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Abstract

Lie group is a di�erentiable manifold equipped with a group structure in which
the group multiplication and inversion are smooth. The tangent space at the identity
of a Lie group is called Lie algebra. Most Lie groups are in (or isomorphic to) the
matrix forms that is topologically closed in the complex general linear group. We
call them matrix Lie groups. The Lie correspondences between Lie group and its
Lie algebra allow us to study Lie group which is an algebraic object in term of Lie
algebra which is a linear object.

In this work, we concern about the two correspondences in the case of matrix Lie
groups; namely,

1. The one-one correspondence between Lie group and it Lie algebra and
2. The one-one correspondence between Lie group homomorphism and Lie alge-

bra homomorphism.

However, the correspondences in the general case is not much di�erent of those
in the matrix case. To achieve these goals, we will present some matrix Lie groups
and study their topological and algebraic properties. Then, we will construct their
Lie algebras and develop some important properties that lead to the main result of
the thesis.
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CHAPTER 1

Differentiable manifolds

The concept of di�erentiable manifolds is useful because it allows us to locally
describe and understand more complicated structure on those manifolds in term of
relatively properties on Euclidean space. The goal of this chapter is to give a basic
understanding of di�erentiable manifolds.

1. Di�erentiable Manifolds

De�nition 1.1. By a neighborhood of a point p in a topological space M , one
means that an open set containing p. A topological spaceM is a n-dimensional locally
Euclidean if every point p in M has an neighborhood U such that there is a homeo-
morphism φ from U onto an open subset of Rn. We call the pair (U, φ : U → Rn) a
chart, U a coordinate neighborhood or a coordinate open set, and φ a coordinate map
or a coordinate system on U . We say that a chart (U, φ) is center at p ∈ U if φ(p) = 0.

De�nition 1.2. A Hausdor� space is a topological spaceM such that whenever
p and q are distinct points ofM , there are disjoint open sets U and V inM with p ∈ U
and q ∈ V . A di�erentiable structure or smooth structure on a Hausdor�, second
countable (that is, its topology has a countable base), Locally Euclidean space M
is a collection of chat F = {(Uα, φα)|α ∈ I} satisfying the following three properties:

P1: M =
⋃
α∈I

Uα.

P2: φα ◦ φ−1β is C∞ for all α, β ∈ I with Uα ∩ Uβ 6= ∅.
P3: The collection F is maximal with respct to P2; that is, if (U, φ) is a chart

such that φ and φα are compatible for all α ∈ I, that is, φ ◦φ−1α and φα ◦φ−1 are C∞
for all α ∈ I, then (U, φ) ∈ F .

A pair (M,F ) is a di�erentiable manifold or smooth manifold and is said to have
dimension n if M is n-dimensional locally Euclidean.

Remark 1.1.
(1). A Hausdor�, second countable, locally Euclidean space is called a topological

manifold.

(2). We think of the map φ as de�ning local coordinate functions x1, ..., xn where
xk is the continuous function from U into R given by xk(p) = φ(p)k (the k

th compo-
nent of φ(p)). We call x1, ..., xn a local coordinate system.

1



1. DIFFERENTIABLE MANIFOLDS

Figure 1. Di�erentiable Manifold

(3). In P2, the map φα ◦ φ−1β de�ne from φβ(Uα ∩ Uβ) to φα(Uα ∩ Uβ) is called
the change of coordinate.

(4). To prove P3, it is su�ce to prove that φ ◦ ψ−1 and ψ ◦ φ−1 are smooth
for a �xed coordinate map ψ since φ ◦ φ−1α = (φ ◦ ψ−1) ◦ (ψ ◦ φ−1α ) and φα ◦ φ−1 =
(φα ◦ ψ−1) ◦ (ψ ◦ φ−1).

(5). If Fo is a collection of chat (Uα, φα) that satis�es the properties P1 and P2,
then we can extend Fo uniquely to F that in addition satis�es the condition P3.
Namely,

F = {(U, φ)|φ ◦ φ−1α and φα ◦ φ−1 are C∞ for all φα ∈ Fo}
This remark tells us that to show that a Hausdor�, second countable space M is

a di�erential manifold, it is su�ce to construct a collection of chat that satis�es the
properties P1 and P2. Thus; without any doubt, we will also call F that satis�es
the properties P1 and P2 a di�erentiable structure.

Example 1.1.
(1). The cross Cp ∈ R2 such that Cp = {(x, y) ∈ R2|x = p1}∪{(x, y) ∈ R2|y = p2}

where p = (p1, p2) is not a di�erentiable manifold since it is not locally Eculidean at
p. To see this, suppose that Cp is n-dimensional locally Euclidean at p and let φ be a
homeomorphism from a neighborhood U of p to an open ball Br(0) ∈ Rn that maps
p to 0. then φ induces homeomorphism from U \ {p} → Br(0) \ {0}. This lead to a
contradiction since Br(0) \ {0} is connected if n ≥ 2 or has 2 connected components
if n = 1 but U \ {p} has 4 connected components.

(2). The pendulum P that is a union of a sphere S2 ⊂ R3 with a semi vertical
line L = {(xN , yN , z)|z ≥ zN}, where the north pole of sphere N = (xN , yN , zN), is
not a di�erentiable manifold since it is not locally Euclidean at N . Suppose this is
the case; as in example (1), U \{N} and Br(0)\{0} are homeomorphic. Now U \{N}
has 2 connected components then the only case is when n = 1 that is Br(0)\{0} has

2



1. DIFFERENTIABLE MANIFOLDS

2 connected component which are open interval. However one connected component
of U \{N} is homeomorphic to the deleted open disk of 0,(that is, Dr(0)\{0} ⊂ R2).
This is a contradiction.

Figure 2. The cross and the pendulum

(3). The Euclidean space Rn with the standard di�erentiable structure F that is
the maximal containing the single chat (Rn, id), where id : Rn → Rn is the identity
map satis�es the properties P1 and P2. Also, Rn \ {0} is a di�erentialble manifold.

(4). An open set A of a di�erentiable manifold (M,FM) is itself a di�erentiable
manifold. Indeed, if (Uα, φα) are charts of di�erentiable manifold M , we de�ne

FA = {(A ∩ Uα, φα|A∩Uα)|(Uα, φα) ∈ FM}
where φα|A∩Uα is a restriction of φα in A ∩ Uα

then Fα is a di�erentiable structure on A.

(5). The set M(n,R) which is isomorphic to Rn×n is a vector space of all n× n
real matrices. Since Rn×n isomophic to Rn2

, we give it a topology of Rn2
. Then

M(n,R) is a di�erentiable manifold. The real general linear group is a collection of
invertible n× n real matrices that we can de�ne by

GL(n,R) = {M ∈M(n,R)| det(M) 6= 0}
since the matrix M (real or complex) is invertible if and only if det(M) 6= 0.

Now, the determinant map det : M(n,R)→ R is continuous. Since GL(n,R) =
det−1(R \ {0}) where R \ {0} is an open set in R, then GL(n,R) is an open set in
M(n,R) which itself is a di�erentiable manifold.

(6). The complex general linear group GL(n,C) is a subset of a complex vector
space Cn×n ∼= R2n2

is de�ned to be a collection of all invertible n × n complex ma-
trices. The similar argument in the real case tell us that GL(n,C) is a di�erentiable
manifold.

(7). The n− sphere Sn ⊂ Rn+1 is de�ned by

Sn =

{
(x1, x2, ..., xn+1) ∈ Rn+1

∣∣∣ n+1∑
i=1

x2i = 1

}
3



1. DIFFERENTIABLE MANIFOLDS

is a di�erentiable manifold. To see this, Let N = (0, ..., 0, 1) be the north pole and
S = (0, ..., 0,−1) be the south pole of Sn and consider the stereographic projection
from the north pole and south pole

φN : Sn \ {N} → Rn, (x1, x2, ..., xn+1) 7→ (
x1

1− xn+1

, ...,
xn

1− xn+1

)

φS : Sn \ {S} → Rn, (x1, x2, ..., xn+1) 7→ (
x1

1 + xn+1

, ...,
xn

1 + xn+1

)

that take p = (x1, ..., xn+1) ∈ Sn \ {N} (or Sn \ {S}) into the intersection of the
hyperplane xn+1 = 0 with the line that pass through p and N (or S)

These maps φN and φS are di�erentiable, injective and map onto the hyperplane
xn+1 = 0

It is easy to check that the inverse maps φ−1N and φ−1S are also di�erentiable. This
implies that Sn is locally Euclidean. Moreover, Sn = (Sn \ {N}) ∪ (Sn \ {S}) and
the change of coordinates (by a direct calculation) φN ◦ φ−1S on Rn is given by

y′j =
yj
n∑
i=1

y2i

, j = 1, ..., n

is smooth and also φS ◦ φ−1N = (φN ◦ φ−1S )−1 is smooth.
Therefore, F = {(Sn \ {N}, φN), (Sn \ {S}, φS)} is di�erentiable structure on Sn.

Figure 3. The stereotype projections from north and south poles of Sn

(8). For a subset of A ⊂ Rn and a function f : A→ Rm, the graph of f is de�ned
to be the subset

Γ(f) = {(x, f(x)) ∈ A× Rm}
If U is an open subset of Rn and f : U → Rm is C∞, then the two maps

φ : Γ(f)→ U, (x, f(x)) 7→ x

4



2. TANGENT SPACES AND DIFFERENTIAL FORMS

and
ψ : U → Γ(f), x 7→ (x, f(x))

are continuous and inverse to each other, and so are homeomorphisms. The set Γ(f)
of a C∞ function f : U → Rm has a single chat (Γ(f), U) that satis�es the property
P1 and P2.

Figure 4. The graph of a smooth function f : Rn ⊃ U → Rm

(9)(Product manifolds). Let (Mk,F ) and (N l,G ) be di�erentiable manifolds of
dimensions k and l, respectively. ThenMk×N l becomes a di�erentiable manifold of
dimension k + l, with di�erentiable structure H the maximal collection containing:

{(Uα × Vβ, φα × ψβ : Uα × Vβ → Rk × Rl)|(Uα, φα) ∈ F , (Vβ, ψβ) ∈ G }
(10). The n-torus T n can be consider as a n-product of circle S1 ⊂ R2 that

is, T n = S1 × S1 × ...× S1︸ ︷︷ ︸
n-times

is a di�erentiable manifold since S1 is a di�erentiable

manifolds.

Remark 1.2. One may ask if there exists a topological manifold that is not a
di�erentiable manifold. The answer is yes. A triangulable closed manifold M0 of
dimension 10 is a topological manifold (in fact, it is a piecewise linear manifold)
that does not have any smooth structures. For the construction of this manifold
M0, consult [16], A manifold which does not admit any Di�erentiable Structure by
Michel A. Kerviare.

Note that in examples above, we do not concern about Hausdor� and second
countibility since the subspace with relative topology of a Hausdor� and second
countable space is Hausdor� and second countable space.

From now on, "manifold" is refered to "di�erentiable manifold".

2. Tangent Spaces and Di�erential Forms

De�nition 1.3. Let Mk be k-dimensional manifold and N l be l-dimensional
manifold. A map f : Mk → N l is said to be C∞ or smooth at p ∈ Mk if given a
chart (V, ψ) about f(p) ∈ N l, there exists a chat (U, φ) about p ∈ Mk such that

5



2. TANGENT SPACES AND DIFFERENTIAL FORMS

f(U) ⊂ V and the composition map ψ ◦ f ◦ φ−1 : φ(U) → Rl is C∞ at φ(p). The
map f is said to be smooth if it is smooth at every point of Mk.

Remark 1.3.
(1). It follows from P2 of de�nition 1.2 that the above de�nition of the smooth-

ness of a map f : Mk → N l at a point p ∈Mk is independent of the choice of charts.
Indeed, if (U∗, ϕ) is any chart about p then ψ ◦ f ◦ ϕ−1 = (ψ ◦ f ◦ φ−1) ◦ (φ ◦ ϕ−1) is
C∞ since it is the composition of C∞ maps.

(2). If (U, φ) is a chart at p ∈Mn with φ = (x1, . . . , xn). It follows from the above
de�nition and the condition P2 that φ and φ−1 are smooth and then the coordinate
functions xi ∈ D(M) where D(M) denotes the set of real value smooth function on
M .

Figure 5. A smooth map between two manifolds

De�nition 1.4. The tangent vector at p ∈M is the linear maps u : D(M)→ R
from the set of real value smooth function on a manifold M (D(M) or simply D)
to a set of real number that satis�es the production rule of derivation. That is, for
allf, g ∈ D and λ ∈ R,

1. u(f + λg) = u(f) + λu(g) (linearity),

2. u(fg) = u(f)g(p) + f(p)u(g) (product rule of derivation).

6



2. TANGENT SPACES AND DIFFERENTIAL FORMS

The collection of all tangent vectors at p is said to be a tangent space at p and
denoted by TpM .

Remark 1.4. The linear map 0 ∈ TpM and if we de�ne (u+v)(f) := u(f)+v(f)
and (λu)(f) := λu(f) for all u, v ∈ TpM and λ ∈ R, then it is easy to see that
(u + v)(f) and (λu(f)) again are tangent vectors at p. Thus, TpM is a real vector
space.

De�nition 1.5. Let φ = (x1, . . . , xn) be a coordinate system in a manifold Mn

at p. The partial di�erential of a smooth function f on M at p is de�ned by:

∂f

∂xi
(p) =

∂(f ◦ φ−1)
∂ui

(φ(p)) 1 ≤ i ≤ n,

where u1, . . . , un are the natural coordinate functions of Rn.

A straightforward computation then shows that the function

∂i|p =
∂

∂xi

∣∣∣
p

: D(M)→ R

sending each f ∈ D(M) to (∂f/∂xi)(p) is a tangent vector to M at p. We can
picture ∂i|p as an arrow at p tangent to the xi−coordinate curve through p.

Lemma 1.1. Let v ∈ TpM .
(1). If f, g ∈ D(M) are equal on a neighborhood U of p, then v(f) = v(g).
(2). If h ∈ D(M) is constant on a neighborhood of p, then v(h) = 0.

Proof.

To prove (1), we make use of the result that for any neighborhood U of p ∈ M ,
there exists a function f ∈ D , called a bump function at p, such that

a. 0 ≤ f ≤ 1 on M .
b. f = 1 on some neighborhood of p.
c. suppf = {x|f(x) 6= 0} ⊂ U .
Let h be a bump function at p such that supph ⊂ U then (f − g)h = 0 on M .

But v(0) = v(0 + 0) = v(0) + v(0) implies v(0) = 0. Thus,

0 = v((f − g)h) = v(f − g)h(p) + (f − g)(p)v(h) = v(f − g) = v(f)− v(g)

Therefore, v(f) = v(g)

For (2), observe that v(1) = v(1.1) = v(1)1 + 1v(1) = 2v(1) which implies
v(1) = 0

Thus, if h = c on M then v(h) = v(c.1) = cv(1) = 0. This completes the proof.
�

Proposition 1.1. LetM be an n-dimensional manifold and p ∈M . Let (U, φ) be
a chart about p with a coordinate system x1, ..., xn. Then TpM has basis ∂

∂x1
, . . . , ∂

∂xn

and any tangent vector u ∈ TpM can be expressed (uniquely) as

7



2. TANGENT SPACES AND DIFFERENTIAL FORMS

u(f) =
n∑
i=1

ai
∂f

∂xi

where ai = u(xi) ∈ R and f ∈ D .

In this way TpM is a real vector space of dimension n (as the same as dimension
of M).

Remark 1.5. If we taking a chart (U, φ) of M at p such that for ui : φ(U)→ R,
the natural coordinate function on Rn, the partial derivative operator ∂

∂ui
(φ(p)) in

Rn for i = 1, · · · , n eventually yield a base ∂
∂xi

(p) for i = 1, · · · , n of TpM . Thus, let
f ∈ D where f is de�ned on a neighborhood V of p then f is smooth on U ∩ V ⊂ U
so that we can write f in term of φ = (x1, · · · , xn) where xi = ui ◦ φ. Therefore, for
φ(U) which is an open set in Rn, the function g = f ◦ φ−1 : φ(U)→ R is smooth on
φ(U) and f = g ◦ φ = g(x1, · · · , xn).

Proof. Without loss of generality, we can assume that φ(p) = 0 since a trans-
lation xi = yi + t yields ∂/∂xi = ∂/∂yi. Shrinking U if necessary give φ(U) = {q ∈
Rn|‖q‖ < ε} for some ε.

Let g be a smooth function on φ(U) and for each 1 ≤ i ≤ n, we de�ne

gi(q) =

1∫
0

∂g

∂ui
(tq)dt for all q ∈ φ(U)

It follows from the fundamental theorem of calculus that:

g(q)− g(0) =

1∫
0

g′(tq)dt =

1∫
0

∂g

∂(tq)
qdt

since ∂g
∂(tq)

= ( ∂g
∂u1

(tq), · · · , ∂g
∂un

(tq)) and q = (q1, · · · , qn) then:

g(q) = g(0) +

1∫
0

n∑
i=1

∂g

∂ui
(tq)qi = g(0) +

n∑
i=1

1∫
0

∂g

∂ui
(tq)qi = g(0) +

n∑
i=1

gi(q)ui(q)

since ui(q) = qi. Thus, g = g(0) +
n∑
i=1

giui

Now, let f ∈ D and set g = f ◦ φ−1 then:

f ◦ φ−1 = f ◦ φ−1(0) +
n∑
i=1

giui = f(p) +
n∑
i=1

giui

So we obtain:

f = f(p) +
n∑
i=0

(giui) ◦ φ = f(p) +
n∑
i=0

fi(ui ◦ φ) = f(p) +
n∑
i=0

fixi

since f(p) is constant, fi = gi ◦ φ and xi = ui ◦ φ
8



2. TANGENT SPACES AND DIFFERENTIAL FORMS

Thus, from lemma 1.1, apply u ∈ TpM we obtain:

u(f) = 0 +
n∑
i=1

u(fixi) =
n∑
i=1

u(fi)xi(p) +
n∑
i=1

fi(p)u(xi) =
n∑
i=1

∂f

∂xi
(p)u(xi)

since xi(p) = 0 and fi(p) = gi ◦ φ(p) = gi(0) = ∂g
∂ui

(0) = ∂(f◦φ−1)
∂ui

(φ(p)) = ∂f
∂xi

(p)

Since f is arbitrary, let ai = u(xi) ∈ R then u(f) =
n∑
i=1

∂f
∂xi

(p)u(xi)

It remains to prove that the coordinate vector ∂i are linearly independent. Sup-

pose that
n∑
i=0

αi∂i = 0 then apply to xj yields

0 =
n∑
i=1

αi
∂xj
xi

=
n∑
i=0

αiσij = αj ∀j

�

De�nition 1.6. Let f : Mm → R be a smooth function. We de�ne the di�eren-
tial of f at p ∈M to be the map dfp : TpM → Tf(p)R ∼= R by (dfp)(v) = v(f).

More general, if f : Mm → Nn be a smooth function and let p ∈M . The di�er-
ential of f at p is the map dfp : TpM → Tf(p)M such that for any u ∈ TpM , dfp(u)
is to be a tangent vector at f(p). On the other hand, if g is a smooth function on
neighborhood of f(p), we de�ne dfp(u)(g) = u(g ◦ f).

Proposition 1.2. dfp is a linear map. In addition, if (U, φ) is a chart at p and
(V, ψ) is a chart at f(p), then dfp has a matrix which is the Jacobian matrix of f
represented in these coordinates.

Proof. Let u, v ∈ TpM then for λ ∈ R and g ∈ D(N), we have:

dfp(u+ λv)(g) = (u+ λv)(g ◦ f)

= u(g ◦ f) + λv(g ◦ f)

= dfp(u)(g) + λdfp(v)(g)

This proves the linearity of dfp.

Now, let φ = (x1, . . . , xm) and ψ = (y1, . . . , yn) be the given coordinate functions
so that f can be expressed in term of coordinates in the neighborhood V as:

fi = yi ◦ f i = 1, . . . , n

Let ∂/∂xj and ∂/∂yi be a basis for TpM and Tf(p)N , respectively and let [aij] be a
matrix of dfp. We will prove that aij = ∂fi/∂xj

We have dfp(∂/∂xj) =
∑
i

aij∂/∂yi ∈ Tf(p)N . Using the fact that yk ∈ D(N), we

obtain:

∂fk
∂xj

=
∂

∂xj
(yk ◦ f) = dfp(

∂

∂xj
)(yk) =

∑
i

aij
∂yk
∂yi

= akj

9



2. TANGENT SPACES AND DIFFERENTIAL FORMS

The last equality is followed by using ∂yk/∂yi = δki
Thus, aij = ∂fi/∂xj is the desired Jacobian matrix.

�

Proposition 1.3. Let f : Mm → Nn and g : Nn → Kk be smooth functions.
Then for each p ∈M ,

d(g ◦ f)p = dgf(p) ◦ dfp

Proof. First, note that if u ∈ TpM then the map uf : D(N)→ R sending each
h to u(h ◦ f) is a tangent vector to N at f(p). To see this, let h1, h2 ∈ D(N) and
λ ∈ R then:

uf (h1 + λh2) = u((h1 + λh2) ◦ f) = u((h1 ◦ f) + (λh2 ◦ f))

= u(h1 ◦ f) + λu(h2 ◦ f) = uf (h1) + λuf (h2)

uf (h1h2) = u(h1h2 ◦ f) = u((h1 ◦ f)(h2 ◦ f))

= u(h1 ◦ f)(h2(f(p)) + h1(f(p))u(h2 ◦ f)

= uf (h1)(h2(f(p)) + h1(f(p))uf (h2)

Now, let u ∈ TpM and h ∈ D(P ), then:

d(g ◦ f)p(u)(h) = u(h ◦ g ◦ f) = dfp(u)(h ◦ g) = [dgf(p) ◦ dfp(u)](h)

Thus,

d(g ◦ f)p = dgf(p) ◦ dfp
�

De�nition 1.7.
(1). The curve on a manifold M is a smooth map α : I → M where I is an

open interval in the real line R( I can be half in�nity or all of R). As an open
submanifold of R, I has a coordinate system consisting of the identity map u of I
then the coordinate vector (d/du)(t) ∈ Tt(R).

(2). Let α : I →M be a curve. The velocity vector of α at t ∈ I is

α′(t) = dαt

(
d

du

)
∈ Tα(t)M

Remark 1.6.
(1). By the de�nition of dα, the tangent vector α′(t) applied to a function

f ∈ D(M) gives:

α′(t)f = dαt

(
d

du

)
f =

d(f ◦ α)

du
(t)

Thus, if α is any curve with say α′(0) = v, then:

v(f) =
d(f ◦ α)

dt
(0)

.
(2). If f : M → N is smooth and α is a curve on M then f ◦ α is a curve on N

and from the chain rule, we have (f ◦ α)′(t) = dfα(t)(α
′(t)) ∈ T(f◦α)(t)N .

10
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Lemma 1.2. consider the product manifold Mm×Nn and the canonical projec-
tions π1 : M ×N →M and π2 : M ×N → N .

(1). The map α : u → (dπ1(u), dπ2(u)) is an isomorphism of T(m,n)(M × N) →
TmM ⊕ TnN .

(2). If (m0, n0) ∈M ×N , and de�ne injections in0 : M →M ×N and im0 : N →
M ×N by:

in0(m) = (m,n0)

im0(n) = (m0, n)

Let u ∈ T(m0,n0)(M ×N), u1 = dπ1(u), u2 = dπ2(u) and f ∈ D(M ×N). Then

u(f) = u1(f ◦ in0) + u2(f ◦ im0)

Proof.

(1). First, it is easy to see that the projections πi (i = 1, 2) are smooth. The
map α is clearly a linear map since dπi (i = 1, 2) are linear map. Now, observe that
the Jacobian matrices of dπ1 and dπ2 are [Im 0]m,m+n and [0 In]n,m+n respectively.
Thus, dπi are surjective and so is α. To see that α is injective, let α(u) = α(u′) for
some u = (x1, . . . , xm, y1, . . . , yn) and u′ = (x′1, . . . , x

′
m, y

′
1, . . . , y

′
n) in T(m,n)(M ×N)

then dπ1(u) = dπ1(u
′) and dπ2(u) = dπ2(u

′) so that (x1, . . . , xm) = (x′1, . . . , x
′
m) and

(y1, . . . , yn) = (y′1, . . . , y
′
n) which imply u = u′.

(2). It is not di�cult to see that injections im0 and in0 are smooth. We have from
de�nition of u, linearity of df(m0,n0) and (1) that:

u(f) = df(m0,n0)(u) = df(m0,n0)(u1, u2)

= df(m0,n0)[(u1, 0) + (0, u2)]

= df(m0,n0)(u1, 0) + df(m0,n0)(0, u2)

Now, choose the curve α(t) = (α1(t), n0) = ino(α1(t)) with α
′
1(0) = u1 then:

df(m0,n0)(u1, 0) = df(m0,n0)(α
′(0)) = α′(0)(f)

=
d(f ◦ α)

dt
(0) =

d((f ◦ in0) ◦ α1)

dt
(0)

= α′1(0)(f ◦ in0) = u1(f ◦ in0)

Similarly, if we chose the curve β(t) = (m0, β2(t)) = im0(β2(t)) with β′2(0) = u2,
then:

df(m0,n0)(0, u2) = u2(f ◦ im0)

�

De�nition 1.8. Let Mk and N l be manifolds of dimension k and l, respectively.
A map f : Mk → N l is said to be di�eomorphism if it is bijective and bi-smooth i.e.
f and its inverse map f−1 are smooth. On the other hand, f is said to be locally
di�eomorphism at p ∈ Mk if there exist a neighborhood U of p and V of f(p) such
that f : U → V is di�eomorphism.
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Remark 1.7. It is immediate that if f : Mk → N l is a di�eomorphism, then
dfp : TpM

k → Tf(p)N
l is an isomorphism for all p ∈Mk;in particular, the dimensions

ofMk and N l are equal. The converse is not true; however, the local converse is true
i.e. if f : Mk → Nk be smooth map and let p ∈Mk such that dfp : TpM

k → Tf(p)N
k

is an isomorphism, then f is locally di�eomorphism at p. This result is followed
immediately from the Inverse Function Theorem.

Proposition 1.4. Let (Mn,F ) be a manifold and a function f : Rn → Rn be
di�eomorphsim. If (U, φ) is a chart in F , then (U, f ◦ φ) ∈ F .

Proof. Let (V, ψ) be a chart in F such that U ∩ V 6= ∅ then:
ψ ◦ (f ◦ φ)−1 = (ψ ◦ φ−1) ◦ f−1 and (f ◦ φ) ◦ ψ−1 = f ◦ (φ ◦ ψ−1) are smooth
since f, f−1, ψ ◦ φ−1, φ ◦ ψ−1 are smooth. From the maximality of F , we obtain
(U, f ◦ φ) ∈ F .

�

3. Submanifolds

De�nition 1.9. Let (M,F ) be a n+k-dimensional manifolds. An n-dimensional
embedded submanifold in M is a subset N ⊂M such that for each p ∈ N , there is a
chart (U, φ : U → V ) of F with p ∈ U such that φ(U∩N) = V ∩(Rn×{0}) ⊂ Rn×Rk.

On the other hand, An n-dimensional immersed submanifold in M is a topo-
logical space N ⊂ M such that for each p ∈ N , there is a chart (U, φ : U → V )
of F with p ∈ U such that for a neiborhood W of p in N with W ⊂ U , we have
φ(W ) = V ∩ (Rn × {0}) ⊂ Rn × Rk.

In this de�nition, we identify Rn+k with Rn × Rk and often write Rn ⊂ Rn × Rk

instead of Rn × {0} ⊂ Rn × Rk to signify the subset of all points with the k last
coordinates equal to zero.

Remark 1.8.
(1). If (M,F ) is a manifold and N ⊂ M is a embedded submanifold, then we

can give N a di�erentiable structure

FN = { (N ∩ Uα, φα|N∩Uα)|(Uα, φα) ∈ F}

Note that the inclusion map i : N ↪→ M is smooth. Also note that from this
smooth structure, the topology in N is a induced topology from M .

(2). The topological of a immersed submanifold N ⊂M need not be the induced
topology of the containing manifold. Also note that the dimension of a submanifold
(embedded or immersed) is less than or equal to the dimension of its containing
manifold and in the case of equality we just obtain open submanifolds.

Example 1.2.
(1). Let n be a natural number. Then Kn = {(x, xn) ∈ R2|x ∈ R} ⊂ R2 is

a submanifold. Indeed, if we give R2 a di�erentiable structure with a single chart

12



3. SUBMANIFOLDS

(R2, φ) where φ : R2 → R2 given by (x, y) 7→ (x, y − xn) then φ(Kn) = R× {0}.

(2). Consider the unit sphere S1 ⊂ R2. In R2, we can construct a smooth
structure F to be the maximal collection containing

F = {(R2, id)}

Now consider the maps φi : Ui → R2 as below:

φ1(x, y) = (x, y −
√

1− x2), φ2(x, y) = (x, y +
√

1− x2),

φ3(x, y) = (x+
√

1− y2, y), φ4(x, y) = (x−
√

1− y2, y)

and Ui are open sets indicating in the following picture:
It is easy to see that φ−11 = φ2, φ

−1
3 = φ4 and all φi are smooth on Ui. Then

(Ui, φi) ∈ F since φi and id are compatible.

Let p ∈ S1, p is contained in one of Ui.
The case p is contained in the upper or the lower half of the circle, we have:

φ1(U1 ∩ S1) = φ1(U1) = {(x, 0)| − 1 < x < 1} = φ1(U1) ∩ (R× {0})

φ2(U2 ∩ S1) = φ2(U2) = {(x, 0)| − 1 < x < 1} = φ2(U2) ∩ (R× {0})

For the case p is in the left or the right half of the circle, we have:
(U3, f ◦φ3), (U4, f ◦φ4) ∈ F , where f : (x, y)→ (y, x) is the interchange of coordinate
function (Proposition 1.4) and:

f ◦ φ3(U3 ∩ S1) = f ◦ φ3(U3) = {(y, 0)|1 < y < 1} = f ◦ φ3(U3) ∩ (R× {0})

f ◦ φ4(U4 ∩ S1) = f ◦ φ4(U4) = {(y, 0)|1 < y < 1} = f ◦ φ4(U4) ∩ (R× {0})

This proves that S1 is a submanifold of R2. Also, S1 is a submanifold of R2 \ {0}.

13
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4. Vector Fields, Brackets

De�nition 1.10. A vector �led X on a manifold M is a correspondence that
associates to each point p ∈ M a vector X(p) ∈ TpM . In term of a coordinate map
φ : M ⊃ U → Rn, we can write

X(p) =
n∑
i=1

ai(p)
∂

∂xi

where each ai : U → R is a function on U and { ∂
∂xi
} is the basis associated to φ,

i = 1, ..., n. It is said to be smooth if ai are smooth.

Occasionally, it is convenient to use this idea and think of a vector �eld as a map
X : D → F from the set D of smooth function on M to the set F of function on
M , de�ned in the following way

Xp(f) = (Xf)(p) =
n∑
i=1

ai(p)
∂f

∂xi
(p)

It is easy to check that the function Xf does not depend on the choice of coordi-
nate map φ. In this context, it is immediate that X is smooth if and only if Xf ∈ D
for all f ∈ D .

Proposition 1.5. Let X and Y be smooth vector �elds on a manifoldMn. Then
there exists a unique vector �eld Z such that for all f ∈ D ,

Zf = (XY − Y X)f = X(Y f)− Y (Xf)

.

Proof. Let p ∈ M and x1, ..., xn be a local coordinate system about p. Then,
we can express the vector �eld X and Y uniquely as

X(p) =
n∑
i=1

ai(p)
∂

∂xi
, Y (p) =

n∑
j=1

bj(p)
∂

∂xj

Then for all f ∈ D ,

X(Y f)(p) = X

(∑
j

bj(p)
∂f

∂xj

)
(p) =

(∑
i,j

ai(p)
∂bj
∂xi

∂f

∂xj
+
∑
i,j

ai(p)bj(p)
∂2f

∂xi∂xj

)
(p)

Y (Xf)(p) = Y

(∑
i

ai(p)
∂f

∂xi

)
(p) =

(∑
i,j

bj(p)
∂ai
∂xj

∂f

∂xi
+
∑
i,j

ai(p)bj(p)
∂2f

∂xi∂xj

)
(p)

Thus,

(Zf)(p) = X(Y f)(p)− Y (Xf)(p) =
∑
i,j

(
ai
∂bj
∂xi
− bj

∂ai
∂xj

)
∂f

∂xj
(p)

is a vector �eld in coordinate neighborhood of p and is unique. Since p is arbitrary,
we can de�ne Zp in each coordinate neighborhood Up of di�erentiable structure
{(Uα, φα)} on M by the above expression. The uniqueness implies Zp = Zq on
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Up ∩ Uq 6= ∅, which allows us to de�ne Z over the entire manifold M and also this
Z is unique.

�

De�nition 1.11. The vector �eld Z de�ned in proposition 1.5 is called bracket
and is de�ned by [X, Y ] = XY − Y X of X and Y . [X, Y ] is obviously smooth.

Proposition 1.6. If X, Y and Z are smooth vector �elds on M , a, b are real
numbers and f, g are smooth functions, then:

(1). [X, Y ] = −[Y,X] (anticommutativity),
(2). [aX + bY, Z] = a[X,Z] + b[Y, Z] (linearity),
(3). [[X, Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0 (Jacobi identity),
(4). [fX, gX] = fg[X, Y ] + f(Xg)Y − g(Y f)X.

Proof.

(1) is obvious and (2) is immediate from the linearity of derivation. For (3), we
have:

[[X, Y ], Z] = [X, Y ]Z − Z[X, Y ]

= (XY − Y X)Z − Z(XY − Y X) = XY Z − Y XZ − ZXY + ZY X

and by interchanging X, Y and Z, we obtain:

[[Z,X], Y ] = ZXY −XZY − Y ZX + Y XZ

[[Y, Z], X] = Y ZX − ZY X −XY Z +XZY

Thus,
[[X, Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0

(4). Let h ∈ D , then:

[fX, gY ]h = [(fX)(gY )− (gY )(fX)]h

= fX(gY h)− gY (fXh)

= f(Xg)(Y h) + fgX(Y h)− g(Y f)(Xh)− fgY (Xh)

= f(Xg)(Y h) + fg(X(Y h)− Y (Xh))− g(Y f)(Xh)

= (f(Xg)Y + fg[X, Y ]− g(Y f)X)h

Thus,
[fX, gY ] = fg[X, Y ] + f(Xg)Y − g(Y f)X

�

5. Connectedness of Manifolds

De�nition 1.12. Let M be a manifold.
(1). M is said to be connected if it cannot separate by any two non empty and

distinct open or closed subsets in M . More precisely, if there is no non empty open
sets or closed sets A and B in M such that A∩B = ∅, and A∪B = G. A manifold
which is not connected can be decomposed (uniquely) as a union of several pieces,
called components, such that two elements in the same component can be joined by
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a continuous path and two elements of di�erent component cannot.

(2). M is said to be path-connected if given any two point x and y in M , there
exists a continuous path α(t), a ≤ t ≤ b, lying in M with α(a) = x and α(b) = y.
On the other hand, it said to be locally path connected if every point is contained in
a path-connected neighborhood.

Proposition 1.7. Let M be a path-connected manifold. Then M is connected.

Proof. Suppose that M is not connected. Then there exist non empty open
sent A,B ∈ M such that M = A ∪ B and A ∩ B = ∅. Let a ∈ A and b ∈ B.
Since M is path-connected then there is a continuous path α : [0, 1]→M such that
α(0) = a and α(1) = b. Thus, [0, 1] = α−1(A) ∪ α−1(B) with α−1(A) ∩ α−1(B) = ∅
and they are non empty open sets in [0, 1]. This contradicts the connectivity of [0, 1].
Therefore, M is connected.

�

Proposition 1.8. Let Mn be a manifold. Then M is connected if and only if M
is path-connected.

Proof. The second part is a result from the previous proposition. To prove the
�rst part, observe that M is locally path connected. Indeed, let x ∈M , there exists
a homeomorphism between the neighborhood of x and a open subset of Rn. So, we
can take an open ball (with is a path-connected) containing the image of x and it is
clearly that the preimage of this ball is path-connected neighborhood of x.

Now, Let M be connected and x ∈M and consider the set Mx de�ned by:

Mx = {y ∈M |∃α : [0, 1]→M,α(0) = x, α(1) = y}
Then Mx 6= ∅ since x ∈ Mx. Let y ∈ Mx there is path-connected neighborhood Uy
of y. Let z ∈ Uy, then z can connect to x by a path from x to y and then from y to
z. Therefore, Uy ⊂Mx which implies Mx =

⋃
y∈Mx

Uy ⊂M is an open set in M and is

path-connected by de�nition.
Let p ∈M \Mx thenMp ⊂M \Mx. Let q ∈Mp, then q can connect to p but not

to x. Thus, Mp ⊂M \Mx which implies M \Mx =
⋃

p∈M\Mx

Mp is an open subset in

M . So, M = Mx∪ (M \Mx). Since M is connected and Mx 6= ∅, then M \Mx = ∅.
Therefore, M = Mx is path-connected.

�

Example 1.3.
(1). The n-sphere Sn for any n ≥ 2 is connected then it is path-connected.

(2). The n-torus T n is path-connected since it is connected.

(3). The Euclidean space Rn is connected and then is path-connected. The set
of n× n square matrices over real or complex number which are isomorphic to Rn2

or R2n2
respectively, are path-connected.
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CHAPTER 2

Lie groups and matrix Lie groups

Lie group is one of the most important type of di�erentiable manifolds. It is
a di�erentiable manifold, which is also a group in which the group operations are
smooth. This allows us to use algebraic properties to study this smooth manifold.
Most Lie groups are appear in the matrix forms which are (topologically) closed in
the general linear group GL(n,C). We call them matrix Lie groups. Our goal is to
study some topological and algebraic properties of matrix Lie groups.

1. Lie Groups and Matrix Lie groups

De�nition 2.1. A Lie group G is a di�erentiable manifold which is also endowed
with a group structure such that the map G × G → G, (a, b) 7→ ab and the map
G→ G, a 7→ a−1 are C∞.

Example 2.1.
(1). The Euclidean space Rn under vector addition and the non-zero complex

number C∗ under multiplication are Lie groups.

(2). The unit circle S1 ⊂ C∗ is a Lie group with the multiplication induced from
C∗.

(3). The n-torus T n which is a manifold can be view as a set consists of all n×n
diagonal matrices with complex entries of modulus 1, that is for any M ∈ T n

M =


e2πiθ1 0 · · · 0

0 e2πiθ2 · · · 0
...

. . .
...

0 0 · · · e2πiθn

 where θi are real (2.1)

Then T n is a group and the group operations, matrix multiplication and inversion
are clearly smooth. Therefore, n-torus is Lie group.

(4). The real and complex general linear groups GL(n,R) and GL(n,C) which
are di�erentiable manifolds ( (5) and (6) in example 1.1) are also groups under ma-
trix multiplication. It is easy to see that the maps (a, b) 7→ ab and a 7→ a−1 are C∞.
Thus, they are Lie groups.

(5). Let G = R × R × S1 = {(x, y, z)|x, y,∈ R, z ∈ S1} and de�ne the group
product G×G→ G by:

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, e
ix1y2z1z2)
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Now, we will check that G is a group. For associativity, we have

[(x1, y1, z1) · (x2, y2, z2)] · (x3, y3, z3)
= (x1 + x2, y1 + y2, e

ix1y2z1z2) · (x3, y3, z3)
= ((x1 + x2) + x3, (y1 + y2) + y3, e

i(x1+x2)y3eix1y2z1z2z3)

= (x1 + x2 + x3, y1 + y2 + y3, e
i(x1y2+x1y3+x2y3)z1z2z3)

(x1, y1, z1) · [(x2, y2, z2) · (x3, y3, z3)]
= (x1, y1, z1) · (x2 + x3, y2 + y3, e

ix2y3z2z3)

= (x1 + (x2 + x3), y1 + (y2 + y3), e
ix1(y2+y3)z1e

ix2y3z2z3)

= (x1 + x2 + x3, y1 + y2 + y3, e
i(x1y2+x1y3+x2y3)z1z2z3)

This proves associativity. In addition, G has identity element; namely, (0, 0, 1) and
the inverse (−x,−y, eixyz−1) for all (x, y, z) ∈ G. It is clear that the product map
and the inverse map are smooth. Thus, G is Lie group.

(6). Let G = R∗ × R be a product manifold and we de�ne the product operator
on G by

(a1, x1) · (a2, x2) = (a1a2, a1x2 + x1)

Under this operation, (1, 0) is an identity element of G and (a−1,−a−1x) is an inverse
element for each (a, x) ∈ G. The associativity is easy to check and it is clear that the
product and inverse maps are smooth. Therefore, G is Lie group and is called the
group of a�ne motions of R. If we identify the element (a, x) of G with the a�ne
motion t 7→ at+ x, then the multiplication in G is composition of a�ne motions.

(7). Let G = GL(n,R) × Rn be a product manifold and we de�ne the product
operator on G by

(A, u) · (B, v) = (AB,Av + u)

Again, G is a Lie group with identity (I, 0) and the inverse element (A−1,−A−1u)
for each (A, u) ∈ G. G is called the group of a�ne motion of Rn. If we identify the
element (A, u) of G with the a�ne motion x 7→ Ax + u, then the multiplication in
G is composition of a�ne motions.

De�nition 2.2.
(1). Let M(n,C) denote the space of all n×n matrices with complex entries and

Am be a sequence of complex matrices in M(n,C). We say that Am is converges to
a matrix A if each entry of Am converges (as m→∞) to the corresponding entry of
A (that is, if (Am)kl converges to Akl for all 1 ≤ k, l ≤ n).

(2). A matrix Lie group is any subgroup G of GL(n,C) with the property that,
if Am is any sequence of matrices in G, and Am converges to some matrix A then
either A ∈ G, or A is not invertible. It is equivalent to say that a matrix Lie group
is a closed subgroup of GL(n,C) (This does not necessary closed in M(n,C)).
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Remark 2.1. From the de�nition above, for any arbitrary collection of matrix
Lie groups {Gi}i∈I then the intersection

⋂
i∈I
Gi is again a matrix Lie group.

The following examples of matrix Lie groups, except GL(n,R) and GL(n,C),
have a strong properties that they are closed in M(n,C).

Example 2.2.
(1). GL(n,C) is itself a subgroup ofGL(n,C) and if Am any sequence inGL(n,C)

converges to a matrix A then either A is in GL(n,C), or A is not invertible. GL(n,R)
is a subgroup of GL(n,C) and if any sequence Am ⊂ GL(n,R) converges to a matrix
A then the entries of A are real and thus either A ∈ GL(n,R), or A is not invertible.

Thus, the Lie groups GL(n,R) and GL(n,C) are also the matrix Lie groups.

(2). The special linear group over K (K = R or C) is de�ned by SL(n,K) is
the group of n × n invertible matrices (with entries over K) having determinant 1.
It is clearly a subgroup of GL(n,C). Indeed, for any matrices A,B ∈ SL(n,K),
we have det(AB−1) = detA det(B−1) = detA(detB)−1 = 1 which implies that
AB−1 ∈ SL(n,K). In addition, if {Am} is any sequence in SL(n,K) that converges
to a matrix A then all Am have determinant 1 and so does A since determinant is a
continuous function. Thus, SL(n,R) and SL(n,C) are matrix Lie groups.

(3). We de�ne the orthogonal group O(n) by

O(n) = {A ∈M(n,R)|ATA = AAT = In}
where AT denote the transpose matrix of A and In is an identity matrix of size n.

It is clearly that O(n) is a subgroup of GL(n,C) since for any matrix A ∈ O(n),
A has inverse AT ∈ O(n) and for any matrices A,B ∈ O(n), we have AB ∈ O(n)
since:

(AB)T (AB) = BTATAB = BT InB = BTB = In

(AB)(AB)T = ABBTAT = AInA
T = AAT = In

To see that O(n) is closed in GL(n,C), notice that the set of the identity matrix
{In} is closed in GL(n,C) and whenever we have ATA = In in GL(n,C) then
AAT = In and viceversa. So that O(n) can be express as

{A ∈ GL(n,C)|ATA = In} or {A ∈ GL(n,C)|AAT = In}
Consider the map T : M(n,C)→M(n,C) de�ned by A 7→ ATA. T is continuous

since the entries of ATA are polynomials of entries of A; namely,
n∑
k=1

akiakj where

A = [aij]. Then O(n) = T−1({In}) is closed inM(n,C) and thus closed in GL(n,C).
This makes O(n) becomes a matrix Lie group.

Now consider the determinant map restricted on O(n), detO(n) : O(n) → R and
observe that for any matrix A ∈ O(n),

[det(A)]2 = detA detA = det(AT ) detA = det(ATA) = det(In) = 1
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This implies detA = ±1 so we obtain that

O(n) = O+(n) ∪O−(n)

where O+(n) = {A ∈ O(n)| detA = 1}, O−(n) = {A ∈ O(n)| detA = −1} with
O+(n) ∩O−(n) = ∅.

We de�ne the special orthogonal group by:

SO(n) = {A ∈ GL(n,C)|ATA = In and detA = 1} = O+(n)

SO(n) is clearly a subgroup of GL(n,C) and is closed since SO(n) = O(n)∩SL(n,R)
is the intersection of two closed subgroup of GL(n,C) (also of M(n,C)). Therefore,
SO(n) is matrix Lie group.

Remark 2.2. Geometrically, element of O(n) are either rotations or combina-
tions of rotations and re�ections. The elements of SO(n) are just the rotations.
Thus, occasionally, we call SO(n) the rotation group.

(4). We de�ne the unitary group U(n) and the special unitary group SU(n) as
below:

U(n) = {A ∈ GL(n,C)|A∗A = AA∗ = In}
= {A ∈ GL(n,C)|A∗A = In}
= {A ∈ GL(n,C)|AA∗ = In}

SU(n) = {A ∈ GL(n,C)|A∗A = In and detA = 1}
= U(n) ∩ SL(n,C)

where A∗ denotes the adjoint of A ((A∗)ji = Aij). U(n) is a subgroup of GL(n,C)
since for any A,B ∈ U(n),

(AB−1)∗(AB−1) = (AB∗)∗(AB∗) = BA∗AB∗ = BInB
∗ = BB∗ = In

And also SU(n) is clearly a subgroup of U(n). Similar to the case of O(n), U(n) is
closed in M(n,C) and thus closed in GL(n,C) since it is a inverses image of contin-
uous function A 7→ A∗A of a closed set {In}. SU(n), which is the intersection of two
closed sets, is closed.
Therefore, U(n) and SU(n) are matrix Lie groups.

Remark 2.3. If A ∈ U(n), then det(A∗A) = detA∗ detA = detA detA =
| detA|2 = det In = 1. This implies | detA| = 1 so that detA = eiθ for any real θ.
So, SU(n) is a smaller subset of U(n) then SO(n) is of O(n). Particularly, SO(n)
has the same dimension as O(n), whereas SU(n) has dimension one less than that
of U(n).

(5). The skew-symmetric bi-linear form S on R2n de�ned as follows:

S[x, y] =
n∑
k=1

(xkyn+k − xn+kyk) where x, y ∈ R2n (2.2)
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The set of all real 2n × 2n matrices which preserve S is the real symplectic group
denoted by:

Sp(n,R) = {A ∈M(n,R)|S[Ax,Ay] = S[x, y] for all x, y ∈ R2n}

De�ne a 2n × 2n matrix J =

[
0 In
−In 0

]
where In is the n × n identity matrix.

Then for all x, y ∈ R2n where xT = (x1, x2, · · · , x2n) and yT = (y1, y2, · · · , y2n) we
have:

〈x, Jy〉 = 〈(x1 · · ·xn, xn+1, · · · , x2n)T , (yn+1, · · · , y2n,−y1, · · · ,−yn)T 〉
= (x1yn+1 − xn+1y1) + (x2yn+2 − xn+2y2) + ·+ (xny2n − x2nyn)

=
n∑
k=1

(xkyn+k − xn+kyk) = S[x, y]

Therefore,

A ∈ Sp(n,R) ⇐⇒ ∀x, y ∈ R2n, S[Ax,Ay] = S[x, y]

⇐⇒ ∀x, y ∈ R2n, 〈Ax, JAy〉 = 〈x, Jy〉
⇐⇒ ∀x, y ∈ R2n, (Ax)T (JAy) = xT (Jy)

⇐⇒ ∀x, y ∈ R2n, xT (ATJA)y = xTJy

⇐⇒ ∀x, y ∈ R2n, xT (ATJA− J)y = 0

⇐⇒ ATJA− J = 0

⇐⇒ ATJA = J

=⇒ det(ATJA) = det J

=⇒ [det(A)]2 det J = det J

=⇒ [det(A)]2 = 1

=⇒ detA = ±1

So, we can view Sp(n,R) as:

Sp(n,R) = {A ∈ GL(n,R)|ATJA = J}

where J is de�ned as above. We claim that Sp(n,R) is a matrix Lie group. Indeed,
for any matrices A,B ∈ Sp(n,R) we have:

(AB)TJ(AB) = BT (ATJA)B = BTJB = J ⇒ AB ∈ Sp(n,R)

ATJA = J ⇒ J = (AT )−1JA−1 ⇒ (A−1)TJA−1 = J ⇒ A−1 ∈ Sp(n,R)

This implies that Sp(n,R) is a subgroup of GL(n,R). To see that this group is
closed, observe that the map A 7→ ATJA is continuous on M(n,C). Thus, any se-
quences {Am} in Sp(n,R) such that Am → A imply that A ∈ Sp(n,R).

21



1. LIE GROUPS AND MATRIX LIE GROUPS

Similarly, we de�ne the skew-symmetric bilinear form S on C2n by the same
formula (2.2) and then the complex symplectic group Sp(n,C) is de�ned by:

Sp(n,C) = {A ∈M(n,C)|S[Ax,Ay] = S[x, y],∀x, y ∈ C2n}
= {A ∈ GL(n,C)|ATJA = J}

Thus, Sp(n,C) is a matrix Lie group.

Lastly, we de�ne the compact symplectic group Sp(n) by:

Sp(n) = Sp(n,C) ∩ U(2n)

Thus, Sp(n) is a matrix Lie group.

Remark 2.4. The determinant of symplectic groups is always equal to 1. For
more information, consult [15], On the Determinant of Symplectic matrices by D.
Steven Mackey and Niloufer Mackey.

(6). The Heisenberg group H is the set of all 3× 3 real matrices of the form:1 a b
0 1 c
0 0 1

 (2.3)

It is easy to see that H is a subset of GL(n,R) and is closed under multiplication of
matrices. The identity matrix I3 is clearly in H and the inverse of any matrices of
the form (2.3) is : 1 −a ac− b

0 1 −c
0 0 1


Moreover, the limit of sequence of matrices of the form (2.3) is again of that form.

These make H becomes a matrix Lie group.

(7). The groups R∗,C∗, S1, T n,R and Rn are all matrix Lie groups since:
The group R∗ = R \ {0},C∗ = C \ {0} under multiplication are isomorphic to
GL(1,R), GL(1,C), respectively.
The group S1 of complex numbers with absolute value one is isomorphic to U(1).
The torus T n in the matrix from as (2.1) is clearly a matrix Lie group.
The group R under addition is isomorphic to GL(1,R)+ (1 × 1 real matrix with
positive determinant) via the map x 7→ [ex].
The group Rn with vector addition is isomorphic to the group of diagonal matrices
with positive diagonal entries, via the map:

(x1, x2, ..., xn) 7→

ex1 · · · 0
...

. . .
...

0 · · · exn


(8). This is a counter example of a subgroup of GL(n,C) which is not closed and

hence is not a matrix Lie group. The set GL(n,Q) of all invertible n × n matrices
with rational entries is clearly a subgroup of GL(n,C) but the density of rational
and irrational number in R implies that there exist a sequence An of matrices with
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rational entries that converges to a invertible matrix A with irrational entries. Thus,
GL(n,Q) is not a matrix Lie group.

Remark 2.5. As we can see from examples 2.1 and 2.2 above, Rn with vector
addition, C∗ under complex multiplication, the circle S1, the torus T n and the general
linear groups GL(n,R), GL(n,C) are Lie groups and also matrix Lie groups. Thus,
there are two natural questions arise:

1. Are all Lie groups matrix Lie groups?
2. Are all matrix Lie groups Lie groups?

The answer for the �rst question is no. That is, most but not all Lie groups are ma-
trix Lie groups and even not isomorphic to any matrix Lie groups. We will provide
a counter example of this fact in the last section of the next chapter. The second
question has the positive answer by the closed subgroups theorem.

Closed Subgroup Theorem: Every closed subgroups of a Lie group is an em-
bedded submanifold of that Lie group and thus a Lie group.

We will provide the proof of this theorem in the next chapter in the case of
matrices. However, keep in mind that matrix Lie groups are Lie groups so that all
properties that apply to Lie groups are also true in case of matrix Lie groups.

2. Compactness

We concern about compactness of matrix Lie groups. Since M(n,C) is isomor-
phic to Cn2

and the subset in the Euclidean space is compact if and only if it is
closed and bounded, so we can give the de�nition of compact Matrix Lie groups as
below:

De�nition 2.3. A matrix Lie group G is said to be compact if the following two
conditions are satis�ed:

1. G is closed in M(n,C).
2. There exists a constant C such that for all A ∈ G, |Aij| ≤ C, ∀1 ≤ i, j ≤ n.

Remark 2.6. All of our examples, except GL(n,R) and GL(n,C), are closed
in M(n,C). Thus, we are only concern about the boundedness condition. We will
study the compactness of all examples of matrix Lie groups in the previous section.

Example 2.3.
(1). The general linear groups GL(n,R) and GL(n,C) are not compact since

they are open in M(n,R) and M(n,C), respectively.

(2). The special linear groups SL(n,R) and SL(n,C) (n ≥ 2) are not compact
since they are not bounded. To see this, for any constants C, there is a positive
integer k such that C < k. Consider the matrix Ak ∈ SL(n,R) ⊂ SL(n,C) such
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that:

Ak =


k 0 0 . . . 0
0 1

k
0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 = diagn(k,
1

k
, 1, . . . , 1)

Ak is clearly has determinant 1 and is not bounded by C.

(3). The symplectic groups Sp(n,R) and Sp(n,C) are noncompact since they
are unbounded. Indeed, for any constants C, choose a positive integer k such that
C < k and consider the matrix Ak de�ned by:

Ak =

[
1
k
In 0n

0n kIn

]
where 0n represents the zero matrix of size n. Ak has determinant 1 and is the ele-
ment of Sp(n,R) and Sp(n,C) Since:

ATk JAk =

[
1
k
In 0n

0n kIn

] [
0 In
−In 0

] [
1
k
In 0n

0n kIn

]
=

[
0n

1
k
In

−kIn 0n

] [
1
k
In 0n

0n kIn

]
=

[
0 In
−In 0

]
= J

However, Ak is not bounded by C.

(4). The Heisenberg group H is not bounded and then is not compact. Choose

a positive integer k such that C < k for any constants C then Ak =

1 k k
0 1 k
0 0 1

 ∈ H
is not bounded by C.

(5). The group R,Rn,R∗ and C∗ are unbounded and then are noncompact.

Example 2.4.
(1). The orthogonal group O(n) and special orthogonal group SO(n) are com-

pact since they are bounded by 1. To see this, observe that if A is a element of O(n)
or SO(n) then ATA = In which implies that all the column vectors of A has norm
1 and hence |Aij| ≤ 1 for all 1 ≤ i, j ≤ n.

(2). Similar argument implies that the unitary group U(n) and special unitary
group SU(n) are bounded by 1 and hence are compact.

(3). Clearly, the compact symplectic group Sp(n) = Sp(n,C)∩U(2n) is bounded
and then is compact.
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(4). The unit circle S1 and the n−torus T n that are bounded by 1, are compact.

3. Connectedness

As before, we are interested in matrix Lie groups. However, the following de�ni-
tions are for Lie groups in general.

De�nition 2.4.
(1). A Lie group G is said to be connected if it cannot be separated by any two

non empty and distinct open or closed subsets in G. More precisely, if there is no non
empty open sets or closed sets A and B in G such that A∩B = ∅, and A∪B = G.
A Lie group which is not connected can be decomposed (uniquely) as a union of
several pieces, called components, such that two elements in the same component
can be joined by a continuous path and two elements of di�erent component cannot.

(2). A Lie group G is said to be path-connected if given any two points x and y
in G, there exists a continuous path (or simply a path) A(t), a ≤ t ≤ b, lying in G
with A(a) = x and A(b) = y.

Proposition 2.1. The component containing identity of a matrix Lie group G
is a subgroup of G. We call it the identity component.

Proof. Let A and B be in the identity component of G, then there exist con-
tinuous paths A(t) and B(t) connected I to A and I to B, respectively such that
A(0) = B(0) = I and A(1) = A,B(1) = B. Since matrix multiplication and matrix
inversion are continuous, it is clearly that A(t)B(t) is a continuous path that stating
at I and ending at AB and (A(t))−1 is a continuous path that starting at I and
ending at A−1. These show that AB and A−1 are again in the identity component
of G. This completes the proof.

�

Now, we will study the connectedness of some Matrix Lie groups we have already
known. From proposition 1.8, we see that any Lie groups are connected if and only
if they are path-connected. So, study the connectedness of the following matrix Lie
groups is as the same as studying their path-connectedness.

Example 2.5.
(1). The group GL(n,C) is connected for all n ≥ 1. It is clearly for the case

n = 1 since GL(1,C) ∼= C∗ with is path-connected. For the case n ≥ 2, given any
matrix A ∈ GL(n,C), we will show that there is a continuous path that connects A
to the identity I and so any two matrices A,B ∈ GL(n,C) can be connected by a
continuous path form A to I and then from I to B.

To see this, we make use of the fact from linear algebra that every matrices is
similar to an upper triangular matrix. That is, there is an invertible matrix C such
that A = CTC−1 where T is an upper triangular matrix:
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T =

λ1 . . . ∗
...

. . .
...

0 . . . λn

 with λi 6= 0,∀i are eigenvalues of A (since A is invertible).

We set T (t) by multiplying each entries of T above the diagonal by (1−t) for 0 ≤ t ≤ 1
and de�ne A(t) = CT (t)C−1. Thus A(t) is continuous and connects A (when t = 0)
to the matrix A(1) = CT (1)C−1 = T (1) where T (1) = diagn(λ1, . . . , λn). This path

A(t) lies in GL(n,C) since detA(t) = detT (t) =
n∏
i=1

λi = detA 6= 0.

Now, we de�ne a continuous path B(t) from A(1) to I for 1 ≤ t ≤ 2 by de�ning
a continuous path λi(t) from each λi to 1 such that λi(t) 6= 0,∀1 ≤ t ≤ 2. λi(t) exist
for the fact that λi, 1 ∈ C∗ and C∗ is path-connected.
De�ne B(t) = diagn(λ1(t), . . . , λn(t)). It is clearly that B(t) is continuous and
connects A(1) to I for 1 ≤ t ≤ 2. This B(t) is again lies in GL(n,C) since

detB(t) =
n∏
i=1

λi(t) 6= 0. Therefore, A can be connected to I by a continuous

path A(t) for 0 ≤ t ≤ 1 and B(t) for 1 ≤ t ≤ 2 in GL(n,C).

Similarly, The group SL(n,C) for all n ≥ 1. The case n = 1 is trivial. For
n ≥ 2, the proof is almost the same as for GL(n,C). Let A ∈ SL(n,C), we repeat
the proof for the continuous path A(t). The additional condition detA = 1 implies
that detA(t) = 1 so that A(t) lies in SL(n,C). For the construction of B(t), we
de�ne λi(t) for 1 ≤ i ≤ n − 1 as before and λn(t) = [λ1(t) . . . λn−1(t)]

−1. It is clear
that λn is continuous and λn(1) = (λ1 . . . λn−1)

−1 = λn and λn(2) = (1 . . . 1)−1 = 1

(here, we use
n∏
i=1

λi = 1). Therefore, if we de�ne B(t) as before, then it is a continu-

ous path from A(1) to I and lies in SL(n,C) since detB(t) = 1 and thus we are done.

(2). The group GL(n,R) is not connected since for two matrices A,B ∈ GL(n,R)
with detA > 0 and detB < 0, the image via determinant of any continuous paths
connecting A and B are closed intervals containing 0. This means that there is a
matrix lies in the path with determinant 0 so that there is no continuous path con-
necting A and B and lies in GL(n,R). In fact, GL(n,R) has 2 components. Those
are GL(n,R)+, the set of invertible n × n real matrices with positive determinant
and GL(n,R)− of those with negative determinant.

(3). The groups U(n) and SU(n) are connected, for all n ≥ 1. Recall the result
from linear algebra that any unitary matrix U can be written as:

U = V

eiθ1 . . . 0
...

. . .
...

0 . . . eiθn

V −1 where V is unitary and θi ∈ R (2.4)

We de�ne:

U(t) = V

ei(1−t)θ1 . . . 0
...

. . .
...

0 . . . ei(1−t)θn

V −1 for 0 ≤ t ≤ 1 (2.5)
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Thus, U(t) is continuous path from U to I and it lies in U(n) since:

U∗(t)U(t) = V

e−i(1−t)θ1 . . . 0
...

. . .
...

0 . . . e−i(1−t)θn

V ∗V
ei(1−t)θ1 . . . 0

...
. . .

...
0 . . . ei(1−t)θn

V ∗
= V diagn(e−i(1−t)θ1 , . . . , e−i(1−t)θn)diagn(ei(1−t)θ1 , . . . , ei(1−t)θn)V ∗

= V InV
∗ = In

Here, we use the fact that V V ∗ = V ∗V = In and V −1 = V ∗, (V ∗)∗ = V

For the case of U ∈ SU(n), U can express in form (2.4) with additional condition

that
n∑
i=1

θi = 0 (since detU = 1) and again we de�ne U(t) as in the form (2.5). Thus,

we only need to check the determinant of U(t). Since detU(t) = e
i(1−t)

n∑
i=1

θi
= e0 = 1,

we are done.

(4). The group O(n) = SO(n) ∪ O−(n) is non connected since it is a disjoint
union of two non empty closed subgroups SO(n) and O−(n).

(5). The Heisanberg group H in the form (2.3) is clearly connected since all its
elements are connected to I3 via a continuous path obtained by multiplying all the
entries above the diagonal by (1− t) for 0 ≤ t ≤ 1.

De�nition 2.5. A Lie group G is said to be simply connected if it is path-
connected and in addition, for any two path α(t) and β(t) with α(0) = β(0) and
α(1) = β(1), α can be "continuously deformed" to β, that is there exists a continuous
map H : [0, 1]× [0, 1]→ G that satis�es the following properties:

(1). H(s, 0) = α(0) = β(0) and H(s, 1) = α(1) = β(1) for all s
(2). H(0, t) = α(t), H(1, t) = β(t) for all t

Example 2.6.
The group SU(2) is simply connected. To see this, we will prove that:

SU(2) =

{[
α −β
β α

] ∣∣∣|α|2 + |β|2 = 1, α, β ∈ C
}

(2.6)

Let α, β ∈ C with |α|2 + |β|2 = 1 and let A =

[
α −β
β α

]
then:

AA∗ =

[
α −β
β α

] [
α β
−β α

]
=

[
|α|2 + |β|2 0

0 |β|2 + |α|2
]

= I2

detA = |α|2 + |β|2 = 1

This proves that A ∈ SU(2).

On the other hand, Let A =

[
a b
c d

]
∈ SU(2), we want to prove that A =

[
α −β
β α

]
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with |α|2 + |β|2 = 1. We have:

AA∗ =

[
a b
c d

] [
a c
b d

]
=

[
|a|2 + |b|2 ac+ bd
ca+ db |c|2 + |d|2

]
and detA = ad− bc

Then, we obtain:

(i).|a|2 + |b|2 = |c|2 + |d|2 = 1

(ii).ac+ bd = 0

(iii).ad− bc = 1

Multiply (ii) by d and substitute ad from (iii) we obtain from (i) that b+ c = 0
Multiply (ii) by c and substitute bc from (iii) we obtain from (i) that a− d = 0
Let a = α and c = β then A is in the form we desire and thus (2.6) holds.
Therefore, SU(2) can be thought of as the 3-dimensional sphere S3 in C2 ∼= R4.
Since S3 is simply connected, so is SU(2).

The following table lists the compactness and connectedness of some matrix Lie
groups we have known.

Group Compactness Simply connectedness connectedness Components
GL(n,C) No No Yes 1
GL(n,R) No No No 2
SL(n,C) No(n ≥ 2) Yes Yes 1
SL(n,R) No(n ≥ 2) No(n ≥ 2) Yes 1
O(n) Yes No No 2
SO(n) Yes No(n ≥ 2) Yes 1
U(n) Yes No Yes 1
SU(n) Yes Yes Yes 1
Sp(n,C) No Yes Yes 1
Sp(n,R) No No Yes 1
Sp(n) Yes Yes Yes 1

Heisenberg No Yes Yes 1
Table 1. Compactness and Connectedness of some matrix Lie groups
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4. Subgroups and Homomorphism

De�nition 2.6. Let G and H be Lie groups. H is said to be a Lie subgroup of
G if H is a submanifold of G and also a subgroup of G.

Example 2.7.
(1). The unit circle S1 which is a Lie group is a submanifold of R2 \ {0} ∼= C∗

and is also a subgroup of C∗. Thus, S1 is a Lie subgroup of C∗.

(2). All matrix Lie groups that we have studied are embedded submanifolds
of GL(n,C) by the closed subgroup theorem and thus they are Lie subgroups of
GL(n,C).

De�nition 2.7. Let G and H be Lie groups. The map f : G → H is called
a Lie group homomorphism if f is smooth and is also a group homomorphism. In
addition, f is said to be a Lie group isomorphism if f is bijective and f−1 is a Lie
group homomorphism i.e. f is both a group isomorphism and di�eomorphism. If
G = H, f is called a Lie group automorphism. If f is a Lie group isomorphism, then
G and H are said to be isomorphic and we write G ∼= H. Two Lie groups which are
isomorphic should be thought of as being essentially the same group.

Proposition 2.2. Let G and H be matrix Lie groups and f : G→ H is a group
homomorphism. If f is continuous, then f is smooth.

Remark 2.7. In fact, this result is valid for general Lie groups. However, the
proof is more di�cult in the general case. As before, the proof of this proposition
will be provided in the next chapter.

Example 2.8.
(1). The determinant map det : GL(n,C) → C∗ is a Lie group homomor-

phism since det is continuous and det(AB) = det(A) det(B) for any matrices A,B ∈
GL(n,C).

(2). The map f : R → SO(2) given by f(t) =

[
cos t − sin t
sin t cos t

]
is a Lie group

homomorphism since f is clearly continuous and for any t, s ∈ R, we have:

f(t+ s) =

[
cos(t+ s) − sin(t+ s)
sin(t+ s) cos(t+ s)

]
=

[
cos(t) cos(s)− sin(t) sin(s) − sin(t) cos(s)− sin(s) cos(t)
sin(t) cos(s) + sin(s) cos(t) cos(t) cos(s)− sin(t) sin(s)

]
=

[
cos(t) − sin(t)
sin(t) cos(t)

] [
cos(s) − sin(s)
sin(s) cos(s)

]
= f(t)f(s)
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CHAPTER 3

Lie algebra

Lie algebras play an important role in the theory of Lie groups. Each Lie group
gives rise to Lie algebra. In this chapter, we will study some properties of Lie algebra
and the relations between Lie group and its Lie algebra.

1. The Exponential Map

The construction of exponential map is more di�cult in the general case. In this
section, we only study the exponential map in the case of matrix groups.

De�nition 3.1. Let X be n × n complex matrix. We de�ne the exponential of
X to be the usual power series:

expX =
∞∑
k=0

Xk

k!
(3.1)

Remark 3.1. We recall that the Hilbert-Schmidt norm of any matrices A ∈
M(n,C) is de�ned by:

‖X‖ =

(
n∑

i,j=1

|xij|2
) 1

2

(3.2)

This norm satis�es the inequalities:

‖A+B‖ ≤ ‖A‖+ ‖B‖
‖AB‖ ≤ ‖A‖‖B‖

The series (3.1) converges uniformly and the exponential map exp : M(n,C) →
M(n,C) is continuous. To see this, given R > 0 then for any X such that ‖X‖ ≤ R,
we have: ∥∥∥∥∥

∞∑
k=0

Xk

k!

∥∥∥∥∥ ≤
∞∑
k=0

∥∥∥∥Xk

k!

∥∥∥∥ ≤ ∞∑
k=0

‖X‖k

k!
≤

∞∑
k=0

Rk

k!
= expR <∞

The Weierstrass M-test implies that the series converges absolutely and uniformly
on the set {‖X‖ ≤ R}. Since R is arbitrary, the series converges uniformly. For the
continuity, observe that Xk is a continuous function of X then the partial sums of the
series are continuous. Since the series converges uniformly, then exp is continuous.

Now we state the basic properties of the exponential.
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1. THE EXPONENTIAL MAP

Proposition 3.1. Let X and Y be arbitrary matrices. Then,
(1). e0 = I.
(2). (eX)∗ = eX

∗
where X∗ denotes the conjugate transpose of X.

(3). If XY = Y X, then eX+Y = eXeY = eY eX .
(4). eX is invertible, and (eX)−1 = e−X .
(5). e(a+b)X = eaXebX for all a, b ∈ C.
(6). If C is invertible, then eCXC

−1
= CeXC−1.

(7). ‖eX‖ ≤ e‖X‖.

Proof. (1) is obvious from the de�nition of exponential and (2) is follows from
the fact that (Xk)∗ = (X∗)k. To prove (3), we multiply the series expX and expY
term by term and collection term where the power of X plus the power of Y equal
m, we get:

eXeY =

(
I +X +

X2

2!
+ · · ·

)(
I + Y +

Y 2

2!
+ · · ·

)
=

∞∑
m=0

m∑
k=0

Xk

k!

Y m−k

(m− k)!

=
∞∑
m=0

1

m!

m∑
k=0

m!

k!(m− k)!
XkY m−k

=
∞∑
m=0

(X + Y )m

m!

= eX+Y = eY eX

Here, the fourth equality follows from the commute of X and Y . To prove (4), from
(3) we get:

e−XeX = eXe−X = e0 = I

and (5) follows by substituting X = aX and Y = bY in (3). To prove (6), notice that
(CXC−1)k = CXkC−1 and (7) is the result from the proof of the previous remark.

�

Proposition 3.2. In a neighborhood of 0, exp : M(n,C)→M(n,C) has a local
inverse log : M(n,C)→M(n,C), de�ned in a neighborhood of I by the series:

log Y =
∞∑
k=1

(−1)k−1

k
(Y − I)k (3.3)

This series converges in norm and log Y is continuous for ‖Y − I‖ < 1. Also,

log(expX) = X for ‖X‖ < log 2 (3.4)

exp(log Y ) = Y for ‖Y − I‖ < 1 (3.5)

Proof. For ‖Y − I‖ < 1, we have:

‖ log Y ‖ =

∥∥∥∥∥
∞∑
k=1

(−1)k+1

k
(Y − I)k

∥∥∥∥∥ ≤
∞∑
k=1

1

k
‖Y − I‖k <

∞∑
k=1

‖Y − I‖k <∞
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1. THE EXPONENTIAL MAP

The Weierstrass M-test implies that the series converges absolutely and uniformly.
For continuity, observe that the partial sums of the series are continuous and since
the series converges uniformly then log Y is continuous. To prove (3.4), we will
consider 2 cases:

Case 1: If X is diagonal matrix then X = Cdiagn(λ1, · · · , λn)C−1 for some
invertible matrix C where λi for i = 1, · · · , n are eigenvalues of X. Then
(expX − I) = Cdiagn(eλ1 − 1, · · · , eλn − 1)C−1 so that we obtain:

(expX − I)k = C

(eλ1 − 1)k 0
. . .

0 (eλn − 1)

C−1
Thus,

log(expX) =
∞∑
k=1

(−1)k−1

k
(expX − I)k

= C


∞∑
k=1

(−1)k−1

k
(eλ1 − 1)k 0

. . .

0
∞∑
k=1

(−1)k−1

k
(eλn − 1)k

C−1
= Cdiagn(log(eλ1), · · · , log(eλn))C−1

= Cdiagn(λ1, · · · , λn)C−1

= X

The third and fourth equalities follow from the properties of usual exp and log in
real number.

Case 2: If X ∈ M(n,C) is not diagonal then X = CUC−1 for some invertible
matrix C and U is an upper triangle matrix with diagonal entries λ1, · · · , λl ,which
are eigenvalues of X, with multiplicity n1, · · · , nl respectively where n1+ · · ·+nl = n
(l < n) i.e.

U =



λ1 ∗
. . .

λ1
. . .

λl
. . .

0 λl


Let λ = min

1≤i 6=j≤l
|λi − λj| and for m ∈ N, we de�ne Um from U by changing the

diagonal entries of U by µp such that

µp =

{
λi − 1

m+Rp
if λi > 0

λi + 1
m+Rp

if λi ≤ 0
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1. THE EXPONENTIAL MAP

where 1 ≤ p ≤ n1 if i = 1 and n1 + . . .+ ni−1 + 1 ≤ p ≤ n1 + . . .+ ni if i = 2, . . . , l
and Rp (1 ≤ p ≤ n) are chosen distinct and su�ciently large such that:

1

m+Rp

<
λ

2

Then for 1 ≤ p 6= q ≤ n, we have µp 6= µq. Indeed, if µp = λi± 1
m+Rp

, µq = λj± 1
m+Rq

and suppose that λi ± 1
m+Rp

= λj ± 1
m+Rq

then:

λ ≤ |λi − λj| =
∣∣∣∣ 1

m+Rp

± 1

m+Rq

∣∣∣∣ ≤ ∣∣∣∣ 1

m+Rp

∣∣∣∣+

∣∣∣∣ 1

m+Rq

∣∣∣∣ < λ

2
+
λ

2
= λ

This leads to the contradiction.
Let {Xm} be a sequence such that Xm = CUmC

−1. It is clear that Xm are
diagonal matrices for all m and Xm → X which implies that ‖Xm‖ → ‖X‖ < log 2.
Then for m su�ciently large, we have ‖Xm‖ < log 2 and Since "exp" and "log" are
continuous, we obtain:

log(expX) = lim
m→∞

log(expXm) = lim
m→∞

Xm = X

This proves (3.4). Similar argument shows that exp(log Y ) = Y for ‖Y − I‖ < 1.
�

Lemma 3.1. There exists a constant c such that for all n × n matrices Y with
‖Y ‖ < 1/2, then ‖ log(I + Y )− Y ‖ ≤ c‖Y ‖2.

Proof. First, note that

log(I + Y )− Y =
∞∑
k=2

(−1)k+1Y
k

k
= Y 2

∞∑
k=2

(−1)k+1Y
k−2

k

Then:

‖ log(I + Y )− Y ‖ ≤ ‖Y ‖2
∞∑
k=2

(
1
2

)k−2
k

But
∞∑
k=2

(
1
2

)k−2
k

<
∞∑
k=0

(
1

2

)k
so that

n∑
k=2

( 1
2)
k−2

k
converges and has limit c. Thus, we are done.

�

Remark 3.2. We may restate the lemma in more concise way by saying that

log(I + Y ) = Y +O(‖Y ‖2)
where O(‖Y ‖2) denotes the quantity of order ‖Y ‖2 i.e. a quantity that is bounded
by a constant times ‖Y ‖2 for all su�ciently small values of ‖Y ‖.

Proposition 3.3. (Lie Product Formula) Let X and Y be n × n complex ma-

trices. Then, eX+Y = lim
m→∞

(
e
X
m e

Y
m

)m
.
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1. THE EXPONENTIAL MAP

Proof. First, observe that

eX/meY/m = (I +
X

m
+

X2

2m2
+ · · · )(I +

Y

m
+

Y 2

2m2
+ · · · ) = I +

X

m
+
Y

m
+O

(
1

m2

)
Then eX/meY/m → I as m→∞ so that eX/meY/m is in the domain of the logarithm
for all su�ciently large m. By lemma 3.1, we obtain:

log
(
eX/meY/m

)
= log

(
I +

X

m
+
Y

m
+O

(
1

m2

))
=
X

m
+
Y

m
+O

(∥∥∥∥Xm +
Y

m
+O

(
1

m2

)∥∥∥∥2
)

=
X

m
+
Y

m
+O

(
1

m2

)
Then:

eX/meY/m = exp

(
X

m
+
Y

m
+O

(
1

m2

))
implies that, (

eX/meY/m
)m

= exp

(
X + Y +O

(
1

m

))
By the continuity of exponential, we conclude that:

lim
m→∞

(
e
X
m e

Y
m

)m
= eX+Y

�

De�nition 3.2. A function A : R→ GL(n,C) is called a one-parameter subgroup
of GL(n,C) if:

(1). A is continuous,
(2). A(0) = I,
(3). A(t+ s) = A(t)A(s) for all t, s ∈ R.

Remark 3.3. From the above de�nition, we obtain that the inverse of A(t) is
A(−t) since A(−t)A(t) = A(−t+ t) = A(0) = I and also A(t)A(−t) = I.

Proposition 3.4. (One-Parameter Subgroups) If A is a one-parameter subgroup
of GL(n,C), then there exists a unique n×n complex matrixX such that A(t) = etX .

Proof. The uniqueness is immediate, since if there is anX such that A(t) = etX ,

then X = d
dt

∣∣∣
t=0
A(t). For the existence, let Bε(0) be the open ball of radius ε with

center zero in M(n,C). Assume that ε < log 2 then "exp" maps Bε(0) injectively
into M(n,C) with continuous inverse "log". Let U = exp(Bε/2(0)), which is an open
set in GL(n,C), We need the following lemma.

Lemma 3.2. Every g ∈ U has a unique square root h in U , given by h =
exp

(
1
2

log g
)
.
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2. LIE ALGEBRA OF LIE GROUP

Proof. Since g ∈ U then 1
2

log g ∈ Bε/2(0) and so h = exp
(
1
2

log g
)
∈ U and

is a square root of g, since h2 =
[
exp

(
1
2

log g
)]2

= exp(log g) = g. For uniqueness,
let k ∈ U such that k2 = g and let X = log g, Y = log k then expY = k and
exp(2Y ) = (expY )2 = k2 = g = expX.

Since Y ∈ Bε/2(0) then 2Y ∈ Bε(0) and X ∈ Bε/2(0) ⊂ Bε(0) then exp(2Y ) =
exp(X) implies that 2Y = X since exp is injective on Bε(0). Thus, k = expY =
exp(X/2) = exp

(
1
2

log g
)

= h. This proved uniqueness. �

Now, returning to the proof of proposition. Choose ε′ > 0 such that Bε′(I) ⊂
U = exp(Bε/2(0)) since U is open and "exp" maps 0 to I. The continuity of A at 0
implies that exists t0 > 0 such that for all t with |t| ≤ t0 then A(t) ∈ Bε′(I) ⊂ U
since A(0) = I. Let X = 1

t0
log(A(t0)). We have A(t0) and A(t0/2) are in U and

A(t0/2)2 = A(t0/2)A(t0/2) = A(t0). By the lemma, A(t0) has a unique square root in
U that equals exp

(
1
2

logA(t0)
)

= exp(t0X/2). Thus A(t0/2) = exp(t0X/2). Repeat
this procedure, we obtain for all positive integer k that

A(t0/2
k) = exp(t0X/2

k)

Then for any integer m, we have

A

(
mt0
2k

)
= A

(
t0
2k

)m
= exp

(
t0X

2k

)m
= exp

(
mt0X

2k

)
Thus, A(t) = exp(tX) for all t = mt0

2k
where m ∈ Z, k ∈ N. To prove that A(t) =

exp(tX) for all real number t, we make use the fact from analysis that if f, g be
continuous functions on R such that f = g on a dense subset of R then f = g on R.
Since "A" and "exp" are continuous, we only need to prove that the set in the form
mt0
2k

is dense in R. Indeed, for x, y ∈ R such that x < y, we can choose k su�ciently

large so that there is m such that 2kx < mt0 < 2ky then x < mt0
2k

< y. This proves
the density and thus we are done. �

2. Lie Algebra of Lie group

De�nition 3.3. A �nite-dimensional real or complex Lie algebra is a �nite-
dimensional real or complex vector space g, together with a map [·, ·] : g × g → g,
which is called a bracket, with the following properties:

(1). [·, ·] is bilinear.
(2). [X, Y ] = −[Y,X] for all X, Y ∈ g.
(3). [[X, Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0 for all X, Y, Z ∈ g.

Example 3.1.
(1). Any vector spaces become Lie algebras if all brackets are set equal to 0.

Such a Lie algebra is called abelian.

(2). The vector space of all smooth vector �elds on the manifold M form a Lie
algebra under the bracket operation on vector �elds.

(3). Let g = R3 and de�ne [x, y] to be the cross product x×y. It is easy to check
that the cross product satis�es all three properties in the de�nition above.
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2. LIE ALGEBRA OF LIE GROUP

(4). The vector spaces M(n,R) and M(n,C) are real Lie algebra and complex
Lie algebra, respectively with respect to the bracket operation [A,B] = AB − BA.
Similarly, Let V be a �nite-dimensional real or complex vector space and gl(V ) de-
note the space of linear map on V , then gl(V ) is a real or complex Lie algebra with
the bracket operation [A,B] = AB −BA.

Now, we are going to de�ne a Lie algebra of a Lie group G.

De�nition 3.4. Let G be a Lie group and a ∈ G. Left translation by a and right
translation by a are respectively the di�eomorphisms la and ra of G de�ned by:

la(x) = ax

ra(x) = xa

for all x ∈ G.

A vector �eld X (not necessary
smooth) on G is called left invariant
if for each a ∈ G, X is la-related to
itself; that is, dla ◦X = X ◦ la.

The set of all left invariant vector �elds on G will be denoted by g.

Proposition 3.5. Let G be a Lie group and g its set of left invariant vector
�elds.

(1). g is a real vector space, and the map α : g→ TeG de�ned by α(X) = X(e)
is an isomorphism of g with the tangent space TeG at the identity. Consequently,
dim g = dimTeG = dimG.

(2). Left invariant vector �elds are smooth.
(3). The bracket of two left invariant vector �elds is itself a left invariant vector

�eld.
(4). g form a (real) Lie algebra under the bracket operation on vector �elds.

Proof.

(1). Let X, Y ∈ g and k ∈ R then:

dla ◦ (X + Y ) = dla ◦X + dla ◦ Y (dla is linear)

= X ◦ la + Y ◦ la (X, Y ∈ g)

= (X + Y ) ◦ la
dla(kX) = kdla(X) = k[X(la)] = (kX)(la)

This proves that g is a real vector space. On the other hand, α is clearly linear by
its de�nition.

α is injective: Let X, Y ∈ g with α(X) = α(Y ) then X(e) = Y (e). Thus, for
a ∈ G, we have:
X(a) = X(ae) = X(la(e)) = dla(X(e)) = dla(Y (e)) = Y (la(e)) = Y (ae) = Y (a)
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2. LIE ALGEBRA OF LIE GROUP

This implies that X = Y .
α is surjective: Let u ∈ TeG and for a ∈ G, de�ne X(a) = dla(u) then α(X) =

X(e) = dle(u) = u. X is left invariant since for b ∈ G:
X(lb(a)) = X(ba) = dlba(u) = dlb(dla(u)) = dlb(X(a))

The third equality follows from lba = lbla and proposition 1.3. This proves surjectiv-
ity and part (1) is done.

(2). To see that X ∈ g is smooth, we only need to prove that X(f) is smooth for
any f ∈ D(G). Let a ∈ G then:

Xf(a) = Xa(f) = Xla(e)f = dla(Xe)f = Xe(f ◦ la)
Now, let φ : G × G → G denotes the group multiplication, φ(a, b) = ab which is
smooth. Also, let i1e, i

2
a : G → G × G be injection maps such that i1e(b) = (b, e) and

i2a(b) = (a, b).
Let Y be any smooth vector �eld on G such that Y (e) = X(e) then (0, Y ) is a

smooth vector �eld on G and [(0, Y )(f ◦ φ)] ◦ i1e is a smooth function on G since f, φ
and i1e are smooth. Using the result from lemma 1.2, we obtain:

[(0, Y )(f ◦ φ)] ◦ i1e(a) = [(0, Y )(f ◦ φ)](a, e)

= (0, Y )(a,e)(f ◦ φ)

= 0a(f ◦ φ ◦ i1e) + Ye(f ◦ φ ◦ i2a)
= Xe(f ◦ φ ◦ i2a)
= Xe(f ◦ la)

The last equality follows since:

f ◦ φ ◦ i2a(b) = f ◦ φ(a, b) = f(ab) = f ◦ la(b)
Thus, Xe(f ◦ la) is smooth so that X is smooth.

(3). Since X and Y in g are smooth from (2), the bracket is de�ned. Let a ∈ G
and f be a smooth function on a neighborhood of la(x) where x ∈ G then:

dla[X, Y ](f) = [X, Y ](f ◦ la)
= X[Y (f ◦ la)]− Y [X(f ◦ la)]
= X[dla(Y )(f)]− Y [dla(X)(f)]

= X[Y (la)(f)]− Y [X(la)(f)]

= (XY )(la)(f)− (Y X)(la)(f)

= [X, Y ](la)(f)

Thus, [X, Y ] is invariant.
(4). It is immediate from the properties of the bracket of vector �elds.

�

De�nition 3.5. Let g and h be two (both are complex or real) Lie algebras. The
map f : g→ h is called Lie algebra homomorphism or homomorphism of Lie algebra
if it is linear and preserves the bracket i.e. f([x, y]) = [f(x), f(y)] for all x, y ∈ g.
In addition, if f is bijective then f is called Lie algebra isomorphism. A Lie algebra
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2. LIE ALGEBRA OF LIE GROUP

isomorphism of a Lie algebra with itself is called Lie algebra automorphism.

proposition 3.5 tell us that any Lie groups give rise to their Lie algebra as below:

De�nition 3.6. Let G be a Lie group. The Lie algebra g of G is the set of left
invariant vector �elds on G. Alternatively, the Lie algebra g of G is the tangent
space TeG of G at the identity with Lie algebra structure induced by requiring the
vector space isomorphism X 7→ X(e) of the previous proposition from g to TeG to
be an isomorphism of Lie algebra.

Example 3.2. The real line R is a Lie group under addition and the left invariant
vector �elds are simply the constant vector �elds

{
λ d
dr
|λ ∈ R

}
. The bracket of any

two such vector �elds is 0.

Proposition 3.6. The Lie algebra of the real general linear group GL(n,R) is
M(n,R) that is denoted by gl(n,R). Similarly, the Lie algebra of the complex general
linear group GL(n,C) is M(n,C) that is denoted by gl(n,C).

Proof. We will proof the �rst case since the second case can be considered
analogously from the �rst case. Let g be the Lie algebra of GL(n,R). It is su�cient
to prove that there is Lie algebra isomorphism between g and gl(n,R). To see this,
let xij be the natural coordinate functions on gl(n,R) which assign to each matrix
its ijth entry and let α : Te(gl(n,R)) → gl(n,R) be the canonical identi�cation i.e.
if u ∈ Te(gl(n,R)),

α

(
u =

n∑
i,j=1

u(xij)
∂

∂xij

)
=

n∑
i,j=1

u(xij)Eij

where Eij is a standard basis for the matrix space.
Then

α(u)ij = u(xij)

But Te(GL(n,R)) = Te(gl(n,R)) since GL(n,R) is a subset of gl(n,R). Thus, we
can de�ne a map β : g→ gl(n,R) by:

β(X) = α(X(e))

β is clearly a vector space isomorphism since the map X → X(e) and α are isomor-
phisms. So, we only need to prove that for any X, Y ∈ g,

β([X, Y ]) = [β(X), β(Y )]

We have (xij ◦ lA)(B) = xij(AB) =
∑
k

xik(A)xkj(B) where

A = (xij(A))ij, B = (xij(B))ij ∈ G and since Y is a left invariant vector �eld, then:

(Y (xij))(A) = YA(xij)

= dlA(Ye)(xij) = Ye(xij ◦ lA)

= Ye(
∑
k

xik(A)xkj) =
∑
k

xik(A)Ye(xkj)

=
∑
k

xik(A)α(Ye)kj =
∑
k

xik(A)β(Y )kj
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From this result,we can compute the ijth component of β([X, Y ]):

β([X, Y ])ij = α([X, Y ]e)ij

= [X, Y ]e(xij)

= Xe(Y (xij))− Ye(X(xij))

= Xe

(∑
k

xikβ(Y )kj

)
− Ye

(∑
k

xikβ(X)kj

)
=
∑
k

Xe(xik)β(Y )kj −
∑
k

Ye(xik)β(X)kj

=
∑
k

α(Xe)ikβ(Y )kj −
∑
k

α(Ye)ikβ(X)kj

=
∑
k

β(X)ikβ(Y )kj −
∑
k

β(Y )ikβ(X)kj

= β(X)β(Y )ij − β(Y )β(X)ij

= [β(X), β(Y )]ij

Thus β is Lie algebra isomorphism and we are done.
�

3. Properties of Lie algebra

In this section we will study some properties of Lie algebra of matrix Lie groups.
Also, we will compute Lie algebras of some matrix Lie groups.

Lemma 3.3. Let G be a Lie subgroup of GL(n,C) (not necessarily closed) with
its Lie algebra g. Then "exp" maps g to G.

Proof. In this proof, we view g as the tangent space at the identity I of G.
Let X1, . . . , Xm be a basis of g and choose curves αk(t) for 1 ≤ k ≤ m such that
αk(0) = I and α′k(0) = Xk. De�ne:

g(t1X1 + . . .+ tmXm) = α1(t1)α2(t2) . . . αm(tm)

Then g : g→ G ⊂ gl(n,C) and dg0X = X for all X ∈ g since:

dg0Xk =
d

dt

∣∣∣
t=0

(g(tXk))

=
d

dt

∣∣∣
t=0

(α1(0) . . . αk(t) . . . αm(0))

=
d

dt

∣∣∣
t=0

(αk(t)) = α′k(0) = Xk

Choose a subspace s of gl(n,C) complement to g so that gl(n,C) = g⊕ s and de�ne
a smooth map h : s → gl(n,C) in a neighborhood of 0 in s such that h(0) = I and
dh0Y = Y for all Y ∈ s; for example, h(Y ) = 1 + Y .
Now, de�ne f : g × s → gl(n,C) by f(X, Y ) = g(X)h(Y ). Then f is de�ned and
smooth in a neighborhood of 0 in g× s and

df(0,0)(X, Y ) = dg0Xh(0) + g(0)dh0Y = X + Y
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This di�erential is invertible since if df(0,0)(X, Y ) = X + Y = 0 then X = 0, Y = 0
so that Ker(df(0,0)) = {0}. The Inverse Function Theorem implies that f has a local

inverse f from the neighborhood of I in gl(n,C) to a neighborhood of 0 in g × s
which we de�ned by f(A) = (f1(A), f2(A)). Explicitly, for any A in a neighborhood
of I in gl(n,C), A is in the form A = g(X)h(Y ) for unique (X, Y ) ∈ g × s with
X = f1(A), Y = f2(A).
If f2(A) = 0 then A = g(X)h(0) = g(X) ∈ G. This mean that

f2(A) = 0 implies A ∈ G (3.6)

Let (X, Y ) close to 0 so that f is de�ned near A = f(X, Y ) = g(X)h(Y ). Given
Z ∈ g, then for real t close to 0, (X + tZ, Y ) close to 0 and g(X + tZ)h(Y ) close to
I so we have:

f2(g(X + tZ)h(Y )) = Y

Di�erentiate with respect to t at t = 0 gives:

(df2)A(dgXZh(Y )) = 0

Since h(Y ) = g(X)−1A then we obtain:

(df2)A(dgXZg(X)−1A) = 0 (3.7)

Observe that the matrix dgXZg(X)−1 is in g since:

dgXZg(X)−1 =
d

dt

∣∣∣
t=0

(g(X + tZ)g(X)−1)

where g(X + tZ)g(X)−1 is a curve on G that is equal I when t = 0.
So, for any X ∈ g, we can de�ne a map FX : g → g by FX(Z) = dgXZg(X)−1. FX
is a linear transformation of g depending continuously on X. Then (3.7) becomes:

(df2)A(FX(Z)A) = 0 (3.8)

If X = 0 then F0(Z) = dg0Zg(0)−1 = Z. That is F0 is the identity transformation of
g. This implies that detF0 6= 0. By continuity, detFX 6= 0 for X in a neighborhood
of 0 in g. This means that FX is invertible for X close to 0 in g. Explicitly, FX is
injective for X near 0 in g so that FX is surjective since FX is linear. Thus, every
element Z ′ ∈ g can be written as FX(Z) for some Z ∈ g. Then (3.8) becomes:

(df2)A(Z ′A) = 0 (3.9)

for all Z ′ ∈ g and all A in a neighborhood of I in gl(n,C)
Returning to the assertion of proposition, let X ∈ g and set A(t) = etX . By (3.9),
for t in an interval about 0 in R, we have:

0 = (df2)A(t)(XA(t)) =
d

dt
(f2(A(t)))

since A′(t) = d
dt

(etX) = XetX = XA(t). Thus, f2(A(t)) is constant. But for t = 0,
f2(A(0)) = f2(I) = 0 then f2(A(t)) ≡ 0 for all t in an interval about 0 in R. From
(3.6), we obtain A(t) = etX ∈ G. Thus for N ∈ N su�ciently large, eX/N ∈ G so

that eX =
(
eX/N

)N ∈ G.
�
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Corollary 3.1. If G is a Lie subgroup of GL(n,C) with its Lie algebra g, then
there exists a neighborhood U of 0 in g and a neighborhood V of I in G such that
the exponential map takes U di�eomorphically onto V .

Proof. Since exp : g → G is smooth then the di�erential d exp0 maps g to

g = TIG. Now, if d exp0(X) = 0 then 0 = d exp0(X) = d
dt

∣∣∣
t=0

(exp(tX)) = X. Thus

d exp0 is injective so that invertible. The Inverse Function Theorem implies that the
exponential map is locall di�eomorphism at 0. This is what we desire.

�

Corollary 3.2. Let G be a Lie subgroup of GL(n,C) with its Lie algebra g.
Then

g = {X ∈ gl(n,C)|etX ∈ G,∀t ∈ R}
Proof. Let X ∈ gl(n,C) such that etX ∈ G for all real t then X ∈ TIG = g

since α(t) = etX is a curve on G and α(0) = I, α′(0) = X. Conversely, if X ∈ g,
then from lemma 3.3, etX ∈ G for all real t.

�

Corollary 3.3. Let G be a Lie subgroup of GL(n,C) and X an element of its
Lie algebra. Then, eX is an element of the identity component of G.

Proof. We have that etX ∈ G for all real t. However, as t varies from 0 to
1, etX is a curve on G connecting the identity to eX . Thus, eX lies in the identity
component of G.

�

Corollary 3.4. Let G be a Lie subgroup of GL(n,C) with Lie algebra g. Let
X ∈ g and A ∈ G then AXA−1 ∈ g.

Proof. We have et(AXA
−1) = AetXA−1 ∈ G for all real t, then AXA−1 ∈ g.

�

The corollary 3.2 is useful for computing Lie algebras of Lie subgroups ofGL(n,C)
(including matrix Lie groups). We can give the de�nition of Lie algebras of Lie sub-
groups of GL(n,C) as below:

De�nition 3.7. Let G be a Lie subgroup of GL(n,C). Lie algebra g of G is
de�ned by:

g = {X ∈M(n,C)|etX ∈ G,∀t ∈ R}
Example 3.3.
(1). Consider the real special linear group SL(n,R). We denote its Lie algebra

by sl(n,R). Then X ∈ sl(n,R) implies that etX ∈ SL(n,R) for all real t. Thus,

det
(
etX
)

= 1

It is easy to check that det
(
etX
)

= eTr(tX) = etT r(X) where Tr(X) denote the trace
of the matrix X. This implies:

etT r(X) = 1 for all real t

So, Tr(X) = 0. Conversely, if X ∈ M(n,C) with Tr(X) = 0 then X ∈ sl(n,R).
Hence, sl(n,R) = {X ∈ gl(n,R)|Tr(X) = 0}.
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Similarly, the Lie algebra of complex special linear group SL(n,C) is:

sl(n,C) = {X ∈ gl(n,C)|Tr(X) = 0}.

(2). Recall that the unitary group U(n) consists of all invertible complex matrices
A such that A−1 = A∗. Thus, for all real t, etX ∈ U(n) implies that:

e−tX =
(
etX
)−1

=
(
etX
)∗

= etX
∗
for all real t (3.10)

The equation (3.10) holds if:

−tX = tX∗ for all t which implies that −X = X∗

Conversely, if (3.10) holds, by di�erentiating with respect to t at t = 0 give −X = X∗

Therefore, the Lie algebra u(n) of U(n) is:

u(n) = {X ∈ gl(n,C)| −X = X∗}

From this and example (1), it is easy to see that the Lie algebra su(n) of the special
unitary group SU(n) is:

su(n) = {X ∈ gl(n,C)|Tr(X) = 0,−X = X∗}

(3). The special orthogonal group SO(n) is the identity component of the or-
thogonal group O(n). From corollary of the proposition 3.2, the exponential of a
matrix in the Lie algebra o(n) of the group O(n) is in SO(n). Thus, the Lie algebra
o(n) is as the same as the Lie algebra so(n) of the group SO(n). Recall the real
matrix A is orthogonal if A−1 = AT . Thus, for all real t, etX is orthogonal if

etX
T

=
(
etX
)T

=
(
etX
)−1

= e−tX (3.11)

If (3.11) holds, by di�erentiating with respect to t at t = 0, we obtain XT = −X.
Conversely, if XT = −X then (3.11) holds. Thus,

0(n) = so(n) = {X ∈ gl(n,R)|XT = −X}

Note that the condition XT = −X implies that the diagonal entries of X are 0 so
that the trace Tr(X) = 0.

(4). Recall that the Heisenberg group H is the set of 3× 3 matrices of the form1 a b
0 1 c
0 0 1


We claim that the Lie algebra h of H is the set of 3× 3 matrices of the form

X =

0 m n
0 0 p
0 0 0


where m,n, p ∈ R. Note that

X2 =

0 0 mp
0 0 0
0 0 0

 and Xn = 0, ∀n ≥ 3
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Using the series formula of the exponential, we obtain:

etX =

1 tm tn+ t2

2
mp

0 1 pt
0 0 1

 ∈ H
Conversely, if X is any matrices such that etX ∈ H then the entries of X which on

and below the diagonal are zero since X = d
dt

∣∣∣
t=0
etX . Thus

h =


0 m n

0 0 p
0 0 0

 ∣∣∣m,n, p ∈ R


Theorem 3.1. Let G and H be matrix Lie groups with their Lie algebra g and

h respectively. Suppose that Φ : G→ H is a Lie group homomorphism. Then there
exists a unique (real) Lie algebra homomorphism φ : g → h such that Φ ◦ exp =
exp ◦φ. This φ is also satis�es φ(AXA−1) = Φ(A)φ(X)Φ(A)−1 for all A ∈ G,X ∈ g.

Proof. Since Φ maps the identity element in G to the identity elements in H
then its di�erential at the identity dΦI maps Lie algebra g of G to Lie algebra h of
H. We de�ne φ = dΦI and claim that φ satis�es the conditions we desire. First note
that φ is (real) linear. Now, let X ∈ g, then for all real t, we have:

φ(X) = dΦIX =
d

dt

∣∣∣
t=0

(Φ(etX))

Φ(etX) is a one-parameter subgroup since Φ is continuous homomorphism and Φ(etX)
equal I when t = 0. From proposition 3.4, there exists a unique complex matrix
Z such that Φ(etX) = etZ . This Z is in h since X ∈ g then etX ∈ G so that
etZ = Φ(etX) ∈ H for all real t. Thus,

φ(X) =
d

dt

∣∣∣
t=0

(etZ) = Z where Φ(etX) = etZ

If t = 1 then Φ(eX) = eZ = eφ(X). Thus, Φ ◦ exp = exp ◦φ.
To prove that φ(AXA−1) = Φ(A)φ(X)Φ(A)−1 for all X ∈ g, A ∈ G, observe that

for all real t,

etφ(AXA
−1) = eφ(tAXA

−1) = Φ(etAXA
−1

)

= Φ(AetXA−1) = Φ(A)Φ(etX)Φ(A)−1

= Φ(A)eφ(tX)Φ(A)−1

= Φ(A)etφ(X)Φ(A)−1

By di�erentiating with respect to t at t = 0 gives:

φ(AXA−1) = Φ(A)φ(X)Φ(A)−1

Now, the only thing we have to prove is that φ preserves the bracket; that is,

φ([X, Y ]) = [φ(X), φ(Y )] for all X, Y ∈ g
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Since X = d
dt

∣∣∣
t=0

(etX), it follows that XY = d
dt

∣∣∣
t=0

(etXY ). So, by the product rule,

we have:

d

dt

∣∣∣
t=0

(etXY e−tX) = (XY )e0 + (e0Y )(−X) = XY − Y X = [X, Y ]

Thus,

φ([X, Y ]) = φ(
d

dt

∣∣∣
t=0

(etXY e−tX))

=
d

dt

∣∣∣
t=0

(φ(etXY e−tX))

=
d

dt

∣∣∣
t=0

(Φ(etX)φ(Y )Φ(etX)−1)

=
d

dt

∣∣∣
t=0

(etφ(X)φ(Y )e−tφ(X))

= [φ(X), φ(Y )]

The second equality follows from the fact that a derivative commutes with the linear
map φ. For the uniqueness of φ, let φ̃ be a Lie algebra associated of Φ then for any
X ∈ g,

φ(X) = dΦIX =
d

dt

∣∣∣
t=0

(Φ(etX))

=
d

dt

∣∣∣
t=0

(etφ̃(X)))

= φ̃(X)

This completes the proof.
�

Corollary 3.5. LetG,H, andK be matrix Lie groups and let Φ : G→ H and Ψ :
H → K be Lie group homomorphisms with associated Lie algebra homomorphisms
φ and ψ respectively. If λ is a associated Lie algebra homomorphism of Ψ ◦ Φ then
λ = ψ ◦ φ.

Proof. Let X ∈ g then for all real t,

etλ(X) = Ψ(Φ(etX)) = Ψ(etφ(X)) = et(ψ◦φ(X))

By di�erentiating respect to t at t = 0, gives what we desire.
�

Corollary 3.6. Let G and H be matrix Lie groups and Φ : G→ H be a group
homomorphism. If Φ is continuous than Φ is smooth. (This is exactly the proposition
2.2 )

Proof. Let U be a neighborhood of 0 of Lie algebra g and V be a neighborhood
of I in G such that exp : U → V is di�eomorphism. Let A ∈ G then A ∈ AV . Thus
for any B ∈ AV , B = AeX for some X ∈ U then

Φ(B) = Φ(A)Φ(eX) = Φ(A)eφ(X)

where φ is the correspondence Lie algebra homomorphism.
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This means that in exponential coordinates near A, Φ is a composition of the
linear map φ, the exponential map, and multiplication on the left by Φ(A), all of
which are smooth. This shows that Φ is smooth near any point A in G. Since A is
arbitrary, Φ is smooth.

�

Proposition 3.7. Let G be a Lie subgroup of GL(n,C) with Lie algebra g. If
G is connected then

G = {eX1eX2 . . . eXm |X1, . . . , Xm ∈ g}

Proof. Let A ∈ G then there is a curve α : [0, 1] → G such that α(0) = I
and α(1) = A. Let V = eU as in the previous corollary and let W ⊂ V such that
W−1 = W and W 2 ⊂ V ; for example, W = Wo ∩W−1

o for some neighborhood Wo

of I in V . Since [0, 1] is compact then α([0, 1]) is compact. Observe that α([0, 1]) ⊂⋃
t∈[0,1]

α(t)W then exist 0 = to, t1, . . . , tn = 1 ∈ [0, 1] such that:

α([0, 1]) ⊂
n⋃
i=0

α(ti)W

Note that since α([0, 1]) is connected, then we can choose and arrange t0, . . . , tn so
that α(ti−1)W ∩ α(ti)W 6= ∅. Thus, there exist W1,W2 ∈ W such that
α(ti)W1 = α(ti+1)W2 then α(ti−1)

−1α(ti) = W2W
−1
1 ∈ W 2 ⊂ V for i = 1, . . . , n.

Thus,

A = α(0)α(1) = (α(to)
−1α(t1))(α(t1)

−1α(t2)) . . . (α(tn−1)
−1α(tn))

If we choose Xi ∈ U ⊂ g such that eXi = α(ti−1)
−1α(ti) for i = 1, . . . , n then

A = eX1 . . . eXn . This completes the proof.
�

Corollary 3.7. Let G and H be Lie subgroups of GL(n,C) such that G is
connected. Let Φ1,Φ2 are Lie groups homomorphisms of G into H and φ1, φ2 be the
associated Lie algebra homomorphisms. If φ1 = φ2 then Φ1 = Φ2.

Proof. LetA ∈ G then from proposition, A = eX1eX2 . . . eXm for someX1, . . . , Xm ∈
g. Thus,

Φ1(A) = Φ1(e
X1eX2 . . . eXm)

= Φ1(e
X1)Φ1(e

X2) . . .Φ1(e
Xm)

= eφ1(X1)eφ1(X2) . . . eφ1(Xm)

= eφ2(X1)eφ2(X2) . . . eφ2(Xm)

= Φ2(A)

�
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4. The Closed Subgroup Theorem

As we have already known that all matrix Lie groups are Lie groups by the closed
subgroup theorem. In this section, we are going to prove this theorem in the case of
matrices.

Theorem 3.2. (Closed Subgroup Theorem) Every closed subgroup of the
Lie group GL(n,C) is an embedded submanifold of GL(n,C) and thus a Lie group.

Proof. For simplicity, we de�ne G := GL(n,C) with Lie algebra g := gl(n,C)
and dimG = 2n2 := N . Let H be a closed subgroup of G with Lie algebra h and
dimH = k < N . First, note that

h = {X ∈ g|etX ∈ H,∀t ∈ R}

is a (real) subspace of g since for any X, Y ∈ h, λ ∈ R and for all real t, the Lie
product formula 3.3 implies that:

et(X+λY ) = etX+tλY = lim
m→∞

(
e
tX
m e

tλY
m

)m
∈ H

The last equation follows from the fact that H is closed. Now, let s be the orthogonal
complement of h in g, g = h⊕ s and consider the smooth map f : h× s→ G de�ned
by:

f(X, Y ) = eXeY

The di�erential at (0, 0), df(0,0) : h× s→ g is:

df(0,0)(X, Y ) =
d

dt

∣∣∣
t=0
f(tX, tY )

=
d

dt

∣∣∣
t=0
etXetY = X + Y

If X + Y = 0 then X = 0, Y = 0 since X, Y are orthogonal complement of each
other. This proves that Ker

(
df(0,0)

)
is trivial and thus df(0,0) is invertible. The

Inverse Function Theorem implies that there exist neighborhoods Uh and Us of 0
in h and s respectively and a neighborhood V of the identity I in G such that
f : Uh × Us → V is di�eomorphism.

If we identity h× s with RN and de�ne φ = f−1 : V → Uh × Us then (V, φ) is a
chart of G. We need the following lemma:

Lemma 3.4. There exists a neighborhood Us of 0 in s such that

H ∩ exp(Us \ {0}) = ∅

Proof. Assume the contrary that there exists a non-zero sequence {Yi} ∈ s
with Yi → 0 such that for any integer M , there is i ≥M such that eYi ∈ H (that is,
lim
i→0

eYi ∈ H). Let Ỹi = Yi
‖Yi‖ be a sequence in a unit sphere which is a compact set.

Then there exists a subsequence Ỹij converges to Y 6= 0 in s.
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Let t ∈ R. For each j, choose nj such that t
‖Yij ‖
−1 < nj ≤ t

‖Yij ‖
. Since ‖Yij‖ → 0,

then nj‖Yij‖ → t. Therefore,

etY = lim
j→∞

exp(nj‖Yij‖Ỹij) = lim
j→∞

exp(njYij) = lim
j→∞

exp(Yij)
nj ∈ H

The limit is in H since H is closed. This proves that Y ∈ h and thus Y ∈ h ∩ s.
Then Y = 0 which leads to a contradiction.

�

Returning to the theorem, we can choose Us satisfying the lemma. Therefore,

Z ∈ V ∩H ⇐⇒ Z = eXeY ∈ H for some X ∈ Uh, Y ∈ Us

⇐⇒ eY ∈ H for some Y ∈ Us

⇐⇒ Y = 0 for some Y ∈ Us

Thus,
φ(V ∩H) = Uh ∩ {0} = (Uh × Us) ∩ (Rk × {0})

Therefore, for any point A ∈ H, we have A ∈ AV and φ ◦ lA−1 : AV → Uh × Us is
di�eomorphism and thus (AV, φ ◦ lA−1) is a chart of G such that

φ ◦ lA−1(AV ∩H) = φ[A−1(AV ∩H)]

= φ(V ∩H) since A−1(AV ∩H) = V ∩H
= (Uh × Us) ∩ (Rk × {0})

Thus, H is an embedded submanifold of G and it is Lie group since its multiplication
map and inverse map that induce from G = GL(n,C) are smooth. To see this,
observe the inclusion map i : H ↪→ G is smooth then the map ψ = f ◦ i, where
f : G → G, g 7→ g−1 is the inverse operation on G, is smooth. The induced map
f̃ on H satis�es i ◦ f̃ = ψ and in addition ψ(H) = i(H) = H. From theorem 1.32
in [3]: Foundations of di�erentiable manifolds and Lie groups by Frank W. Warner,

implies that f̃ is smooth. Similarly, for the induced map g̃ of the multiplication map
f : G×G→ G, (a, b) 7→ ab to H. See the �gure below. �

47



5. LIE GROUP THAT IS NOT A MATRIX LIE GROUP

5. Lie Group that is not a Matrix Lie Group

We shall give a counterexample of a Lie group that is not a matrix Lie group and
even not isomorphic to any matrix Lie groups. Recall from example 2.1 the group
G = R× R× S1 with the group multiplication:

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, e
ix1y2z1z2)

is a Lie group. We claim that G is not isomorphic to any matrix group (and thus
not a matrix Lie group). Let H be a Heisenberg group (point (6) of example 2.2)
and de�ne a map F : H → G by:

F

1 a b
0 1 c
0 0 1

 = (a, c, eib)

F is continuous of Lie groups and thus is smooth. In addition,

F

1 a1 b1
0 1 c1
0 0 1

1 a2 b2
0 1 c2
0 0 1

 = F

1 a1 + a2 b1 + b2 + a1c2
0 1 c1 + c2
0 0 1


=
(
a1 + a2, c1 + c2, e

i(b1+b2+a1c2)
)

=
(
a1 + a2, c1 + c2, e

ia1c2eib1eib2
)

=
(
a1, c1, e

ib1
) (
a2, c2, e

ib2
)

= F

1 a1 b1
0 1 c1
0 0 1

F

1 a2 b2
0 1 c2
0 0 1


Thus, F is a Lie group homomorphism. Let N = KerF and recall that the center
Z(H) of H is the set of any elements in H that commute with all elements in H.
The direct computation show that:

N =


1 0 2πn

0 1 0
0 0 1

 ∣∣∣∣∣n ∈ Z


Z(H) =


1 0 t

0 1 0
0 0 1

 ∣∣∣∣∣t ∈ R


We need the following lemmas:

Lemma 3.5. Recall that a matrix X is nilpotent if there exists a positive integer
k such that Xk = 0 or equivalently, if all eigenvalues of X are zero. Let X 6= 0 and
is a nilpotent matirx. Then for all non-zero real number t, etX 6= I.

Proof. Since X is nilpotent, for t ∈ R \ {0}, etX is a �nite degree polynomial of
matrix tX and thus all the entries of etX is a �nite degree polynomial of t, that is:

(etX)ij = (Pij(t)),
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where Pij(t) is a �nite degree polynomial of t of the entry ij. Suppose that there
exists to 6= 0 such that etoX = I then for all n ∈ N, we have:

entoX = (etoX)n = In = I

This proves that Pij(nto) = δij for all n ∈ N. Since each Pij is a �nite degree
polynomial and equal to the same constant number δij for in�nitely many t = nt0, n ∈
N then

Pij(t) = δij,∀t 6= 0 so that etX = I,∀t ∈ R
Then

X =
d

dt

∣∣∣
t=0
etX =

d

dt

∣∣∣
t=0
I = 0 : contradiction

�

Lemma 3.6. Let Φ : H → GL(n,C) be a Lie group homomorphism. If N ⊂
KerΦ then Z(H) ⊂ KerΦ.

Proof. From (4) of example 3.3, the Lie algebra h of the Heisenberg group H
is:

h =


0 m n

0 0 p
0 0 0

 ∣∣∣∣∣m,n, p ∈ R


h has a basis:

E1 =

0 1 0
0 0 0
0 0 0

 E2 =

0 0 1
0 0 0
0 0 0

 E3 =

0 0 0
0 0 1
0 0 0


that satis�es:

[E1, E3] = E2, [E1, E2] = [E3, E2] = 0

Let φ : h→ gl(n,C) be associated Lie algebra of Φ.Then:

[φ(E1), φ(E3)] = φ(E2), [φ(E1), φ(E2)] = [φ(E3), φ(E2)] = 0

We claim that φ(E2) is nilpotent. Indeed, let λ be an eigenvalue of φ(E2) and Vλ be
an eigenspace corresponding to λ. Vλ is invariant under φ(E2) since for any u ∈ Vλ,

φ(E2)(λu) = λ(λu) =⇒ φ(E2)u = λu ∈ Vλ
In addition, [φ(E1), φ(E2)] = [φ(E3), φ(E2)] = 0 implies that φ(E1) and φ(E3) com-
mute with φ(E2). Thus, for any u ∈ Vλ, i ∈ {1, 3}

φ(E2)[φ(Ei)u] = φ(E2)φ(Ei)u = φ(Ei)φ(E2)u = φ(Ei)[φ(E2)u] = λ[φ(Ei)u]

So, Vλ is invariant under φ(E1) and φ(E3).

Now, on Vλ, φ(E2) = λI, then

λI = [φ(E1)|Vλ , φ(E3)|Vλ ]

Thus,
λ dimVλ = tr(λI) = tr[φ(E1)|Vλ , φ(E3)|Vλ ] = 0

Since dimVλ 6= 0 then λ = 0 and then φ(E2) is nilpotent.
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5. LIE GROUP THAT IS NOT A MATRIX LIE GROUP

Observe that (E2)
2 = 0 and thus etE2 =

1 0 t
0 1 0
0 0 1

 so that:

Z(H) = {etE2|t ∈ R}
N = {e2πnE2|n ∈ Z}

Since N ∈ KerΦ, we have
I = Φ(e2πnE2) = eφ(2πnE2) = e2πnφ(E2)

Since 2πnφ(E2) is nilpotent then from lemma 3.5, we obtain φ(E2) = 0. Thus,

Φ(etE2) = etφ(E2) = I

Therefore, Z(H) ⊂ KerΦ.
�

Now, let Ψ : G → GL(n,C) be a Lie group homomorphism. We want to prove
that Ψ cannot be injective. We have Ψ ◦ F : H → GL(n,C) is a Lie group ho-
momorphism and N ⊂ Ker(Ψ ◦ F ). From lemma 3.6, then Z(H) ⊂ Ker(Ψ ◦ F ).
Thus,

I = Ψ ◦ F

1 0 t
0 1 0
0 0 1

 = Ψ(0, 0, eit),∀t ∈ R

This proves that KerΨ is not trivial and thus Ψ is not injective.
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CHAPTER 4

Lie correspondences

From the previous chapter, we obtain the following results:
1. Every Lie group gives rise to a (real) Lie algebra which is the set of left

invariant vector �elds on the group or the tangent space of the group at the identity.
In the case of matrix Lie group G, Lie algebra g is given in the form:

g = {X ∈ gl(n,C)|etX ∈ G,∀t ∈ R}

2. For every Lie homomorphism Φ : G → H between two matrix Lie groups G
and H with Lie algebras g and h respectively, there is a unique correspondence (real)
Lie algebra φ : g→ h such that Φ ◦ exp = exp ◦φ.

In this chapter, we shall answer the following questions.

1. Given a matirx Lie group G with Lie algebra g. If h is a Lie subalgebra of g,
are there any matrix Lie subgroups H of G with Lie algebra h? Conversely, if H is a
matrix Lie group and is a subgroup ofG with Lie algebra h. Is h a Lie subalgebra of g?

2. Given matirx Lie groups G and H with Lie algebras g and h respectively. If
φ : g→ h is a (real) Lie algebra homomorphism, are there any Lie group homomor-
phisms Φ : G→ H such that Φ ◦ exp = exp ◦φ?

To answer these questions, we need some new concepts and we will recall all of
them here.

De�nition 4.1. Let g be a Lie algebra of a Lie group G. A Lie subalgebra of g
is a subspace h ⊂ g such that [h1, h2] ∈ h for any h1, h2 ∈ h. If g is a complex Lie
algebra and h is a real subspace of g which is closed under brackets, then h is called
real Lie subalgebra of g.

De�nition 4.2. Let G be a matrix Lie group with Lie algebra g. For each A ∈ G,
de�ne a linear map AdA : g→ g by

AdA(X) = AXA−1

This map is called the adjoint representation or the adjoint mapping.

Remark 4.1.
(1). Let G be a matrix Lie group with Lie algebra g and let GL(g) denotes the

group of all invertible linear transformations of g. Then for each A ∈ G, AdA is an
invertible linear transformation of g with inverse AdA−1 , and the map A 7→ AdA is
a Lie group homomorphism of G into GL(g). Furthermore, for each A ∈ G, AdA
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satis�es:

AdA([X, Y ]) = [AdA(X), AdA(Y )] for all X, Y ∈ g

(2). If ad : g → gl(g) is the associated Lie algebra homomorphism of Lie group
homomorphism Ad : G→ GL(g) as de�ned above then for all X, Y ∈ g, we have:

adX(Y ) = [X, Y ]

and for all Y ∈ g,

eadXY = AdeXY = eXY e−X

(3). For any X, Y ∈ g, ad[X,Y ] = [adX , adY ]

Now, consider the function:

g(z) =
log z

1− 1
z

This function is de�ned and analytic in the open disk D1(1) and thus for z in this
disk, g(z) can be written as:

g(z) =
∞∑
k=0

ak(z − 1)k

for some set of constant {ak}. This series has radius of convergence one.

Suppose V is a �nite-dimensional vector space. Choose an arbitrary basis for V
so that V can be identi�ed with Cn and thus, the norm of a linear operator on V
can be de�ned. Then for any operator A on V with ‖A− I‖ < 1, we can de�ne:

g(A) =
∞∑
k=0

ak(A− I)k

The Baker-Campbell-Hasudor�'s formula (BCH formula). For all n × n
complex matrix X and Y with ‖X‖ and ‖Y ‖ su�ciently small,

log(eXeY ) = X +

1∫
0

g(eadXetadY )(Y )dt (4.1)

Note that eadXetadY and g(eadXetadY ) are linear operators on the space gl(n,C).
In (4.1), this operator is being applied to the matrix Y . The condition that X and
Y are assume to be small guarantees that eadXetadY is closed to identity so that
g(eadXetadY ) is well de�ned.

Remark 4.2. If we de�ne C(X, Y ) = X +
1∫
0

g(eadXetadY )(Y )dt then C(·, ·) is

continuous. To see this, Let Xn and Yn be sequences such that when n → ∞,
Xn → X and Yn → Y . We shall prove that C(Xn, Yn) → C(X, Y ) as n → ∞. Let

F (X, Y, t) = g(eadXetadY )(Y ) and F (X, Y ) =
1∫
0

g(eadXetadY )(Y )dt, then we only need

to prove that F (Xn, Yn)→ F (X, Y ) as n→∞. Since eadXetadY and g(eadXetadY ) are
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1. LIE GROUP-LIE ALGEBRA CORRESPONDENCE

linear operators then:

F (Xn, Yn, t)→ F (X, Y, t) as n→∞
F (X, Y, t) is continuous in (X, Y ). Given εo > 0, there exist δo > 0 such that

‖X ′ −X‖ < δ0, ‖tY ′ − tY ‖ ≤ ‖Y ′ − Y ‖ < δ0, t ∈ [0, 1]

Then:
‖F (X ′, Y ′, t)− F (X, Y, t)‖ < ε0

Choose N ∈ N such that ‖Xn −X‖ < δ0, ‖Yn − Y ‖ < δ0 for all n ≥ N then

‖F (Xn, Yn, t)‖ ≤ ‖F (Xn, Yn, t)− F (X, Y, t)‖+ ‖F (X, Y, t)‖
< εo + sup

t∈[0,1]
F (X, Y, t) = M(X,Y ) <∞

By Lebesgue's dominated convergence theorem,

lim
n→∞

1∫
0

g(eadXnetadYn )(Yn)dt =

1∫
0

g(eadXetadY )(Y )dt

This proves that F (Xn, Yn)→ F (X, Y ) as n→∞.

The BCH formula has the following consequence.

Corollary 4.1. Let G be a matrix Lie group with Lie algebra g. Suppose that
φ : g → gl(n,C) is a Lie algebra homomorphism. Then, for all su�ciently small X
and Y in g, log(eXeY ) is in g and

φ[log(eXeY )] = log
(
eφ(X)eφ(Y )

)
1. Lie Group-Lie Algebra Correspondence

The answer to the second part of the �rst question, in general, is true for any
Lie subgroup H of a matrix Lie group G. For the �rst part, the answer is no in
general. However, if we restrict the question to �nd any connected Lie subgroup H
of a matrix Lie group G, which is not necessary a matrix Lie subgroup, then the
answer is yes.

Theorem 4.1. Let G be a matrix Lie group with Lie algebra g and h be a Lie
subalgebra of g. Then there exists a unique connected Lie subgroup H of G with
Lie algebra h (H is not necessary a matrix Lie group).
One the other hand, if G is a matrix Lie group with Lie algebra g and H is a Lie
subgroup of G with Lie algebra h. Then h is a Lie subalgebra of g.

The proof of the theorem is followed from [1], Brian C.Hall: Lie Groups, Lie
Algebras, and Representations: An Elementary Introduction.

Proof. We start with the second part of the theorem. Since H is a Lie subgroup
of G then h = TIH is a subspace of g = TIG. Let X, Y ∈ h. The corollary 3.4 implies
that for all real t,

etXY e−tX ∈ h
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1. LIE GROUP-LIE ALGEBRA CORRESPONDENCE

Therefore, since h is a vector space and thus a topologically closed subset ofM(n,C)
then:

[X, Y ] = XY − Y X =
d

dt

∣∣∣
t=0
etXY e−tX

= lim
h→0

ehXY e−hX − Y
h

∈ h

Thus, h is a Lie subalgebra of g.

To prove the �rst part, let

H = {eX1eX2 . . . eXm|X1, X2, . . . , Xm ∈ h}
It is easy to see that this H is unique since if there is a connected Lie subgroup H ′

of G with Lie algebra h then H ⊂ H ′. Also, for any A ∈ H ′, A can be written
as A = eX1eX2 . . . eXm ∈ H for some X1, X2, . . . , Xm ∈ h. Thus, H ′ ⊂ H and we
conclude that H ′ = H

Now, H is a subgroup of G and it is connected since for all A ∈ H such that
A = eX1eX2 . . . eXm , A can be connected to the identity by the curve:

t 7→ etX1etX2 . . . etXm , 0 ≤ t ≤ 1

Thus we only need to prove that the Lie algebra of H is h and H is a submanifold
of G.

Let g = h⊕ s where h is a Lie subalgebra of g and s is a orthogonal complement
of h in g. As shown in the proof of the closed subgroup theorem, the map h× s →
g, (X, Y ) 7→ eXeY is local di�eomorphism then there exist neighborhood U and V of
the origin in h and s respectively, and a neighborhood W of I in G such that each
A ∈ W can be written uniquely as:

A = eXeY , X ∈ U, Y ∈ V
in such a way that X, Y depend continuously on A. We need the following lemma:

Lemma 4.1. The set

E = {Y ∈ V |eY ∈ H} is at most countable

We assume the lemma and go on our proof. Let h′ be a Lie algebra of H. It is
clear that h ⊂ h′ since for every X ∈ h, by the de�nition of H, etX ∈ H for all real t
then X ∈ h′. For Z ∈ h′, we can write for all su�ciently small t ( t being su�ciently
small to guarantee that etZ ∈ W ),

etZ = eX(t)eY (t)

where X(t) ∈ U ⊂ h and Y (t) ∈ V ⊂ s are continuously functions of t with
X(0) = Y (0) = 0. Since etZ and eX(t) are in H then eY (t) ∈ H.

If Y (t) is not constant then the set E in lemma 4.1 is uncountable which leads
to a contradiction. Thus Y (t) is constant and it is identically zero since Y (0) = 0.
Therefore,

etZ = eX(t)

we can make t small enough if necessary so that exp is injective and then tZ =
X(t) ∈ h which implies that Z ∈ h. So, h′ ⊂ h and we conclude that h′ = h.
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1. LIE GROUP-LIE ALGEBRA CORRESPONDENCE

To prove that H is a submanifold of G, we assume that dimG=dimg=n and
dimH=dimh = k. Let X1, X2, . . . , Xk be a basis in h and X1, X2, . . . , Xn be a
extended basis in g.

Consider the map:

Rn F−→ G

(t1, t2, . . . , tn) 7→ et1X1et2X2 . . . etnXn

If we identify g with Rn, then the di�erential dF0 at 0 is an identity. From the
Inverse Function's theorem, there exists an open set U of I in G and V of 0 in Rn

such that:

U
φ:=F−1

−−−−→ V

et1X1et2X2 . . . etnXn 7→ (t1, t2, . . . , tn)

is a di�eomorphism of a neighborhood of I in G. This (U, φ) is a chart of G. Thus
if we de�ne:

W = φ−1(V ∩ (Rk × {0}))

Then W ∈ H since etX1et2X2 . . . etkXk ∈ H and φ
∣∣∣
W

: W → V ∩ (Rk × {0}) is

di�eomorphism. Thus, if we de�ne W as an open set in H then

φ(W ) = V ∩ (Rk × {0})

This is for any point near I in H. For A ∈ H, we have AW ⊂ H is an open subset
in H. Then (AU, φ ◦ lA−1) is a chart of G and φ ◦ lA−1(AW ) = φ ◦ lA−1 ◦ lA(W ) =
φ(W ) = V ∩ (Rk × {0}). This proves that H is a (immersed) submanifold of G.
Note that if we de�ne a new topology on H generating from the subset {AW |A ∈
H, I ∈ W} and construct a smooth structure H to be a maximal collection of

{(AW,φ ◦ lA−1 |AW )|(AU, φ ◦ lA−1) is a chart in G}

then H is a manifold. Now, to prove that H is a Lie subgroup of G is to prove
that the group multiplication and inversion induced from G are smooth. To achieve
this goal, we need some new concepts of involutive distribution and integral manifold.

De�nition 4.3. Let Mm be a manifold and 1 ≤ k ≤ m. A k-dimensional dis-
tribution D on M is a choice of a k-dimensional subspace D(p) of TpM for each p
in M . D is said to be smooth if for each p ∈ M , there is a neighborhood U of p
and there are k smooth vector �elds X1, · · · , Xk on U which span D at each point
of U . A vector �eld X on M is lie in D(X ∈ D) if X(p) ∈ D(p) for each p ∈ M .
A smooth distribution D is called involutive if [X, Y ] ∈ D whenever X and Y are
smooth vector �elds lie in D. A submanifold N of M is an integral manifold of a
distribution D on M if TqN = D(q) for each q ∈ N .

Lemma 4.2. Let f : Mm → Nn be smooth map and P is a integral manifold of
distribution D on N and f(M) ⊂ P . Let f̃ : M → P be the unique map such that

i ◦ f̃ = f where i : P ↪→ N is an inclusion map. Then f̃ is smooth.
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This result follows from theorem 1.32(a) and theorem 1.62 in [3]: Foundation of
di�erentiable manifold and Lie groups by Frank W. Warner.

Let f and g be the inversion map and group multiplication on G respectively and
f̃ and g̃ be the induced inversion map and multiplication map on H respectively.
Then ψ = f ◦ i and φ = i ◦ g are smooth. From 4.2, we only need to prove that H is

an integral manifold of an involutive distribution D on G. Let D be a distribution
on G such that D(a) = (dla)I(h) for each a ∈ G where (dla)I : TIG ∼= g→ TaG. D is
clearly a distribution on G since (dla)I(h) ∈ TaG is a subspace of TaG for each point
a ∈ G. Observe that if v ∈ TIG then

(dla)I(v) =
d

dt

∣∣∣
t=0
la(e

tv) =
d

dt

∣∣∣
t=0
aetv = av

Then (dla)I(v) = 0 implies v = 0 since a 6= 0. Note that if G is a group under

addition then (dla)0(v) = d
dt

∣∣∣
t=0
la(e

tv) = d
dt

∣∣∣
t=0

(a+ etv) = v. Thus, (dla)I is injective

and then we obtain

D(a) = (dla)I(h) ∼= h for each a ∈ G

Then dimD = dim(h) = k. Let X1, · · · , Xk be a basis of h then this basis span D at
each point of G. This proves that D is smooth. Since h is a Lie subalgebra of g, it
is closed under bracket. Identifying D(a) with h for each a ∈ G, we obtain that D is
an involutive distribution on G. Let h ∈ H, we have that dim(ThH) = dim(D(h)).
Let p ∈ D(a), then there is v ∈ h such that

p =
d

dt

∣∣∣
t=0

(hetv) =
d

dt

∣∣∣
t=0

(eX1 · · · eXmetv)

where X1, · · · , Xm ∈ h. Let α be the curve such that α(t) = eX1 · · · eXmetv then α
lies in H and is smooth. In addition, α(0) = h and α′(0) = p. Thus D ⊂ ThH
so that ThH = D(h). This proves that H is an integral manifold of the involutive
distribution D on G. This proves the theorem. �

Now, we only need to prove the lemma 4.1. We need the following lemma.

Lemma 4.3. Pick a basis for h and call an element of h rational if its coe�cients
with respect to this basis are rational. Then for every δ > 0 and every A ∈ H, there
exist rational elements R1, . . . , Rk of h such that

A = eR1eR2 . . . eRkeX

where X ∈ h with ‖X‖ < δ.
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1. LIE GROUP-LIE ALGEBRA CORRESPONDENCE

Proof. Choose ε > 0 so that for all X, Y ∈ h with ‖X‖, ‖Y ‖ < ε, the Baker-
Campbell-Hausdor� holds for X and Y ; that is,

log(eXeY ) = X +

1∫
0

g(eadXetadY )(Y )dt

Let C(X, Y ) = X +
1∫
0

g(eadXetadY )(Y )dt then we have:

eXeY = eC(X,Y )

We have C(·, ·) is continuous and if the lemma hold for some δ > 0, it also holds
for any δ′ > δ. Thus we can assume that δ < ε and su�ciently small so that if
‖X‖, ‖Y ‖ < δ, we have ‖C(X, Y )‖ < ε.

Since eX =
(
eX/l

)l
for su�ciently large non zero positive integer l with

∥∥X
l

∥∥ < δ.
Then every element A in H can be written as:

A = eX1eX2 . . . eXm (4.2)

with Xi ∈ h and ‖Xi‖ < δ. By induction, suppose that m = 0 then A = I = e0 and
there is nothing to prove. Assume the lemma until m− 1; that is,

eX1eX2 . . . eXm−1 = eR1eR2 . . . eRk−1eX

for some rational elements Rj, X ∈ h with ‖X‖ < δ. Now, for A as in (4.2), A can
be written as:

A = eR1eR2 . . . eRk−1eXeXm

= eR1eR2 . . . eRk−1eC(X,Xm)

where ‖C(X,Xm)‖ < ε. Since h is a Lie subalgebra of g then [X,Xm] ∈ h so that
C(X,Xm) ∈ h.

Let Rk be a rational element in h that is close enough to C(X,Xm) and such
that ‖Rk‖ < ε. Then:

A = eR1eR2 . . . eRk−1eRke−RkeC(X,Xm)

= eR1eR2 . . . eRk−1eRkeC(−Rk,C(X,Xm))

where Rj are rational elements in h and C(−Rk, C(X,Xm)) ∈ h. Observe that
C(−Z,Z) = log(e−ZeZ) = 0 for all small Z. Thus the condition Rk is close enough
to C(X,Xm) implies that ‖C(−Rk, C(X,Xm))‖ < δ. This completes the proof of
the lemma.

�
Returning to the lemma 4.1. Fix δ > 0 small enough so that for all X, Y with

‖X‖, ‖Y ‖ < δ, the quantity C(X, Y ) is de�ned and contain in U . We claim that for
each sequence R1, . . . , Rk of rational elements in h, there is at most one X ∈ h with
‖X‖ < δ such that:

eR1eR2 . . . eRkeX ∈ eV
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To see this, suppose that,

eR1eR2 . . . eRkeX1 = eY1

eR1eR2 . . . eRkeX2 = eY2

where X1, X2 ∈ h and Y1, Y2 ∈ V . Then,

e−Y1eY2 = (e−X1e−Rm . . . e−R1)(eR1eR2 . . . eRkeX2) = e−X1eX2

and so,

e−Y1 = e−X1eX2e−Y2 = eC(−X1,X2)e−Y2 ∈ eUeV

But, each element of eUeV has a unique representation as eXeY with X ∈ U, Y ∈ V .
Therefore, we must have Y1 = Y2 and then eX1 = eX2 . we can choose δ su�ciently
small if necessary such that exp is injective. Thus, X1 = X2.

By lemma 4.3, every element A ∈ H can be expressed as:

A = eR1eR2 . . . eRkeX

with rational elements Rj ∈ h and X ∈ h with ‖X‖ < δ.
Now, there are countably many rational elements in h and thus only countably

many expressions of the form eR1eR2 . . . eRk , each of which produces at most one
element eR1eR2 . . . eRkeX ∈ eV . Thus the set:

E = {Y ∈ V |eY ∈ H} is at most countable.

�

The following example illustrates the fact that H need not be a matirx Lie group.

Example 4.1. Consider G = GL(2,C) and �x irrational number a, we de�ne:

h =

{[
it 0
0 ita

] ∣∣∣t ∈ R
}

It is easy to see that h is a Lie subalgebra of g = gl(2,C). Suppose that h is a
Lie algebra of a matrix Lie subgroup H ⊂ G then since H is closed, H would be
contain the closure of the group:

H1 =

{[
eit 0
0 eita

] ∣∣∣t ∈ R
}

However, the closure of H1 is:

H1 =

{[
eiα 0
0 eitβ

] ∣∣∣α, β ∈ R
}

Thus, the Lie algebra h of H must contains Lie algebra of H1 which is two dimen-
sional. This proves the contradiction. However, the Lie subgroup of G with Lie
algebra h is simply the group H1 which is connected but is not closed in G.
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2. Lie Group-Lie Algebra Homomorphism Correspondence

The answer for the second question is valid if G is given to be a simply connected
Lie group.

Theorem 4.2. Let G and H be matrix Lie groups with Lie algebras g and
h respectively and φ : g → h be a Lie algebra homomorphism. If G is simply
connected then there exists a unique Lie group homomorphism Φ : G → H such
that Φ(expX) = exp(φ(X)) for all X ∈ g.

We need the following lemma.

Lemma 4.4. Suppose that f : K → GL(n,C) is continuous where K ⊂ Rm is
compact. Then for all ε > 0 there exists δ > 0 such that if s, t ∈ K satisfy ‖s−t‖ < δ,
then ‖f(s)f(t)−1 − I‖ < ε.

Proof. First, observe that

‖f(s)f(t)−1 − I‖ = ‖(f(s)− f(t))f(t)−1‖
≤ ‖f(s)− f(t)‖‖f(t)−1‖

Since the map t → ‖f(t)−1‖ is continuous and K is compact, then there exists
a constant C > 0 such that ‖f(t)−1‖ < C. On the other hand, f is uniformly
continuous. Thus, given ε > 0 there is δ > 0 such that for s, t ∈ K with ‖s− t‖ < δ,
we have

‖f(s)− f(t)‖ < ε

C
This implies

‖f(s)f(t)−1 − I‖ < ε

�

Now, we are ready for providing the proof of the theorem. The proof of the
theorem is followed from [1], Brian C.Hall: Lie Groups, Lie Algebras, and Represen-
tations: An Elementary Introduction.

Proof. First, note that the uniqueness of Φ is followed from the corollary 3.7 .
So, we only need to prove the existence. Let U be a neighborhood of 0 in g and V be
a neighborhood of I in G such that exp : U → V is di�eomorphism with the inverse
log : V → U and V is small enough such that for all eX , eY ∈ V where X, Y ∈ U the
BCH formula applies for log(eXeY ).

De�ne Φo : V → H by Φ0(A) = eφ(log(A)) that is,

Φo = exp ◦φ ◦ log

Then Φo is continuous and by the corollary 4.1, Φo is homomorphism since for any
A = eX , B = eY ∈ V with X, Y ∈ U ,

Φo(AB) = exp ◦φ ◦ log(eXeY )

= exp ◦ log(eφ(X)eφ(Y ))

= exp ◦ log(eφ(logA)eφ(logB))

= eφ(logA)eφ(logB)

= Φo(A)Φo(B)
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Since G is simply connected, it is connected and also path-connected. Let A ∈ G,
then there exists a path α : [0, 1] → G such that α(0) = I and α(1) = A. From
lemma 4.4, choose 0 = t0 < t1 < . . . < tn = 1 such that for |ti+1 − ti| < δ, we have

α(ti+1)α(ti)
−1 ∈ Bε(I) ⊂ V for some ε > 0 (4.3)

Thus for all s, t such that ti ≤ s ≤ t ≤ ti+1, we have

α(t)α(s)−1 ∈ V (4.4)

Since α(0) = I we have α(t1) = [α(t1)α(to)
−1] ∈ V . Thus, A = α(1) can be written

as:
A = [α(1)α(tn−1)

−1][α(tn−1)α(tn−2)
−1] . . . [α(t2)α(t1)

−1]α(t1)

Therefore, we can de�ne Φ : G→ H by:

Φ(A) = Φo[α(1)α(tn−1)
−1]Φo[α(tn−1)α(tn−2)] . . .Φo[α(t2)α(t1)

−1]Φo[α(t1)]

To prove that Φ is well-de�ned, it is su�ciently to prove that Φ is independence of
the partition and independence of the path.

Φ is independent of the partition.
We will prove that the value of Φ does not change in the particular partition
(t0, . . . , tn) and its re�nement, that is a partition which contains all the point ti.
Now if we add a point s in [ti, ti+1] then from (4.4), we have α(ti+1)α(s)−1 and
α(s)α(ti)

−1 are in V and then Φ(A) in this path (t0, . . . , ti, s, ti+1, . . . , tn) is equal:

Φo[α(1)α(tn−1)
−1] . . .Φo[α(ti+1)α(s)−1]Φo[α(s)α(ti)

−1] . . .Φo[α(t2)α(t1)
−1]Φo[α(t1)]

= Φo[α(1)α(tn−1)
−1] . . .Φo[α(ti+1)α(ti)

−1] . . .Φo[α(t2)α(t1)
−1]Φo[α(t1)]

The equality follows from the fact that Φo is homomorphism. By repeating this
argument, the value of Φ(A) is not change by adding �nitely many point to a partition
(t0, . . . , tn). Thus for any two partitions, they have common re�nement; that is their
union. Thus, the value of Φ in the �rst partition is as the same as in their common
re�nement and so is the same as in the second partition.

Φ is independent of the path.
Let A ∈ G and α, β : [0, 1] → G be paths such that α(0) = β(0) = I and α(1) =
β(1) = A. Since G is simply connected, there exists a continuous map H : [0, 1] ×
[0, 1]→ G with

H(t, 0) = α(t), H(t, 1) = β(t), ∀t ∈ [0, 1]

H(0, s) = I, H(1, s) = A, ∀s ∈ [0, 1]

Lemma 4.4 guarantees that there exists an integerN such that for all (t1, s1), (t2, s2) ∈
[0, 1]× [0, 1] with |t2 − t1| < 3

N
and |s2 − s1| < 3

N
, we have

H(t1, s1)H(t2, s2)
−1 ∈ V (4.5)

We now de�ne the sequence of paths Bl,k with k = 0, . . . , N − 1 and l = 0, . . . , N
such that:

Bl,k(t) =


H(t, k+1

N
), for 0 ≤ t ≤ l−1

N

H(t, k
N

), for l
N
≤ t ≤ 1

H(t,s),
for the values of (t, s) that goes diagonally in

(t,s)-plane from ( l−1
N
, k+1
N

) to ( l
N
, k
N

)
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Observe that when l = 0, there is no t between 0 and l−1
N

then B0,k = H(t, k
N

) for all
t ∈ [0, 1] and thus B0,0 = H(t, 0) = α(t). See �gure 6.

Figure 6. The sequence of path Bl,k

We will deform the path α to the path β in steps. The �rst step, we will deform
Bl,k to Bl+1,k and the second step, we will deform BN,k to B0,k+1. Thus we can
deform α = B0,0 into B1,0 until BN,0 (in step 1) and then from BN,0 to B0,1 (in
step 2) and then deform to B1,1 until BN,1. We repeat this procedure until we reach
BN,N−1 and �nally deform BN,N−1 to β. The following �gure illustrates our process.

Figure 7. The deformation from B0,0(t) = α(t) to β(t)

We only need to prove that in each step the value of Φ(A) does not change.

Step 1: Observe that the paths Bl,k and Bl+1,k are coincide except for l − 1 <
t < l + 1

61



2. LIE GROUP-LIE ALGEBRA HOMOMORPHISM CORRESPONDENCE

Since Φ is independent of partition, we choose the partition:

t0 = 0, t1 =
1

N
, . . . , tl−1 =

l − 1

N
, tl =

l + 1

N
, . . . , tN−1 = 1

for both Bl,k and Bl+1,k. Note that the distances between two consecutive points in
this partition less than 3

N
. From (4.5), when s1 = s2 = 0 and when s1 = s2 = 1, for

all ti ≤ t ≤ t′ ≤ ti+1, we have:

α(t′)α(t)−1 ∈ V and β(t′)β(t)−1 ∈ V

Thus, the value of Φ(A) with respects to the path Bl,k and the path Bl+1,k are the
same since α(ti) = β(ti) for all i = 0, . . . , N − 1.

Step 2: The paths BN,k and B0,k+1 are coincide except for
N−1
N

< t < N .

Using the same partition for both BN,k and B0,k+1, the value of Φ(A) is unchange
from the path BN,k to the path B0,k+1 and so is unchange from the path BN,N−1 to
the path β(t).

Φ is a Lie homomorphism.
Let A,B ∈ G and α, β : [0, 1] → G be paths in G such that α(0) = β(0) = I and
α(1) = A, β(1) = B. De�ne γ : [0, 1]→ G by:

γ(t) =

{
β(2t) if 0 ≤ t ≤ 1

2

α(2t− 1)B if 1
2
≤ t ≤ 1

γ is a path connecting I to AB.

Let (0 = s0, s1, . . . , sm = 1) and (0 = t0, t1, . . . , tn = 1) be partitions of α and β
respectively that satisfy (4.3). we claim that:

t0
2
, . . . ,

tn
2
,
1 + s0

2
, . . . ,

1 + sm
2
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is a partition of γ that also satis�es (4.3). To see this, note that for i = 0, . . . , n− 1
and j = 0, . . . ,m− 1, we have:

γ

(
ti+1

2

)
γ

(
ti
2

)−1
= β(ti+1)β(ti)

−1 ∈ V

γ

(
1 + si+1

2

)
γ

(
1 + si

2

)−1
= α(si+1)BB

−1α(si)
−1 = α(si+1)α(si)

−1 ∈ V

γ

(
1 + s0

2

)
γ

(
tn
2

)−1
= α(0)Bβ(1)−1 = I ∈ V

Thus,

Φ(AB) = Φo

[
γ

(
1 + sm

2

)
γ

(
1 + sm−1

2

)−1]
. . .Φo

[
γ

(
t1
2

)]
=
(
Φo

[
α (sm)α (sm−1)

−1] . . .Φo [α (s1)]
) (

Φo

[
β (tn) β (tn−1)

−1] . . .Φo [β (t1)]
)

= Φ(A)Φ(B)

Since Φ is smooth by its de�nition then Φ is a Lie group homomorphism.

Φ satis�es Φ ◦ exp = exp ◦φ.
Since Φ is Lie group homomorphism, theorem 3.1 implies that dΦI is the associated
Lie algebra homomorphism that sati�es:

Φ ◦ exp = exp ◦dΦI

However, Φ(A) = Φo(A) = exp ◦φ ◦ log(A) for A ∈ V (A near the identity) then

dΦI(X) =
d

dt

∣∣∣
t=0

Φo(e
tX)

=
d

dt

∣∣∣
t=0
eφ(tX)

= φ(X)

Thus,
Φ ◦ exp = exp ◦φ

This completes the proof.
�

Corollary 4.2. Let G and H be simply connected matrix Lie groups with Lie
algebras g and h respectively. If g and h are isomorphic then so are G and H.

Proof. Let φ : g → h be a Lie algebra homomorphism with the inverse Lie
algebra homomorphism φ−1 : h → g. From theorem, there exist Lie group homo-
morphisms Φ : G→ H and Ψ : H → G such that:

Φ ◦ exp = exp ◦φ and Ψ ◦ exp = exp ◦φ−1

From corollary 3.5, Lie algebra homomorphism associated to Φ ◦Ψ is φ ◦ φ−1 = Idg
and Lie algebra homomorphism associated to Ψ ◦Φ is φ−1 ◦φ = Idh. From corollary
3.7, we obtain Φ ◦Ψ = IdG and Ψ ◦ Φ = IdH and thus G is isomorphic to H.

�
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The following example shows that the condition that G is simply connected in
the theorem cannot be omitted.

Example 4.2. Consider the matrix Lie groups SO(3) and SU(2). The Lie al-
gebra so(3) and su(2) are both 3-dimensional real vector spaces with the following
bases:

so(3) : E1 =

0 −1 0
1 0 0
0 0 0

 E2 =

0 0 −1
0 0 0
1 0 0

 E3 =

0 0 0
0 0 −1
0 1 0


su(2) : F1 =

1

2

[
i 0
0 −i

]
F2 =

1

2

[
0 1
−1 0

]
F3 =

1

2

[
0 i
i 0

]
The direct calculations show that the non-trivial Lie brackets among these are:

[E1, E2] = E3 [E2, E3] = E1 [E3, E1] = E2

[F1, F2] = F3 [F2, F3] = F1 [F3, F1] = F2

This implies that the real linear isomorphism

φ : su(2)→ so(3), φ(a1E1 + a2E2 + a3E3) = a1F1 + a2F2 + a3F3

satis�es:
φ[X, Y ] = [φ(X), φ(Y )]

This proves that su(2) and so(3) are (Lie algebra) isomorphic. Now, suppose that
the theorem is still valid although G is not simply connected. From the corollary,
we obtain that SO(3) and SU(2) are (Lie group) isomorphic. However, this is a
contradiction since SU(2) is simply connected but SO(3) is not (from the table in
chapter 2).

Conclusion:

Let G be a matrix Lie group. If G is connected then there is a one-one corre-
spondence between G and its Lie algebra g. Thus, we can study some properties on
G (such as abelian, nilpotent and solvable) by studying those properties on g and
viceversa.

Similarly, if G and H are matrix Lie groups such that G is simply connected and
Φ : G → H is a Lie group homomorphism, then there is a one-one correspondence
between Φ and its Lie algebra homomorphism associated φ : g → h. Thus, some
properties on Φ (such as representation) can be done by studying those on φ and
viceversa.

64



Bibliography

[1] Brian C.Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction.
First edition, Springer, 2003.
Second edition, Springer, 2015.
53, 59

[2] Wulf Rossmann Lie Groups: An Introduction Through Linear Groups. Oxford University
press, 2002.

[3] Frank W. Warner Foundations of Di�erentiable Manifolds and Lie Groups. Springer-Verlag,
1983.
47, 56

[4] Andrew Baker Matrix Groups: An Introduction to Lie Group Theory. Springer, 2002.

[5] Arthur A. Sagle and Ralph E. Walde INTRODUCTION TO LIE GROUPS AND LIE

ALGEBRAS. Academic Press, 1973.

[6] Serge Lang Linear Algebra. Third edition, Springer, 1987.

[7] James R. Munkres Topology. Second edition, Prentice Hall. Inc, 2000.

[8] Loring W. Tu An Introduction to Manifolds. Second edtion, Springer, 2011.

[9] Bjorn Ian Dundas Di�erential Topology. Johns Hopkins University, 2002.

[10] Manfredo Perdigão do Carmo Riemannian Geometry. Birkhäuser Boston, 1992.

[11] Barrett O'Neill Semi-Riemannain Geometry: With Applications to Relativity. Academic
Press, 1983.

[12] Joseph A. Gallian CONTEMPORARY ABSTRACT ALGEBRA. Eighth edition,
Brooks/Cole, 2013.

[13] Walter Rudin REAL AND COMPLEX ANALYSIS. Third edition, McGraw-Hill, Inc, 1987.

[14] Jerrold E. Marsden Elementary Classical Analysis. W.H. Freeman and Company, 1974.

[15] D. Steven Mackey and Niloufer Mackey One the Determinant of Simplectic Matrices.
2003.
22

[16] Michel A. Kervaire A Manifold which does not admit any Di�erentiable Structure.
5

65


	Acknowledgement
	Abstract
	Chapter 1. Differentiable manifolds
	1. Differentiable Manifolds
	2. Tangent Spaces and Differential Forms
	3. Submanifolds
	4. Vector Fields, Brackets
	5. Connectedness of Manifolds

	Chapter 2. Lie groups and matrix Lie groups
	1. Lie Groups and Matrix Lie groups
	2. Compactness
	3. Connectedness
	4. Subgroups and Homomorphism

	Chapter 3. Lie algebra
	1. The Exponential Map
	2. Lie Algebra of Lie group
	3. Properties of Lie algebra
	4. The Closed Subgroup Theorem
	5. Lie Group that is not a Matrix Lie Group

	Chapter 4. Lie correspondences
	1. Lie Group-Lie Algebra Correspondence
	2. Lie Group-Lie Algebra Homomorphism Correspondence

	Bibliography

