −→ C which is a fibred category over C. Moreover we can define a 1-

morphism G1 : S −→ S1 of fibred categories over C defined as the identity in the objects and

for a morphism a : x −→ y, we denote [a] the equivalence class of a in the previous relation

and we make G1(a) := [a]. Let p1 : S1 −→ C defined by p1(x) = p(x) in the objects and
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p1([a]) = p(a) in the morphisms. Note that the definition in the morphisms does not depends

on the representative, because a ∼ b implies p(a) = p(b). Then is clear that p1 : S1 −→ C is a

category over C and G1 : S −→ S1 is a morphisms of categories over C. We shall see that G1

preserves strongly cartesian morphisms and therefore S 1 is a fibred category. Let a : x −→ y

a strongly cartesian morphism in S, we want to show that [a] : x −→ y is strongly cartesian

in S1.

z

�� c
""

b

��
p(z)

g
!!

x

��

a
// y

��
p(x)

p(a)
// p(y)

G1
//

z

�� [c]
""

ψ=[b]

��
p(z)

g
!!

x

��

[a]
// y

��
p(x)

p(a)
// p(y)

Given z ∈ Ob(S) and a pair (ψ, g) where ψ : z −→ y a morphism in S1 and g : p(z) −→ p(x)

such that p1(ψ) = p(a) ◦ g, we have ψ = [b] for some morphism b : z −→ y in S . Hence

p1(ψ) = p(b) and so p(b) = p(a) ◦ g in S. Since a : x −→ y is strongly cartesian, there exists

a unique c : z −→ x in S such that p(c) = g and a◦ c = b. Then [c] : z −→ x is a morphism in

S1 such that p1([c]) = p(c) = g and [a]◦ [c] = [a◦ c] = [b] = ψ. Moreover, [c] is unique with

that property, because if γ : z −→ x is a morphism in S1 such that [a] ◦ γ = ψ, then for any

representative d : z −→ x of γ in S we have [a◦c] = [b] = [a]◦[d] = [a◦d], that is to say, there

is a covering { fi : Ui −→ p(z)} satisfying f ∗i z −→ z
c
−→ x

a
−→ y = f ∗i z −→ z

d
−→ x

a
−→ y.

But a : x −→ y is strongly cartesian and therefore f ∗i z −→ z
c
−→ x = f ∗i z −→ z

d
−→ x and

this means that [c] = [d]. Hence [a] is strongly cartesian. Since the objects are the same,

this prove both S1 is a fibred category over C and the functor G1 is a 1-morphism of fibred

categories over C.

Then without lost of generality we can assume S = S1.
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2. Locally defined morphisms: We will construct the category of locally defined morphisms

associated to S by adding, if necessary, more morphisms as follows: Given x over U and y

over V a locally defined morphism from x to y is a system ( f , { fi}, ai) where:

1. f : U −→ V is a morphism of C.

2. { fi : Ui −→ U}i∈I is a covering of the topology on C.

3. For every i ∈ I, ai : f ∗i x −→ y is a morphism such that p(ai) = f ◦ fi. The compositions

( fi × f j)∗x −→ f ∗i x
ai
−→ y and ( fi × f j)∗x −→ f ∗j x

a j
−→ y are equal. Here fi × f j denotes

both fi ◦ pri and f j ◦ pr j which are equal.

We can see it better in the next diagram:

f ∗j x

�� ""

a j

$$( fi × f j)∗x

99

%%��

U j f j

""

x

��

y

��
Ui j

pr j
99

pri

%%

f ∗i x

��

<<

ai

::

U
f

// V

Ui

fi

<<

Here we are using the 2-isomorphisms αpri, fi and αpr j, f j . In rder to be more clear, consider the

diagram

91



STACKIFICATION OF FIBRED CATEGORIES

pr∗i f ∗i x

�� &&

( fi × f j)∗x

��

(αpr j , f j )x
//

(αpri , fi )xoo

xx &&

pr∗j f ∗j x

��xx
f ∗i x

�� &&

Ui jpri

xx

pr j

&&

f ∗j x

��xxUi

fi
''

x

��

U j

f j
wwU

Then both ( fi × f j)∗x −→ f ∗i x and ( fi × f j)∗x −→ f ∗j x are strongly cartesian lifts of pri and

pr j respectively, and so the upper square is cartesian. A morphism a : x −→ y in S deter-

mines a locally defined morphism (p(a), {idp(x)}, a). We say the locally defined morphisms

( f , { fi : Ui −→ U}, ai) and ( f , {g j : U j −→ U}, b j) are equal if f = g and the compositions

( fi × g j)∗x −→ f ∗i x
ai
−→ x and ( fi × g j)∗x −→ g∗j x

b j
−→ x are equal (they coincide in the

intersections). This is the right condition because we are assuming that locally equal mor-

phisms are equal. We are going to define the composition of locally defined morphisms. Let

( f , { fi : Ui −→ U}, ai) be a locally defined morphism from x to y and (g, {gm : Vm −→ V}, bm)

a locally defined morphism from y to z and denote p(z) = W. Take g ◦ f : U −→ W, the

covering {him : Ui ×V Vm −→ U} and the morphisms cim : h∗imx
a′i
−→ g∗my

bm
−→ z as is showed in
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the following diagram:

x

��

f ∗i x

==

ai //

��

y

��

U
f

��

h∗imx

44

cim

==

a′i //

��

g∗my

BB

bm //

��

z

��

Ui

fi

AA

// V
g

��
Ui ×V Vm

him

66

g′m

::

// Vm

gm

??

// W

Since f ∗i x −→ x is strongly cartesian, there is a morphism h∗imx −→ f ∗i x, unique such that the

triangle is commutative. The morphism a′i : h∗imx −→ g∗my is the only one over prm making the

square commutative in S, which exists because g∗my −→ y is strongly cartesian over gm and

using that h∗imx −→ f ∗i x
ai
−→ y is a morphism over ( f ◦ fi) ◦ pri and the commutativity of the

lower square. We are going to show that (g ◦ f , {him}, cim) is a locally defined morphism from

x to z and we will call this the composition of ( f , { fi : Ui −→ U}, ai) and (g, {gm : Vm −→

V}, bm).

Then we can consider the category S2 with Ob(S2) = Ob(S) and for x, y ∈ Ob(S2),

HomS2(x, y) is the set of locally defined morphisms from x to y in S. Then, S2 is a fibred

category over C and for any U ∈ C and every x, y ∈ Ob(S 2
U), the functor Mor(x, y) is a sheaf.

There is also a 1-morphism of fibred categories G2 : S −→ S2 given by the identity in the

objects and for a morphism a : x −→ y, G(a) = (p(a), idp(x), a). Then we can assume S = S2.

Finally, let p : S −→ C a fibred category such that for all U ∈ Ob(C) and x, y ∈ Ob(SU) the

functor Mor(x, y) is a sheaf in the topology τU . We will define a stack S ′ and a canonical

1-morphism G′ : S −→ S ′.
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3. Effective descent data: Define Ob(S ′) the class of pairs (U , ξ), where U = { fi : Ui −→

U}i∈I is a covering of τ and ξ = (xi,ϕi j) is a descent datum in S relative to U . Given (U , ξ) =

({ fi : Ui −→ U}, (xi,ϕi j)) and (V , η) = ({gm : Vm −→ V}, (ym,ψmn)) in Ob(S ′) we define

HomS′((U , ξ), (V , η)) as the set of pairs ( f , aim) where f : U −→ V is a morphism in C and

aim : xi|Ui×V Vm −→ ym|Ui×V Vm are morphisms in SUi×V Vm satisfying the following condition:

Given i, j ∈ I and m, n ∈ M and denoting A = (Ui ×U U j) ×V (Vm ×V Vn), the following

rectangle is commutative:

xi|A
aim |A //

ϕi j |A

��

ym|A

ψmn |A

��
x j|A a jn |A

// yn|A

Given another (W , θ) = ({hk : Wk −→ W}, (zk, σkl)) in S ′ and (g, bmk) : (V , η) −→ (W , θ) a

morphism in S ′ we want to define a morphism (g, bmk) ◦ ( f , aim) from (U , ξ) to (W , θ) in S ′.

Consider the following diagram:
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ym

xi|Ui×V Vm

aim //

��

ym|Ui×V Vm

??

ym|Vm×W Wk

__

bmk // zk|Vm×W Wk

��

xi|Ui×V Vm×W Wk

dm
ik

55

��

]]

ak
im // ym|Ui×V Vm×W Wk

bi
mk //

??^^

zk|Ui×V Vm×W Wk

@@

��

xi zk

xi|Ui×W Wk

^^

dik

// zk|Ui×W Wk

@@

Here ak
im denotes the restriction of aim to Ui×V Vm×W Wk and the same is for bi

mk and dm
ik. Then

we can make the composition bi
mk◦ak

im and write dm
ik. It can be proved that {dm

ik}m∈M determines

a locally defined morphism dik : xi|Ui×W Wk −→ zk|Ui×W Wk and this is such that (g ◦ f , dik) is the

wanted morphism. We this on mind, we can prove S ′ is a fibred category over C in which

the functors Mor(x, y) are sheaves and any descent datum relative to a covering is effective,

that is to say, S ′ is a stack over C. There is also a canonical 1-morphism G′ : S −→ S ′

defined for x ∈ Ob(S) by G′(x) := ({idp(x)}, (x, idx)) and for a : x −→ y a morphism in

S we define G′(a) = (p(a), ax), where ax : x −→ y|p(x) is the only morphism such that

x
ax
−→ y|p(x) −→ y = x

a
−→ y. Here we are using the canonical identification id∗p(x)x = x in

order to keep the notation simple. �

Definition 2.4.1 (Stackification). Given fibred category p : S −→ C, the stack p′ : S ′ −→ C

constructed in the previous lemma is called stackification of the fibred category S.

Next we are going to give some conditions that allow us to conclude when a fibred category

is actually a stack. This is used in the example that follow the result.
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Proposition 2.4.1. Let S be a category over C satisfying the following conditions:

• Every object of C has a lift.

• For any morphism f : U −→ V in C and lifts x and y of U and V respectively, there is

exactly one lift of f from x to y.

Then S is a stack over C.

Proof. We will show that S is fibred category. Given y over V and f : U −→ V , there exists

x over U and a unique morphism ϕ : x −→ y over f . If z ∈ Ob(S) over W, g : W −→ U is

a morphism in C and ψ : z −→ y is a morphism in S over f ◦ g, which is unique with such

property. There is a unique morphism γ : z −→ x and so ϕ ◦ γ = ψ.

1. Let x ∈ SU , y ∈ SV and ( f , { fi}, ai) a locally defined morphism in S from x to y, this is

pictured in the following diagram

f ∗i x //

��

ai

##
x

ϕ
//

��

y

��
Ui fi

// U
f
// V

By hypothesis, there is a morphism ϕ : x −→ y and ϕ|Ui = ai. Therefore, ϕ is the

global extension of ( f , { fi}, ai). Hence Mor(x, y) is a sheaf.

2. Let U = { fi : Ui −→ U} a covering in C and (xi,ϕi j) a descent datum relative to U .

Given x over U , there is a morphism xi −→ x and therefore we have that f ∗i x −→ x

and xi −→ x are strongly cartesian lifts of fi and so there is a unique isomorphism
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ψi : f ∗i x −→ xi such that the following triangle commutes

f ∗i x oo //

  

xi

��
x

This defines an isomorphism ψ = {ψi} from (xi,ϕi j) to ( f ∗i x, cani j). Hence any descent

datum is effective.

Numerals (1) and (2) shows that S is a stack over C. �

Example 10. Let p : X −→ C and r : Z −→ C be the fibred categories pictured in the

following diagrams:

x1
α //

��

x2

��
V

f
// U

z1

��

oo ϕ //

γ

""
z2

δ //

��

z3

��
V

f
// U

X Z

The previous result shows that X and Z are stacks over C. In the three cases the topology is

the same.

2.5 Functoriality in stackification

Stackification has functorial properties. In this section we are going to show some of them.

As in the stackification lemma, we will proceed in three stages.

Theorem 3. Let X and Y fibred categories over C. If F : X −→ Y is a 1-morphism of fibred

categories over C, then there exists a canonical 1-morphism F′ : X ′ −→ Y ′ such such that
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the following diagram commutes

X F //

G′
��

Y
H
��

X ′
F′
// Y ′

Furthermore, if F : X −→ Y is fully faithful (respectively essentially surjective) also is

F′ : X ′ −→ Y ′. If R : Y −→ Z is another morphism, then (R ◦ F)′ = R′ ◦ F′.

Proof.

The proof will be done in three stages, and in many parts of this we will use the following

fact: If x ∈ X is over U, f : U −→ V is a morphism in C and F is a 1-morphism of fibred

categories, then if f ∗x −→ x is the pullback of x over f , so is F( f ∗i x) −→ F(x) and therefore

there exists an isomorphism α : f ∗i F(x) −→ F( f ∗i x) over idU which is unique such that the

triangle

f ∗i F(x)

  

αi // F( f ∗i x)

~~
F(x)

is commutative. So, pullback of F(x) over f is up to a unique isomorphism equal to

F( f ∗x −→ x), that is to say, the image of the pullback is almost the pullback of the image.

Another fact that we will use extensively is the following: If x ∈ Ob(X ) and f : U −→ p(x)

and g : V −→ p(x) are morphism in C, then in the following diagram the upper square is
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cartesian:

F( f ∗x)

$$��
F(( f × g)∗x)

77

&&��

U
f

$$

F(x)

��
U ×p(x) V

88

''

F(g∗x)

::

��

p(x)

V
g

::

This is because f ∗x −→ x and ( f × g)∗x −→ g∗x) are strongly cartesian, and since F is a

1-morphisms also are F( f ∗x) −→ F(x) and F(( f × g)∗x) −→ F(g∗x)), and the lower square

is cartesian.

1. Locally equal morphisms: There is a canonical 1-morphism F1 : X 1 −→ Y1 of fibred

categories over C such that the following diagram commutes

X F //

��

Y

��
X 1

F1
// Y1

If F : X −→ Y is fully faithful (resp. essentially surjective) also is F1 : X 1 −→ Y1.

Let F1(x) = x in the objects and for a morphism a : x −→ x′ a morphism in X define

F1[a] = [F(a)]. Lets see that if [a] = [b], then [F(a)] = [F(b)] and therefore F1 : X ′ −→ Y ′

is well defined. The equality [a] = [b] means that p(a) = p(b) and this is the same that

q ◦ F(a) = q ◦ F(b). Moreover, there is a covering { fi : Ui −→ U} such that f ∗i x −→ x
a
−→

y = f ∗i x −→ x
b
−→ y and therefore F( f ∗i x) −→ F(x)

F(a)
−→ F(y) = F( f ∗i x) −→ F(x)

F(b)
−→ F(y).

Hence f ∗i F(x)
αi
−→ F( f ∗i x) −→ F(x)

a
−→ F(y) = f ∗i F(x)

αi
−→ F( f ∗i x) −→ F(x)

a
−→ F(y) and

this means [ f (a)] = [ f (b)]. Given [a′] : x′ −→ x′′, the equality [a′] ◦ [a] = [a′ ◦ a] and the
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fact F is a functor implies F1([a′] ◦ [a]) = F1([a′]) ◦ F1([a]) and since idx in X 1 is [idx], then

F1[idx] = [idF(x)] proving that F1 : X 1 −→ Y1 is a functor.

Now we will see that F1 is a 1-morphisms of fibred categories over C. Clearly q1 ◦ F1 = p1

in the objects. If [a] : x −→ x′ is a morphism in X 1, then q1 ◦ F1([a]) = q1([F(a)]) =

q(F(a)) = p(a) = p1([a]), and so F1 is a 1-morphism of categories over C. We need to show

that if [β] : x −→ x′ is strongly cartesian in X 1, then F1([β]) is strongly cartesian in Y1. Let

f = p(b) and α : f ∗x′ −→ x′ the strongly cartesian lift of f in X . Hence [α] is the strongly

cartesian lift of f in X 1 and so there exists an isomorphism [γ] : x −→ f ∗x′ unique such that

in the following diagram the upper tirangle is commutative

f ∗x′

##

[α]

��
x

[γ]

aa

��

[β]
// x′

��
U

f
// U′

Hence F1([β]) = F1([α]) ◦ F1([γ]) and since F1 is a 1-morphism of fibred categories, F1([α])

is strongly cartesian. Moreover F1([γ]) is isomorphism and therefore is strongly cartesian.

Hence F1([β]) is strongly cartesian being the composition of strongly cartesian morphisms.

Then F1 : X 1 −→ Y1 is a 1-morphism of fibred categories over C.

In particular, in the following diagram all the triangles and therefore the rectangle are com-

mutative

X

G

��

p
  

F // Y
q

~~
H

��

C

X 1
p1

>>

F1
// Y1

q1
__
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We are going to prove now the second part of the statement.

• If F : X −→ Y is fully faithful, then given x, x′ ∈ Ob(X 1) = Ob(X ) we have F :

HomX (x, x′) −→ HomY(F(x), F(x′)) is a bijection. We want to prove that the same is

true for F1 : HomX 1(x, x′) −→ HomY1(F(x), F(x′)).

Surjectivity: If [c] ∈ HomY1(F(x), F(y)), then c ∈ HomY(F(x), F(x′)) and so there

exists a ∈ HomX (x, x′) such that F(a) = c and therefore [F(a)] = [c].

Injectivity: If [a], [b] ∈ HomX 1(x, x′) are morphisms such that F1([a]) = F1([b]),

then [F(a)] = [F(b)] and so F(a) and F(b) are locally equal morphisms in Y .

Hence q(F(a)) = q(F(b)), that is to say p(a) = p(b), and there exists a covering

{ fi : Ui −→ p(x)} such that f ∗i F(x) −→ F(x)
F(a)
−→ F(x′) = f ∗i F(x) −→ F(x)

F(b)
−→ F(x′)

and therefore F( f ∗i x) −→ F(x)
F(a)
−→ F(x′) = F( f ∗i x) −→ F(x)

F(b)
−→ F(x′), where

F( f ∗i x)
α−1

i
−→ f ∗i F(x) −→ F(x) = F( f ∗i x −→ x). Since F is bijective f ∗i x −→ x

a
−→ x′ =

f ∗i x −→ x
b
−→ x′ and this means that [a] = [b].

Then F1 is fully faithful.

• If F : X −→ Y is essentially surjective, given y ∈ Ob(Y ′) = Ob(Y), there is x ∈

Ob(X ) = Ob(X ′) and an isomorphism ϕ : F(x) −→ y in Y . Hence [ϕ] : F(x) −→ y is

an isomorphism in Y1 and therefore F1 : X −→ Y is essentially surjective.

Now, given R : Y −→ Z we have (R ◦ F)1 = R1 ◦ F1 in the objects, and for a morphism [a]

in X ,

(R ◦ F)1([a]) = [(R ◦ F)(a)]

= [R(a) ◦ F(a)]

= [R(a)] ◦ [F(a)]
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= R1([a]) ◦ F1([a])

= (R1 ◦ F1)([a])

Therefore (R ◦ F)1 = R1 ◦ F1 in the morphisms.

2. Locally defined morphisms: If X 1 = X and Y1 = Y , then there is a canonical 1-

morphism F1 : X 2 −→ Y2 of fibred categories over C such that the following diagram

commutes

X F //

��

Y

��
X 2

F2
// Y2

If F : X −→ Y is fully faithful (resp. essentially surjective) also is F2 : X 2 −→ Y2.

The previous result says that we can assume that X 1 = X and Y1 = Y , that is to say, locally

equal morphisms are equal. Let F2(x) = F(x) in the objects. If a ∈ HomX 2(x, x′), then

a = ( f , { fi}, ai) is a locally defined morphism in X . Let F2(a) = ( f , { fi}, F(ai) ◦ αi) and see

that F2(a) ∈ HomY2(F(x), F(x′)).

We have q(F(ai) ◦ αi) = q(F(ai)) ◦ q(αi) = f ◦ fi. In order to prove that F2(a) is a locally

defined morphism, consider the following diagram

f ∗i F(x)
αi //

''

F( f ∗i x)

��

F(a)

$$
( fi × f j)∗F(x)

66

ϕi j //

((

F(( fi × f j)∗x)

77

&&

F(x) F(x′)

f ∗j F(x)

88

α j
// F( f ∗j x)

OO

F(b)

::

For the remarks at beginning of this proof that in the front face the left square is cartesian.

The external one is commutative because F is a functor. Since the triangles with αi and α j
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are commutative, by the universal property of the fibre product there is a unique morphism

ϕi j : ( fi × f j)∗F(x) −→ F(( fi × f j)∗x) such that the two rectangles determined by this are

commutative and therefore ( fi × f j)∗F(x) −→ f ∗i F(x)
F(a)◦αi
−→ F(x′) = ( fi × f j)∗F(x) −→

f ∗i F(x)
F(a)◦α j
−→ F(x′) and we are done. We want to show that F2 : X 2 −→ Y2 is a functor. For

this, let b = (g, {gm}, bm) be a morphism in X 2 from x′ to x′′. Then b◦a = (g◦ f , {him}, bm◦a′i),

and therefore F2(b◦a) = (g◦ f , {Ui×V Vm, F(bm◦a′i)◦αim}), where αim : h∗imF(x) −→ F(him∗x)

is the only morphism such that the rectangles in the following diagram commutes

F(x)

f ∗i F(x)
αi // F( f ∗i x)

OO

F(ai) // F(x′)

F(h∗imx)

OO

F(a′i ) // F(g∗mx′)

OO

F(bm) // F(x′′)

h∗imF(x)

OO

αim
99

(F(ai)◦αi)′
// g∗mF(x′)

αm

OO

On the other hand,

F2(b) ◦ F2(a) = ( f , { fi}, F(ai) ◦ αi) ◦ (g, {gm}, F(bm) ◦ αm)

= (g ◦ f , {him}, (F(bm) ◦ αm) ◦ (F(ai) ◦ αi)′)

= (g ◦ f , {him}, F(bm) ◦ F(a′i) ◦ αim)

= F2(b ◦ a)

Then F2 is compatible with composition. Given x ∈ Ob(X 2), the identity idx in X 2 is

(idp(x), {idp(x)}, id∗p(x)x −→ x) and therefore

F2(idx) = (idp(x), {idp(x)}, F(id∗p(x)x −→ x) ◦ δ)

= (idp(x), {idp(x)}, id∗p(x)F(x) −→ F(x))
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= idF(x)

where δ : id∗p(x)F(x) −→ F(id∗p(x)x) is the only morphism such that id∗p(x)F(x)
δ
−→

F(id∗p(x)x) −→ F(x) = id∗p(x)F(x) −→ F(x). Hence F2 preserves identities and so F2X 2 −→

Y2 is a functor. Moreover, the following diagram is commutative

X F //

G
��

Y
H
��

X 2
F2
// Y2

Given x ∈ Ob(X ), then F2 ◦G(x) = F2(x) = F(x) = H(F(x)) = H ◦ F(x), since G and H are

identities in the objects. If a ∈ HomX (x, x′), then

F2 ◦G(a) = F(p(a), {idp(x)}, id∗p(x) −→ x
a
−→ x′)

= (p(a), {idp(x)}, id∗p(x)F(x)
δ
−→ F(id∗p(x)x) −→ F(x)

F(a)
−→ F(x′))

= H(F(a))

Now, given a strongly cartesian morphism b = ( f , { fi}, bi) from x to x′ in X 2, let a =

( f , { fi}, f ∗x′
a
−→ x′) the pullback of x′ over f in X 2. Then there exists a unique isomor-

phism c : x −→ f ∗x′ in X 2
U such that a ◦ c = b. Therefore F2(b) = F2(a ◦ c) = F2(a) ◦ F2(c).

Since F2(c) is an isomorphism, it is enough to show that F2(a) is a strongly cartesian mor-

phism. By construction, a = G(α), where α : f ∗x′ −→ x is the pullback of x′ over f in

X , and therefore F2(a) = F2 ◦ G(α) = H ◦ F(α). Since F and H are 1-morphism of fibred

categories, then H ◦ F also is and so H ◦ F(α) is a strongly cartesian morphism in Y2. Hence

F2 : X 2 −→ Y2 is a 1-morphism of fibred categories over C.

• If F : X −→ Y is fully faithful, then given x, x′ ∈ Ob(X 2) = Ob(X ) we have

HomX (x, x′)←→ HomY(F(x), F(x′)).
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Injectivity: If a = ( f , { fi}, ai) and b = (g, {gm}, bm) are morphisms in HomX 2(x, x′)

such that F2(a) = F2(b), then ( f , { fi}, F(ai) ◦ αi) = (g, {gm}, F(bm) ◦ βm). Hence f = g,

{ fi} = {gm} and we can take M = I and fi = gi for all i ∈ I. Then αi = βi and therefore

F(ai) ◦ αi = F(bi) ◦ αi. Since αi is isomorphism, we have F(ai) = F(bi) and since F is

injective, ai = bi, for all i ∈ I. Hence a = b.

Surjectivity: If c ∈ HomY2(F(x), F(x′)), then x = ( f , { fi}, ci), where ci : F∗i F(x) −→

F(x′) is a morphism in Y . Composing with α−1
i we have c◦α−1

i : F( f ∗i x) −→ F(x′) and

therefore there exists ai ∈ HomX ( f ∗i x, x′) which is unique such that F(ai) = ci ◦ α
−1
i or

F(ai) ◦ αi = ci. We need to see that a = ( f , { fi}, ai) is a locally defined morphism in X .

For this, consider the following diagram

f ∗i F(x)
αi // F( f ∗i x)

F(ai)

��
( fi × f j)∗F(x)

;;

ϕi j //

##

F(( fi × f j)∗x)

;;

##

F(x′)

f ∗j F(x)
α j

// F( f ∗j x)
F(a j)

BB

Since c = ( f , { fi}, ci) is a locally defined morphism and ci = F(ai)◦αi, then the external

diagram and the two rectangles at the left are commutative. But ϕi j is an isomorphism

and so the rectangle at the right is also commutative. The conclusion follows from F is

fully faithful. Hence a = ( f , { fi}, ai) is a morphism in X 2 and F2(a) = c which means

that F2 is is surjective.

• The same proof done before for F1 aloow us to conclude that if F : X −→ Y is

essentially surjective, also is F2 : X −→ Y .
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Given R : Y −→ Z we have again (R ◦ F)2 = R2 ◦ F2 in the objects. Let ( f , { fi}, ai) be a

morphism in X , and consider the following diagram

f ∗i (R ◦ F)(x)
δi //

44

γi

''
R( f ∗i F(x))

R(αi)// (R ◦ F)( f ∗i x) //

(R◦F)(ai)

''
(R ◦ F)(x) (R ◦ F)(x′)

f ∗i F(x)

OO

αi //
77F( f ∗i x)

OO

//

F(ai)

''
F(x)

OO

F(x′)

OO

f ∗i x

OO

//

ai

&&x

OO

x

OO

Then (R ◦ F)2( f , { fi}, ai) = ( f , { fi}, (R ◦ F)(a) ◦ γi), where γi : f ∗i (R ◦ F)x −→ (R ◦ F) f ∗i x is

the only morphism such that the triangle with (R ◦ F)x is commutative. On the other hand

(R2 ◦ F2)( f , { fi}, ai) = R2( f , { fi}, F(ai) ◦ αi)

= ( f , { fi},R(F(ai) ◦ αi) ◦ δi)

= ( f , { fi}, (R ◦ F)(ai) ◦ R(αi) ◦ δi)

where δi : f ∗i R(F(x)) −→ R( f ∗i F(x)) is the only morphism such that the triangle with (R◦F)(x)

commutes. Since R ◦ F is a 1-morphism of fibred categories, the morphism (R ◦ F)( f ∗i x) −→

(R ◦ F)(x) is strongly cartesian and by construction the composition of this morphism with

R(αi)◦δi and γi are equal and so R(αi)◦δi = γi. Then (R◦F)2( f , { fi}, ai) = (R2 ◦F2)( f , { fi}, ai)

and so (R ◦ F)2 = R2 ◦ F2.

3. Effective descent data: Suppose that X2 = X 1 = X and Y2 = Y1 = Y

Given (U , ξ) = ({ fi : Ui −→ U}, (xi,ϕi j)) in Ob(X ′), then F(xi) is an object of Y such that

q(yi) = q ◦ F(xi) = p(xi) = Ui and since ϕi j : pr∗i xi −→ pr∗j x j is an isomorphism in XUi j , then
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F(ϕi j) : F(pr∗i xi) −→ F(pr∗j x j) is an isomorphism in YUi j . Consider the following diagram

pr∗i F(xi)

��

αi

��

ψi j
**
pr∗j F(x j)

α j

��




F(pr∗i xi)

ww

F(ϕi j)
**
F(pr∗j x j)

((
F(xi) F(x j)

pr∗i xi

vv

OO

��

ϕi j

))
pr∗j x j

OO

~~

((xi

OO

!!

x j

OO

}}
Ui jpri

ww
pr j

''
Ui

fi ((

U j

f jvvU

where αi : pr∗i F(xi) −→ F(pr∗i xi) is the unique morphism such that the respective triangle is

commutative. Hence ψi j = α−1
j ◦F(ϕi j)◦αi is an isomorphism from pr∗i F(xi) to pr∗j F(xi). We
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will see that (F(xi),ψi j) is a descent datum in Y relative to U . For this, consider the diagram

F((pri
i j)
∗xi)

F(ϕi j)

++

F((pr j
i j)
∗x j)

(pri
i j)
∗F(xi)

aa
ψi j ,,

(pr j
i j)
∗F(x j)

==

F((pri
i jk)
∗xi)

F(pr∗ikϕik)

��

OO

ww

F(pr∗i jϕi j)

++
F((pr j

i jk)
∗x j)

OO

((

F(pr∗jkϕ jk)

��

F((pri
ik)
∗xi)

F(ϕik)

��

(pri
i jk)
∗F(xi)

aa

OO

vv

pr∗ikψik

��

pr∗i jψi j
,,

(pr j
i jk)
∗F(x j)

OO

==

((

pr∗jkψ jk

��

F((pr j
jk)
∗x j)

F(ϕ jk)

��

(pri
ik)
∗F(xi)

__

ψik

��

(pr j
jk)
∗F(x j)

>>

ψ jk

��

(prk
i jk)
∗F(xk)

vv

��

((
(prk

ik)
∗F(xk)

��

(prk
jk)
∗F(xk)

��

F((prk
i jk)
∗xk)

vv ((
F((prk

ik)
∗xk) F((prk

jk)
∗xk)

We want to prove that the central triangle commutes. Because (xi,ϕi j) is a descent datum

relative to U , and F is a functor, the rectangles and the triangle in the back of the diagram are

commutative. By definition, ψi j is the only morphism such that the rectangle with F(ϕi j) is

commutative. Also, pr∗i jψi j is the only morphism such that the rectangle with ψi j is commuta-

tive. The squares with none of its arrows labeled are commutative by construction and all the

morphisms in they are strongly cartesian. Therefore, the rectangle with pr∗i jψi j and F(pr∗i jϕi j)

is commutative. In the same way, the other two rectangles connecting the two triangles are
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commutative. Hence pr∗jkψ jk ◦ pr∗i jψi j and pr∗ikψik are morphisms such that the rectangle

(pri
i jk)
∗F(xi) //

��

(prk
i jk)
∗F(xk)

��
F((pri

i jk)
∗xi) // F((prk

i jk)
∗xk)

is commutative, but there is only one such morphism with this property and therefore pr∗jkψ jk◦

pr∗i jψi j = pr∗ikψik. Then (F(xi),ψi j) is a descent datum in Y relative to U and so F(U , ξ) =

(U , (F(xi),ψi j)) is an object in Y ′.

If (V , η) = ({gm : Vm −→ V}, (ym, ρmn)) is another object in X ′ and ( f , ai j) : (U , ξ) −→ (V , η) is

a morphism in X ′, we have f : U −→ V is a morphism in C and aim : xi|Ui×V Vm −→ ym|Ui×V Vm

is a morphism over idUi×V Vm such that for i, j ∈ I and m, n ∈ M, the following rectangle

commutes:

xi|A
aim |A //

ϕi j |A

��

ym|A

ψmn |A

��
x j|A a jn |A

// yn|A

By construction F(U , ξ) = (U , (F(xi),ψi j)) and F(V , η) = (V , (F(ym), σmn)), where ψi j =

α−1
j ◦F(ϕi j)◦αi and σmn = β−1

n ◦F(ρmn)◦βm, with αi : pr∗i F(xi) −→ F(pr∗i xi) is the canonical

isomorphism making commutative the right triangle in the next diagram
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F(xi)|A

cim |A

��

αi,A

��

// pr∗i F(xi)

cim

��

αi

"" ��
F(xi|A)

F(aim |A)
��

// F(pr∗i xi) //

F(aim)
��

F(xi)

F(ym|A) // F(pr∗mym) // F(ym)

F(ym)|A
βm,A

??

// pr∗mF(ym)
βm

<< >>

In the same way, we have an isomorphism αi,A which is unique such that the triangle

with F(xi) is commutative. Since F is a 1-morphism of fibred categories, the morphism

F(pr∗i xi) −→ F(xi) is strongly cartesian and therefore αi,A is the only morphism such that

the square αi is commutative. We have analog properties for βm and βm,A. Also, the central

square is commutative since F is a functor. Letting cim = β−1
m ◦ F(aim) ◦ αi, we will show that

( f , cim) is a morphism from F(U , ξ) to F(V , η). By definition, cim|A is the only morphism such

that the back rectangle commutes. Note that all the horizontal arrows are strongly cartesian

morphisms and so cim|A is the only morphism making the left rectangle commutative. We can

make the same with the descent data, that is to say, changing F(aim) for F(ϕi j) (resp. F(ρmn))

and cim for ψi j (resp. σmn). Hence, in the following diagram cim, c jn, F(ϕi j)|A and F(σmn)|A

are unique making its respective rectangle commutative
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F(xi)|A

F(ϕi j)|A

��

##

cim |A // F(ym)|A

zz

F(ρmn)|A

��

F(xi|A)

F(ϕi j |A)
��

F(aim |A) // F(ym|A)

F(ρmn |A)
��

F(x j|A)
F(a jn |A)

// F(yn|A)

F(x j)|A

;;

c jn |A

// F(yn)|A

βn,A
dd

Since the centrar rectangle is clearly commutative, and βn,A is isomorphism, then the external

rectangle is also commutative and so ( f , cim) is a morphism in Y ′ and therefore F′ : X −→ Y ′

is well defined in the morphisms.

Now, if (W , θ) = ({hk : Wk −→ W}, (zk, µkl)) is an object of X ′ and (g, bmk) : (V , η) −→ (W , θ)

is another morphism, then (g, bmk) ◦ ( f , aim) = (g ◦ f , dik), where dik : xi|Ui×W Wk −→ zk|Ui×W Wk

is the only morphism such that dm
ik = bi

mk ◦ ak
im. Applying the funtor F to the composition

diagram we have the next diagram in Y
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F(ym)

F(xi|Ui×V Vm)
F(aim) //

��

F(ym|Ui×V Vm)

==

F(ym|Vm×W Wk)

bb

F(bmk) // F(zk|Vm×W Wk)

��

F(xi|Ui×V Vm×W Wk)

F(dm
ik)

44

��

aa

F(ak
im)
// F(ym|Ui×V Vm×W Wk)

F(bi
mk)
//

<<aa

F(zk|Ui×V Vm×W Wk)

==

��

F(xi) F(zk)

F(xi|Ui×W Wk)

aa

F(dik)
// F(zk|Ui×W Wk)

==

Now we make the identification F(ak
im) � F(aim)|Ui×V Vm×W Wk and the same for F(bi

mk) and

F(dm
ik). Then we use F(dm

ik) = F(bi
mk) ◦ F(ak

im). Letting F′( f , aim) = ( f , cim), F′(g, bmk) =

(g, emk) and F′(g ◦ f , dik) = (g ◦ f , tik), we have the following diagram

F(ym)

F(xi)|Ui×V Vm

cim //

��

F(ym)|Ui×V Vm

==

F(ym)|Vm×W Wk

bb

emk // F(zk)|Vm×W Wk

��

F(xi)|Ui×V Vm×W Wk

tmik

44

��

aa

ck
im // F(ym)|Ui×V Vm×W Wk

ei
mk //

<<aa

F(zk)|Ui×V Vm×W Wk

==

��

F(xi) F(zk)

F(xi)|Ui×W Wk

aa

tik
// F(zk)|Ui×W Wk

==
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For each vertex there is a canonical arrow towards the corresponding vertex in the previous

diagram, such that for any arrow in one of the diagram, the square with the corresponding

arrow is commutative and this arrow is unique with such property as was proved before.

Then tm
ik = ei

mk ◦ ck
im and therefore (g ◦ f , tik) = (g, emk) ◦ ( f , cim), that is to say F′ : X ′ −→ Y ′

preserves composition.

Moreover, given (U , ξ) as before, id(U ,ξ) = (idU ,ϕi j) and F′(idU ,ϕi j) = (idU ,α
−1
j ◦F(ϕi j)◦αi) =

(idU ,ψi j) = idF(U ,ξ). Hence F′ : X ′ −→ Y ′ is a functor. We shall prove that the following

diagram commutes

X F //

G′
��

Y
H′
��

X ′
F′
// Y ′

Given x ∈ Ob(X ), we have G′(x) = ({idp(x)}, (x, idx)) and if x
a
−→ x′ is a morphism in X ,

G′(a) = (p(a), ax), where ax : x −→ x′|p(x) is the only morphism such that x
ax
−→ x′|p(x) −→

x′ = a. Hence H′(F(x)) = ({idq(F(x))}, (F(x), idF(x))) and also

F′(G′(x)) = F′({idp(x)}, (x, idx))

= ({idp(x)}, (F(x),α−1 ◦ F(idx) ◦ α))

= ({idp(x)}, (F(x), idF(x)))

Then we have the equality in the objects. On the other hand H′(F(a)) = (q(F(a)), F(a)x) =

(p(a), F(a)x) and also

F′(G′(a)) = F′(p(a), ax)

= (p(a),α−1 ◦ F(ax) ◦ idF(x))

= (p(a), F(a)x)
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as is showed in the next diagram

F(x′)|p(x)

!!

α

%%

��

F(x′|p(x))

##

��

F(x)
F(a)x

WW

F(ax)
cc

F(a) //

{{

F(x′)

}}
p(x)

p(a)
// p(x′)

Here, F(a)x is the only morphism such that the triangle with F(x′) commutes. The two

triangles at the right commute because F is a functor and by definition of α. Hence F(x)
F(a)x
−→

F(x′)|p(x)
α
−→ F(x′|p(x)) −→ F(x′) = F(ax)

F(ax)
−→ F(x′|p(x)) −→ F(x′) and since F(x′|p(x)) −→

F(x′) is strongly cartesian, it follows that α ◦ F(a)x = F(ax), and we have commutativity in

the morphisms.

In order to see that F′ : X ′ −→ Y ′ is a 1-morphism of fibred categories, we must to show that

q′ ◦ F′ = p′ which is easy and that F′ preserves strongly cartesian morphisms. The difficulty

here is that the objects in X ′ are not necessarily the same as the objects in X ′ and therefore,

the argument used with F1 and F2 cannot be applied. However, we can do it partially. Given

an object (V , η) = ({gm : Vm −→ V}, (xm,ψmn)) of X ′, let ( f , ρnm) : f ∗(V , η) −→ (V , η)

be the pullback of (V , η) in X ′ over f . Then f ∗(V , η) = ({g′m : Wm −→ U}, (zm, ρmn)),

where Wm = Vm ×V U, zm = xm|Wm and ρmn = ψmn|Wmn . Hence F′( f , ρmn) = ( f , γmn) where

114



2. STACKS

γmn = β−1
n ◦ F(ρmn) ◦ βm, as showed in the next diagram

F(zm)|Wmn
//

βm

$$

γmn

��

F(xm)|Vmn
αm

$$

δmn

��

F(zm|Wmn) //

F(ρmn)

��

F(xm|Vmn)

F(ψmn)

��
F(zn|Wmn) // F(xn|Vmn)

F(zn)|Wmn

βn

::

// F(xn)|Vmn

αn

::

As before, it remains to show that F′( f , ρmn) is a strongly cartesian morphism in Y ′. We have

F′(V , η) = F′({gm}, (xm,ψmn))

= ({gm}, (F(xm),α−1
n ◦ F(ψmn) ◦ αm))

= ({g′m}, (F(xm), δmn))

and therefore f ∗F′(V , η) = ({g′m}, (F(x)|Wmn , γmn)) and in the other hand

F′( f ∗(V , η)) = F′({g′m}, (zm, ρmn))

= ({g′m}, (F(zm), β−1
n ◦ F(ρmn) ◦ βm))

= ({g′m}, (F(xm|Wmn), γmn))

and so F′( f ∗(V , η)) � f ∗F′(V , η) via the canonical isomorphism induced by the identification

between F(x)|Wmn and F(xm|Wmn). Then F′( f , ρmn) is the composition of the pullback of F(V , η)

over f in Y ′ and one isomorphism and so this is a strongly cartesian morphism and therefore

F′X ′ −→ Y ′ is a 1-morphism of fibred categories.

Suppose now that F : X −→ Y is fully faithful. Given (U , ξ) and (V , η) in Ob(X ′) we want

to see that HomX ′((U , ξ), (V , η))←→ HomY ′(F′(U , ξ), F′(V , η)).
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Injectivity: If ( f , aim) and (g, bim) are morphisms from (U , ξ) to (V , η) such that F′( f , aim) =

F′(g, bim), then ( f , cim) = (g, dim), where cim and dim are defined as in the following diagram

pr∗i F(xi)
αi

xx

cim

��

dim

��

αi

&&
F(pr∗i xi)

F(aim)
��

F(pr∗i xi)

F(bim)
��

F(pr∗mym) F(pr∗mym)

pr∗mF(ym)
βm

ff

βu

88

Hence f = g and cim = dim. Since αi and β are isomorphims we have F(aim) = F(bim) and so

aim = cim, because F is fully faitfull.

Surjectivity: Given ( f , cim) : F′(U , ξ) −→ (V , η), we want to construct a morphism

( f , aim) : (U , ξ) −→ (V , η) such that F′( f , aim) = ( f , cim). Let γim : F(pr∗i xi) −→ F(pr∗mym)

the composition βm ◦ cim ◦ α
−1
i . Since F is fully faithful there is a unique morphism

aim : pr∗i xi −→ pr∗mym such that γim = F(aim). We will see that ( f , aim) is a morphism,

which by construction satisfies F′( f , aim) = ( f , cim). Letting A = (Ui ×U U j) ×V (Vm ×V Vn)

we have, in a reciprocal way to the part when we proved that F′ : X ′ −→ Y ′ is well defined

in the objects, that in the following diagram the external rectangle is commutative

F(xi)|A

F(ϕi j)|A

��

αm,A

##

cim |A // F(ym)|A

zz

F(ρmn)|A

��

F(xi|A)

F(ϕi j |A)
��

F(aim |A) // F(ym|A)

F(ρmn |A)
��

F(x j|A)
F(a jn |A)

// F(yn|A)

F(x j)|A

;;

c jn |A

// F(yn)|A

dd
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Then, because αm,A is isomorphism, the internal rectangle is also commutative and since F is

a functor F(ρmn|A ◦ aim|A) = F(a jn|A ◦ ϕi j|A) and therefore ρmn|A ◦ aim|A = a jn|A ◦ ϕi j|A and we

are done.

Given F : Y −→ Z , if (U , ξ) is an object of X , where U = { fi} is a covering and ξ = (xi,ϕi j)

is a descent datum in X relative to U , then

(R′ ◦ F′)(U , ξ) = R′(U , (F(xi),α−1
j ◦ F(ϕi j) ◦ αi))

= (U , δ−1
j ◦ R(α−1

j ◦ F(ϕi j) ◦ αi) ◦ δi)

= (U , δ−1
j ◦ R(α j)−1 ◦ R(F(ϕi j)) ◦R(αi) ◦ δi)

= (U , (R(α j) ◦ δ j)−1 ◦ (R ◦ F)(ϕi j) ◦ (R(αi) ◦ δi))

= (U , γ−1
j ◦ (R ◦ F)(ϕi j) ◦ γi)

= (R ◦ F)′(U , ξ)

and therefore, (R ◦ F)′ = R′ ◦ F′ in the objects.

If (V , η), with η = (ym, ρmn), is another object of X and ( f , aim) is a morphism from (U , ξ) to

(V , η), then letting λm and κm the analogs of γm and δm respectively, we have

(R′ ◦ F′)( f , aim) = R′( f , β−1
m ◦ F(aim) ◦ αi)

= ( f , κ−1
m ◦ R(β−1

m ◦ F(aim) ◦ αi) ◦ δi)

= ( f , κ−1
m ◦ R(βm)−1 ◦ R(F(aim)) ◦ R(αi) ◦ δi)

= ( f , (R(βm) ◦ κm)−1 ◦ (R ◦ F)(aim) ◦ (R(αi) ◦ δi))

= ( f , λ−1
m ◦ (R ◦ F)(aim) ◦ γi)

= (R ◦ F)′( f , aim)

and therefore (R ◦ F)′ = R′ ◦ F′ in the morphisms. In particular stackification preserves

commutative diagrams. �
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Corollary 3.1. Let p : X −→ C, q : Y −→ C and r : Z −→ C be fibred categories over C

and F : X −→ Z and G : Y −→ Z 1-morphisms of fibred categories over C such that the

category X ×Z Y over C has componentwise pullbacks. Then

H′ : (X ×Z Y)′ −→ (X ×2
Z Y)′

is a fully faithful functor. If the functor H is essentially surjective, then H′ is an equivalence

of categories.

Stackification and fibre product

It is a known fact that stakification preserves 2-fibre products, that is to say, the stackification

of a 2-fibre product of fibred categories is the same as the 2-fibre product of the stackifications

of the fibred categories. When we begin this research, we though it can be proved that stacki-

fication of a fibre product will be isomorphic to the stackification of the 2-fibre product, since

in Stacks Project we find that stackification sends commutative squares to 2-commutative

squares. However a similar result about fibre product, when this exist is not available in the

literature and doesn’t follows from the result about 2-fibre products. We are going to prove

that this functorial properties are also compatible with fibre products, provided that the fibre

product is the constructed in categories over C.

Theorem 4. Let p : X −→ C, q : Y −→ C and r : Z −→ C be fibred categories over C such

that the category X ×Z Y over C has componentwise pullbacks, then

(X ×Z Y)′ � X ′ ×Z ′ Y ′

Proof.

The proof is again divided in three stages:
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1. Locally equal morphisms: (X ×Z Y)1 � X 1 ×Z1 Y1.

The objects in X ×Z Y , (X ×Z Y)1 and X 1 ×Z1 Y1 are the same. Given (x, y), (x′, y′) ∈

Ob(X ×Z Y)1 we have x, x′ ∈ Ob(X ), y, y′ ∈ Ob(Y) and F(x) = G(y), F(x′) = G(y′). Let

[(a, b)] : (x, y) −→ (x′, y′) be a morphism in (X ×Z Y)1. Hence (a, b) : (x, y) −→ (x′, y′)

is morphism in X ×Z Y and so a : x −→ x′ and b : y −→ y′ are morphisms in X and Y

respectively such that F(a) = G(b). Then [a] : x −→ x′ and [b] : y −→ y′ are morphisms

in X ′ and Y ′ respectively such that F1[a] = G1[b], which means ([a], [b]) is a morphism in

X ′ ×Z ′ Y ′ from (x, y) to (x′, y′). If [(a, b)] = [(a′, b′)], then letting U = p(x) = q(y) and

V = p(x′) = q(y′), there is a covering { fi : Ui −→ U} such that (a, b)|Ui = (a′, b′)|Ui , that is

to say, (a|Ui , b|Ui) = (a′|Ui , b
′|Ui) and so a|Ui = a′|Ui and b|Ui = b′|Ui . Thus a, a′ : x −→ x′ and

b, b′ : y −→ y′ are two pairs of locally equal morphisms in X and Y respectively.

Defining K1 : (X ×Z Y)1 −→ X 1 ×Z1 Y1 as the identity in the objects and by K1[(a, b)] =

([a], [b]) in the morphisms is easy to see that if [(c, d)] : (x′, y′) −→ (x′′, y′′) is another

morphism in (X ×Z Y)1, then K1([(c, d)] ◦ [(a, b)]) = K1[(c, d)] ◦ K1[(a, b)] and K1[id(x,y)] =

id(x,y). Therefore is a well defined functor. Reciprocally, if ([a], [b]) is a morphism in X 1 ×Z1

Y1, then [a] : x −→ x′ and [b] : y −→ y′ are morphisms in X 1 and Y1 respectively such that

F1[a] = G1[b], that is to say F(a) = G(b) and so (a, b) is a morphism in X ×Z Y and therefore

[(a, b)] is a morphism in (X ×Z Y)1. This defines a functor L1 : X 1 ×Z1 Y1 −→ (X ×Z Y)1

which is the inverse of K1.

In particular K is an equivalence of categories and therefore X 1 ×Z1 Y1 is a fibred category.

Moreover, (X ×Z Y)1 is a fibre product.

2. Locally defined morphisms: (X ×Z Y)2 � X 2 ×Z2 Y2.

As before, Ob((X ×Z Y)2) = Ob(X 2 ×Z2 Y2) = Ob(X ×Z Y), an without lost of generality

we can assume X 1 = X , Y1 = Y and Z1 = Z . Given (x, y), (x′, y′) ∈ Ob(X ×Z Y) a
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morphism from (x, y) to (x′, y′) in (X ×Z Y)2 is a locally defined morphism in X ×Z Y , that

is to say, a triple ( f , { fi}, ci) where f : U −→ V is a morphism in C, { fi : Ui −→ U} is

a covering and ci : f ∗i (x, y) −→ (x′, y′) is a morphism in X ×Z Y such that ci|Ui j = c j|Ui j

for all i, j ∈ I. Now, we are in the case f ∗i (x, y) = ( f ∗i x, f ∗i y) and therefore ci = (ai, bi),

where ai : f ∗i x −→ x′, bi : f ∗i y −→ y′ and F(ai) = G(bi). Now, ci|Ui j = c j|Ui j if and

only if ai|Ui j = a j|Ui j and bi|Ui j = b j|Ui j , and therefore ( f , { fi}, ai) and ( f , { fi}, bi) are locally

defined morphisms in X and Y respectively such that F2( f , { fi}, ai) = G2( f , { fi}, bi), and so

(( f , { fi}, ai), ( f , { fi}, bi)) is a morphism in X 2 ×Z2 Y2 from (x, y) to (x′, y′). This defines a

functor K2 : (X ×Z Y)2 −→ X 2 ×Z2 Y2. If (g, {gm}, (dm, em)) : (x′, y′) −→ (x′′, y′′) is another

morphism, then

(g, {gm}, (dm, em)) ◦ ( f , { fi}, (ai, bi)) = (g ◦ f , {him}, (ai, bi)′ ◦ (dm, em))

= (g ◦ f , {him}, (a′i , b
′
i) ◦ (dm, em))

= (g ◦ f , {him}, (dm ◦ a′i , em ◦ b′i))

and therefore

K2((g, {gm}, (dm, em))◦( f , { fi}, (ai, bi))) = ((g ◦ f , {him}, dm ◦ a′m), (g ◦ f , {him}, em ◦ b′m))

= ((g, {gm}, dm) ◦ ( f , { fi}, ai), (g, {gm}, em) ◦ ( f , { fi}, bi))

= ((g, {gm}, dm), (g, {gm}, em)) ◦ (( f , { fi}, ai), ( f , { fm}, bi))

= K2(g, {gm}, (dm, em)) ◦ K2( f , { fi}, (ai, bi))

Then K2 is compatible with composition and is easy to see that is also compatible with

identities. Reciprocally, if (( f , { fi}, ai), (g, {gm}, bm)) is a morphism in X 2 ×Z2 Y2, then

F2( f , { fi}, ai) = G2(g, {gm}, bm) and so ( f , { fi}, F(ai)◦αi) = (g, {gm},G(bm)◦βm). It follows that

f = g, { fi} = {gm} and therefore by a change of index we have F(a) ◦ αi = G(bm) ◦ αi. Since

αi is an isomorphism, F(ai) = G(bi) and so (ai, bi) is a morphism in X ×Z Y from ( f ∗i x, f ∗i y)
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to (x′, y′). Moreover, since ai|Ui j = a j|Ui j and bi|Ui j = b j|Ui j , then (ai, bi)|Ui j = (a j, b j)|Ui j and

therefore ( f , { fi}, (ai, bi)) is a locally defined morphism in X ×Z Y from (x, y) to (x′, y′). This

defines a functor L2 : X 2 ×Z2 Y2 −→ (X ×Z Y)2 which is clearly the inverse of K2.

In particular K2 is an equivalence of categories and therefore X 2 ×Z2 Y2 is a fibred category.

Moreover, (X ×Z Y)2 is a fibre product.

3. Effective descent data: (X ×Z Y)′ � X ′ ×Z ′ Y ′.

Without lost of generality we can assume X 2 = X , Y2 = Y and Z2 = Z . Stackification

preserves commutative diagrams, and therefore in the following diagram the external square

is commutative

(X ×Z Y)′
pr′Y

""

pr′X

((

K′

''
X ′ ×Z ′ Y ′

prY′ //

prX ′

��

Y ′

G′

��
X ′

F′
// Z ′

Since the internal square is cartesian, there exists a 1-morphism K′ : (X ×ZY)′ −→ X ′×Z ′Y ′

of categories over C, unique such that the triangles are commutative.

Given an object ({ fi}, ((xi, yi), (ϕi j, ρi j))) of (X ×Z Y) we have (xi, yi) and (ϕi j, ρi j) are an ob-

ject and a morphism in ∈ Ob(X ×Z Y). Then F(xi) = G(yi) and F(ϕi j) = G(ρi j) and so

pr′X ({ fi}, ((xi, yi), (ϕi j, ρi j))) = ({ fi}, (prX (xi, yi), γ−1
j ◦ prX (ϕi j) ◦ γi)) = ({ fi, (xi,ϕi j)}). We

are used that since pr∗i (xi, yi) = (pr∗i xi, pr∗i yi) and prX , prY are defined pointwise, then

the morphisms γi : pr∗i prX (xi, yi) −→ prX (pr∗i (xi, yi)) is the identity. In the same way

pr′Y({ fi}, ((xi, yi), (ϕi j, ρi j))) = ({ fi, (xi,ϕi j)}). Since prX ′ and prY ′ are also defined pointwise

this implies that K′({ fi}, ((xi, yi), (ϕi j, ρi j))) must be equal to (({ fi}, (xi,ϕi j)), ({ fi}, (yi, ρi j))).

If ( f , (aim, bim)) is a morphism in (X ×Z Y)′, following a similar argument we have
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pr′X ( f , (aim, bim)) = ( f , aim) and pr′Y( f , (aim, bim)) = ( f , bim) and K′( f , (aim, bim)) must be

(( f , aim), ( f , bim)).

Reciprocally, if (({ fi}, (xi,ϕi j)), ({gm}, (ym, ρmn))) is an object of X ′ ×Z ′ Y ′, we have

({ fi}, (xi,ϕi j)) ∈ Ob(X ′), ({gm}, (ym, ρmn)) ∈ Ob(Y ′) and F′({ fi}, (xi,ϕi j)) = G′({gm}, (ymρmn)),

that is to say ({ fi}, (F(xi),α−1
j ◦ F(ϕi j) ◦ αi)) = ({gm}, (F(ym), β−1

n ◦ G(ρmn) ◦ βm)) and so

{ fi} = {gm} and we can change the index m to have fi = gi for all i ∈ I. Also F(xi) = G(yi)

and therefore (xi, yi) ∈ Ob(X ×Z Y). Moreover pr∗i (xi, yi) = (pr∗i xi, pr∗i yi) and the pull-

back pr∗i (xi, yi) −→ (xi, yi) is the pair (pr∗i xi −→ xi, pr∗i yi −→ yi). This means that

F(pr∗i xi −→ xi) = G(pr∗i yi −→ yi) and this implies that αi = βi for all i ∈ I. Since

α−1
j ◦ F(ϕi j) ◦ αi = β−1

n ◦ G(ρi j) ◦ βm and αi is isomorphism, then F(ϕi j) = G(ρi j) and

therefore (ϕi j, ρi j) is a morphism in X ×Z Y . Hence ((xi, yi), (ϕi j, ρi j)) is a descent datum

in X ×Z Y relative to { fi} and so ({ fi}, ((xi, yi), (ϕi j, ρi j))) is an object in (X ×Z Y)′. More-

over, if (( f , aim), (g, bim)) is a morphism in X ′ ×Z ′ Y ′, then ( f , aim) and (g, bim) are morphisms

in X ′ and Y ′ respectively and F′( f , aim) = G(g, bim), that is to say ( f , β−1
m ◦ F(aim) ◦ αi) =

(g, β−1
m ◦G(bim) ◦ αi) and so f = g and F(aim) = G(bim), which means (aim, bim) is a morphism

in X×ZY and since restrictions are made pointwise, ( f , (aim, bim)) is a morphism in (X×ZY)′.

We shall prove that this defines a functor L′ : X ′ ×Z ′ Y ′ −→ (X ×Z Y)′. If ((g, cmk), (g, emk))

is another morphism wich is composable with (( f , aim), ( f , bim)) then we have

L′(((g, cmk), (g, emk)) ◦ (( f , aim), ( f , bim))) = L′((g, cmk) ◦ ( f , aim), (g, emk) ◦ ( f , bim))

= L′((g ◦ f , cmk ◦ a′im), (g ◦ f , emk ◦ b′im))

= L′(g ◦ f , (cmk ◦ aim, emk ◦ bim))

= (g ◦ f , (cmk, bmk) ◦ (a′im, b
′
im))

= (g ◦ f , (cmk, bmk) ◦ (aim, bim)′)

= (g, (cmk, emk)) ◦ ( f , (aim, bim))
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= L′((g, cmk), (g, emk)) ◦ L′(( f , aim), ( f , bim))

and therefore L′ is compatible with composition. In the other hand, the iden-

tity of (({ fi}, (xi,ϕi j), ({ fi}, (yi, ρi j))) is ((idU ,ϕi j), (idU , ρi j)) and L′((idU ,ϕi j), (idU), ρi j) =

(idU , (ϕi j,ψi j)) which is the identity of L′({ fi}, (xi,ϕi j), ({ fi}, (yi,ψi j)) = ({ fi}, (xi, yi), (ϕi j,ψi j)).

Then L′ is a functor and is easy to see that this is an inverse functor for K′. Hence K′ is an iso-

morphism and so (X ×Z Y)′ is a fibre product. In particular K′ is an equivalence of categories

over C and therefore X ′ ×Z ′ Y ′ is a fibred category over C. �

Remark. Previously we give an example, the heart shaped diagram, of fibred categories X ,

Y and Z such that X ×Z Y and X ×2
Z Y where not equivalent categories. Later we proved that

these categories are actually stacks and therefore their stackifications are isomorphic to them.

Hence X ×Z Y is a stack, not equivalent to the stack X ×2
Z Y , which is indeed the 2-fibre

product of the stackifications. This shows that the fibre product of the stackifications is not in

general isomorphic nor categorically equivalent to de 2-fibre product of the stackifications.
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Chapter

3 Groupoids in Algebraic Spaces

3.1 Groupoid Categories

We are going to define groupoid categories since they are the basic concept in order to con-

sider quotient stacks. The theory presented here is more general than the found in Stacks

Project, since we are not restricting C to be the category of schemes of algebraic spaces and

therefore the objects U,R and the morphisms s, t, c, e, i in the next definition has not to be

functors and natural transformations respectively. Instead our approach is based on the rela-

tions between the objects and morphisms without having to go down to the category of sets.

The most important construction here is the fibre product, which is going to be really useful

in the next chapters. Originally, this was the first chapter in this work, since the existence of

this fibre product was the first important step in the solution of the wanted results in quotient

stacks. However, it was move down in order to have a more comprehensive structure. The

reader can notice the difference in the tag (0231).
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Definition 3.1.1 (Groupoid category). Let C be a category with fibre products. A groupoid

category is a quintuple (U,R, s, t, c), where U and R are objects of C and s, t : R −→ U and

c : R ×s,U,t R −→ R are morphisms satisfying the following properties:

1. (Associativity) c ◦ (c, 1) = c ◦ (1, c) as morphisms R ×s,U,t R ×s,U,t R −→ R, i.e. the

following diagram commutes:

R ×U R ×U R
(1,c) //

(c,1)
��

R ×U R

c
��

R ×U R c
// R

2. (Identity) There exists a morphism e : U −→ R such that:

a) s ◦ e = t ◦ e = idU

b) c ◦ (1, e ◦ s) = c ◦ (e ◦ t, 1) = idR

3. (Inverse) There exists a morphism i : R −→ R such that:

a) s ◦ i = t and t ◦ i = s

b) c ◦ (1, i) = e ◦ t and c ◦ (i, 1) = e ◦ s

Example 11. Recall that a groupoid is a category C in which every morphism is an isomor-

phism. In that case, we can consider U = Ob(C) the class of objects and R = Ar(C) the class

of all the morphisms on C.

The morphisms s, t : Ar(C) −→ Ob(C), are the source and target maps, c : Ar ×t,Ob,s Ar −→

Ar is the usual composition and e : Ob −→ Ar and i : Ar −→ Ar are the identity and inverse

maps.

The morphisms s, t : Ar(C) −→ Ob(C), are the source and target maps which are defined as

follows: for any f : X −→ Y in Ar(C), s( f ) = X and t( f ) = Y . The fibre product Ar×s,Ob,t Ar
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is the class of pairs ( f , g) such that s( f ) = t(g) that is to say the source of f is the target of g.

The morphism c : Ar×s,Ob,t Ar −→ Ar is the usual composition c( f , g) := f ◦g. Associativity

says that given f , g, h with s( f ) = t(g) and s(g) = t(h) we have

f ◦ (g ◦ h) = c( f , c(g, h)) = (c ◦ (1, c))( f , g, h)

= (c ◦ (c, 1))( f , g, h)

= c(c( f , g), h)

= ( f ◦ g) ◦ h

which is the usual associativity property on C. The identity of an object X is given by e(x) =

idX, which satisfy s ◦ e(X) = X = t ◦ e(X), c ◦ (1, e ◦ s)( f ) = c( f , ids( f )) = f ◦ ids( f ) = f and

c ◦ (e ◦ t, 1)( f ) = c(idt( f ), f ) = idt( f ) ◦ f = f . Since every morphism is actually isomorphism

then each morphism has an inverse f −1. The morphism i : Ar −→ Ar is given by i( f ) = f −1.

Hence, if f : X −→ Y , then f −1 : Y −→ X is such that f ◦ f −1 = idY and f −1 ◦ f = idX.

Therefore s ◦ i( f ) = s( f −1) = t( f ), t ◦ i( f ) = t( f −1) = s( f ), c ◦ (1, i)( f ) = c ◦ ( f , i( f )) =

f ◦ f −1 = idt( f ) = e ◦ t( f ) and c ◦ (i, 1)( f ) = c(i( f ), f ) = f −1 ◦ f = ids( f ) = e ◦ s( f ).

Consequently every groupoid defines canonically a groupoid category.

Lemma 3.1.1. The morphisms e : U −→ R and i : R −→ R are uniquely determined by the

properties 2) and 3) in the definition. Furthermore i ◦ i = 1R.

Proof. Let e1, e2 : U −→ R be morphisms satisfying the conditions above. Then e2 = c◦ (e1 ◦

t, 1)◦e2 = c◦(e1◦t◦e2, e2) = c◦(e1, e2) and e1 = c◦(1, e2◦s)◦e1 = c◦(e1, e2◦s◦e1) = c◦(e1, e2)

and so e1 = e2.

Suppose now that i1, i2 : R −→ R are morphisms which s ◦ i1 = t = s ◦ i2, t ◦ i1 = s = t ◦ i2,

c ◦ (1, i1) = e ◦ t = c ◦ (1, i2) and c ◦ (i1, 1) = e ◦ s = c ◦ (i2, 1). Using associativity,

c◦(c, 1)◦(i1, 1, i2) = c◦(1, c)◦(i1, 1, i2). But c◦(c, 1)(i1, 1, i2) = c◦(c◦(i1, 1), i2) = c◦(e◦ s, i2)
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and c ◦ (1, c)(i1, 1, i2) = c ◦ (i1, c ◦ (1, i2)) = c ◦ (i1, e ◦ t). Then c ◦ (e ◦ s, i2) = c ◦ (i1, e ◦ t).

Also s = t ◦ i2 and t = s ◦ i1, hence c ◦ (e ◦ t ◦ i2, i2) = c ◦ (i1, e ◦ s ◦ i1) and we have

c ◦ (e ◦ t, 1) ◦ i2 = c ◦ (1, e ◦ s) ◦ i1, but from definition of e : U −→ R we know that

c ◦ (e ◦ t, 1) = c ◦ (1, e ◦ s) = idR and we conclude i1 = i2.

We shall show that i is idempotent. Again by associativity c◦(c, 1)(i◦i, i, 1) = c◦(1, c)(i◦i, i, 1)

and also s ◦ i ◦ i = s, as s ◦ i = t and t ◦ i = s. But

c ◦ (c, 1)(i ◦ i, i, 1) = c ◦ (c ◦ (i ◦ i, i), 1) = c ◦ (c ◦ (i, 1) ◦ i, 1)

= c ◦ (e ◦ s ◦ i, 1)

= c ◦ (e ◦ t, 1)

= idR

and on the other hand

c ◦ (1, c)(i ◦ i, i, 1) = c ◦ (i ◦ i, c ◦ (i, 1))

= c ◦ (i ◦ i, e ◦ s)

= c ◦ (i ◦ i, e ◦ s ◦ i ◦ i)

= c ◦ (1, e ◦ s) ◦ i ◦ i

= i ◦ i

because c ◦ (1, e ◦ s) = idR. Therefore i ◦ i = idR. �

Definition 3.1.2 (Morphism of groupoid categories). Let G = (U,R, s, t, c) and G′ =

(U′,R′, s′, t′, c′) be groupoid categories. A morphism F : G −→ G′ is a pair of morphisms

ϕ : U −→ U′ and ϕ̃ : R −→ R′ such that s′ ◦ ϕ̃ = ϕ ◦ s, t′ ◦ ϕ̃ = ϕ ◦ t and c′ ◦ (ϕ̃, ϕ̃) = ϕ̃ ◦ c.

Lemma 3.1.2. Let (ϕ, ϕ̃) : (U,R, s, t, c) −→ (U′,R′, s′, t′, c′) and (ψ, ψ̃) : (U′,R′, s′, t′, c′) −→

(U′′,R′′, s′′, t′′, c′′) be morphisms of groupoid categories.
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i) The pair (ψ◦ϕ, ψ̃◦ϕ̃) is a morphism of groupoid categories, called composition of (ϕ, ϕ̃)

and (ψ, ψ̃), which is denoted (ϕ, ϕ̃) ◦ (ψ, ψ̃).

ii) The pair (idU′ , idR′) is a morphism (U′,R′, s′, t′, c′) −→ (U′,R′, s′, t′, c′) and for all (ϕ, ϕ̃)

and (ψ, ψ̃) as before we have (idU′ , idR′)◦(ϕ, ϕ̃) = (ϕ, ϕ̃) and (ψ, ψ̃)◦(idU′ , idR′) = (ψ, ψ̃).

Then that pair is de identity with the composition rule defined as in part i).

Proof.

i) In fact, that pair makes sense, because there exist the compositions U
ϕ

−→ U′
ψ

−→ U′′

and R
ϕ̃

−→ R′
ψ̃

−→ R′′. We must to show that pair is a functor of groupoid categories.

• We have

s′′ ◦ (ψ̃ ◦ ϕ̃) = (s′′ ◦ ψ̃) ◦ ϕ̃

= (ψ ◦ s′) ◦ ϕ̃ = ψ ◦ (s′ ◦ ϕ̃)

= ψ ◦ (ϕ ◦ s)

= (ψ ◦ ϕ) ◦ s

• In the same way t′′ ◦ (ψ̃ ◦ ϕ̃) = (ψ ◦ ϕ) ◦ t.

• Also

c′′ ◦ (ψ̃ ◦ ϕ̃, ψ̃ ◦ ϕ̃) = c′′ ◦ ((ψ̃, ψ̃) ◦ (ϕ̃, ϕ̃))

= (c′′ ◦ (ψ̃, ψ̃)) ◦ (ϕ̃, ϕ̃)

= (ψ̃ ◦ c′) ◦ (ϕ̃, ϕ̃)

= ψ̃ ◦ (c′ ◦ (ϕ̃, ϕ̃))

= ψ̃ ◦ (ϕ̃ ◦ c)

= (ψ̃ ◦ ϕ̃) ◦ c
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This shows that (ψ, ◦ϕ, ψ̃◦ϕ̃) is a functor of groupoid categories. In particular (ψ̃◦ϕ̃)◦e =

e′′ ◦ (ψ ◦ ϕ) and (ψ̃ ◦ ϕ̃) ◦ i = i′′ ◦ (ψ̃ ◦ ϕ̃).

ii) Once again, the pair (idU′ , idR′) makes sense. Moreover, s′ ◦ idR′ = s′ = idU′ ◦ s′,

t′ ◦ idR′ = t′ = idU′ ◦ t′ and c′ ◦ (idR′ , idR′) = c′ = idR′ ◦ c′. Then (idU′ , idR′)

is a functor from (U′,R′, s′, t′, c′) to (U′,R′, s′, t′, c′). Furthermore, composing we

have (ψ, ψ̃) ◦ (idU′ , idR′) = (ψ ◦ idU′ , ψ̃ ◦ idR′) = (ψ, ψ̃) and (idU′ , idR′) ◦ (ϕ, ϕ̃) =

(idU′ ◦ ϕ, idR′ ◦ ϕ̃) = (ϕ, ϕ̃). �

Definition 3.1.3 (Category of groupoids categories). The category of groupoid categories

is the category whose objects are groupoids categories and the morphisms are morphisms

of groupoid categories, with the composition and identities given by the previous lemma.

Consequently (ψ, ψ̃) ◦ (ϕ, ϕ̃) = (ψ ◦ ϕ, ψ̃ ◦ ϕ̃) and id(U,R,s,t,c) = (idU , idR).

Lemma 3.1.3. With the notation as before, if (ϕ, ϕ̃) : G −→ G′ is a functor of groupoid

categories, then ϕ̃ ◦ e = e′ ◦ ϕ and ϕ̃ ◦ i = i′ ◦ ϕ̃.

Proof.

In order to show that ϕ̃ ◦ e = e′ ◦ ϕ, consider the following:

i) c ◦ (e, e) = c ◦ (e, e ◦ s ◦ e) = c ◦ (1, e ◦ s) ◦ e = e. Therefore c′ ◦ (ϕ̃, ϕ̃) ◦ (e, e) =

ϕ̃ ◦ c ◦ (e, e) = ϕ̃ ◦ e.

ii)

c′ ◦ (i′ ◦ ϕ̃, ϕ̃) ◦ e = c′ ◦ (i′, 1) ◦ ϕ̃ ◦ e

= e′ ◦ s′ ◦ ϕ̃ ◦ e

= e′ ◦ ϕ ◦ s ◦ e

= e′ ◦ ϕ
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iii)

c′ ◦ (i′ ◦ ϕ̃, ϕ̃) ◦ e = c′ ◦ (i′ ◦ ϕ̃ ◦ e, ϕ̃ ◦ e)

= c′ ◦ (i′ ◦ e, c′ ◦ (ϕ̃, ϕ̃) ◦ (e, e))

= c′ ◦ (1, c′) ◦ (i′ ◦ ϕ̃, ϕ̃, ϕ̃) ◦ e

= c′ ◦ (c′, 1) ◦ (i′ ◦ ϕ̃, ϕ̃, ϕ̃) ◦ e

= c′ ◦ (c′ ◦ (i′ ◦ ϕ̃, ϕ̃) ◦ e, ϕ̃ ◦ e)

= c′ ◦ (e′ ◦ ϕ, ϕ̃ ◦ e)

= c′ ◦ (e′ ◦ t′ ◦ ϕ̃ ◦ e, ϕ̃ ◦ e)

= c′ ◦ (e′ ◦ t′, 1) ◦ ϕ̃ ◦ e

= ϕ̃ ◦ e

The last two equations show ϕ̃ ◦ e = e′ ◦ ϕ that is to say, the compatibility with identity. On

the other hand, to show ϕ̃ ◦ i = i′ ◦ ϕ̃, consider the following equalities:

i)

c′ ◦ (i′ ◦ ϕ̃, ϕ̃) = c′ ◦ (i′, 1) ◦ ϕ̃

= e′ ◦ s′ ◦ ϕ̃

= e′ ◦ ϕ ◦ s

= ϕ̃ ◦ e ◦ s

ii)

c′ ◦ (i′ ◦ ϕ̃, c′ ◦ (ϕ̃, ϕ̃ ◦ i)) = c′ ◦ (i′ ◦ ϕ̃, c′ ◦ (ϕ̃, ϕ̃) ◦ (1, i))

= c′ ◦ (i′ ◦ ϕ̃, ϕ̃ ◦ c ◦ (1, i))
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= c′ ◦ (i′ ◦ ϕ̃, ϕ̃ ◦ e ◦ t)

= c′ ◦ (i′ ◦ ϕ̃, e′ ◦ ϕ ◦ t)

= c′ ◦ (i′ ◦ ϕ̃, e′ ◦ t′ ◦ ϕ̃)

= c′ ◦ (i′, e′ ◦ t′) ◦ ϕ̃

= c′ ◦ (i′, e′ ◦ s′ ◦ i′) ◦ ϕ̃

= c′ ◦ (1, e′ ◦ s′) ◦ i′ ◦ ϕ̃

= i′ ◦ ϕ̃

iii)

c′ ◦ (i′ ◦ ϕ̃, c′ ◦ (ϕ̃, ϕ̃ ◦ i)) = c′ ◦ (1, c′) ◦ (i′ ◦ ϕ̃, ϕ̃, ϕ̃ ◦ i)

= c′ ◦ (c′, 1) ◦ (i′ ◦ ϕ̃, ϕ̃, ϕ̃ ◦ i)

= c′ ◦ (c′ ◦ (i′ ◦ ϕ̃, ϕ̃), ϕ̃ ◦ i)

= c′ ◦ (ϕ̃ ◦ e ◦ s, ϕ̃ ◦ i)

= c′ ◦ (ϕ̃, ϕ̃) ◦ (e ◦ s, i)

= ϕ̃ ◦ c ◦ (e ◦ s, i)

= ϕ̃ ◦ c ◦ (e ◦ t ◦ i, i)

= ϕ̃ ◦ i

Once again, the last two equations show that ϕ̃ ◦ i = i′ ◦ ϕ̃ and we have compatibility with

inverse. �

Remark. In categories in general is not automatic that ϕ̃ ◦ e = e′ ◦ϕ. Note that here we have

used the existence of inverse.
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3.2 Fibre product of groupoid categories

In this section we will see that in groupoid categories the fibre product always exists provided

that the base category C admits fibre products.

Theorem 5. If C is a category with fibre products, then the category of groupoid categories

on C have fibre products.

Proof.

Let (U,R, s, t, c), (U′,R′, s′, t′, c′) and (U′′,R′′, s′′, t′′, c′′) be groupoids on C and (ϕ, ϕ̃) :

(U,R, s, t, c) −→ (U′′,R′′, s′′, t′′, c′) and (ψ, ψ̃) : (U′,R′, s′, t′, c′) −→ (U′′,R′′, s′′, t′′, c′′) mor-

phisms of groupoids. Hence ϕ : U −→ U′ and ϕ̃ : R −→ R′ are morphisms on C such that

s′ ◦ ϕ̃ = ϕ ◦ s, t′ ◦ ϕ̃ = ϕ ◦ t and c′ ◦ (ϕ̃, ϕ̃) = ϕ̃ ◦ c. In the same way ψ : U′ −→ U′′

and ψ̃ : R′ −→ R′′ are morphisms on C satisfying s′′ ◦ ψ̃ = ψ ◦ s′, t′′ ◦ ψ̃ = ψ ◦ t and

c′′ ◦ (ψ̃, ψ̃) = ψ̃ ◦ c′.

We will construct a groupoid category (U′′′,R′′′, s′′′, t′′′, c′′′) and morphisms of (ρ, ρ̃) :

(U′′′,R′′′, s′′′, t′′′, c′′′) −→ (U,R, s, t, c) and (σ, σ̃) : (U′′′,R′′′, s′′′, t′′′, c′′′) −→

(U′,R′, s′, t′, c′) such that the diagram

(U′′′,R′′′, s′′′, t′′′, c′′′)

(ρ,̃ρ)
��

(σ,σ̃) // (U′,R′, s′, t′, c′)

(ψ,ψ̃)
��

(U,R, s, t, c)
(ϕ,ϕ̃)

// (U′′,R′′, s′′, t′′, c′′)

is cartesian in the category of groupoids on C. For this, using the fact on C there are fibre

product, define U′′′,R′′′,ϕ,ψ, ϕ̃, ψ̃ so that the following diagrams are cartesian squares:
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U′′′

ρ

��

σ // U′

ψ

��
U

ϕ
// U′′

R′′′

ρ̃

��

σ̃ // R′

ψ̃

��
R

ϕ̃

// R′′

to define the morphisms s′′′, t′′′ : R′′′ −→ U′′′ look at the next diagrams:

R′′′
s′′′

||

σ̃ //

ρ̃

��

R′

s′}}
ψ̃

��

U′′′

ρ

��

σ // U′

ψ

��

R
s

||

ϕ̃ // R′′

s′′}}
U

ϕ
// U′′

R′′′
t′′′

||

σ̃ //

ρ̃

��

R′

t′}}
ψ̃

��

U′′′

ρ

��

σ // U′

ψ

��

R
t

||

ϕ̃ // R′′

t′′}}
U

ϕ
// U′′

where in each case the front and back faces of the cube are cartesian squares and by con-

struction of U′′′ and R′′′, the lower and right faces are commutative because of definition of

morphism of groupoids. The universal property of fibre product ensure the existence of the

morphisms s′′′, t′′′ : R′′′ −→ U′′′ as the only ones such that ρ ◦ s′′′ = s ◦ ρ̃, σ ◦ s′′′ = s′ ◦ σ̃,

ρ ◦ t′′′ = t ◦ ρ and σ ◦ t′′′ = t′ ◦ σ̃.

Now we will define c′′′ : R′′′ ×s′′′,U′′′,t′′′ R′′′ −→ R′′′. Consider the following diagrams:
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R′′′ ×U′′′ R′′′

pr1

��

pr2 //

α

''

R′′′

t′′′
��

ρ̃

  
R ×U R

��

// R

t

��

R′′′ s′′′ //

ρ̃
''

U′′′
ρ

!!
R s

// U

R′′′ ×U′′′ R′′′

pr1

��

pr2 //

β

''

R′′′

t′′′
��

σ̃

  
R ×U R

��

// R

t

��

R′′′ s′′′ //

σ̃
''

U′′′
σ

!!
R s

// U

Both are commutatives and again for the universal property of fibre product R ×s,U,t R there

exist α and β unique such that the respective cubes commute. Then α = (̃ρ ◦ pr1, ρ̃ ◦ pr2) =

c◦ (̃ρ, ρ̃)◦(pr1, pr2) = c◦ (̃ρ, ρ̃) and β = (σ̃◦ pr1, σ̃◦ pr2) = c′◦(σ̃, σ̃)◦(pr1, pr2) = c′◦(σ̃, σ̃),

since (pr1, pr2) = idR′′′ . To define c′′′ regard the following diagram:

R′′′ ×U′′′ R′′′

α

��

β //

c′′′

&&

R′ ×U′ R′

c′
��

R′′′

ρ̃

��

σ̃ // R′

ψ̃

��
R ×U R c

// R
ψ̃

// R′′

We claim the external rectangle commutes. In fact,

ϕ̃ ◦ c ◦ α = c′′ ◦ (ϕ̃ϕ̃) ◦ α

= c′′ ◦ (ϕ̃, ϕ̃) ◦ (̃ρ ◦ pr1, ρ̃ ◦ pr2)

= c′′ ◦ (ϕ̃ ◦ ρ̃ ◦ pr1, ϕ̃ ◦ ρ̃ ◦ pr2)

= c′′ ◦ (ψ̃ ◦ σ̃ ◦ pr1, ψ̃ ◦ σ̃ ◦ pr2)

= c′′ ◦ (ψ̃, ψ̃) ◦ (σ̃ ◦ pr1, σ̃ ◦ pr2)

= ψ̃ ◦ c′ ◦ β
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Thus, for the universal property of fibre product, there exists c′′′ : R′′′×U′′′R′′′ −→ R′′′ unique

such that ρ̃ ◦ c′′′ = c ◦ α and σ̃ ◦ c′′′ = c′ ◦ β. Moreover c′′′ = (c ◦ (̃ρ, ρ̃), c′ ◦ (σ̃, σ̃)).

Let us see that this is a groupoid category. By construction we have s′′′ = (s ◦ ρ̃, s′ ◦ σ̃),

t′′′ = (t ◦ ρ̃, t′ ◦ σ̃) and c′′′ = (c ◦ (̃ρ, ρ̃), c′ ◦ (σ̃, σ̃)). To see that (U′′′,R′′′, s′′′, t′′′, c′′′) is a

groupoid category we need to show that the morphisms satisfy the properties:

1. Associativity.

ρ̃ ◦ (c′′′ ◦ (c′′′, 1)) = (̃ρ ◦ c′′′) ◦ (c′′′, 1)

= c ◦ (̃ρ, ρ̃) ◦ (c′′′, 1)

= c ◦ (̃ρ ◦ c′′′, ρ̃)

= c ◦ (c ◦ (̃ρ, ρ̃), ρ̃)

= c ◦ (c, 1) ◦ (̃ρ, ρ̃, ρ̃)

In the same way ρ̃ ◦ (c′′′ ◦ (1, c′′′)) = c ◦ (1, c) ◦ (̃ρ, ρ̃, ρ̃) since c ◦ (c, 1) = c ◦ (1, c), it follows

that ρ̃ ◦ (c′′′ ◦ (c′′′, 1)) = ρ̃ ◦ (c′′′, (1, c′′′)). In the same way σ̃ ◦ (c′′′ ◦ (c′′′, 1)) = σ̃ ◦ (1, c′′′).

But the universal property of the fibre product R′′′ = R ×R′′ R′ ensure the unicity of such a

morphism. Then we have c′′′ ◦ (c′′′, 1) = c′′′ ◦ (1, c′′′).

We will define now the morphisms e′′′ : U′′′ −→ R′′′ and i′′′ : R′′′ −→ R′′′.
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2. Identity. In order to define e′′′ : U′′′ −→ R′′′ consider the diagram

U′′′
ρ

}}

σ //

e′′′
��

U′

ψ}}
e′

��

U

e

��

ϕ // U′′

e′′

��

R′′′
ρ̃

}}

σ̃ // R′

ψ̃}}
R

ϕ̃

// R′′

The upper and lower faces are cartesian squares, the front and back ones are commutative,

since (ϕ, ϕ̃) and (ψ, ψ̃) are morphisms of groupoids. Then by the universal property of fibre

product, exists a unique morphism e′′′ : U′′′ −→ R′′′ such that σ̃◦e′′′ = e′◦σ and ρ̃◦e′′′ = e◦ρ.

a) We have the equality

s′′′ ◦ e′′′ = (s ◦ ρ̃, s′ ◦ σ̃) ◦ (e ◦ ρ, e′ ◦ σ)

= (s ◦ ρ̃ ◦ e ◦ ρ, s′ ◦ σ̃ ◦ e′ ◦ σ)

= (s ◦ e ◦ ρ, s′ ◦ e′ ◦ σ)

= (ρ, σ)

= idU′′′

Similarly t′′′ ◦ e′′′ = idU′′′ .

b) Also we have

c′′′ ◦ (1, e′′ ◦ s′′′) = (c ◦ (̃ρ, ρ̃), c′ ◦ (σ̃, σ̃)) ◦ (1, e′′′ ◦ s′′′)

= (c ◦ (̃ρ, ρ̃) ◦ (1, e′′′ ◦ s′′′), c′ ◦ (σ̃, σ̃) ◦ (1, e′′′ ◦ s′′′))

= (c ◦ (̃ρ, ρ̃ ◦ e′′′ ◦ s′′′), c′ ◦ (σ̃, σ̃ ◦ e′′′ ◦ s′′′))
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= (c ◦ (̃ρ, e ◦ ρ ◦ s′′′), c′ ◦ (σ̃, e′ ◦ σ ◦ s′′′))

= (c ◦ (̃ρ, e ◦ s ◦ ρ̃), c′ ◦ (σ̃, e′ ◦ s′ ◦ σ̃))

= (c ◦ (1, e ◦ s) ◦ ρ̃, c′ ◦ (1, e′ ◦ s′) ◦ σ̃)

= (̃ρ, σ̃)

= idR′′′

where we have used c ◦ (1, e ◦ s) = idR and c′ ◦ (1, e′ ◦ s′) = idR′ . In the same way

c′′′ ◦ (e′′′ ◦ t′′′, 1) = idR′′′ .

3. Inverse. Likewise, to define i′′′ : R′′′ −→ R′′′ consider the diagram

R′′′
ρ̃

~~

σ̃ //

i′′′
��

R′

ψ̃~~
i′

��

R

i

��

ϕ̃ // R′′

i′′

��

R′′′
ρ̃

~~

σ̃ // R′

ψ̃~~
R

ϕ̃

// R′′

Just as before there is a morphism i′′′ : R′′′ −→ R′′′ such that ρ̃◦ i′′′ = i◦ ρ̃ and σ̃◦ i′′′ = i′ ◦ σ̃.

a)

s′′′ ◦ i′′′ = (s ◦ ρ̃, s′ ◦ σ̃) ◦ (i ◦ ρ̃, i′ ◦ σ̃)

= (s ◦ i ◦ ρ̃, s′ ◦ i′ ◦ σ̃)

= (t ◦ ρ̃, t′ ◦ σ̃)

= t′′′

Thus, by using the properties t′′′ ◦ i′′′ = s′′′.
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b)

c′′′ ◦ (1, i′′′) = (c ◦ (̃ρ, ρ̃)) ◦ (1, i′′′)

= (c ◦ (̃ρ, ρ̃) ◦ (1, i′′′), c′ ◦ (σ̃, σ̃ ◦ i′′′))

= (c ◦ (̃ρ, ĩρ), c′ ◦ (σ̃, i′ ◦ σ̃))

= (c ◦ (1, i) ◦ ρ̃, c′ ◦ (1, i′) ◦ σ̃)

= (e ◦ t ◦ ρ̃, e′ ◦ t′ ◦ σ̃)

= (e ◦ ρ ◦ t′′′, e′ ◦ σ ◦ t′′′)

= (̃ρ ◦ e′′′ ◦ t′′′, σ̃ ◦ e′′′ ◦ t′′′)

= (̃ρ, σ̃) ◦ e′′′ ◦ t′′′

= e′′′ ◦ t′′′

and also c′′′ ◦ (i′′′, 1) = e′′′ ◦ s′′′.

Consecuently (U′′′,R′′′, s′′′, t′′′, c′′′) is a groupoid category. Furhermore we have shown that

s ◦ ρ̃ = ρ ◦ s′′′, t ◦ ρ̃ = ρ ◦ t′′′ and c ◦ (̃ρ, ρ̃) = ρ̃ ◦ c′′′, so that (ρ, ρ̃) is a morphism of groupoid

categories from (U′′′,R′′′, s′′′, t′′′, c′′′) to (U,R, s, t, c). In the same way (σ, σ̃) is a morphism

from (U′′′,R′′′, s′′′, t′′′, c′′′) to (U′,R′, s′, t′, c′).

We now can show that (U′′′,R′′′, s′′′, t′′′, c′′′) and the morphisms (ρ, ρ̃) and (σ, σ̃) are a fibre

product in the category of groupoids on C. At this point we only need to prove de universal

property. Let (U∗,R∗, s∗, t∗, c∗) be a groupoid and (α, α̃) : (U∗,R∗) −→ (U,R) and (β, β̃) :

(U∗,R∗) −→ (U′,R′) morphisims such that (ϕ, ϕ̃) ◦ (α, α̃) = (ψ, ψ̃) ◦ (β, β̃). Hence (ϕ ◦ α, ϕ̃ ◦

α̃) = (ψ ◦ β, ψ̃ ◦ β̃) and we get ϕ ◦ α = ψ ◦ β and ϕ̃ ◦ α̃ = ψ̃ ◦ β̃. Then, the following diagrams

are commutative:
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U∗

α

$$

β

  
γ

""
U′′′

ρ

��

σ // U′

ψ

��
U

ϕ
// U′′

R∗

α̃

$$

β̃

��
γ̃

!!
R′′′

ρ̃

��

σ̃ // R′

ψ̃

��
R

ϕ̃

// R′′

Moreover the inner squares are cartesian and therefore there exist γ : U∗ −→ U′′′ and γ̃ :

R∗ −→ R′′′ unique making the respective diagrams commutative. More precisely γ = (α, β)

and γ̃ = (α̃, β̃). We claim the pair (γ, γ̃) is a morphism of groupoids. For this look at the next

diagram:

U∗

α
��

β

%%

γ

""
R∗

s∗
==

γ̃ !!

α̃

��

β̃

%%

U′′′

ρ

��

σ // U′

ψ

��

R′′′
s′′′

<<

ρ̃

��

σ̃
// R′

s′

==

ψ̃

��

U
ϕ // U′′

R
s

<<

ϕ̃

// R′′
s′′

==

Here s′′ ◦ γ̃ and γ◦ s∗ are morphisms from R∗ to U′′′ satisfying ρ◦ (s′′′ ◦ γ̃) = s◦ ρ̃◦ γ̃ = s◦ α̃ =

α◦ s∗, σ◦ (s′′′ ◦ γ̃) = s◦ σ̃◦ γ̃ = s◦ β̃ = β◦ s∗, ρ◦ (γ◦ s∗) = α◦ s∗ and σ◦ (γ◦ s∗) = β◦ s∗. But

there is a unique morphism with that property an thus s′′′ ◦ γ̃ = γ◦ s∗. Similarly t′′′ ◦ γ̃ = γ◦ t∗.

We know that c ◦ (α̃, α̃) = α̃ ◦ c∗ and c′ ◦ (̃β, β̃) = β̃ ◦ c∗. We see that c′′′ ◦ (̃γ, γ̃) = γ̃ ◦ c∗. In

fact

c′′′ ◦ (̃γ, γ̃) = (c ◦ (̃ρ, ρ̃), c′ ◦ (σ̃, σ̃)) ◦ (̃γ, γ̃)

= (c ◦ (̃ρ, ρ̃) ◦ (̃γ, γ̃), c′ ◦ (σ̃, σ̃) ◦ (̃γ, γ̃))
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= (c ◦ (̃ρ ◦ γ̃, ρ̃ ◦ γ̃), c′ ◦ (σ̃ ◦ γ̃, σ̃ ◦ γ̃))

= (c ◦ (α̃, α̃), c′ ◦ (̃β, β̃))

= (α̃ ◦ c∗, β̃ ◦ c∗)

= (α̃, β̃) ◦ c∗

= γ̃ ◦ c∗

Then (γ, γ̃) is a morphism of groupoids and by contruction (ρ, ρ̃)◦(γ, γ̃) = (ρ◦γ, ρ̃◦γ̃) = (α, α̃)

and also (σ, σ̃) ◦ (γ, γ̃) = (σ ◦ γ, σ̃ ◦ γ̃) = (β, β̃). If (δ, δ̃) is a morphism from (U∗,R∗) to

(U′′′,R′′′) such that (ρ, ρ̃)◦ (δ, δ̃) = (α, α̃) and (σ, σ̃)◦ (δ, δ̃) = (β, β̃), then (ρ◦δ, ρ̃◦ δ̃) = (α, α̃)

and (σ ◦ δ, σ̃ ◦ δ̃) = (β, β̃). Therefore δ : U∗ −→ U′′′ and δ̃ : R∗ −→ R′′′ are morphisms such

that ρ ◦ δ = α, σ ◦ δ = β, ρ̃ ◦ δ̃ = α̃ y σ̃ ◦ δ̃ = β̃. But γ and γ̃ are the unique with such property

(δ, δ̃) = (γ, γ̃). It follows that (γ, γ̃) is the only morphism satisfying (ρ, ρ̃) ◦ (γ, γ̃) = (α, α̃) and

(σ, σ̃) ◦ (γ, γ̃) = (β, β̃).

All this shows (U′′′,R′′′, s′′′, t′′′, c′′′) togehter with the morphisms (ρ, ρ̃) and (σ, σ̃) are a fibre

product of (ϕ, ϕ̃) and (ψ, ψ̃), so we are done. �

3.3 Groupoids in algebraic spaces

The category of algebraic spaces has fibre products, so the following definition makes sense.

Definition 3.3.1 (Groupoid in algebraic spaces). A groupoid in algebraic spaces is a

groupoid category in the category of algebraic spaces.

Therefore, a groupoid in algebraic spaces is a septuple (U,R, s, t, c, e, i), where U and R

are algebraic spaces and s, t, c, e, i are morphisms of algebraic spaces. Since an algebraic

space is a functor F : Sch /S −→ Sets and a morphism of algebraic spaces is a nat-

ural transformation, then por each scheme T over S it can be considered the septuple
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(U(T ),R(T ), sT , tT , cT , eT , iT ). It is easy to see that this septuple is a groupoid category in

the category of sets and this determines a groupoid in the usual sense.

If T ′
α
−→ T is a morphisms of schemes, there are functions U(α) : U(T ) −→ U(T ′) and

R(α) : R(T ) −→ R(T ′). Also, as s, t : R −→ U and c : R ×s,U,t R −→ R are natural

transformations, the following diagrams are commutative

R(T )
R(α) //

tT

��

sT

��

R(T ′)

sT ′

��

tT ′

��
U(T )

U(α)
// U(T ′)

(R ×s,U,t R)(T )
(R×s,U,tR)(α) // (R ×s,U,t R)(T )

R(T ) ×sT ,U(T ),tT R(T )
R(α),R(α)

//

cT

��

R(T ′) ×sT ′ ,U(T ′),tT ′ R(T ′)

cT ′

��
R(T )

R(α)
// R(T ′)

Hence U(α) ◦ tT = tT ′ ◦R(α), U(α) ◦ sT = sT ′ ◦R(α) and CT ′ ◦ (R(α),R(α)) = R(α) ◦ cT . Thus

(U(α),R(α)) is a morphism of groupoids in the category of sets.

3.4 Group algebraic spaces

Definition 3.4.1 (Group algebraic space). (043H) Let B −→ S an algebraic space over S .

1. A group algebraic space over B is a pair (G,m), where G is an algebraic space over

B and m : G × G −→ G is a morphism of algebraic spaces satisfying the following

property: For every scheme T over B, the pair (G(T ),m) is a group.

2. A morphism ψ : (G,m) −→ (G′,m′) of group algebraic spaces over B is a morphism

ψ : G −→ G′ of algebraic spaces over B such that for every scheme T over B the

induced map ψT : G(T ) −→ G′(T ) is a homomorphism of groups.
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If (G,m) is a group algebraic space over B, then we have morphisms of algebraic spaces

e : B −→ G and i : G −→ G such that for every T the quadruple (G(T ),mT , eT , iT ) satisfies

the axioms of a group.

3.5 Actions of group algebraic spaces

Definition 3.5.1 (Action of a group category). (043Q) Let (G,m) be a group algebraic space

over B and X an algebraic space.

1. An action of G on X is a morphism a : G×B X −→ X over B such that for every scheme

T over B the map aT : G(T ) × X(T ) −→ X(T ) defines an action of G(T ) on X(T ), that

is to say, the following diagrams commute.

G ×B G ×B X

(idG ,a)
��

(m,idX) // G ×B X

a
��

G ×B X a
// X

X = B ×B X

idX
((

(eG ,idX) // G ×B X

a
��

X

2. Suppose that X and Y are algebraic spaces over B each endowed with an action of the

group algebraic space (G,m). A G-equivariant morphism ψ : X −→ Y is a morphism

of algebraic spaces over B such that for every T over B the map ψT : X(T ) −→ Y(T )

is a morphism of G(T )-sets, which means the following diagram is commutative.

G ×B X
aX

��

(idG ,ψ) // G ×B Y
aY

��
X

ψ
// Y
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3.6 Groupoid category associated to a group action

Lemma 3.6.1. (0444) Let B −→ S an algebraic space over S, let (G,m) a group algebraic

space over B with identity eG and inverse iG. Given an algebraic space X over B and a :

G ×B X −→ X a group action of G into X over B, then we have a groupoid in algebraic

spaces (U,R, s, t, c, e, i) over B in the following manner

1. U = X and R = G ×B X.

2. s : R −→ U is defined by (g, x) 7−→ x.

3. t : R −→ U is defined by (g, x) 7−→ a(g, x).

4. c : R ×s,U,t R −→ R given by ((g, x), (g′, x′)) 7−→ (m(g, g′), x′).

5. e : U −→ R is defined by x 7−→ (eG(x), x).

6. i : R −→ R is given by (g, x) 7−→ (iG(g), a(g, x)).
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4 Quotient Stacks

4.1 Fibred category associated to a groupoid in algebraic

spaces

Let (U,R, s, t, c) be a groupoid in algebraic spaces. Consider the functor

F : Sch /S −→ Gpds

defined for a scheme T by (U(T ),R(T ), sT , tT , cT ) and for a morphism T ′
α
−→ T of schemes

as the morphism of groupoids (U(α),R(α)). We can consider the fibred category associated

pF : SF −→ Sch /S . Then SF is the category with

Ob(SF) = {(T, x) | T ∈ Ob(Sch /S ), x ∈ U(T )}

and for (T, x) and (T ′, y) in Ob(SF)

HomSF ((T ′, y), (T, x)) =
{
(α, a) | α ∈ HomSch /S (T ′,T ), a ∈ R(T ′), sT ′(a) = y, tT ′(a) = U(α)x

}
Composition of (T ′, y)

(α,a)
−→ (T, x) and (T ′′, z)

(β,b)
−→ (T ′, y) is thus defined by (α ◦

β, cT ′′(R(β)(a), b)). This composition rule makes sense because y
α
−→ U(α)x ∈ R(T ′), z

b
−→
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U(β)y ∈ R(T ′′) and R(β)(a) is such that sT ′′(R(β)(a)) = (sT ′′◦R(β))(a) = U(β)◦sT (a) = U(β)y,

so that there exists cT ′′(R(β)(a), b).

Now, (T, x)
(idT ,eT (x))
−→ (T, x) is an endomorphism of (T, x), inasmuch as idT : T −→ T is a mor-

phism of schemes, and eT (x) ∈ R(T ) is such that sT (eT (x)) = (sT ◦ eT )(x) = x and tT (eT (x)) =

(tT ◦ eT )(x) = x = U(idT )x. Moreover, (α, a) ◦ (idT , eT x) = (α ◦ idT , cT (R(idT )(a), eT (x))) =

(α, cT (idR(T )(a), eT (x))) = (α, cT (a, eT x)) = (α, a). In the same way (idT , eT (x))◦(β, b) = (β, b)

and then (idT , eT (x)) = id(T,x). By construction pF(T, x) = T and pF(α, a) = α.

In this case, the fibred category SF is fibred in groupoids. Indeed, given U ∈ Ob(C), the fibre

category (SF)U is equivalent to the category F(U):

Ob((SF)U) = {(U, x) | x ∈ Ob(F(U))}

' F(U)

and

Hom(SF )U ((U, x), (U, x′)) = {( f , a) | pF( f , a) = idU}

= {(idU , a) | a ∈ HomF(U)(x, x′)}

' HomF(U)(x, x′)

The result follows because F(U) is a groupoid by hypotesis.

Definition 4.1.1 (Fibred category associated to a groupoid in algebraic spaces). The fibred

category in groupoids SF constructed as before is denoted as [U/R]p and is called quotient

prestack associated to the groupoid in algebraic spaces (U,R, s, t, c).

Functoriality of quotient prestacks

In this subsection we are going to show functorial properties about the fibred category as-

sociated to a functor when this comes from a groupoid in algebraic spaces. We found that
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this construction is compatible with fibre products, but in general this not a 2-fibre product.

This is the reason why we decide to investigate the relation between fibre product of fibred

categories and stackification.

Consider now a morphism of groupoids in algebraic spaces

f = (ϕ, ϕ̃) : (U,R, s, t, c) −→ (U′,R′, s′, t′, c′)

We will see that this induces a canonical morphism

[ f ]p : [U/R]p −→ [U′/R′]p

of fibred categories in groupoids. In fact, given (T, x) ∈ Ob([U/R]p), we define [ f ]p(T, x) :=

(T,ϕT (x)), which is in Ob([U′/R′]p), because T ∈ Ob(Sch /S ) and, since ϕ : U −→ U′

is a natural transformation we have that ϕT : U(T ) −→ U′(T ) is a function, and be-

cause x ∈ U(T ) we have ϕT (x) ∈ U′(T ). Also, given (α, a) ∈ Hom[U/R]p((T
′, y), (T, x)),

we define [ f ]p(α, a) := (α, ϕ̃T ′(a)), which is in Hom[U′/R′]p([ f ]p(T ′, y), [ f ]p(T, x)) =

Hom[U′/R′]p((T
′,ϕT ′(y)), (T,ϕT (x))), insomuch as α ∈ HomSch /S (T ′,T ), a ∈ R(T ′), sT ′(a) =

y, tT ′(a) = U(α)x and since ϕ̃ : R −→ R′ is a natural transformation, then ϕ̃T ′ : R(T ′) −→

R′(T ′) is a function and therefore ϕ̃T ′(a) ∈ R′(T ′). Moreover sT ′(ϕ̃T ′(a)) = (s′T ′ ◦ ϕ̃T ′)(a) =

(ϕT ′ ◦ sT ′)(a) = ϕT ′(sT ′(a)) = ϕT ′(y) and t′T ′(ϕ̃T ′(a)) = (t′T ′ ◦ ϕ̃T ′)(a) = (ϕT ′ ◦ tT ′)(a) =

ϕT ′(tT ′(a)) = ϕT ′(U(α)x) = (ϕT ′ ◦ U(α))(x) = (U′(α) ◦ ϕT )(x) = U′(α)(ϕT (x)), where we

used that ϕ : U −→ U′ is a natural transformation and then the following diagram commutes

U(T )

U(α)
��

ϕT // U′(T )

U′(α)
��

U(T ′)
ϕT
// U′(T ′)

Which means ϕT ′ ◦U(α) = U′(α) ◦ϕT . In order to prove the compatibility with composition,

let (T ′′, z)
(β,b)
−→ (T ′, y) be another morphism in [U/R]p. We can consider the composition
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(α, a) ◦ (β, b) = (α ◦ β, cT ′′(R(β)(a), b)). Then we have

[ f ]p((α, a) ◦ (β, b)) = [ f ]p(α ◦ β, cT ′′(R(β)(a), b))

= (α ◦ β, ϕ̃T ′′(cT ′′(R(β)(a), b)))

= (α ◦ β, (ϕ̃T ′′ ◦ cT ′′)(R(β)(a), b))

= (α ◦ β, (c′T ′′ ◦ (ϕ̃T ′′ , ϕ̃T ′′))(R(β)(a), b))

= (α ◦ β, c′T ′′(ϕ̃T ′′(R(β)(a), b)))

On the other hand

[ f ]p(α, a) ◦ [ f ]p(β, b) = (α, ϕ̃T ′(a)) ◦ (β, ϕ̃T ′′(b))

= (α ◦ β, c′T ′′(R
′(β)(ϕ̃T ′(a)), ϕ̃T ′′(b))

Is enough to show R′(β) ◦ ϕ̃T ′ = ϕ̃T ′′ ◦ R(β), which follows the fact ϕ̃ : R −→ R′ is a natural

transformation and so for T ′′
β

−→ T ′, the following diagram commutes

R(T ′)

R(β)
��

ϕ̃T ′ // R′(T ′)

R′(β)
��

R(T ′′)
ϕ̃T ′
// R′(T ′′)

Then [ f ]p((α, a) ◦ (β, b)) = [ f ]p(α, a) ◦ [ f ]p(β, b). Also [ f ]p(idT , eT (x)) = (idT , ϕ̃T (eT (x))) =

(idT , e′T (ϕ(x))) and on the other hand id[ f ]p(T,x) = id(T,ϕ̃T (x)) = (idT , e′T (ϕ̃(x))) and so

[ f ]p(id(T,x)) = id[ϕp](T,x). Therefore [ f ]p : [U/R]p
U′/R′
−→ p is a functor and the following tri-

angle is clearly commutative

[U/R]p

%%

[ϕ]p // [U′/R′]p

yy
Sch /S

Hence [ f ]p is a 1-morphism of fibred categories in groupoids over Sch /S .
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We will see that if g = (ψ, ψ̃) : (U′,R′) −→ (U′′,R′′) is another morphism of groupoids

in algebraic spaces, then [g ◦ f ]p = [g]p ◦ [ f ]p as 1-morphisms of fibred categories from

[U/R]p to [U′′/R′′]p. Given (T, x) ∈ Ob([U/R]p) we have [g ◦ f ]p(T, x) = (T, (ψ ◦ ϕ)T (x)) =

(T,ψT ◦ϕT (x)) and on the other hand ([g]p ◦ [ f ]p)(T, x) = [g]p([ f ]p(T, x)) = [g]p(T,ϕT (x)) =

(T,ψT (ϕT (x))) and we have the equality in the objects. Let (α, a) ∈ Hom[U/R]p((T
′, y), (T, x)).

Hence [g ◦ f ](α, a) = (α, (ψ̃ ◦ ϕ̃)T ′(a)) = (α, ψ̃T ′ ◦ ϕ̃T ′(a)) and also ([g]p ◦ [ f ]p)(α, a) =

[g]p([ f ]p(α, a)) = [g]p(α, ϕ̃T ′(a)) = (α, ψ̃T ′ ◦ ϕ̃T ′(a)) and we have the equality on morphisms.

In this way we have a functor [ ]p : GpdsAlgSp −→ FibCatGpds from the category of

groupoids in algebraic spaces to the 2-category of fibred categories in groupoids. We shall

see that this functor preserves fibre products. Consider a cartesian square in the category of

groupoids in algebraic spaces

(U′′′,R′′′)

h
��

k // (U′,R′)
g
��

(U,R)
f
// (U′′,R′′)

where f = (ϕ, ϕ̃), g = (ψ, ψ̃), h = (ρ, ρ̃) and k = (σ, σ̃) are like in the construction of the

fibre product of groupoids as before. We are going to show that the following square is also

cartesian in the category of fibred categories in groupoids over Sch /S

[U′′/R′′]p

[h]p

��

[k]p // [U′/R′]p

[g]p

��
[U,R]p [ f ]p

// [U′′/R′′]p

This diagram is commutative, inasmuch as [ f ]p ◦ [h]p = [ f ◦ h]p = [g ◦ k]p = [g]p ◦ [k]p. We

shall see this satisfy the universal property of fibre product.

Let p : C −→ Sch /S be a fibred category in groupoids and let u : C
U/P
−→p and v : C

U′/R′
−→ p be

1-morphisms of fibred categories in groupoids such that [ f ]p ◦ u = [g]p ◦ v. Look at the next
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diagram

C

u

&&

v

""

w

$$
[U′′/R′′]p

[h]p

��

[k]p // [U′/R′]p

[g]p

��
[U,R]p [ f ]p

// [U′′/R′′]p

Given A ∈ Ob(C), we have u(A) ∈ Ob([U/R]p) and so u(A) = (T, x), with T ∈ Sch /S and

x ∈ U(T ). In the same way v(A) ∈ Ob([U′/R′]p) and so v(a) = (T ′, x′). Hence it follows

[ f ]p ◦ u(A) = [ f ]p(T, x) = (T,ϕT (x))

[g]p ◦ v(A) = [g]p(T ′, x′) = (T ′,ψT (x))

and by hypotesis (T,ϕT (x)) = (T ′,ψT ′(x′)) and therefore T = T ′ and ϕT (x) = ψT ′(x′). Thus

u(A) = (T, x) and v(A) = (T, x′), where x ∈ U(T ), x′ ∈ U′(T ) and ϕT (x) = ψT (x′). Therefore

(x, x′) ∈ U(T )×ϕT (x),U(T ),ψT = U′′′(T ) and so (T, (x, x′)) ∈ Ob([U′′′/R′′′]p). We define

w(A) := (T, (x, x′))

Hence [h]p(w(A)) = [h]p(T, (x, x′)) = (T, ρT (x, x′)) = (T, x) = u(A) and [k]p(w(A)) =

[h]p(T, (x, x′)) = (T, σT (x, x′)) = (T, x′) = v(A). Let B ∈ Ob(C) and B
m
−→ A morphism

in C. Thereby u(B) = (T ′, y), v(B) = (T ′, y′) and w(B) = (T ′, (y, y′)) as before. Moreover,

u(m) ∈ Mor[U/R]p((T
′, y), (T, x)) and therefore u(m) = (α, a), where α ∈ HomSch /S (T ′,T ),

a ∈ R(T ′), sT ′(a) = y and tT ′(a) = U(α)(x). Consecuently [ f ]p ◦ u(m) = (α, ϕ̃T ′(a)). Sim-

ilarly v(m) = (β, b) and [g]p ◦ v(m) = (β, ψ̃T ′(b)) y by hypotesis (α, ϕ̃T ′(a)) = (β, ψ̃T ′(b)),

and so α = β and ϕ̃T ′(a) = ψ̃T ′(b). Then (a, b) ∈ R(T ′)×ϕ̃T ′ ,R′′(T ′),ψ̃T ′ = R′′′(T ′)

and satisfy satisface s′′′T ′ (a, b) = (sT ′ ◦ ρ̃T ′ , s′T ′ ◦ σ̃T ′)(a, b) = (sT ′(a), s′T ′(b)) = (y, y′),

t′′′T ′ (a, b) = (tT ′(a), t′T ′(b)) = (U(α)(x),U′(β)(x′)) = U′′′(α, β)(x, x′). Therefore (α, (a, b)) ∈
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Hom[U′′′/R′′′]p((T
′, (y, y′)), (T, (x, x′))). We define

w(m) := (α, (a, b))

Then [h]p ◦ w(m) = (α, ρ̃(a, b)) = (α, a) y [k]p ◦ w(m) = (α, σ̃(a, b)) = (α, b) = v(m).

Let us show that w : C −→ [U′′′/R′′′]p defined in this way is a 1-morphism of fibred cate-

gories in groupoids. For this it is suffices to show compatibility with composition and identity.

Consider the identity morphism idA : A −→ A. Then u(idA) = idu(A) = id(T,x) = (idT , eT (x)).

Similarly v(idA) = (idT , e′T (x′)) and so w(idA) = (idT , (eT (x), e′T (x′))) = (idT , e′′′T (x, x′)) =

id(T,(x,x′)) = idw(A). Let C
n
−→ B be another morphism in C. Hence u(C) = (T ′′, z),

v(C) = (T ′′, z′) and w(C) = (T ′′, (z, z′)). Also u(n) = (γ, c) and v(n) = (γ, d) where

γ : T ′′ −→ T ′ ∈ HomSch /S (T ′′,T ′), c ∈ R()T ′′, d ∈ R′(T ′′) and w(n) = (γ, (c, d)). Therefore

u(m ◦ n) = u(m) ◦ u(n) = (α, a) ◦ (γ, c) = (α ◦ γ, cT ′′(R(γ)(a), c)) and v(m ◦ n) = v(m) ◦ v(n) =

(α, b) ◦ (γ, d) = (α ◦ γ, c′T ′′(R
′(γ)(b), d)) and then we have

w(m ◦ n) = (α ◦ γ, (cT ′′(R(γ)(a), c), c′T ′′(R
′(γ)(b), d))

On the other hand

w(m) ◦ w(n) = (α, (a, b)) ◦ (γ, (c, d))

= (α ◦ γ, c′′′T ′′(R
′′′(γ)(a, b), (c, d)))

= (α ◦ γ, c′′′T ′′((R(γ)(a),R′(γ)(b)), (c, d)))

= (α ◦ γ, (cT ′′ ◦ (̃ρT ′′ , ρ̃T ′′), c′T ′′ ◦ (σ̃T ′′ , σ̃T ′′))((R(γ)(a),R′(γ)(b)), (c, d)))

= (α ◦ γ, (cT ′′ (̃ρT ′′ , ρ̃T ′′)((R(γ)(a),R′(γ)(b)), (c, d))), c′T ′′(σ̃T ′′ ,

σ̃T ′′)((R(γ)(a),R′(γ)(b)), (c, d)))

= (α ◦ γ, cT ′′ (̃ρT ′′(R(γ)(a),R′(γ)(b)), (c, d)), c′T ′′(σ̃T ′′(R(γ)(a),

R′(γ)(b)), (c, d)))
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= (α ◦ γ, (cT ′′(R(γ)(a), c), c′T ′′(R
′(γ)(b), d)))

and therefore w(m ◦ n) = w(m) ◦ w(n).

So w : C −→ [U′′′/R′′′]p is a functor and by definition [h]p ◦w = u and [k]p ◦w = v. Let’s see

this is unique with such a property. Let η : C −→ [U′′′/R′′′]p be a functor such that [h]p◦η = u

and [k]p ◦ η = v. Since η, u and [h]p are morphisms of categories over Sch /S , given A ∈

Ob(C) if u(A) = (T, x) and v(A) = (T, x′) it follows that η(A) = (T, (y, y′)) where y ∈ U(T )

and y′ ∈ U′(T ) and therefore [h]p ◦ η(A) = (T, y) and [k]p ◦ η(A) = (T, y′). But, for hypotesis

(T, y) = (T, x) and (T, y′) = (T, x′), so that (y, y′) = (x, x′) and then η(A) = (T, (x, x′)) = w(A).

In the same way, if B
m
−→ A is a morphism in C and if u(m) = (α, a) and v(m) = (α, b)

it follows η(m) = (α, (c, d)) where c ∈ R(T ′) and d ∈ R′(T ′) and so [h]p ◦ η(m) = (α, c)

and [k]p ◦ η(m) = (α, d). Again by hypotesis (α, c) = (α, a) and (α, d) = (α, b) so that

(c, d) = (a, b) and then η(m) = (α, (a, b)) = w(m). Therefore w is the unique morphism with

those properties and this proves that [U′′′,R′′′]p is a fibre product.

we can summarize the previous results in the following statement

Theorem 6. Let f = (ϕ, ϕ̃) : (U,R, s, t, c) −→ (U′,R′, s′, t′, c′) be a morphism of groupoids

in algebraic spaces. This induces a canonical morphism of quotient prestacks

[ f ]p : [U/R]p −→ [U′/R′]p.

In this way we have a functor [ ]p : GpdsAlgSp −→ FibCatGpds from the category of

groupoids in algebraic spaces to the 2-category of fibred categories in groupoids. This func-

tor is compatible with fibred products.
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4.2 Quotient stacks

Let (U,R, s, t, c) a groupoid in the category of algebraic spaces. Consider the functor

(Sch /S )op // Gpds

T � // (U(T ),R(T ), sT , tT , cT )

This functor determines a category fibred in groupoids over Sch /S which is denoted

[U/R]p −→ Sch /S .

Definition 4.2.1 (Quotient stack). (044Q) Let B an algebraic space over S .

1. The quotient stack p : [U/R] −→ Sch /S associated to a groupoid in algebraic spaces

(U,R, s, t, c) over B is the stackification of the fibred category in groupoids [U/R]p −→

Sch /S .

2. If (G,m) be a group algebraic space over B and a : G ×B X −→ X is an action of G in

the algebraic space X, the quotient stack p : [X/G] −→ Sch /S is the stack associated

to the groupoid in algebraic spaces (X,G ×B X, s, t, c).

Lemma 4.2.1. Let (U,R, s, t, c) a groupoid in algebraic spaces.

1. (044R) There are 1-morphisms of stacks π : SU −→ [U/R] and [U/R] −→ SB such that

the composition SU −→ [U/R] −→ SB is the 1-morphism associated to the structural

morphism U −→ B.

2. (044S) There is a canonical 2-isomorphism making 2-commutative the following dia-

gram:

SR

t
��

s // SU

π

��
SU π

// [U/R]
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From now on we won’t distinguish an algebraic space from its associated stack SX. Therefore

we can consider π : U −→ [U/R] and [U/R] −→ B. After we are going to show this square

is actually 2-cartesian.

4.3 Presentations of algebraic stacks

Given an algebraic stack over S we are going to build a groupoid in algebraic spaces over S

whose associated quotient stack is the initial algebraic stack.

If (U,R, s, t, c) is a groupoid in algebraic spaces over S, then [U/R] Is not in general an

algebraic stack.

Lemma 4.3.1. (04T4) Let X be an algebraic stack over S , U an algebraic stack over S which

is representable by an algebraic space U, and f : U −→ X a 1-morphism. Then:

1. The 2-fibre product R = U × f ,X , f U is representable by an algebraic space R.

2. There is an equivalence

U × f ,X , f U × f ,X , f U = R ×pr1,U ,pr2 R

3. There is a 1-morphism induced via 2.

pr3 : R ×pr1,U ,pr2 R −→ R

4. If t, s : R −→ U and c : R ×s,U,t R −→ R are the morphisms pr1, pr2 : R −→ U and

pr3 : R ×pr1,U ,pr2 R −→ R, then (U,R, s, t, c) is a groupoid in algebraic spaces over S .

5. The morphism f induces a 1-morphism fcan : [U/R] −→ X of stacks in groupoids over

S , which is fully faithful.
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6. If f : SU −→ X is surjective and smooth, then the 1-morphisms s, t are smooth and the

1-morphism fcan : [U/R] −→ X is an equivalence.

Remark. If the morphism f : SU −→ X is only assumed surjective, flat and locally of finite

presentation, then fcan : [U/R] −→ X is also an equivalence, and the morphisms s, t are flat

and locally of finite presentation, but not smooth in general.

Definition 4.3.1 (Smooth groupoid). (04TH) A groupoid in algebraic spaces (U,R, s, t, c)

over a scheme S is said to be a smooth groupoid if s, t : R −→ S are smooth morphisms of

algebraic spaces.

Definition 4.3.2 (Presentation of an algebraic stack). (04TI) Let X be an algebraic stack

over S . A presentation of X is an equivalence f : [U/R] −→ X , where [U/R] is the quotient

stack associated to a smooth groupoid in algebraic spaces (U,R, s, t, c).

The previous lemma states that every algebraic stack has a presentation. Reciprocally, we

will see every smooth groupoid determines an algebraic stack.

Lemma 4.3.2. Let (U,R, s, t, c) a groupoid in algebraic spaces over S . Then

1. (04WZ) The diagonal 1-morphism of [U/R] is representable by algebraic spaces.

2. (04X0) If (U,R, s, t, c) is a smooth groupoid, the 1-morphism π : SU −→ [U/R] is

smooth surjective.

Theorem 7. (04TK) Let (U,R, s, t, c) a smooth groupoid in algebraic spaces over S . Then the

quotient stack [U/R] is an algebraic stack over S .
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4.4 Quotient stacks and fibre product

Here is a proposition which result from applying which results from the union of the lemmas

about fibre product of groupoids, the functorial properties of the fibred categories associated

to a functor and functorial properties of stackification.

Theorem 8. Let (U,R), (U′,R′) and (U′′,R′′) be groupoids on C and (ϕ, ϕ̃) : (U,R) −→

(U′′,R′′) and (ψ, ψ̃) : (U′,R′) −→ (U′′,R′′) morphisms of groupoids. Then

1. The following diagram is cartesian in the 2-category of stacks over C.

[U ×U′′ U/R ×R′′ R′] //

��

[U′/R′]

��
[U/R] // [U′′/R′′]

2. If (U,R) and (U′,R′) are smooth groupoids in algebraic spaces and s′′, t′′ : R′′ −→ U′′

are monomorphisms, then (U ×U′′ U′,R ×R′′ R′) is a smooth groupoid, and therefore

[U ×U′′ U/R ×R′′ R′] is an algebraic stack.

Proof.

1. The construction of the fibre product of groupoids categories shows that (U,R) ×(U′′,R′′)

(U′,R′) = (U ×U′′ U′,R ×R′′ R′) and then we construct the associated fibred categories

and the functorial properties which means [U,R]p×[U′′,R′′]p [U′,R′]p = [U×U′′ U′,R×R′′

R′]p. Finally, since those fibred categories comes from functors, then the fibre product

has componentwise pullbacks and so, when we take the stackification of each fibred

category, the functorial properties show that [U,R]×[U′′,R′′] [U′,R′] � [U ×U′′ U′,R×R′′

R′].
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2. This is because smooth morphisms are a stable class which is local in the domain.

�

4.5 Open immersions

Open immersions have interesting properties. In this chapter we will see some of them. In

particular we are going to study the case when an algebraic stack has a coarse moduli space

and we will give some results that are helpful when we want to know what is the change

of base via an open subscheme of the moduli. The initial question that leads to this work

was: if we have an algebraic stack X which has a coarse moduli space X and Y −→ X is an

open immersion, what is the form of the 2-fibre product U ×X X ? Since many of the most

interesting algebraic stacks arise from the action of an algebraic group on an algebraic space,

and on many cases the coarse moduli space is the action of a subgroup, then we fall in the

case of quotient stacks of the form X = [U/R] and X = [U/R′]. In those cases U×X X is easy

to compute. We generalize this idea and give some considerations. Also, at the end some

more questions arise and we explain possible ways to solve them.

Invariant subspaces

Definition 4.5.1 (Invariant open subspace). (044F)

Let (U,R, s, t, c) a groupoid in algebraic spaces over B.

1. We say an open subspace W ⊂ U is R-invariant if t(s−1(W)) ⊂ W.

2. A locally closed subspace Z ⊂ U is called R-invariant if t−1(Z) = s−1(Z) as locally

closed subspaces of R.
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3. A monomorphism of algebraic spaces T −→ U is R-invariant if T ×U,t R = R ×s,U T as

algebraic spaces over B.

Remark. For an open subspace W ⊂ U, the R-invariance is equivalent to require s−1(W) =

t−1(W). If W ⊂ U is R-invariant, the restriction of R to W is RW = s−1(W) = t−1(w).

Immersions

Definition 4.5.2 (Open immersion). (04YL) A 1-morphism Y −→ Z of algebraic stacks is

called open immersion if it is representable and for every scheme X and any 1-morphism

X −→ Z , the morphism of schemes X ×2
Z Y −→ X is an open immersion.

Lemma 4.5.1. (0501)(0502)(0504) Open immersions are monomorphisms and they are sta-

ble by change of base and composition.

In the same way, closed immersions or general immersions are defined and the same lemma

is true mutatis mutandis. Note that the morphism X ×2
Z Y −→ X is the change of base of

Y −→ Z via X and it is a 2-fibre product. This consideration is important in the results we

are going to give in the last part.

Lemma 4.5.2. (0505) Let (U,R, s, t, c) be a smooth groupoid in algebraic spaces and i :

Z −→ [U/R] is an immersion, then there is a locally close subspace Z ⊂ U, R-invariant and

a presentation [Z/RZ] −→ Z such that

[Z/RZ]

##

// Z

i~~
[U/R]

is 2-commutative. If the morphism i is an open (resp. closed) immersion, then Z is an open

(resp. closed) subspace of U.
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Lemma 4.5.3. (04YN) Let (U,R, s, t, c) be a smooth groupoid in algebraic spaces, X = [U/R]

the associated quotient stack, and Z ⊂ U a locally closed R-invariant subspace. Then

[Z/RZ] −→ [U/R]

is an immersion of algebraic stacks. If Z ⊂ U is open (resp. closed), then the morphism is an

open (resp. closed) immersion of algebraic stacks.

Definition 4.5.3 (Open substack). (04YM) Let X ,X ′ be algebraic stacks with X ′ a strictly

full subcategory of X . We say X ′ is an open (resp. closed, locally closed) substack if X ′ −→

X is a open (resp. closed, locally closed) immersion of stacks.

Remark. If f : X −→ Y is an equivalence of algebraic stacks and X ′ is an open substack

of X , then it is not necessarily the case the subcategory f (X ′) is an open substack of Y . The

problem is that it may not be a strictly full subcategory, but this is also the only problem.

Lemma 4.5.4. (0506) For any immersion i : Z −→ X of stacks, there exists a unique locally

closed substack X ′ of X such that i factors as the composition of an equivalence i′ : Z −→ X ′

followed by the inclusion X ′ −→ X . If i is an open (resp. closed) immersion, then X ′ is an

open (resp. closed) substack of X .

Lemma 4.5.5. (0507) Let [U/R] −→ X a presentation of an algebraic stack. There is a

canonical bijection between the locally closed R-invariant subspaces of U and the locally

closed substacks of X , where if Z corresponds to Z , then [Z/RZ] −→ Z is a presentation

such that the diagram

[Z/RZ] //

��

[U/R]

��
Z // X

is 2-commutative. Similarly for open and closed substacks.
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With previous definitions and lemmas in mind, and using the results given in the other chap-

ters we can prove the following result and its corollary, which led to the realization of this

work.

Theorem 9. Let [X/R] −→ [X/R′] and [U,R′] −→ [X/R′U] be 1-morphisms of stacks induced

by the morphisms of algebraic spaces ϕ̃ : R −→ R′ and i : U −→ X, where U is an open R′-

invariant algebraic subspace of X, then U is a R-invariant subspace of X and the following

diagram is a cartesian square

[U/RU] //

��

[X/R]

��
[U/R′U] // [X/R′]

Moreover, [U/RU] −→ [X/R] is an open immersion of stacks and therefore if [X/R] is alge-

braic, so is [U/RU].

Proof. Let (X,R, s, t, c) and (X,R′, s′, t′, c′) be groupoids in algebraic spaces, (idX, ϕ̃) :

(X,R) −→ (X,R′) a morphism of groupoids and U and open R′-invariant subspace of X.

We shall see that U is also R-invariant. Indeed, we have s = s′ ◦ ϕ̃ and t = t′ ◦ ϕ̃ and

therefore:

t(s−1(U)) = (t′ ◦ ϕ̃)((s′ ◦ ϕ̃)−1(U))

⊆ (t′ ◦ ϕ̃)(ϕ̃−1(s′−1(U)))

⊆ t′(s′−1(U))

⊂ U

Then by a previous lemma in this section [U/RU] −→ [X/R] is an open immersion of stacks

and when we have open immersions and the target is algebraic, so is the source. The diagram

is cartesian, because at the level of groupoids, the fibred product is taken component-wise

and we already proved that this induces the same at the level of stacks. �
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Corollary 9.1. Let G be a group space acting over an algebraic space X and consider G′ to be

a quotient of G. If U is an open subspace of X which is G′-invariant, then [U/G′] −→ [X/G′]

and the following diagram is cartesian

[U/G] //

��

[X/G]

��
[U/G′] // [X/G′]

Moreover U is also G-invariant.

Proof. This is only a restatement of the theorem considering the groupoids in algebraic

spaces induced by the actions. �

Remark. This corollary was the initial question we have to give an answer. The problem was

to ensure U is G-invariant.
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